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PAGE: Parallel Scalable Regionalization Framework
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Regionalization techniques group spatial areas into a set of homogeneous regions to analyze and draw conclu-
sions about spatial phenomena. A recent regionalization problem, called MP-regions, groups spatial areas to
produce a maximum number of regions by enforcing a user-defined constraint at the regional level. The MP-
regions problem is NP-hard. Existing approximate algorithms for MP-regions do not scale for large datasets
due to their high computational cost and inherently centralized approaches to process data. This article in-
troduces a parallel scalable regionalization framework (PAGE) to support MP-regions on large datasets. The
proposed framework works in two stages. The first stage finds an initial solution through randomized search,
and the second stage improves this solution through eficient heuristic search. To build an initial solution
eficiently, we extend traditional spatial partitioning techniques to enable parallelized region building with-
out violating the spatial constraints. Furthermore, we optimize the region building eficiency and quality by
tuning the randomized area selection to trade off runtime with region homogeneity. The experimental eval-
uation shows the superiority of our framework to support an order of magnitude larger datasets eficiently
compared to the state-of-the-art techniques while producing high-quality solutions.
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1 INTRODUCTION

Regionalization is the process of clustering a set of spatial polygons into spatially contiguous re-
gions that meet given user constraints [17]. Each spatial polygon represents a fundamental spatial
area, e.g., city block, city, or county. An example of regionalization is clustering cities in California
into regions so that each region has at least 30K COVID-19 infections. Regionalization has many
real-world applications including epidemic analysis [5], weather temperature classification [18],
and spatial crowdsourcing [12]. The traditional problem formulations [15, 17, 34] put a major hur-
dle on users to input the number of regions p. Such a hurdle introduced the challenging “spatial
scale problem,” as users fail to determine the appropriate spatial scale according to the underlying
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data. For example, in the United States, if the studied phenomenon is at a county level, p = 3,000, and
if it is at a state level, p = 50, determining such p value by the users ahead of submitting the query is
challenging and limits their analysis capability. A new formulation, called max-p-regions (or MP-
regions for short), has recently addressed the spatial scale problem [14] and become popu-lar in
different applications, including urban spatial structures [3], crime analysis [37], and spatial
uncertainty [47]. Instead of forcing users to input p, the MP-regions automatically discover the
maximum value of p based on a user-defined constraint on a certain attribute. The regions are
grown based on the user-defined constraint, which naturally generates the maximum number of
regions. Generating the maximum number of regions ensures that the dissimilarity of the regions is
minimized since each region will have a smaller number of areas as the p value increases. This
gives the user more tractable and flexible expressiveness. However, it suffers from severe scalability
limitations and cannot support even moderate-sized datasets.

MP-regions are an NP-hard problem. So, finding an exact solution is prohibitively expensive
and impractical in real applications. Besides, existing approximate algorithms support relatively
small datasets. For 3,000 US counties, the proposed techniques in [14, 51] consume from 2.5 min-
utes up to several hours, depending on the underlying constraints, for each single regionalization
query. In fact, real applications already use datasets that are an order of magnitude larger than
this dataset. Therefore, such ineficient time makes existing techniques incapable of supporting
many real-world applications. For example, such limitation is crystal clear when MP-regions are
applied to reduce the uncertainty of American Community Survey data [47], which help deter-
mine how more than $675 billion in US federal and state funds are distributed each year [10] and
are heavily used by community organizations, governmental agencies, and social scientists in var-
ious disciplines [11]. It is explicitly stated in [47] that “Using the algorithm (meaning MP-regions)
requires a tradeoff that is not appropriate in all situations or for all audiences - one must be willing
to reduce the number of geographic units of analysis.” Similar examples repeat in studying neigh-
borhoods [38, 51] and studying regional poverty [16]. This scalability limitation urges the need to
build scalable regionalization algorithms to support large-sized data.

This article proposes PAGE (Parallel Scalable Regionalization Framework), a system-level frame-
work that scales up MP-regions on large spatial datasets. PAGE is an extension of SMP [2] that
provides higher-quality solutions through data partitioning and parallelization, which solves the
tradeoff between the runtime and the solution’s quality. In SMP, the quality of the solutions is
considered in later stages. On the other hand, PAGE works on the solution’s quality in earlier
stages to provide high-quality initial solutions eficiently. It introduces a low-overhead spatial
partitioning technique that enables the parallelization of the regionalization process. PAGE pro-
vides seamless and eficient parallelization for MP-regions exploiting the computation power of
multi-core processors that are widely available in regular machines. So, users seamlessly use PAGE
through the same application programming interfaces (APIs) of regional science libraries [40],
while they can analyze significantly larger datasets compared to the capabilities of existing tech-
niques [14, 46, 51]. Such seamless integration with existing spatial data science tools is identified
by the periodic community report on database research [1] as a major way for advancing data
management contributions to data science tools and widening their impact on layman users. We
present our proposed framework on multi-core machines for easy integration with existing spatial
data science tools. However, this framework is easily generalizable to other parallel frameworks
on multiple machines.

Scaling up MP-regions faces several challenges. First, as MP-regions are an NP-hard problem,
exploring all solutions and finding an optimal solution is prohibitively expensive. Second, using
standard spatial partitioning to partition the input spatial areas into smaller subsets while
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maintaining spatial contiguity is not straightforward. These standard techniques partition spatial

objects based on their own boundaries regardless of neighboring objects. This leads to spatially

disconnected partitions and prevents parallelized techniques from producing connected regions.

Third, existing techniques for MP-regions use tightly coupled steps that are not straightforward
to parallelize. This makes them inherently centralized and limits supporting large datasets.

To address these challenges, we propose two variations of PAGE (PAG-P and PAG-L) that provide
eficient and high-quality solutions for MP-regions. We propose contiguous spatial partitioning
through a two-phase spatial partitioning technique that enforces spatial contiguity while still en-
suring low processing overhead. This enables building eficient and fully parallelized techniques
that scale up with adding more computational resources to regular machines. Then, we employ a
two-stage approximate search. First, we employ novel heuristics to find an initial solution ef-
ficiently. Second, we optimize existing heuristics to improve the initial solution and provide a
final solution. This approximate search avoids exhaustive exploration of the search space, so it
eficiently supports large datasets that are not currently supported.

