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We present a deep learning surrogate model in the form of fully-connected feed-forward neural net-
works to predict the SGS scalar flux in the context of large-eddy simulation of turbulent transport.
The deep neural network model is trained and validated using a filtered DNS dataset at Pe) = 240,
Sc = 1 that includes the filtered scalar and velocity gradients as input features. We provide a sam-
pling strateqy in time and space to construct a sufficiently inclusive dataset for successful model
optimization. Moreover, using transfer learning notion, we adjust this trained model to perform ac-
curately for turbulent scalar transport regimes with higher Pex and Sc numbers with a fairly low
amount of data and computations. In the inference mode on the full-size 3D LES grids over time,
we carry out a priori tests for the developed deep learning models, and compare them to the results
obtained from conventional models of SGS flux that are defined based on gradients of filtered fields.
We show that the deep learning model outperforms traditional SGS models that either suffer from
their fundamental restrictions in following the physics or under/overprediction of SGS quantities.
For the transfer learned models, these comparisons are made between the base (pretrained) model and
the retrained one on the new transport regime, and we discuss the importance of transfer learning
in reduction of notably large prediction errors of the pretrained model.
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1. INTRODUCTION

Abundance of data, and public access to modern machine learning (ML) libraries have shaped
a data-driven era virtually for every modeling discipline such as those in the physics-based and
engineering fields (Bergen et al., 2019). Over the past decade, the advent of scalable and compu-
tationally efficient implementations of deep learning libraries has sparked a growing interest in
developing and using a variety of deep neural network (DNN) architectures that constitute pre-
dictive models from latent features of datasets even with nonlinear complexities. For instance,
learning parametric spaces (Brenowitz and Bretherton, 2018, 2019), reduced-order modeling
(Kutz et al., 2016), inverse problems (Arzani et al., 2021; Kumar et al., 2020; Raccuglia et al.,
2016; Raissi et al., 2019), solving forward differential equations (Arzani et al., 2021; Han et al.,
2018; Raissi et al., 2019; Sirignano and Spiliopoulos, 2018), discovering governing equations
(Brunton et al., 2016; Rudy et al., 2017), and data generation (Fukami et al., 2019; Li and Mc-
Comb, 2022; Wu et al., 2020) are a few examples among important applications in the physics-
based modeling via deep learning.

Fluid mechanics is among the challenging branches of physics-based modeling that recently
have notably benefited from diverse deep learning architectures (Brunton et al., 2020; Kutz,
2017). In turbulence modeling, promising advances have been made mainly due to the prevalence
of high-fidelity simulations and experimental data (Beck and Kurz, 2021; Drygala et al., 2022;
Duraisamy, 2021; Duraisamy et al., 2019; Peng et al., 2022; Wu et al., 2018). Many of these
contributions were made in the area of Reynolds-averaged Navier-Stokes (RANS) modeling
(see e.g., Charalampopoulos and Sapsis, 2022; Li et al., 2022; Ling et al., 2016; Wang et al.,
2017; Zangeneh, 2021).

Particularly, in large-eddy simulation (LES) of turbulent transport, researchers have tradi-
tionally proposed models for the closure terms that appear in the filtered governing equations,
and tried to model the effects of closure (unresolved) terms using resolved-scale flow quanti-
ties. These modeling strategies are predominantly categorized into “functional” or “structural”
approaches (Sagaut, 2006). In a functional model, the closure term takes the form of a mathe-
matical operator acting on the resolved-scale field. Therefore, functional models are only repro-
ducing the net transfer of turbulence intensity from the resolved to unresolved scales. However,
a structural modeling approach would approximate the LES closure in terms of the resolved-
scale field, where the subgrid-scale (SGS) structures and statistical characteristics are recovered
from the resolved scale information. However, novel DNN surrogate modeling approaches have
recently opened a thriving “data-driven” direction to closure modeling for LES. The study by
Sarghini et al. is among the earliest reported works focusing on utilizing a neural network ar-
chitecture for SGS modeling of turbulence (Sarghini et al., 2003). More recently, a study by
Beck et al. (2019) managed to test the SGS modeling of the closure term appearing in the fil-
tered momentum equation with deep neural networks in the context of decaying homogeneous
isotropic turbulent (HIT) flows. For more recent advancement of the LES modeling in the con-
text of HIT flows, the reader is referred to Wang et al. (2021), Williams et al. (2022), Xie et al.
(2020), and Yuan et al. (2020). In addition for the recent developments in the fractional-order
modeling and fractional LES modeling in the context of HIT flows, the reader is referred to Lis-
chke et al. (2019), Samiee et al. (2020, 2022), Seyedi and Zayernouri (2022), and Suzuki et al.
(2023, 2021). Moreover, studies such as Gamahara and Hattori (2017) on modeling the SGS
stress tensor and LES in turbulent wall flows have employed more advanced implementations
of a deep neural network [for more recent works see Park and Choi (2021), Liu et al. (2022),
Bae and Koumoutsakos (2022), and Kim et al. (2022)], while Yang et al. (2019) presented a
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physics-based neural network for wall-modeled LES. Readers interested in constraining and em-
bedding the physical laws to the deep learning LES models are referred to Frezat et al. (2021),
MacArt et al. (2021), and Sirignano et al. (2020).

