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ABSTRACT

The process of regionalization involves clustering a set of spatial

areas into spatially contiguous regions. Given the NP-hard nature

of regionalization problems, all existing algorithms yield approxi-

mate solutions. To ascertain the quality of these approximations,

it is crucial for domain experts to obtain statistically signi�cant

evidence on optimizing the objective function, in comparison to

a random reference distribution derived from all potential sam-

ple solutions. In this paper, we propose a novel spatial regional-

ization problem, denoted as SISR (Statistical Inference for Spatial

Regionalization), which generates random sample solutions with a

predetermined region cardinality. The driving motivation behind

SISR is to conduct statistical inference on any given regionalization

scheme. To address SISR, we present a parallel technique named

PRRP (P-Regionalization through Recursive Partitioning). PRRP op-

erates over three phases: the region growing phase constructs initial

regions with a prede�ned cardinality, while the region merging and

region splitting phases ensure the spatial contiguity of unassigned

areas, allowing for the growth of subsequent regions with prede-

�ned cardinalites. An extensive evaluation shows the e�ectiveness

of PRRP using various real datasets.
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1 INTRODUCTION

Spatial regionalization aggregates a set of spatial polygons (i.e.,

areas) into spatially contiguous groups of areas (i.e., regions) that
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satisfy one or more user-de�ned criteria [18]. It plays a vital role

in various domains, addressing a wide range of problems such as

land-use allocation [42], healthcare resources allocation [24], dis-

tricting [10, 12, 29], community detection [34], and epidemic analy-

sis [7, 14]. Since regionalization problems are NP-hard [17, 35], it

is very challenging to e�ciently explore the entire solution space

and identify an optimal solution. For a tiny dataset of 16 areas, the

mixed integer programming (MIP) formulation takes 10 hours to

converge using the fast MIP solver Gurobi [25]. Even with more

e�cient exact algorithms, it takes more than four hours to generate

a solution for tiny datasets of only 36, 49, and 64 areas [17]. Con-

sequently, all existing techniques employ heuristics that generate

approximate solutions for reasonably large datasets of thousands

of areas to solve real-world critical problems. However, those ap-

proximate solutions do not provide any quality guarantees on the

produced output. Therefore, domain experts need a way to perform

statistical inference and assess the quality of output solutions. To

conduct statistical inference, a random reference distribution of

sample solutions is necessary for comparison against the assessed

solution. These sample solutions within the reference distribution

must be similar to the assessed solution in terms of the number

of regions and each region’s cardinality (i.e., the number of areas

within each region) to provide meaningful statistical evidence.

Assume the Max-P regions [1, 2, 17, 25, 41] that produces the

maximum number of regions satisfying a �oor constraint in each

region and minimizing the dissimilarity (heterogeneity) between

the areas within the same region. If a geographer aims to divide

California counties into regions with at least 900K households and

are homogeneous in terms of the number of individuals aged 30

to 39 using an approximate Max-P regions technique in [1, 25].

The output consists of 7 regions with cardinalities: 31, 8, 7, 5, 2,

2, 1 (shown in Figure 1a). To verify if this approximate solution

truly minimizes the regional dissimilarity rather than being ran-

dom, we generate a reference distribution of 100 sample solutions

with the same number of regions (i.e., 7) and regions’ cardinali-

ties (i.e., 31, 8, 7, 5, 2, 2, 1). Figure 1b shows one sample solution

from the reference distribution. We then plot in Figure 2 the his-

togram of the objective function values (regions’ heterogeneity)

of the reference distribution compared to the assessed Max-P so-

lution. The assessed solution’s objective function is 10641 × 10
3,

which is substantially lower than other sample solutions. This pro-

vides statistical evidence on minimizing the heterogeneity. Another

statistical evidence is calculating the pseudo P-Value as follows:
(1+

∑
100

ğ=1
ĩĥĢīĪğĥĤğ<=10641×10

3 )
1+100 ≈ 0.01 [38], leading to rejecting the

null hypothesis that the assessed solution is due to random chance

at the 1% signi�cance level. These pieces of statistical evidence can

be also shown for the algorithms in [17, 41] to compare their quality

to the ones in [1, 25] and evaluate di�erent approximate solutions.