The first PAGE variation (i.e., PAG-P) grows as many randomized regions as possible in its first
phase in parallel partitions. However, randomization and partitioning cause enclave areas to re-
main unassigned, so the following phase assigns leftover areas to existing regions to build a com-
plete initial solution. This technique produces a large number of enclave areas. To overcome this,
the second PAGE variation (i.e., PAG-L) reduces the number of enclaves and maximizes the number
of regions. It builds the initial regions with minimal inter-regional gaps by selecting new borders
based on a criterion of spatial compactness. Our experiments on real datasets show significant
improvements in regionalization scalability and quality by saving up to 97% of query time and
achieving 3x solution quality compared to existing competitors. Our contributions are summa-
rized as follows:

e We propose a light spatial partitioning that warrants eficient parallelization for regionaliza-
tion techniques.

e We propose eficient approximate parallel techniques that significantly scale up the MP-
regions problem.

e We perform extensive experiments on large real datasets to show the superiority of our
techniques.

The rest of the article is organized as follows. Section 2 discusses the related work. Section 3
formulates the MP-regions problem. Sections 4 through 6 introduce our proposed techniques,
and Section 7 analyzes their complexity. Finally, Section 8 provides experimental evaluation, and
Section 9 concludes the article.

2 RELATED WORK

The regionalization literature studies various problems under spatial clustering [20, 22, 23, 33, 49]
and spatial graph partitioning [6, 13, 53, 56]. The latter is related to regionalization as spatial poly-
gons can be modeled as a node-attributed spatial neighborhood graph, and regionalization can be
expressed as a graph partitioning problem. However, the different objectives and constraints on
the output sub-graphs make existing spatial graph partitioning techniques inapplicable for several
regionalization problems. The problems most related to our work are the p-regions [7, 8, 15, 27,
29-32, 54] and the max-p-regions [3, 14, 16, 19, 26, 37, 41, 42, 45-47, 51]. The p-regions problem
is related in the sense that the MP-regions problem is a successor that overcomes its limitations
as previously discussed. There is an existing literature on the p-regions problem that ranges from
building compact regions [7, 8, 29-32], network-constrained regionalization [54], and functional
regions delimitation [27, 28]. Despite this literature, the fundamental change in MP-regions
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compared to p-regions makes it inapplicable to adopt existing p-regions techniques. Specifically,
the p-regions problem requires users to input the number of regions p, which makes growing the
initial regions fundamentally dependant on this input that does not exist in MP-regions.

The literature on MP-regions [14] is more related to our work. This literature has prob-
lem variations with a single constraint [14, 46, 51], multiple constraints [19, 26], and network-
aware regionalization [45], in addition to a variety of applications that are built on top of
them [3, 16, 37, 41, 42, 47]. Existing techniques build variations of the same framework, which
is also used in our proposed techniques in spirit. This framework first builds a set of regions as
an initial solution, then uses a heuristic search to improve the solution quality and find a final
approximate solution. The differences among these different techniques are in the way of per-
forming the two steps, including different heuristics to build the initial regions, different types
of heuristic search, processing optimizations of different steps, and the underlying spatial space,
e.g., Euclidean space versus network-constrained space. Distinguished from all existing work, our
work is the first to build a parallelized technique that decouples different processing steps and
addresses the challenge of spatially contiguous partitioning. Our techniques significantly beat all
existing techniques in different performance measures, query response time, output set size, and
regions’ homogeneity, and are able to support an order of magnitude larger datasets.

3 PROBLEM DEFINITION

This section provides preliminary definitions and formal definition for the MP-regions problem.

3.1 Preliminary Definitions

Definition 1 (Area). An area a; is defined with four attributes: a; = (i, b, si, di), where i is the
area identifier, b; is an arbitrary spatial polygon that defines the area’s spatial boundaries, s; is a
spatially extensive attribute, and d; is a dissimilarity attribute.

Definition 2 (Spatially Extensive Attribute). A spatially extensive attribute s; of an area a; is an
attribute whose value is divided over the smaller k sub-areas of a; = aio, ai1,. .., a;r when the
area is fragmented such that Ba;;Ba; Sij = Si- For example, the population value of a county is
divided over its cities, so the population is a spatially extensive attribute since the sum of the
population value of all the cities is equal to the county population. This is the opposite of spatially
in terﬁsive attributes, such as temperature, that are not divided when the spatial area is fragmented
(ie. Ba;jBa; Sij Si)-

Definition 3 (Region). A region r; = {ai,az,as,...,an} is a set of spatially contiguous areas.
During the region growing phase, an area is assigned if it belongs to a region and unassigned
if it does not belong to any region. After the region growing phase, all the unassigned areas are
marked as enclave areas (i.e., the areas that are not part of any region).

Definition 4 (Heterogeneity or Dissimilarity). The heterogeneity or dissimilarity of two areas a;
anda; determines the degree of dissimilarity between them and is defined as the absolute difference
between the dissimilarity attribute d of the two areas as follows: |d;i - d; |.

3.2 Problem Formulation

The MP-regions problem is defined as follows:

Input: (1) A set of n areas: A = {ao, a1, az, .. .,an}. All the areas in A are spatially contiguous
and form a single spatially connected component. (2) A threshold T. (3) An objective function H.

Output: A set of regions R = {r1,r2,...,rp} of size p, where each region r; is a non-empty set
of spatially continuous areas satisfying the below constraints and objectives.
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Objectives:

* Maximizing p
e Minimizing the total heterogeneity H(R) in dissimilarity attributes belonging to the same
region

In this article, H(R) is defined as follows:

X X
H(R) = |dij = dix | )

Bri@R Baij,a;kBr;

The first two constraints impose that the output has at least one region (p 2 1) and each region
has at least one area (|7;|2 1). The third and fourth constraints ensure that each area is assigned to
exactly one region, so output regions are both disjoint and covering all input areas. The last
constraint ensures that each region has a total value of the spatially extensive attribute s equal to at
least the input threshold T, e.g., total population of each region > T.

The objectives are twofold. The first objective is maximizing the number of output regions p.
This is the main objective of MP-regions problems, and it is prioritized over the second objective.
This objective allows to eliminate the number of regions as a user input, which addresses a major
limitation in the previous regionalization problems. The second objective favors output regions to
be as homogeneous as possible, measured as a function of a dissimilarity attribute. This attribute is
not necessarily a spatial attribute. For example, a social scientist might need to produce regions that
are homogeneous in average income level.

Figure 1 presents an example of a dataset with 15 areas where the spatially extensive attribute
s is the number of houses in each area and the dissimilarity attribute d is the average house
price. When T = 140 houses, the solution consists of two regions r1 = {az, as, as, aio, a2} and ry
= {ao, a1, as, as, a7, as, as, a1, ai3, d1a}, where r; has 156 houses and r; has 147 houses.

4  PARALLEL SCALABLE REGIONALIZATION FRAMEWORK (PAGE) OVERVIEW

This section presents PAGE, which builds on a prevalent two-stage framework to address NP-hard
problems, finding an initial solution and then improving it. PAGE consists of three phases: region
growing phase, region gluing phase, and optimization phase. The region growing phase eficiently
builds a set of initial regions with a maximum size over multiple parallel iterations. The region
gluing phase finalizes building the initial regions by assigning any remaining areas that do not
belong to any region. Finally, the optimization phase improves the quality of the solution.