In the SGS modeling for SGS scalar flux, Vollant et al. (2017) managed to represent the clo-
sure flux with a deep learning model, and tested their model for homogeneous isotropic turbulent
(HIT) flows. Later, Portwood et al. (2021) proposed a deep neural network model for the SGS
scalar flux and trained their model on an extensive dataset obtained from filtering the direct nu-
merical simulation of a passive scalar with uniform mean gradient in a HIT flow. They evaluated
their model in a priori (off-line) and a posteriori (on-line) tests and showed their model signif-
icantly outperforms the functional and structural gradient-type SGS models. In another study,
Frezat et al. (2021) developed a deep learning SGS scalar flux model using a convolutional neu-
ral network assembly, while they enforced multiple transformation invariance properties (such as
translation, rotation, and Galilean invariance). They showed that enforcing such physical prop-
erties is crucial for improving the performance of the SGS model. Looking back to Vollant et
al.’s work, they mentioned that they were not successful in testing their trained SGS model on
a different scalar transport regime (Vollant et al., 2017). In 2D turbulence settings, Subel et al.
(2021) and Guan et al. (2022) conducted successful generalization of pretrained deep learning
SGS models to predict on higher Reynolds number regimes using transfer learning technique
(Yosinski et al., 2014). Inspired by these pioneering studies, here in the context of 3D homoge-
neous turbulence with a uniform scalar gradient, we seek to develop a deep learning SGS scalar
flux model that could feasibly be generalized to other turbulent transport regimes. As a result,
the key contributions of our work are summarized as follows:

e We develop a DNN surrogate model for the SGS scalar flux, and utilize the gradients
of the resolved-scale scalar and velocity fields as input features. We propose a spatio-
temporal sampling approach for constructing a diverse training/validation dataset from
filtered DNS (FDNS) results, and seamlessly optimize the DNN model for a specified
turbulent transport regime.

e Using the transfer learning concept, we generalize our pretrained DNN model to accu-
rately predict on different scalar transport regimes with higher Schmidt and higher Péclet
numbers. We demonstrate that compared to the pretrained model, the amount of required
data and the computational cost of model optimization are significantly reduced in the
retraining steps.

e We conduct multiple tests to evaluate the performance of optimized models in the infer-
ence mode on full-size 3D FDNS grids at multiple time instances. In a priori analysis,
we show that the base DNN model decreases the time-averaged spatial error in the pre-
dicted SGS flux and the SGS dissipation of scalar variance compared to two traditional
models. Similar comparisons are presented between the performance of the pretrained
and transfer learned models for higher Schmidt and higher Péclet number scalar transport
regimes.

e Finally, we test the performance of our base DNN model when utilized in the LES set-
ting, and we show that unlike two other conventional SGS models, the DNN is success-
ful in maintaining the accuracy for predicted time-record resolved-scale scalar variance,
and time-averaged two-point structure functions of the LES-resolved scalar concentration
field.
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The remaining part of this paper is organized as follows: in Section 2, we present the method-
ologies for numerical simulations and data-driven modeling for base and transfer learned DNN
models. In Section 4, we go over a priori and a posteriori tests of the trained models and com-
pare them to the conventional gradient-based SGS models for scalar flux. Lastly, we conclude
our study with a presentation of a summary of contributions and findings.

2. MODELING PARADIGM
2.1 Governing Equations

Considering the incompressible flow regime and the transport of a conserved passive scalar in
that flow medium, Navier-Stokes (NS) and advection-diffusion (AD) equations are the set of
governing equations constituting the system dynamics (Pope, 2001). In the LES of turbulent
transport, a generic spatial filtering operator, -, is applied to the NS and AD equations returning
the LES governing equations [see, e.g., Sagaut (2006)] as

i 1

a@?+a.va:_gvp+vAﬁ—V~TR; V-u=0, M
& . -
%+a-vq>:DA®—v-qR. 2

In this set of equations, u = (uy, uz,u3), p, and @ are the velocity, pressure, and scalar con-
centration fields, respectively. In Eq. (1), p denotes the fluid density, while v represents the
viscosity of fluid, and in Eq. (2), D is the diffusivity of the passive scalar field. Moreover, filter-
ing yields sources of closure in the LES governing equations as the divergence of residual stress,
M —uRu—a® w, and residual scalar flux, q& = ud—ad. Modeling these residual or
subgrid terms using the filtered or resolved flow fields is an essential gateway returning a closed
set of equations that are suitable for a predictive and numerically stable LES (Meneveau and
Katz, 2000; Sagaut, 2006).

The Reynolds decomposition for a general field such as scalar concentration is = (®) + ¢,
where (®) is the ensemble-averaged part of @, and ¢ denotes its fluctuating part (Pope, 2001). In
our problem setting, we consider a homogeneous isotropic medium for velocity field; therefore,
(u) = 0. For the passive scalar field, we assume the fluctuations are statistically homogeneous
while we consider an imposed ensemble-averaged gradient as V(®) = (0,1,0) (Akhavan-
Safaei and Zayernouri, 2023a.,b; Overholt and Pope, 1996). As a result, the filtered AD equation
(2) is rewritten as

op = _ ~ R
E-l—u-Vd):—uz—&-DAd)—V-q. 3)
In Eq. (3), the residual scalar flux may be restated as ¢”* = u ¢ —u (f) The goal of our study is to
develop a data-driven model for g™ using a predictive deep neural network (DNN) architecture.