This work is licensed under a Creative Commons Attribution-
NoDerivs International 4.0 License.
SIGSPATIAL '23, November 13–16, 2023, Hamburg, Germany
© 2023 Copyright is held by the owner/author(s).
ACM ISBN 979-8-4007-0168-9/23/11.
https://doi.org/10.1145/3589132.3625608



SIGSPATIAL ’23, November 13–16, 2023, Hamburg, Germany Hussah Alrashid, Amr Magdy and Sergio Rey

(a) Max-P solution (b) Sample solution

Figure 1: An Example of Max-P Regions Output and a Corre-

sponding Sample Solution
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Figure 2: Histogram-based Statistical Signi�cance Analysis

for Max-P Solution Quality

The above statistical signi�cance analysis is general and can

be applied to di�erent types of regionalization problems, such as

p-regions [16, 35], compact regions [33], �exible user-constrained

regions [21, 25], network-based regions [40, 43], and graph-based

regions [5, 6]. However, performing this statistical analysis is im-

possible without generating a reference distribution of sample so-

lutions. Existing computational techniques cannot produce such

distribution as they face four main challenges. First, the high com-

putational cost of generating multiple sample solutions poses a

signi�cant challenge. Existing regionalization techniques, such

as [16, 17, 25, 35, 41], take 1.42-297 seconds, 139-184 seconds, and

256-500 seconds to generate a single solution for 400 areas, 3K

areas, and 10K areas, respectively. This makes the generation of

hundreds of sample solutions even more challenging. Second, the

introduction of a cardinality constraint, which speci�es the number

of areas in each output region, is a new restrictive requirement that

has not been addressed in existing regionalization problems. This

constraint limits the solution’s search space, making it impossible

to adapt current approximate techniques to solve the problem. Ex-

isting techniques typically build regions in two phases: developing

initial regions and then assigning the remaining areas to those re-

gions. However, in our case, assigning any area to existing regions

violates the cardinality constraint, rendering the region invalid.

Third, the addition of a cardinality constraint decreases the like-

lihood of �nding feasible sample solutions. This is due to the fact

that it restricts the spatial contiguity of the region being grown

and future regions as illustrated in Figure 3. If the unassigned ar-

eas become spatially disconnected at any point during any region

growth, it prevents the future regions (to be grown in the follow-

ing iterations) from reaching their cardinality target. Empirical

results demonstrate that existing techniques always fail to generate

(a) State-of-the-art techniques (b) PRRP

Figure 3: Growing regions with a dataset of 20 areas

a complete distribution due to the failure of generating 15-56% of

regions since they do not enforce spatial contiguity. Lastly, the

fourth challenge is ensuring randomness, as regions must be grown

in a completely random manner for the sample solution to qualify

as a random solution in a random distribution. This restriction

limits the ability to control the shape of regions, e.g., compactness.

This makes it more challenging to maintain the spatial contiguity

of both the unassigned areas and output regions while building

regions when area removal is necessary in some phases.

In this paper, we introduce a novel regionalization problem called

Statistical Inference for Spatial Regionalization (SISR). SISR aims

to generate a random sample distribution of size ĉ , with each

sample solution consisting of a set of p regions with prede�ned

regions’ cardinalities (i.e., the number of areas in each region).

This random sample distribution serves as a reference distribution,

drawn randomly from the set of all possible solutions sharing the

same number of regions and regions’ cardinalities. Consequently, it

enables domain experts to perform statistical signi�cance analysis

for assessing the quality of approximate regionalization solutions

for the �rst time in the extensive regionalization literature.

To solve SISR, we propose a parallel technique named PRRP: P-

Regionalization through Recursive Partitioning that addresses the

challenges detailed above. PRRP grows each region using three

phases. The �rst phase grows one initial region with a prede�ned

cardinality. The second and third phases perform merge and split

operations to maintain the spatial contiguity of the remaining unas-

signed areas. The three phases are repeated for each region to

recursively partition the unassigned areas into two parts, one re-

gion and one set of spatially contiguous unassigned areas, so that

all unassigned areas are spatially contiguous at all times. Maintain-

ing the spatial contiguity of unassigned areas is a major step for

PRRP to allow subsequent regions to grow with their prede�ned

cardinality and prevent scattered unassigned areas that cannot be

grouped together to form a single region. Figure 3 emphasizes the

signi�cance of maintaining the spatial contiguity of unassigned

areas and the distinction of PRRP from existing state-of-the-art

techniques for growing two regions with cardinalities of 12 and 8.

In state-of-the-art techniques, a single region is grown with 12

areas, resulting in the unassigned areas being fragmented into two

separate spatially contiguous components, thereby preventing the

formation of the second region (Figure3a). In contrast, PRRP groups

the remaining unassigned areas into a single spatially contiguous

component after growing the �rst region, thus ensuring enough

space for the subsequent growth of the second region (Figure 3b).