PAGE has two variations that grow initial regions differently. The first variation employs a par-
tition growing phase to build regions eficiently through data partitioning (PAG-P). It is designed to
boost runtime scalability by exploiting the power of parallelization. The second variation em-ploys
a layered growing phase to build regions through constrained randomization (PAG-L), and it is
designed to optimize solution quality while maintaining a scalable runtime.
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Area s d
a 12 159
a; 18 1180
az 31 /180
as 32 300
as 52 140
as 13 440
as 20 249
az 10 | 200
as 11 990
ag 20 290

aro 31 | 150
arn 9 220
a2 22 | 720
a3 9 470
aq 13 | 230

Fig. 1. MP-regions example of a dataset with 15 areas.

As a preprocessing step to prepare the input data for regionalization, PAGE constructs a neigh-
borhood graph that represents the spatial neighborhood relations among the input spatial areas.
This graph is used in different phases to identify neighboring areas. Each graph node represents an
area, and each graph edge connects two areas that are spatial neighbors. The neighborhood graph
uses the rook spatial neighborhood relation, which entails that two spatial areas are neighbors
only when they share a spatial border with more than one point, e.g., line or curve. To construct
the graph, we iterate over the areas one by one and check if they intersect with any other area in
the dataset to build its adjacency list.

5 PARALLEL SCALABLE REGIONALIZATION THROUGH DATA PARTITIONING
(PAG-P)
PAG-P employs a partition growing phase that builds regions eficiently through data partitioning.
Therefore, its region growing phase goes through two sub-phases: (1) a partitioning phase that
splits data into spatially contiguous partitions and (2) a growing phase that builds the maximum
number of initial regions for different partitions in parallel. Afterward, the initial regions are for-
warded to the region gluing phase to finalize an initial solution, and to the optimization phase to
improve it. Each phase is outlined below.

5.1 Partitioning Phase

This section presents the partitioning phase of PAG-P. This phase partitions both spatial areas
and the neighborhood graph. It first divides the input areas into multiple partitions in order to
be processed in parallel. Then, it divides the neighborhood graph across the resulting partitions.
Partitioning data could be achieved by traditional spatial partitioning techniques that partition
the spatial space and place an area into a partition if its spatial boundaries overlap with the par-
tition’s spatial boundaries [25, 35, 36, 50, 52, 55]. Other techniques include quadtrees [43], which
recursively partition the space into cells that has a maximum size of four; R-trees [24], which is a
height-balanced tree that partitions the objects based on their minimum bounding rectangle
(MBR); and R*-trees [4] and R+-trees [44], which are variants of R-trees to enhance its perfor-
mance. However, quadtree and R-tree techniques are not applicable in our case for several reasons.
First, they do not consider the spatial contiguity of the objects, which is a critical requirement of
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MP-regions. In particular, it is common that a border area ay is the area that glues multiple spa-
tially contiguous clusters of areas in a certain partition DP;. To build contiguous regions in DP;,
ap must be assigned to DP; specifically, and not any other partition. Otherwise, many areas in DP;
will be marked as enclaves while unnecessary, which diminishes the solution quality and makes
parallel solutions incompetent. Second, it is dificult to incorporate a load balancing technique
with quadtree techniques to make parallel processing more eficient. Grid partitioning provides a
uniform partitioning of the space, which enables generating balanced partitions by assigning the
areas that intersect with more than one partition to the partition with the lowest number of areas
in our case.

To address these challenges, the partitioning process works in two stages. It first partitions the
space into a spatial grid of (rows x cols) partitions, where rows and cols are parameters that are set
based on the available computation cores to fully utilize the cores. For example, for a quad-core
machine, rows and cols are set to two, so (rows x cols) = 4. Then, all areas that are completely en-
closed within a partition DP; are placed in DP;. Afterward, we ensure spatial contiguity and place
any remaining areas based on their placed neighbors. This placing order speeds up the partitioning
process as the neighborhood list is only checked when placing the border areas.

ALGORITHM 1: Data Partitioning (A, rows, cols)

1 Input: Area set A, Int rows, Int cols.
2 Output: Set of partitions.
Initialization:

w

'S

partitions = set of (rows x cols) empty partitions;
AP = {} // set of areas placed into partitions;

6 A% =A //set of unplaced areas;

7 Begin:

for each a@ A do

«

®

9 for each DP B partitions do
10 if a lies completely inside DP then
11 DP =DPRa; AP = APl a; A% = A% - g;
12 break;
13 for each DP [ partitions do
14 if DP has more than one connected component then
15 DP = the component with the largest number of areas;
16 AP = AP - remaining components;
17 A% = A" B remaining components;
18 while A%, Bdo
19 for each area a®@ A* do
20 DP" = smallest partition that has one of a’s neighboring areas;
21 DP" =DP"[Bl a; AP = APRla; A% = A% - g

22 return partitions;

Algorithm 1 presents the pseudo-code for the data partitioning. It first computes the MBR for the
input areas A, divides it into (rows x cols) spatial grid cells, and initializes sets of placed and
unplaced areas, A? and A", respectively (Lines 4-6). The grid cells represent spatial boundaries for
a set partitions of empty partitions. Then, it performs three steps. In the first step, Lines 8-12, we
assign any area a @ A that intersects with a single partition DP B partitions to DP. After this first
step, areas in each partition can form multiple connected components that are not spatially
contiguous. To maintain the spatial contiguity, in the second step, Lines 13-17, areas in the smallest
components in terms of size are put back in the unplaced set of areas A*. Marking those areas
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Partition
BX] Partition
Partition Partition 3
3 Partition =3 Partition 4

[unplaced ! [Junplaced
Areas Areas

(a) Initial dataset (b) Initial placement of areas (c) Removing disconnected areas

o

23 Partition
B3 Partition
3] Partition
=3 Partition

)

(d) After placing remaining areas

Fig. 2. Example of the PAG-P data partitioning phase.

as unplaced is less expensive than choosing the border areas that connect different connected
components, which requires expensive spatial contiguity checks. So, it is faster to assign them
again one by one based on assigned neighbors as detailed below.

The third step of Algorithm 1, Lines 18-21, assigns the remaining unplaced areas in A“ so that
spatial contiguity in each partition is maintained at all times. For an unplaced area a, if a has a
neighboring area that is placed in one of the partitions DP, then a is also added to DP. If a has
neighbors in multiple partitions, then a is added to the partition with the least number of areas to
balance partitions’ sizes and improve the distributed processing performance.