2.2 Deep Neural Network (DNN) Closure Modeling

Using a deep feed-forward neural network architecture shown in Fig. 1, we model the residual
scalar flux. This model has L fully connected layers each with N neurons in the [-th layer, a
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FIG. 1: Schematic of the DNN surrogate model for prediction of SGS scalar flux. ¢ in the units (neurons)
indicates the activation function.

weight tensor of W € RV *N'™" and a bias vector b' € RN, For instance, in the I-th layer,
y!, formulates the output of the n-th neuron as

Ml—l
v =0 | D Wiy +0y |, )

where o' indicates the activation function. In this DNN model, y° represents the input features’
layer while y* = gpnn is the layer corresponding to prediction of the targets. Through opti-
mization of the DNN’s parameters (W, b) with FDNS data, gpnn predicts g© = (qft, ¢, ¢f).
The input features are selected based on the gradients of the filtered (resolved) flow fields, i.e.,
Vi and V. Choosing these input features preserves important properties such as frame in-
variancy and homogeneity of the SGS flux in predictions of the DNN model (Portwood et al.,
2021).

3. NUMERICAL AND OPTIMIZATION METHODS
3.1 Simulation Setup for Training/Validation Data

Based on the DNS of passive scalar with a uniform mean gradient of V(®) = (0,1,0) in a
HIT flow, our required SGS data are constructed. Here, we employ the pseudo-spectral paral-
lel simulation setup elaborated upon in Akhavan-Safaei and Zayernouri (2023a,b). Using the
mentioned framework we generate a stationary HIT flow using a computational domain as
Q = [0,27]%, which is discretized on a uniform spatial grid of N* resolution with N = 520.
Accordingly, the size of the spatial grid is Apng = 27/N. A fourth-order Runge-Kutta (RK4)
scheme is utilized to perform the time integration with a fixed At = 8 x 1074, while the
Courant-Friedrichs-Lewy (CFL) number is checked during the simulation to satisfy the CFL =
(At/Apns)max(|ui| + |uz| + |us|) < 1 condition; therefore, the numerical stability is always
ensured. Aiming for the Taylor-scale Péclet number (Pe), = ScRe) = 240) with the Schmidt
number (Sc = v/D = 1) and = Re, representing the Taylor-scale Reynolds number, at the
fully turbulent (statistically stationary) state, we obtain well-resolved velocity and scalar tur-
bulent fields with kn.xnp ~ 1.5; therefore, we ensure that the small scales in the velocity
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and scalar fields are well-resolved (Akhavan-Safaei and Zayernouri, 2023a.,b). In order to reach
this turbulent state, first the NS equations are resolved from a randomly initialized field for
approximately 15 Tt while an artificial forcing mechanism is enforced to the low wave num-
bers (energy-containing range) to maintain the turbulent kinetic energy (Akhavan-Safaei and
Zayernouri, 2023a,b). Afterwards, we start resolving the AD equation from ¢g(x) = 0 initial
fluctuating concentration while imposing a uniform mean gradient. By resolving the NS and AD
equations for approximately another 15 large-eddy turnover times, the skewness and flatness
records of the fluctuating passive scalar gradient reach a statistically stationary state, specifying
the fully-developed turbulent scalar fluctuations. Over a sampling time span in the fully turbulent
region, the true values of the residual scalar flux are computed using the box filtering kernel with
isotropic filter size A, as

/A, |z—2'|<A)2

\ &)
0, Otherwise.

Galx —x') = {

According to the outlined procedure, two other sets of DNS are conducted with (i) Pe) = 240
and Sc = 4, and (ii) Pe) = 360 and Sc = 1. In the former case, the spatial discretization consists
of the 5123 uniform grid points with At = 8 x 10~*, while for the latter case, the spatial grid
has a 10243 resolution and the temporal resolution is At = 5 x 1074,

3.2 Construction of a Spatiotemporal Database

In our study, we examine our model in two filter sizes, A* = A/Apns = 10, 20, where the
amount of filtered scalar variance for these two filter sizes is 9% and 18%, respectively. Given the
time-stationary statistics of our turbulent flow dataset, uniform sampling over the fully turbulent
time domain is a fair approach. Therefore, we select a sampling window over approximately 11
T of the fully turbulent state, and uniformly sample 64 time instances. To prepare a randomly
generated dataset in the spatial domain (3D periodic cube) for each time sample, we utilize Latin
hypercube sampling (LHS) to obtain a randomly drawn index set based on a uniform distribution.
This index set returns the location of the spatially sampled data points on the original 3D uniform
grid of the filtered DNS solution. For instance, for the case with A* = 10, a set of 23° spatially
scattered data points is sampled out of the full spatial dataset of 52° resolution. This reduction
of the data at a sampled time frame helps to construct an unbiased database in space and time
(using sampled time snapshots of FDNS data) for training/validation of the DNN model; thus we
avoid an unnecessary large size of the entire database. As a result, this spatiotemporal sampling
procedure yields a reference FDNS database of approximately 780,000 samples. We hold 5% of
the data out for out-of-sample validation during the optimization procedure. Figure 2 illustrates
this sampling framework.