PRRP grows regions in a completely random way by random-

izing area selection for additions and removals in the �rst and
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third phases. Such randomization increases the probability of gen-

erating di�erent sample solutions and satis�es the randomization

requirements for statistical inference. To alleviate the high cost of

generating multiple solutions, PRRP generates di�erent solutions

in parallel, exploiting the natural independence of solutions.

The experimental evaluation of PRRP on real datasets demon-

strates its e�ectiveness in solving SISR. PRRP outperforms all alter-

natives in di�erent performance measures and has a 100% success

probability of generating random and distinct sample solutions.

PRRP is more e�cient and is four times faster than other techniques.

Our contributions are summarized as follows:

• We introduce a novel spatial regionalization problem, SISR,

that generates random reference distributions to perform

statistical inference on regionalization output.

• We introduce a novel spatial partitioning technique that sig-

ni�cantly increases the probability of success for generating

random distributions of regionalization output.

• We introduce a parallel technique PRRP that uses our novel

partitioning to solve SISR e�ectively and e�ciently.

• We conduct extensive experiments using real datasets.

The rest of the paper is organized as follows. Section 2 provides

an overview of the related work. Section 3 formulates the SISR prob-

lem. Section 4 presents our proposed technique PRRP. Section 5

presents the performance evaluation of PRRP and Section 6 con-

cludes the paper. Appendix A presents additional experiments and

Appendix B presents a complexity analysis for PRRP.

2 RELATEDWORK

To the best of our knowledge, no current techniques set cardinality

constraints on the output regions. As a result, these techniques

fail to address our problem. There are two relevant domains in

the literature: (a) spatial regionalization with di�erent variations of

constraints, and (b) graph partitioning techniques that are applicable

to various regionalization problems. Each is brie�y discussed below.

Spatial Regionalization. Existing regionalization tech-

niques [16, 18, 21, 25–28, 30, 33, 35, 40, 41] either require the

number of regions p as an input or they automatically discover

the appropriate number of regions. Techniques that require p

as an input include the p-regions problem [16] and di�erent

variations that impose a constraint on the shape of the region (i.e.,

compact) [30, 33] or type of the region (i.e., functional) [26–28, 35].

Other variations solve the problem in a di�erent spatial space, such

as a network space [43]. On the other hand, Max-P regions [17]

enforces a user-de�ned threshold at the regional level to auto-

matically discover the number of regions p. Several variations

of Max-P regions [21, 25, 40, 41] have been proposed to address

problems in various domains, such as the map generalization

in automated cartography, which aggregates areas to produce

small-scale maps [22, 23, 31, 32, 36].

Our problem requires p as an input, therefore, it is more related

to the p-regions problem and its variations. However, none of them

can be adapted to apply a di�erent cardinality constraint on dif-

ferent regions since their constraints are uni�ed for all regions,

which makes the proposed solutions inherently inapplicable. In

fact, adapting these techniques to solve cardinality constraints fail

solve any instance of our problem (as shown in our experiments),

since they do not maintain the spatial contiguity of unassigned

areas while building the regions as illustrated in Figure 3.

Graph Partitioning. Several graph partitioning techniques

could be adapted to generate p regions in which areas are repre-

sented as graph nodes and output regions are represented as graph

partitions (i.e., sub-graphs). SKATER [5] and SKATER-CON [6] gen-

erate k sub-graphs by removing edges from spanning trees. K-way

graph partitioning [3, 8, 39] divides a graph into k sub-graphs while

minimizing the number of edges between sub-graphs. The graph

bisection technique bisects a graph into two sub-graphs of roughly

the same size while minimizing the number of edges connecting

di�erent sub-graphs [15, 19, 20]. Graph bisection, when applied

recursively, produces p sub-graphs with a minimum number of

edges between sub-graphs. Attributed graph clustering [9, 13, 44]

generates k homogeneous sub-graphs based on a set of attributes

associated with each node. All of the aforementioned techniques

focus on generating k sub-graphs while satisfying one or more

constraints. However, non of these techniques enforce a cardinality

constraint on the number of nodes in each sub-graph, making them

inapplicable for the same reasons above.

Standing apart from all existing research, we are the �rst to intro-

duce the generation of a reference distribution of random sample

solutions for statistical inference to assess the quality of approxi-

mate regionalization techniques. To achieve this, our novel problem

is the �rst to impose a cardinality constraint that is di�erent on

each output region to empower such statistical inference.