Example. Figure 2 shows an example of our dataset partitioning process. The input is the initial
dataset shown in Figure 2(a), which consists of 15 areas. The dataset is split into four partitions (2
rows x 2 columns). Figure 2(b) shows the four data partitions’ boundaries (by the two dashed
straight lines) after the initial placement of areas. At this step, only the areas that are completely
enclosed within a partition are assigned to that partition. Figure 2(c) shows the partitions after
removing the disconnected areas. One area is removed from Partition 4 because it is disconnected
from all other placed areas in the same partition. So, it is marked as unplaced. All other unplaced
areas intersect with two or more partitions. Iteratively, unplaced areas are placed into partitions of
spatial neighbor areas. The final partitions after placing all the areas are shown in Figure 2(d).

The final step in this phase is splitting the neighborhood graph across partitions. Each data
partition DP has its own subgraph of the neighborhood graph, which only contains its areas. This
prevents an area from being assigned to a region in multiple partitions.

5.2 Region Growing Phase

Given the data partitions that are produced by the partitioning phase, the region growing phase
builds regions for each partition in parallel to produce different initial solutions, from which it
keeps the one with the largest number of regions p. In particular, a specific number of solutions
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(referred to as MI) are constructed for all data partitions. To alleviate the high computational cost
and support large datasets, our region growing phase supports two-level parallelism. It produces
independent solutions in parallel, and for each solution, data partitions are processed in parallel as
well. Such two-level parallelization operates on disjoint partitions, which gives two performance
advantages that make it eficient for large datasets: (1) it is free of synchronization mechanisms,
e.g., locking, and (2) it eliminates any checks to ensure that each area is assigned to only one region.

To grow regions for any partition, initially all areas within the partition are not assigned to any
region and are placed in a set A“. Then, to build a region r, a seed area is picked at random from A*
and placed in r. While the total value of the spatially extensive attribute s of all areas in r is less
than T, we keep adding new areas to r. New areas are selected from the spatial neighboring areas
of r that are not assigned to other regions. If multiple neighboring areas are available, we select the
one that minimizes the heterogeneity of r, computed as in Equation (2). Once r meets the user-
defined threshold T, we add it to the list of regions and start growing a new region in a similar way.
If r fails to meet the threshold T when it has no more unassigned neighboring areas to add, all areas
in r are marked as enclaves and are handled in the following phase.

To speed up the process of searching for r’s neighboring areas, we maintain a list of ’s neighbors.
For every new area added to r, we retrieve its neighbors from the spatial neighborhood graph and
add it to the list. Only the neighbors that are unassigned and do not already exist in the list are
added; therefore, maintaining the list becomes expensive as the list grows in size. In addition to
parallelizing the region growing phase, PAG-Pintroduces two changes that significantly reduce the
time for maintaining the list of neighboring areas for any region. First, when splitting the dataset
into multiple partitions, there will be a smaller number of areas in each partition, which makes
maintaining the list of neighboring areas for regions less expensive. Second, PAG-P uses a set
data structure instead of a list to maintain the neighboring areas. Sets are faster when performing
lookup, insertion, and deletion operations.

Since there is no overlap between the data partitions, the process of growing the regions is
independent for each data partition. Therefore, the merge is achieved by appending all the regions
and enclaves for all the partitions together. After growing regions for each partition, all the regions
and enclaves of all partitions are grouped together to form a single set of regions and a single set of
enclaves, which represents the initial solution. For example, if there are two partitions and the
first one generates two regions and 10 enclaves and the second one generates three regions and 5
enclaves, then the regions are grouped together to form five regions and the enclaves are also
grouped together to form 15 enclaves. As this is repeated MI times, the algorithm produces MI
initial solutions. These solutions are compared according to the number of regions p, and all
solutions with the maximum value of p are kept for the following phases.

Example. Figure 3 gives an example for the region growing phase. The phase takes four data
partitions as an input as shown in Figure 3(a). The table in Figure 3(a) shows the areas in each data
partition, their spatially extensive attribute value s, their dissimilarity attribute value d, the region
threshold T, and the region dissimilarity H. The regions start growing by randomly selecting seed
areas ai, ais, dz, and aiz. The table shows the change in T and H values after adding the seed area.
At this point, region r; in Partition 1 has a single area as, so its H value is zero and its
threshold value equals 28, which is the s value of a;. Figure 3(b) shows adding the next area that
minimizes the H value to each region. For ry, the dissimilarity of the region equals 3 when
adding a11, 7 when adding as, and 1 when adding ae; therefore, as is added.

5.3 Region Gluing Phase

The initial solution produced by the region growing phase might include enclave areas that are not
assigned to any region and introduce spatial gaps between the grown regions. The region gluing
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(a) Random seed selection for growing a region in each partition
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(b) Adding the area that minimizes the region’s dissimilarity

Fig. 3. Example of growing regions in PAG-P in parallel.

phase closes these gaps by assigning the enclave areas to the existing regions. For each solution, we
iterate over the list of enclave areas. For each enclave area, we list their neighbor areas from the
spatial neighborhood graph, and in turn we list their neighbor regions. If it has no neighbor regions,
we skip it in this step, and it is picked up again when at least one of its neighbors is assigned to
a region. If it has one neighbor region, it is assigned to that region. If it has multiple
neighbor regions, it is assigned to the region that gives the lowest heterogeneity value increase. We
repeat this process until assigning all enclaves for all produced solutions. Then, only the solution
with the minimum heterogeneity value is kept for further processing in the optimization phase.

5.4 Optimization Phase

The optimization phase optimizes the heterogeneity value H(R) of the initial solution. We use a
heuristic search technique based on a modified simulated annealing (MSA) algorithm [51]. The
technique moves areas from a region to another neighbor region so that the H(R) value is improved.
The original simulated annealing algorithm [14] generates a set of movable areas by identifying
all the areas that could be moved from one region (donor region) to the neighboring regions (re-
cipient regions). The algorithm then selects an area to move randomly without violating the input
constraints. The move is accepted if it improves the H(R) value of the current solution. Otherwise,
the move is accepted with a probability calculated using the Boltzmann equation: ™ #/™, where
—-A H represents the heterogeneity variation on both donor region and recipient region, and TM
represents the temperature. The temperature TM is decreased at each iteration at a fixed cooling
rate PH until TM reaches a predefined value. The MSA algorithm [51] reduces the overhead of
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recomputing valid moves and introduces a tabu list, similar to tabu search [21], to prevent search
cycles. Specifically, instead of recomputing the list of movable areas at each iteration, the algo-
rithm reuses the same list until it becomes empty. After an area is moved from a donor region to a
recipient region, all areas that come from either the donor or the recipient regions are removed to
avoid expensive spatial contiguity checks.