3.3 DNN Specifications and Optimization

In this study, the DNN model consists of six nonlinear hidden layers with rectified linear unit
(ReLU) activation functions as

o(y) = max(y,0), (6)

and each hidden layer contains 32 neurons (units). Unlike the nonlinear hidden layers, the output
layer that returns the DNN approximation for g’ is set to be linear. As a result, this DNN model
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FIG. 2: Spatiotemporal sampling framework for construction of training/validation dataset from FDNS
results for scalar transport regime of Pe) = 240, Sc = 1. (a) Full-size spatial data (input and target features)
obtained from FDNS at a sampled time instance. For V4 tensor only the component 5 5, and for V(f)
and q** vectors only the second components are shown on the 3D spatial domain, (b) temporal sampling
domain, shown on statistical records of V ¢, (c) spatial index sampling to be applied on all time-sampled
full-size 3D data.

yields 6000 trainable parameters and these model parameters are initialized based on a uniform
distribution prior to model optimization. In order to train the DNN model, the database from
spatiotemporal sampling is utilized to minimize the mean-squared error (MSE) loss function:

N

MSE = % Ei:(qi - ). @

In Eq. (7), g; denotes the DNN prediction for each sample and g; is the reference labeled data
from FDNS. Using the AdamW optimizer with a learning rate of Ir = 10~*, we manage to
minimize the MSE loss function with respect to the model parameters (weights and biases) of
the DNN as we utilize PyTorch library (Paszke et al.,2017). Using a batch size of 256 data points
while we shuffle the training data in the data loader, we perform model optimization for 150
epochs (with each epoch consisting of 2800 optimizer iterations). At the end of each epoch we
perform out-of-sample validations with the updated model. The same batch size is selected for
the validation data and the resulting MSE evaluations are averaged over the validation batches.
For the DNN model optimized based on the dataset of A* = 10, Fig. 3(a) shows the MSE
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FIG. 3: Training/validation of the DNN surrogate model. Training MSE value after each gradient descent
iteration for (a) A*™ = 10, and (¢) A™ = 20. Averaged training MSE over evaluations in each epoch for (b)
A* =10, and (d) A" = 20. All of the depicted validation MSEs in (a)—(d), shown with dashed red lines,
are averaged MSE values over the validation data batches.

evaluations of the training iterations, and Fig. 3(b) depicts their averaged value over the iterations
in each epoch. In both of these plots, the averaged MSE evaluations over the validation data
batches are shown with a dashed line. At the end, the convergence of the MSE is achieved, and
it is shown that the overfitting is avoided as the averaged MSE values for training and validation
are the same over the entire optimization procedure. We observe the same behavior in model
training/validation using the A* = 20 filtered dataset as shown in Figs. 3(c) and 3(d).

3.4 Transfer Learning for Generalization to Other Transport Regimes

Due to the increasing computational cost of high-resolution simulations as the Pe; number in-
creases in scalar transport, it is not always feasible to obtain a sufficiently large dataset to prop-
erly train a DNN to reliably model the SGS flux. On the other hand, it is widely recognized
that the data-driven surrogate models for physical systems do not generalize well to accurately
predict in physical regimes outside of their training data. Transfer learning (TL) provides a prac-
tical approach to this problem, and lets us adjust our pretrained surrogate model (from a physical
regime with abundant training data) to work well on another physical regime with less available
data. Transfer learning aims to retrain the very final layers of the pretrained DNN to adjust the
model parameters learning specific features that belong to the new physical regime utilizing its
available data. The rationale behind this retraining step is that the general features that are com-
mon among the initial and new physical regimes are learned in the earlier hidden layers (in the
pretrained model), while the specific features are learned in the later hidden layers. Therefore,
one can freeze the model parameters associated with the earlier layers in the retraining procedure
(by setting them as nontrainable parameters in the optimization), and only update those associ-
ated with the later hidden layers using the data for the new physical regime. Figure 4 provides a
schematic view of the transfer learning in our DNN modeling for SGS scalar flux.
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Input A
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Input B

FIG. 4: Schematic of the transfer learning from a DNN model pretrained on data for Task A to a DNN
model for Task B. In the initial training for Task A (upper model in the plot), all of the model parameters
are optimized, while in the training the pretrained model for Task B, the model parameters in the earlier
layers are fixed, and the ones in the final layers are optimized based on the data for Task B (lower model
in the plot).

In the previous section, we presented a trained DNN model using the FDNS dataset from
a turbulent scalar transport at regime Pey = 240 and Sc = 1 (as described in Section 3.2).
Taking that pretrained model, we manage to retrain it for transfer learning to the following scalar
transport regimes for the specified filter sizes:

e Pe) =240 and Sc =4 (A* =10, 20),
e Pe) =360 and Sc = 1 (A* =8, 16).

The data for retraining these two transport regimes were obtained from filtering DNS results
where the small scales of passive scalar are sufficiently resolved (km.x g =~ 1.5). The details of
these simulations are similar to the description provided in Section 3.1. In the retraining step for
each transport regime, we construct training/validation datasets that contain approximately 5%
of sampled data points we utilized for the pretrained model (Pe, = 240 and Sc = 1). The con-
struction of these training/validation datasets is based on the procedure we explained in Section
3.2; however, in these datasets, we only use four sampled time instances of full-sized 3D FDNS
data for spatial sampling. The batch size and learning rate are chosen similar to optimization of
the pretrained model, yet in the retraining steps we only aim for 50 epochs. As a result, the num-
ber of gradient descent iterations in the retraining steps are approximately 2.5% of iterations in
the pretraining. Moreover, in the retraining steps, we optimize the model parameters in the final
two layers of the pretrained DNN model, and the rest of the model parameters in other layers
remain fixed. For example, Fig. 5 shows the records of the loss function for the retraining and
validation for the transfer learning to the SGS model at transport regime Pe) = 360, Sc = 1.
Figures 5(a) and 5(b) show the convergence of the MSE for the model retrained based on data
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FIG. 5: Training/validation for the transfer learning from the pretrained DNN model DNN using data of
Pe) = 240, Sc = 1 regime (see Fig. 3) to a DNN model for Pe, = 360, Sc = 1 regime. Training MSE
value after each gradient decent iteration for (a) A* = 8, and (c) A*™ = 16. Averaged training MSE over
evaluations in each epoch for (b) A* = 8,and (d) A* = 16. All of the depicted validation MSEs in (a)—(d),
shown with dashed red lines, are averaged MSE values over the validation data batches.

with A* = 8 (pretrained model utilized data with A* = 10), while Figs. 5(c) and 5(d) illustrate
the converged model when A* = 16 in the retraining data (pretrained model utilized data with
A* = 20). Similar to the pretrained models presented in Fig. 3, close behavior of the training
and validation MSE records during the retraining steps ensures that the transfer learned models
are not overfitted.