An area is considered movable if it satisfies two conditions: (1) the donor region’s threshold
remains above T after removing the area, and (2) moving the area does not break the spatial con-
tiguity of the donor region. Movable areas are identified from boundary areas of a region r that
are direct neighbors to other regions and satisfy these conditions. Boundary areas are added to a
list Ly,. Filtering L, to exclude areas that violate the threshold T condition is straightforward in a
single pass over the region’s areas. However, enforcing the second condition is a computational
bottleneck due to the cost of detecting articulation areas. To detect if an area a is an articulation
area naively, we remove a’s node from the neighborhood graph along with its associated edges,
and check whether the graph still maintains spatial contiguity. If the region is no longer spatially
contiguous, then a is an articulation area. Such check is expensive; therefore, we employ Tarjan’s
algorithm [39] to find all the articulation areas in a single graph traversal. After identifying the
boundary areas list L,, we perform the Tarjan operation and then subtract the articulation areas
from Ly,. Hence, L, contains only the feasible moves from region r to its neighbor.

6 PARALLEL SCALABLE REGIONALIZATION THROUGH LAYERED GROWTH
(PAG-L)

The second variation of PAGE is Parallel Scalable Regionalization through Layered Growth (PAG-L).

It employs a layered growing phase to increase the number of regions p in the region growing phase

while maintaining an eficient runtime similar to PAG-P.

As noticeable in all existing techniques that address the MP-regions problem [14, 19, 46, 51], the
p value is determined in the region growing phase or its equivalent. The main observation of our
PAG-L technique is that all existing techniques generate a large number of enclave areas while
growing initial regions. These enclaves are scattered all over the space, so they leave gaps between
regions but cannot form regions themselves. PAG-L increases the number of total regions p by
reducing the number of enclaves and employing a layered-growth region growing. Figure 4 gives
an example for state-of-the-art region growing versus layered-growth growing. In state-of-the-art
region growing, Figure 4(a), a seed area is picked randomly for Region 1, and then the areas are added
to the region until it reaches the threshold. Next, a seed area is also picked at random for Region 2,
which creates a gap between the two regions and leads to having six enclave areas that are
scattered in the space. The layered-growth instead groups these enclaves in one part of the space,
enabling to grow three regions instead of two, and reduces the number of enclaves as depicted in
Figure 4(b). This is due to the fact that the layered-growth only picks the seed area for the first
region, Region 1, at random and then grows the region until it reaches the threshold. Then it picks the
seed area for Region 2 from the unassigned neighboring areas for the region, which minimizes the
gap between the regions and reduces the number of enclave areas.

PAG-L still consists of the same three phases of PAGE. Compared to PAG-P, PAG-L employs a
different region growing phase and uses the same logic of the region gluing phase and optimization
phase. The rest of this section details PAG-L’s region growing phase.

PAG-L increases the number of initial regions through optimizing the area selection criteria for
this objective. Existing techniques, including PAG-P, select a random seed area every time they
grow a new region. Then, the region grows based on the spatial neighbors of this seed area. The
criterion of selecting a total random seed for every region does not give any guarantee about the
relative spatial distribution of regions. So, on average, it scatters regions all around the space and
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Fig. 4. Layered-growth impact on number of regions.

leaves a large number of enclaves in between. On the other hand, the growing strategy in PAG-P
that adds the area that minimizes the heterogeneity of the region does not give a guarantee on
the shape of the region. In several cases, it results in an arbitrary region shape that forms a gap
between the unassigned areas and other growing regions, which increases the number of enclaves.

To reduce the number of enclaves that are caused by random areas, we change the criterion of
choosing the seed areas and the criterion of growing the regions from total randomness to con-
strained randomness. At the beginning of the phase, the seed for the first region r; is still chosen at
random. Then all the neighbor areas of r; are stored in a queue g,,. While growing r1, we add the
first unassigned area from gy, to the region and update q,, accordingly. This ensures that the unas-
signed neighbor areas of r; are processed and added to the region layer by layer, which leads to a
compact region shape that reduces the probability of forming gaps between r; and other regions to
be grown later. If there exists no unassigned neighbor areas but the total extensive attribute of r;
is still below the threshold, then all the areas are considered as enclaves. Once the region reaches
the threshold, it is added to the list of regions and a new region starts growing.

After the first region, for all subsequent regions, the seed area is chosen from the direct neighbor
areas of existing regions. For region r;+1, the seed area is determined to be the first unassigned area
from the last grown region r;’s queue q,,. If all the areas in g,, are assigned, then the algorithm
turns to qr,_,, qr,_,, up to qr,.

The seed selection is still randomized, as an essential requirement for a randomized algorithm
that approximates an NP-hard problem. Yet, it guarantees better spatial distribution for the regions
compared to total randomness, which reduces the number of enclave areas significantly and allows
to build significantly more regions and maximizes p. We still run the region growing phase MI
times and keep the result that has the maximum p. Afterward, a region gluing phase, which is
described in Section 5.3, is employed to assign the remaining enclaves to the existing regions. The
produced initial solutions are fed to the optimization phase described in Section 5.4 to produce the
final solution.

7 COMPLEXITY ANALYSIS
This section analyzes the time and space complexity of the proposed algorithms PAG-P and PAG-L.
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7.1 Time Complexity

We use s(r) and s(DP) to denote the number of areas in a region r and a partition DP, respectively.

For PAG-P, the partitioning phase takes O(n) to locate areas into partitions. Then, finding the
largest connected component in each partition requires traversing the partition’s spatial neigh-
borhood graph. This graph is a planar graph; therefore, for r(DP;) nodes in partition DP;, the
average degree of a vertex is strictly less than 6 and the number of edges is 30(r(DP;)) - 6 =
O(r(DP;)) [48]. Thus, graph traversal takes a total of O(n) for all partitions. Finally, assigning
the rest of the areas to partitions takes time O(n). So, the overall complexity of data partitioning
is O(n).

In the growing phase, as the i*" iteration grows region r;, finding the unassigned neighboring
area that has the minimum heterogeneity increase takes O(s(r;)?) since we iterate over O(s(r;))
neighbor areas and compute the heterogeneity increase for each area in O(s(r;)). For a total of
O(n) iterations, the overall time complexity of P (,)_(1") O(s(ri)?) = O(n®). This step is executed in
parallel on C cores, and the growing phase is executed MI times, which takes M! O(n®). The O(n®)
complexity of the region growing phase has a very small constant due to the fact that s(r) << n.

In the region gluing phase, assigning an enclave area requires iterating all the neighboring
regions to compute the heterogeneity increase, which takes O(n). Suppose there are e enclaves,
where typically e << n, and it takes a maximum of O(e) to find an enclave area that has at least
one neighboring region. Consequently, processing one enclave area takes time O(e + n) in the
worst case, and the overall time complexity of the phase is e x O(e + n) = O(e? + en) = O(n?).