4. MODEL ASSESSMENTS IN THE INFERENCE MODE

In this section, we manage to examine the performance of the trained DNN models described in
the previous section in the inference of the SGS and resolved flow quantities. Here we employ
the full-size 3D time instances of flow fields (u, ¢) coming from either the FDNS solution (a
priori test) or from an LES that utilizes the SGS model (a posteriori test). In both of these tests,
we assess the performance of the DNN model against the two traditional closure models for the
SGS scalar flux:

e Prandtl-Smagorinsky (PSM) model,
e Scalar asymptotic gradient (SAG) model.

In the PSM model, the SGS scalar flux is determined based on the eddy-diffusivity concept, and
is written as

grsm = —DiV o, (8)

where D; = v, /Pr; denotes the turbulent diffusivity.:l"he constant turbulent Prandtl number, Pr;,
relates D; to the turbulent viscosity, v = (Cs A)* ||S|| defined by the Smagorinsky model. Here
C is the Smagorinsky constant and for the filtered strain-rate tensor S = 1/2 (Vﬁ + VﬂT),
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|S|| = V28 : S. For passive scalars in homogeneous turbulence, if the filter size is selected
within the inertial subrange, Cs ~ 0.17 and Pr; ~ 0.5 (Antonopoulos-Domis, 1981; Lilly,
1967). Therefore, we adopt these values in our study.

In the SAG model, the residual scalar flux is approximated based on a Taylor series expansion
of the filtering operation (Bedford and Yeo, 1993; Clark et al., 1979), and is represented as

2

A ~ -
asAG = 75 V- Va. 9

Although this model has shown a good structural performance in reproducing the SGS flux from
FDNS flow fields, it has been identified to be significantly underdissipative, especially when the
filter size is sufficiently large compared to the dissipation scales (Leonard, 1975). Therefore,
conducting a stable LES (in terms of numerical time integration) using the SAG model is known
to require special modifications such as utilizing a “clipping” technique (Lu and Porté-Agel,
2013; Vreman et al., 1997) or combining it with an eddy-diffusivity model (Clark et al., 1979).

4.1 A Priori Test

In the a priori testing of developed DNN models, we employ full-size 3D FDNS solutions for
¢ and u. We utilize ten time instances sampled from approximately 5 Tr,r away from the time
domain where we obtained our training/validation datasets. Using these time instances of FDNS
data and the SGS model, we predict the SGS flux on the 3D filtered domain. Considering the

mean scalar gradient V (®) as the anisotropic source of turbulence production for passive scalar,
we categorize the predicted SGS flux terms into perpendicular (¢, gy = a1, ¢5") and parallel

@@y = ql?) components with respect to the mean scalar gradient direction. Moreover, we
compute the SGS dissipation of filtered scalar variance,

II=—¢g" Vo, (10)

as an indicator for capability of the SGS flux model in reproducing the backward scattering of
the scalar variance. The backward scattering phenomenon is the transfer of turbulent intensity
from unresolved (SGS) scales to the resolved (filtered) scale, and it is identified with the negative
values appearing in the true II (obtained from FDNS).

Once we compute g'* and 11 for each time instance using the SGS model, we take the mean
squared error of each quantity with respect to its FDNS solution. In order to average the com-
puted MSEs over the time instances we sampled, each MSE is normalized by the variance of
its FDNS solution. Averaged normalized MSEs for ¢ ¢ @) 4w (3) and II are presented for
each model. For ¢ LV(d) the averaged normalized MSE is the mean value of MSEs for both
perpendicular components. Finally, the probability distribution function (PDF) of reconstructed
II from the SGS model is compared to the true PDF from FDNS. In the following, we present
these metrics for the base SGS model we developed in Section 3.3 as well as the two transfer
learned models to other transport regimes we presented in Section 3.4.

4.1.1 Base Model: Pe, =240, Sc = 1

Here we compare the performance of the developed DNN model in Section 3.3 to the perfor-
mance of the SAG and PSM models. Our comparison is based on the time-averaged normalized
MSE metric for predicted Uiv(d) 9w () and IT at A* = 10, 20 (see Fig. 6). Figure 6(a) shows
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FIG. 6: A priori estimation (base model: Pe), = 240, Sc = 1) of the time-averaged normalized mean
squared error of (2) ¢ | o (&) (b) 4w (&) (c) II for each SGS flux model at each filter size. The normaliza-
tion is done by the variance of the FDNS solution for each quantity at its filter size, and the time averaging
is carried out using ten sampled time instances.