The optimization phase consists of two steps: identifying movable areas and shufling them
among neighboring regions. Tarjan’s algorithm is used to locate articulation areas. The complex-
ity of Tarjan’s algorithm on a planar graph of a region r is O(s(r)) as it travegses all nodes and
edges in the worst case. So, applying Tarjan’s algorithm for all regions takes =, O(s(r)) = O(n).
Filtering out the areas that violate the threshold T constraint takes O(n). Consequently, the overall
complexity of the first step is O(n). For the second step, while shufling each movable area a, com-
puting the heterogeneity increase of a to all neighboring regions takes O(n). In the worst case, we
perform a single move before we need to repeat the first step again. These two steps repeat as long
as the heterogeneity improves. So, the optimization phase takes in total a(O(n)+O(n)) = O(axn),
where « is the actual number of moves conducted. « is not theoretically bounded. However, em-
pirically, « is two to three orders of magnitude of the NI parameter.

Consequently, the overall complexity of PAG-P is #L0(n®) + O(n?) + aO(n), where MI is the
number of iterations of the region growing phase, C is the number of computing cores, and « is the
number of the actual moves in the optimization phase.

PAG-L differs from PAG-P only in the region growing phase. In the region growing phase of
PAG-L, for each area a that is added to region r; at the i*" iteration, computing the heterogeneity
Pincrease takes O(s(r;)). Consequently, for adding a maximum of n areas, the time complexity is

2 O(s(ri)) = O(n?). The region gluing and the optimization phases of PAG-L are identical to
PAG-P. Thus, the overall time complexity of PAG-L is MI x O(n?) + aO(n).

7.2 Space Complexity

The space complexity of both PAG-P and PAG-L is O(N). This is because each area a is associated
with a spatially extensive attribute and a dissimilarity attribute and storing them takes space O(N).
We also need to store the neighboring areas for each area. Since the spatial neighborhood graph
is a planar graph, the average number of neighbors for each node, i.e., area, in the graph is strictly
less than 6 [48], which gives 6 @ N = O(N) space complexity of storing neighbors for each area.
Consequently, the space complexity for both algorithms is O(N).
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Table 1. Parameters and Values

Parameter | Values ‘

DS =10, 20, 30, 35, 40, 50, 60, 70 (x10%)
MI 20, 30, 40, 50, 60

T 50, 150, 250, 375, 500 (x10°)

NI 10, 30, 50, 70, 90

NP 4,9, 16, 25, 36

C 1,24

8 EXPERIMENTAL EVALUATION

This section provides an experimental evaluation for our proposed techniques. Section 8.1 intro-
duces the experimental setup, Section 8.2 evaluates the runtime scalability, and Section 8.3 evalu-
ates the solution quality.

8.1 Experimental Setup

We evaluate our proposed techniques PAG-P and PAG-L against three alternatives: (1) state-of-
the-art technique for MP-regions problem [51], denoted as MP; (2) an optimized version of MP,
denoted as MP”, that uses a set instead of a list to maintain the regions’ unassigned neighbors while
growing the regions; and (3) a randomized version of PAG-P, denoted as PAG-P*, that chooses
areas randomly when growing the regions. We use three performance measures: runtime as a
measure for scalability, and number of regions p and heterogeneity as measures for solution quality.
All the experiments are based on Java 14 implementation and run on Ubuntu 16.04 with a quad-
core 3.5GHz processor and 128GB of memory. We study the impact of the following parameters on
the performance. The parameter values are shown in Table 1; the default values are emphasized
in boldface.

e DS: dataset size, i.e., the number of areas in the dataset

e MI: maximum iterations for the region growing phase

e T: threshold value of the user-defined constraint

e NI: the number of iterations allowed in the optimization phase without improving the
heterogeneity

¢ NP: the number of partitions used to divide the input dataset

e C: the number of computing cores

Regarding the tabu list length (LI), the temperature of computing Boltzmann’s probability (TM),
and its cooling rate (PH), we set them to 100, 1, and 0.9, respectively, extending the values from
[14].

Evaluation datasets. We evaluate all techniques on the TIGER/Line shape files for (1) the cen-
sus tracts of the US states and (2) the county subdivisions [9]. In the census tracts dataset, the areas
represent the census tracts for each state. In the county subdivisions dataset, the areas represent
the division of counties in the United States. In our experiment, we define the spatially extensive
attribute over the ALAND attribute that represents the water area. The dissimilarity attribute is
defined over the AWATER attribute that represents the land area. The county subdivisions dataset
includes 35K areas and is denoted as D35. For the census tracts dataset, the shape files of different
neighboring states are merged together to form seven datasets of increasing sizes as follows:

e D10: 10K areas = CA, NV, and AZ states
e D20: 20K areas = D10, OR, WA, ID, UT, MT, WY, CO, NM, OK, KS, NE, SD, and ND states
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e D30: 30K areas = D20, TX, LA, AR, MO, and IA states

e D40: 40K areas = D30, MN, MS, AL, TN, KY, IL, and WI states
e D50: 50K areas = D40, GA, IN, MI, OH, and WYV states

® D60: 60K areas = D50, FL, SC, NC, VA, and MD states

e D70: 70K areas = D60, PA, NY, NJ, and DE states

8.2 Runtime Scalability

This section details the impact of different parameters on the runtime scalability of different
approaches.

Impact of the dataset size (DS). Figure 5(a) shows that our techniques PAG-P and PAG-L have
linear runtime scalability with increasing dataset size ranging from 2 to 44 seconds and 0.9 to 54 sec-
onds, respectively. On the other hand, MP encounters an exponentially increasing runtime ranging
from 22 to 1,297 seconds. MP* and PAG-P” are faster than MP with a runtime ranging from 2 to 53
seconds and 5 to 168 seconds, respectively, but they are still slower than PAG-P and PAG-L. Our
techniques are 23 to 29 times faster than MP for the largest dataset. The speedup ratio increases
with dataset sizes. The changes introduced in both PAG-P and PAG-L, either in the region growing
phase or the optimization phase, are the dominating factors in speeding up the processing.

Impact of partitioning and parallelization (NP, C). Figure 5(b) shows the impact of different
NP values on the total runtime, and Figure 5(c) shows the impact of different C values on the region
growing time for PAG-P and PAG-P*. Running PAG-P and PAG-P* with one core is equivalent to
running them sequentially. Even in this case, they are still at least 20 times faster than MP, which
takes 1,297 seconds to build a solution for the default dataset. This speedup in both PAG-P and
PAG-P* comes from partitioning and processing smaller subsets of data.