that at A* = 10, the DNN model prediction of ¢, ¢ g, has 5.5% less error compared to the
SAG model and 76.4% less error compared to the PSM model, while at A* = 20, its prediction
returns 11.6% less error compared to the SAG model and 54.3% less than the error in the PSM
model’s prediction. In Fig. 6(b), we see that at A* = 10, the DNN model predicts 4w () with
9.8% less error compared to the SAG model and with 88.2% less error compared to the PSM
model, and when A* = 20, the DNN model yields 18.9% less error compared to the SAG model
and its error is 81.1% less than what we observe in the prediction of the PSM model. Moreover,
from Figs. 6(a) and 6(b) one can realize from the error level in prediction of ¢, (@) 4 v ()
components, that the DNN model exhibits a fairly consistent behavior; however, such consis-
tency is not necessarily observed in the error level of the predicted flux components in other two
models, especially at A* = 20. Finally, for the predicted II, Fig. 6(c) illustrates that the DNN
model has 25.7% less error compared to the SAG model and it returns 82.9% less error compared
to the PSM model. However, at A* = 20, the predicted IT by the DNN model returns 60% lower
error compared to the SAG model and 31.4% less than what the PSM model predicts. Here,
it is noticeable that when the filter size increases the error level in predicted II form the SAG
model increases while the PSM model exhibits an opposite behavior. Nevertheless, the DNN
model exhibits a consistent behavior over the filter sizes, while it always maintains error level
in the predicted II significantly lower than the other two models. Given this observation, Fig. 7
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FIG. 7: A priori assessment of the PDFs of normalized SGS dissipation obtained from the DNN (base
model: Pe, = 240, Sc = 1), SAG, and PSM models compared to the PDF computed from FDNS for
(a) A* = 10, (b) A* = 20. II for all the PDFs is normalized by the standard deviation of its FDNS
solution.

shows that for both filter sizes the DNN model provides a fairly good prediction for the PDF of
SGS dissipation of scalar variance compared to the true PDF from FDNS, while the SAG model
underpredicts the events in the right side of the PDF (yielding and underdissipated SGS model),
and the PSM model provides an overdissipated model since it cannot model the negative-valued
events associated with the backward scattering of resolved scalar variance.

4.1.2 Transfer Learned Models

In this section, we make a comparison between the time-averaged normalized MSEs of ¢ | (&)
4 v (3) and II obtained from a priori testing of the TL models we presented in Section 3.4 with
the error metrics when we only employ the base (pretrained) model for the predictions in the
new scalar transport regime.

Case (I) Pe) = 240, Sc = 4. In Figs. 8(a) and 8(b), we can see that at A* = 10, the TL
model decreases the error in predictions of ¢ | o (&) and 4w (&) by 12% and 46.5%, respectively,
compared to the predictions of the pretrained model. Similar comparison at A* = 20 indicates
that the TL model returns 27.3% less error for predicted ¢, (B)> and 93.2% less error for the
predicted 4w (&) compared to the pretrained DNN model. Therefore, one can realize that the
retraining procedure plays a significant role in improving the prediction of the parallel compo-
nent of the SGS flux. Moreover, Fig. 8(c) shows that the predicted II from the pretrained DNN
model has 2.6 times higher error at A* = 10 and 3.3 times higher error at A* = 20 compared
to the TL model’s predictions. In fact, Figs. 9(a) and 9(b) illustrate that these improvements in
the prediction of II mainly originate from correcting the overprediction of forward scattering of
SGS dissipation after retraining the DNN model for the higher Sc number regime.

Case (II) Pep, = 360, Sc = 1. Considering Figs. 10(a) and 10(b), we observe that at both
A* = 8,16 the TL model reduces the error level in the prediction of ¢, ¢ (&) by 22 times
compared to the pretrained model. However, in the prediction of 4 v (d) the error level in the
pretrained model’s performance is reduced by 33 times at A* = 8, and by 37 times when A* =
16 after retraining. Similar to the Case (I), we recognize that TL is playing a more corrective role
in enhancing the performance of the pretrained DNN model in prediction of 9w () compared
104, g3 Concerning the prediction of II, Fig. 10(c) points out that the pretrained DNN model
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deviation of its FDNS solution.
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FIG. 10: A priori estimation of transfer learned model (Pe)y = 360, Sc = 1) from the base pretrained model.
Similar to Fig. 8, the subplots show the time-averaged normalized mean squared error of (a) ¢ L ()
(b) 9w () (c) IT for pretrained and TL SGS flux model at each filter size. Using the variance of the FDNS
solution for each quantity at its own filter size, the MSE values are normalized while the time averaging is
performed on ten sampled time instances.

has 49.5 times higher error at A* = 8 and 60.5 times higher error at A* = 16 compared to
the TL model. Looking at Figs. 11(a) and 11(b), it is discernible that in the case of TL from the
Pe) = 240 regime to Pe) = 360, the retrained DNN model not only corrects the considerable
overprediction of the forward scattering phenomenon appearing in the pretrained model (see the
positive sides of the PDFs), it also improves its overprediction of backward scattering of the SGS
dissipation (see the negative sides of the PDFs).

4.2 A Posteriori Test

In this section, our main objective is to examine the performance of the developed DNN model
when it is utilized as the closure model in an LES setting, a.k.a. a posteriori testing. Therefore,
we seek to understand if the LES-resolved transport fields (in our case $) are temporally and
spatially following their expected true solution which comes from explicit filtering of the DNS
outputs.