Increasing the NP value (Figure 5(b)) decreases the runtime as partitions handle a smaller subset
of the dataset in parallel. However, the runtime improvement is not linear with the added partitions
due to the limited number of available computing cores. Comparing the total runtime in Figure 5(b)
with the region growing time in Figure 5(c), PAG-P grows regions slower than PAG-P” since it
aims to improve the heterogeneity when growing the regions, while PAG-P* picks areas randomly.
However, PAG-P* is slower than PAG-Pas PAG-P* consumes more time in the optimization phase.

Impact of the user-defined constraint threshold (7). Figure 5(d) shows that increasing the
T value slightly increases the runtime of all alternatives. Increasing T increases the region size,
and this increases its number of neighboring and boundary areas. Increasing the number of neigh-
boring areas makes maintaining the list of neighboring areas more expensive while growing the
regions. In addition, increasing the number of boundary areas increases the shufling feasibility
checks during the optimization phase. It has the most noticeable impact on MP as it increases its
runtime from 1,096 seconds to 1,303 seconds. Meanwhile, it has much less impact on the perfor-
mance of both PAG-Pand PAG-L, which consistently finish in 51 seconds and 71 seconds, respec-
tively. PAG-P*and MP* are less impacted than MP. In PAG-Pand PAG-P”, the cost of maintaining the
neighboring areas is alleviated by partitioning and the use of a set data structure. In PAG-L, the
speedup comes from the way it grows regions. As for MP*, the alleviated cost comes from us-ing a set
data structure. On another hand, shufling feasibility checks are more eficient in PAG-P, PAG-L, and
PAG-P* since they employ Tarjan’s algorithm. Overall, PAG-P and PAG-L runtime is stable
regardless of the T value.

Impact of the maximum iterations (MI). The effect of changing the maximum number of
iterations for all alternatives is shown in Figure 5(e). The maximum number of iterations in the
region growing phase increases the execution time of MP and MP” since iterations are handled
sequentially. On the other hand, increasing the number of iterations in PAG-Pand PAG-P* does not
significantly impact the runtime since they grow regions for each iteration in parallel. Moreover,
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Fig. 5. Runtime scalability varying different parameters.

when the data is partitioned, the process of growing regions becomes faster since we have a smaller
number of areas in each partition. For PAG-L, despite performing sequential iterations, its eficient
runtime comes from the way it selects its next area to grow a region, which is O(1), piggybacking its
cost on maintaining the list of neighbor areas.

Impact of the number of non-improving moves (NI). Increasing the value of NI increases
the time for the optimization phase as shown in Figure 5(f). The NI parameter affects the number
of moves that actually improve the solution’s heterogeneity in the optimization phase. The run-
time increases when the optimization phase keeps moving to a better solution and the number of
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Fig. 6. Solution quality varying DS values.

iterations is reset to zero. Therefore, increasing the value of NI increases the possibility of finding
an improving move, which in turn increases the runtime for all alternatives.

8.3 Solution Quality

This section evaluates the solution quality of the different alternatives in terms of the number of
regions p and regions’ heterogeneity.

Impact of the dataset size (DS). Figure 6 shows that increasing DS increases both p (Figure 6(a))
and the heterogeneity (Figure 6(b)) for all alternatives. Since larger datasets have more areas, using
the same default threshold value leads to growing more regions, which adds to the heterogeneity
score. PAG-P generates 27 to 243 and PAG-L generates 26 to 376 regions more than MP, MP*, and
PAG-P*. PAG-P has three times lower heterogeneity than its competitors, while PAG-L has higher
heterogeneity than PAG-P but significantly lower than the other competitors. The better p value
of PAG-P and PAG-L comes from growing the regions with small inter-regional gaps, which leads
to a smaller number of scattered enclaves and increases the number of regions. Dividing the same
dataset into more regions leads to reducing the heterogeneity due to having a smaller number of
area pairs that contribute to computing the heterogeneity. PAG-P produces solutions with less het-
erogeneity compared to PAG-L because it optimizes the heterogeneity at the region growing phase.

Impact of the number of partitions (NP). Figure 7 shows that changing the number of parti-
tions has a slight impact on the solution quality. This shows the ability of our techniques to provide
higher scalability while maintaining high solution quality compared to state-of-the-art techniques.
Figure 7(a) and 7(b) shows that the number of regions and heterogeneity for PAG-P is almost the

same and only decreases slightly as we add more partitions.

Impact of the user-defined constraint threshold (T). For the same dataset size, increasing

T decreases the number of regions p as more areas are needed to construct each region as shown
in Figure 8(a). In all cases, MP, MP*, and PAG-P* still have lower p than PAG-Pand PAG-Lforall T
values. Larger T values means having regions with a larger number of areas, which increases the
number of area pairs that contribute to heterogeneity, so the overall heterogeneity increases as
shown in Figure 8(b).

Impact of the number of non-improving moves (NI). NI is a parameter for the optimiza-

tion phase, so it has no impact on p as shown in Figure 9(a). For heterogeneity, Figure 9(b) shows

the percentage of improvement in heterogeneity after the optimization phase. The heterogeneity
improvement is computed as I%R—)%, where H(R) and H(R) are the heterogeneity before and
after the optimization phase, respectively. Overall, increasing NI improves the heterogeneity for all
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Fig. 8. Solution quality varying T values.

alternatives. As NI increases, the number of conducted moves in the optimization phase increases,
which in turn increases the probability of finding a better solution. A notable observation is that
PAG-L achieves the best heterogeneity improvement because it grows compact-shaped regions.
Compact regions are more likely to maintain spatial contiguity when a boundary area is removed,
resulting in more valid moves. Another observation is that PAG-P has the lowest heterogeneity im-
provement even though it has the best heterogeneity absolute value. This is due to the high-quality
initial solution provided by PAG-P, so the optimization phase has small room for improvement.

Impact of the maximum iterations (MI). Figure 10 shows the p value and heterogeneity for
different MI values. Increasing the MI value produces more solutions for all alternatives and
therefore increases the possibility of discovering a larger value of p. In general, having a larger p
value leads to having fewer pairs of areas to contribute to heterogeneity in each region, which
improves heterogeneity. Figure 10(a) shows a slight increase in p in some cases. Figure 10(b) shows
no apparent impact for MI on heterogeneity. In all cases, PAG-P and PAG-L still have the best
solution quality compared to all competitors.

8.4 Evaluating Different Design Decisions

This section evaluates different design decisions regarding the placement of border areas in the
partitioning phase, the seed selection in the region growing phase, adding the areas to build regions
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in the region growing phase, the number of solutions kept after the region growing phase, the effect
of swapping areas between regions in the optimization phase, and the effectiveness on different
datasets and attributes.