To fulfill this goal, we focus on testing the base DNN model we developed in Section 3.3 on
the turbulent regime of Pe) = 240 and Sc = 1. In order to perform the large-eddy simulations on
the problem setting introduced in Section 2.1, we employ the pseudo-spectral solver developed
in Akhavan-Safaei and Zayernouri (2023a). We modify this DNS framework to account for
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FIG. 11: A priori assessment of the PDFs of normalized SGS dissipation obtained from the transfer learned
model (for Pe, = 360, Sc = 1), and pretrained model (using Pe) = 240, Sc = 1 data) compared to the
PDF computed from FDNS for (a) A* = 8, (b) A*™ = 16.II for all the PDFs is normalized by the standard
deviation of its FDNS solution.

utilization of multiple SGS flux models of interest for g’*. In our current study, we utilize the
DNN model as well as the PSM and SAG models. Typically, both SGS stresses and fluxes in the
filtered NS and AD equations are modeled and utilized in an LES setting. Thus, a specific choice
of SGS model for T could have substantial effects on the solution resolved scalar concentration
field (Portwood et al., 2021). Similar to earlier works in literature for the pure purpose of SGS
flux model assessment (Portwood et al., 2021; Vollant et al., 2016), we choose to freeze these
potentially dominant effects originating from using an SGS stress model and instead directly
make use of FDNS solution of velocity field. Therefore, we can only focus on the performance
of the utilized SGS flux model in Eq. (3). Accordingly, in our numerical setup, we resolve the NS
equations based on the DNS required resolution. By explicit filtering of w after each time step,
we obtain the velocity field over the desired LES grid, and use it to solve Eq. (3) in the time-
integrator steps. The initial conditions (¢o and i) for our LES tests are adopted from explicit
filtering of a well-resolved and fully developed DNS solution, at Pe) = 240, Sc = 1 as described
in Section 3.1.

As we mentioned earlier, for the SAG model we need to employ special treatment for nu-
merical stabilization in LES. Here, we utilize the clipping technique during the time integra-
tion, which is based on setting the predicted gsac = 0 before feeding it to the time integrator
whereever IIgag < 0. This essentially helps to improve the extremely underdissipated behav-
ior of the SAG model only for numerical stability (Lu and Porté-Agel, 2013; Vreman et al.,
1997). In our tests, the time integration of filtered AD equation (3) is conducted for 5ty g. In
the following, we look at two significant indicators in the performance of the SGS scalar flux
model.

4.2.1 Temporal Records of Resolved Scalar Variance

Precise time evolution of the resolved scalar variance, <d~)2>, is a principal indicator for reliable
prediction of the turbulent intensity in LES. In our tests, we manage to record this quantity for
the utilized SGS models over the simulation time, while the reference record is obtained from
filtering the DNS solution. Here, we compute the relative error between the variance record from
the LES with an SGS model ($?)rgg and from the FDNS ($p?)ppys. Figure 12(a) shows the
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FIG. 12: Relative error (with respect to the FDNS) in the records of resolved-scale scalar variance predicted
in the LES tests with the DNN, SAG, and PSM models at (a) A* = 10, and (b) A* = 20. The LES tests
are conducted in the Pe) = 240 and Sc = 1 regime, and the utilized DNN model is trained/validated with
the FDNS dataset obtained in the same turbulent regime.

recorded errors for LES tests at A* = 10, and Fig. 12(b) reports it for simulations at A* = 20. At
both of the filter sizes, the DNN model has a remarkable performance over time compared to the
SAG and PSM models; however, in A* = 20, slight underprediction of resolved-scale variance
is observed. It is obvious that in both of the filter sizes, the SAG model exhibits quite a poor
performance, especially as time evolves, and this behavior is worse as the filter size increases.
On the other hand, the dissipative nature of the PSM model seems to be helpful in terms of a
better performance of the model in LES; nevertheless, its considerable errors in prediction of II
(as we observed in Section 4.1) seem to penalize its accuracy in the a posteriori tests.

4.2.2 Resolved-Scale Scalar Structure Functions (Two-Point Statistics)

Assessment of an SGS model performance in prediction of the nonlocal behavior of the turbu-
lent transport regime is one of the ultimate tests in the evolution of a turbulent field during LES
(Meneveau, 1994). The structure functions of the resolved scalar field are robust two-point sta-
tistical measures that return nth-order statistics of resolved-scale scalar increments at a specific
direction where 2 < n (Warhaft, 2000). These structure functions of order n are defined as

(6,67) = ([or(@+rer) = dr(@)]"); n=23,..., an

where r is the size of spatial increment, L represents the longitudinal direction (the direction
along the imposed uniform mean-gradient) (Akhavan-Safaei and Zayernouri, 2023b; Iyer and
Yeung, 2014; Portwood et al., 2021), and ey, specifies the unit vector along the longitudinal
direction. Normalizing the (6@)2) computed from LES (carried out with an SGS model) with
its FDNS measurement would provide an informative metric for comparing the SGS models.
Focusing on the temporal region 4 < ¢/t < 5 where the LES solution has undergone a fairly
long time integration, we select uniformly distributed samples of full-size 3D (i)(ac) in time and
compute second- and third-order structure functions. Since we are simulating a statistically-
stationary problem, we are allowed to take the temporal average of these normalized structure
functions obtained from the sampled structure functions. Therefore, we have a robust indica-
tor measure to examine the performance of each SGS model in predicting nonlocal and high-
order statistics of resolved-scale scalar field in a long-time integrated LES. Figure 13 shows this
time-averaged <6rd~32> against the normalized spatial shift, » /1 5, for the DNN, SAG, and PMS
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FIG. 13: Time-averaged normalized (5, ¢7) from LES with different SGS models with respect to the
FDNS result as reference solution. For A* = 10, (a) second-order and (b) third-order illustrate longitudinal
structure functions. For A* = 20, (¢) second-order and (d) third-order show the longitudinal structure
functions. The time-averaging of these two-point structure functions is done over 4 < ¢/trg < 5. The
spatial shift r equals the filter size of the LES.