Swapping the areas in the optimization phase improves the heterogeneity as it gives more room
for improvement by allowing the algorithm to escape from the local minimum. The rest of the
design decisions provide alternative ways, while others limit the quality or the randomization of
the algorithm.

8.4.1 Swapping Areas in the Optimization Phase. PAG-P+ here represents a variation of PAG-P
that does not discard a movable area when its removal violates the threshold constraint of the
region. Instead, it randomly picks a boundary area from the neighboring regions to swap it
with and checks if the threshold and spatial contiguity constraints still hold for both regions.
Figure 11(a) shows that PAG-P+ has a better heterogeneity increase especially when the number of
non-improving moves increases; however, this slows the runtime slightly as shown in Figure 11(b).
PAG-P+ provides more improvement as it widens the search space, which enables the local opti-
mization to escape from the local minimum.

8.4.2  Placing Border Areas Based on the Heterogeneity. PAG-P+ here represents a variation of
PAG-P where the border areas are placed into the partition with the minimum heterogeneity
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Fig. 11. Effect of swapping the areas in the optimization phase.
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Fig. 12. Effect of placing border areas based on heterogeneity.

increase in case there are multiple neighboring partitions in the partitioning phase. Figure 12(a)
shows that PAG-P+ does not increase the heterogeneity of the solution compared to PAG-P with
different number of partitions. This is due to the fact that the border areas are only a small part of the
dataset and therefore do not contribute significantly to the heterogeneity. PAG-P+ is slightly slower
than PAG-P as shown in Figure 12(b) since it calculates the heterogeneity increase for every border
area in order to place it into a partition.

8.4.3 Placing Border Areas Based on the Overlap. PAG-P+ here represents a variation of PAG-P
where border areas are placed into the partition that has the highest overlap with the area in case
there are multiple neighboring partitions in the partitioning phase. Figure 13 shows that PAG-P+
does not improve the heterogeneity or runtime. It has a slower running time since it needs to
calculate the overlap between the area and the partition. It also has a higher heterogeneity since the
partitions will be the same with each run, which contradicts the randomness of MP-regions and
prevents exploring better solutions. Placing a border area based on the overlap will lead to
including it in the same partition every time, regardless of the order of the placement. On the other
hand, in PAG-P, placing the border area with the aim of balancing the partitions results in including
it in different partitions based on the order of placing that area in different runs.
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Fig. 14. Effect of selecting seeds based on the s value.

8.4.4 Choosing Seeds Based on the s Value. PAG-P+ here represents a variation of PAG-P where
the seed area with the highest s value is picked when growing the regions in the region grow-
ing phase. Having a seed area with a high s value could increase the number of regions since it
will require a smaller number of areas to reach the threshold value. However, this contradicts the
randomness of MP-regions and limits the search space, which prevents exploring better solutions
since the solution will be the same each time. The area with the highest s value will always be
chosen as the seed for the first region. Then, the same neighboring areas that minimize the het-
erogeneity of the region the most will be added to the region until it reaches the threshold. This
is the same for the rest of regions, which yields the same solution. Figure 14(b) shows that PAG-P+
generates more regions p than PAG-P (since the first regions will reach the threshold with less
area) with worse heterogeneity (Figure 14(a)) for different threshold values. The heterogeneity is
worse even though it has a larger number of regions than PAG-P since the technique is biased
and not random, which leads to generating very skewed regions, i.e., regions with a very small
number of areas and regions with a very large number of areas. Having regions with a very large
number of areas increases the overall heterogeneity since more areas pairs will contribute to the
heterogeneity.

8.4.5 Choosing Seeds Based on their Size. PAG-P+ here represents a variation of PAG-P where
the seed area with the largest size is picked when growing the regions in the region growing phase.
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Fig. 16. Effect of growing the regions using the s value.

This is exactly the same as the previous experiment when choosing seeds based on their s value.
The same solution will be generated each time, which diminishes the randomness of MP-regions
and prevents exploring other solutions. Figure 15 shows that PAG-P+ generates solutions with
greater p value and better heterogeneity than PAG-P for different threshold values; however, this
approach is invalid as it will always generate the same solution.

8.4.6 Growing the Regions Based on the s Value. PAG-P+ here represents a variation of PAG-P
that grows the regions based on the s value. It adds the area with the largest s value when
growing the regions to reach the threshold value faster and increase the number of regions. PAG-
P+ generates less p value and worse heterogeneity since it does not optimize the heterogeneity as
shown in Figure 16.

8.4.7 Keeping the Top k Solutions. PAG-P+ here represents a variation of PAG-Pthat keeps the top
k solutions in terms of heterogeneity after the region growing phase. The k value is set to 10 in our
experiment. There is no difference between the solution quality of PAG-P+ and PAG-P as shown in
Figure 17. In fact, the solution quality of PAG-P might be better in some cases since it keeps all the
solutions with the maximum number of regions. Those solutions then go through the region gluing
phase and their heterogeneity might change during that phase. Finally, the solution with the
minimum heterogeneity is passed to the following phase.
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Fig. 18. Results of running the modules with the ACS dataset.

8.4.8 Testing the Modules on Different Datasets and Different Attributes. To demonstrate gener-
zability, we tested our model on the American Community Survey (ACS) dataset, which has

68K areas, with the total population of the tract as the spatially extensive attribute and the average

income of the tract as the dissimilarity attribute. Figure 18 shows the results on the new dataset. In
general, PAG-P and PAG-L still achieve greater p and less heterogeneity compared to the baseline

algorithms MP and MP* under different threshold values. PAG-L achieves the best p value in all
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cases due to the reduction of inter-regional gaps while growing the regions. PAG-P achieves the
best heterogeneity in all cases due to having heterogeneity in consideration while growing the
regions. All proposed algorithms achieve faster runtime compared to the baseline algorithms due to
the optimization introduced in different phases. The good performance under the new dataset
demonstrates the good generalizability of our modules.

9 CONCLUSIONS

This article addresses the scalability issue of MP-regions. MP-regions are a regionalization prob-
lem that clusters spatial areas into homogeneous regions. MP-regions are an NP-hard problem.
Many of the existing works experience performance degradation when solving MP-regions on
large datasets. Unfortunately, this limits its potential wide impact to support large spatial datasets.
We propose the PAGE module, which introduces two novel variations, PAG-P and PAG-L, to
pro-vide eficient and scalable approximate solutions for MP-

regions. Both techniques employ multiple phases to find an initial solution and then optimize it
using heuristic search to provide a final so-lution. PAGE uses a high degree of parallelization and
exploits eficient data structures to process large data eficiently. Our experimental evaluation has
shown the superiority of our techniques against the state-of-the-art techniques in both scalability
and solution quality.
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