models. Figures 13(a) and 13(c) show the relative errors in the even-order structure functions,
where the DNPS model has a considerably better performance. Figures 13(a) and 13(c) show the
normalized second-order structure functions, for A* = 10 and A* = 20, respectively. Remark-
ably, we observe that for both of the filter sizes predictions of the DNN model closely follow the
temporally-averaged behavior of (5,.¢3 )rpng over the entire range of spatial shift. On the other
hand, we realize that the SAG model has a significant overprediction of (6@)%), especially for
r < 100n, which becomes worse for the larger filter size. Even in longer range spatial shifts
where we observe improvement in its predictions, there is an asymptotic 20% overprediction
at A* = 10, and approximately 100% overprediction of <5T(1~)2L> at A* = 20. Conversely, the
PSM model seems to exhibit a better performance in the prediction of <6T&)2L> compared to the
SAG model; however, it has an approximate 20% overprediction of the second-order structure
function when A* = 10, and at A* = 20, a prolonged 50% overprediction of (6@)2) is seen
(especially for 100ng < r). Moreover, it is well understood that capturing the complex be-
havior of the third-order scalar structure function is quite a cumbersome task (Warhaft, 2000).
However, by looking at Figs. 13(b) and 13(d), we notice that the DNN model manifests a great
performance in the prediction of the third-order longitudinal structure function over almost the
entire range of spatial shift at both of the investigated filter sizes. For example, at A* = 10, we
observe that over the whole range of spatial shift the DNN model predictions have an approx-
imate +5% deviation from the FDNS values; nonetheless, we can observe an overprediction
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causing inaccuracies over r in the range of 10%—40% for the SAG model. Regarding the PSM
model, the inaccurate predictions of <6rd~32> vary from —15% deviations from the true value for
r < 100mp to approximately 20% deviation for the 100m g < r spatial shift region. Therefore,
the DNN model plays a notable role in maintaining the accuracy of the third-order statistics of
5r d)L-

This overall comparison demonstrates that a well-trained DNN model such as the one we
developed could have consequential improvements in the prediction of two-point statistics of the
LES resolved scalar concentration.

5. CONCLUSIONS AND REMARKS

In this work, we developed a data-driven surrogate model for the prediction of the closure flux
term appearing in the LES equations of a passive scalar. The developed model was a fully con-
nected deep neural network architecture that takes the gradient of the filtered/resolved scale
transport fields as input features. In order to provide a rich set of training/validation data from
FDNS, we introduced a spatiotemporal procedure to sufficiently sample from a fully-turbulent
time domain and also the homogeneous spatial turbulent domain at each sampled time frame.
Using the dataset, we managed to optimize the model parameters of our specified DNN model
with respect to the MSE loss function. Eventually, we presented a proper optimized DNN model
where training and validation loss records have shown perfectly matching behavior; therefore,
any overfitting was avoided. Using the notion of transfer learning, we efficiently (in terms of
data requirement and computational cost) generalized our initially trained model into a case for
a higher Schmidt number, and another case for a higher Péclet number. In training the TL mod-
els, we ensured that we are avoiding an overfitting after the retraining procedure. Afterwards, we
managed to test the performance of the developed DNN models in the inference mode. There-
fore, in an a priori assessment, we compared the performance of the base DNN model with the
PSM and SAG models at two filter scales, and realized that the DNN model not only reduces the
level of error in predictions of SGS flux and dissipation, but also improves the consistency in the
prediction of SGS flux with respect to the direction of large-scale anisotropy, V(&’), compared
to the traditional SGS models. For the TL models, we tested the pretrained model’s performance
in the prediction of a new scalar transport regime against the retrained models and found out that
retraining significantly enhances the overprediction of the forward scattering phenomenon (and
even the backward scattering of filtered variance at the higher Péclet number regime). Finally,
along the SAG and PSM models, we tested our base DNN model in an LES setting. We com-
pared the records of resolved-scale scalar variance from the employed SGS model as well as the
second-order and third-order structure functions of the resolved scalar. Compared to the tradi-
tional models we tested, we realized that a well-trained DNN model can result in striking error
reduction in the recorded scalar variance as well as significant improvement in the prediction of
the two-point structure functions.

As a future direction for this study, it is interesting to evaluate the possibility of applying
TL to a variety of different tasks and applications in turbulence modeling for LES. For instance,
one can adopt the developed base surrogate modeling strategy we presented in this work, and
assess if that can be generalized to predict the SGS scalar flux when the turbulent flow medium
is a shear flow (e.g., a jet or a wall-bounded flow), turbulent flow around a complex geometry,
or an unsteady turbulent flow instead of the HIT flow medium. It is imperative to mention that
developing the base model for those types of flows may require additional considerations such
as including different or more input features as well as experimentation with different neural
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network architectures that might be more suitable for accounting for a different nature of the
SGS closure terms in those flows [see, e.g., Radhakrishnan et al. (2006), Bertsch and Girimaji
(2015), Momen and Bou-Zeid (2017), and Lav et al. (2019) for challenges in modeling unsteady
flows]. However, due to the extra complexities arising from such generalization tasks, employing
a proper approach in meta learning [see Hospedales et al. (2021) for a comprehensive review]
might be a complementary or a superior methodology to the presented TL approach in terms of
both implementation and performance.
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