3 PROBLEM DEFINITION

This section formally de�nes the SISR problem. We �rst give pre-

liminary de�nitions. Then, we formally de�ne the problem.

De�nition Set 1. (Area). An area ėğ is represented by two at-

tributes (ğ, ĝ), where ğ is the area’s unique identi�er and ĝ is the

area’s geometry represented as an arbitrary spatial polygon.

The area spatial neighbors ďĊėğ of area ėğ are the areas that

share a boundary (i.e., line or curve) with area ėğ . In Figure 4a, the

spatial neighbors of ė14 are: ďĊė14 = {ė12, ė13, ė15}. An area ėğ is

a nested area if its spatial polygon is completely enclosed within

another area’s spatial polygon. An area ėğ is a parent area if its

spatial polygon fully encloses the spatial polygon of another area.

The degree of a parent area is the number of its nested areas. Non-

nested areas are pairwise disjoint while nested areas are enclosed

within larger areas’ boundaries. An area ėğ is an articulation area

of a set of areasđ if its removal breaks the spatial contiguity of the

remaining areas in đ . In Figure 4a, area ė4 is a nested area, area ė3
is a parent area, and area ė19 is an articulation area for region Ĩ1
since its removal disconnects ė20 from the rest of Ĩ1’s areas.

De�nition Set 2. (Region). A region Ĩ = {ė1, ė2, ė3, ..., ėģ} is a

set of spatially contiguous areas.

Spatially contiguous areas mean that ∀ėğ , ė Ġ ∈ Ĩ, ∃ as se-

quence of areas {ėġ , ....ėĢ } such that both ėğ , ėġ and ėĢ , ė Ġ are spa-

tial neighbors and every two consecutive areas in the sequence are

spatial neighbors.

The cardinality constraint ęğ on a region Ĩğ is a user-de�ned

constraint on the region’s size and it represents the total number

of areas that must belong to Ĩğ (i.e., |Ĩğ |). A region is valid if its size

equals to its prede�ned cardinality, i.e., |Ĩğ | = ęğ .
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The region spatial neighbors ďĊĨğ of any region Ĩğ are the

set of areas that do not belong to Ĩğ but have at least one spatial

neighbor that belongs to Ĩğ . The boundary areas þýĨğ of a region

Ĩğ are the areas in Ĩğ that have at least one spatial neighbor that does

not belong to Ĩğ . In Figure 4a, Ĩ3 is a region containing the following

areas: {ė1, ė2, ė3, ė4, ė5}, its cardinality is 5, its spatial neighbors

ďĊĨ3 = {ė6, ė8, ė12, ė13}, and its boundary areas þýĨ3 = {ė2, ė3, ė5}.

A seed area is the �rst area added to the region (i.e., the area that a

region starts growing from). An area ėğ is assigned if it belongs to

a region and unassigned if does not belong to any region.

De�nition Set 3. (Sample Solution). A sample solution Ďğ is

the division of any given set of areas into spatially contiguous

regions: {Ĩ1, Ĩ2, Ĩ3, ..., ĨĦ }. Figure 4 shows two sample solutions Ď1
in Figure 4a and Ď2 in Figure 4b. A sample solution is feasible if all

its regions are valid regions that satisfy the cardinality constraints.

Problem Formulation: The SISR problem is formally de�ned as

follows:

Input: (1) A set of Ĥ areas: ý = {ė1, ė2, ė3, ..., ėĤ}, in which all

the areas in ý are spatially contiguous. (2) An integer Ħ which

represents the number of regions, 1 ≤ Ħ ≤ Ĥ. (3) An integer ĉ

which represents the sample size. (4) A list of cardinality constraints

of Ħ integers: ÿ = {ę1, ę2, ę3, ..., ęĦ }, where
∑Ħ
ğ=1 ęğ = Ĥ, ∀ęğ ∈ ÿ .

Output: A random reference distribution ofĉ sample solutions:

ď = {Ď1, Ď2, ..., Ďĉ }, where each sample solution Ďğ contains a set

of Ħ regions Ď = {Ĩ1, Ĩ2, ..., ĨĦ } and each region Ĩğ is composed of a

ęğ spatially contiguous areas. The set of sample solutions in ď must

satisfy the constraints mentioned below.

Constraints:

• |Ĩğ | ≥ 1, ∀Ĩğ ∈ Ď

• Ĩğ ∩ Ĩ Ġ = ∅, ∀Ĩğ , Ĩ Ġ ∈ Ď ∧ ğ ≠ Ġ

•
⋃Ħ

ğ=1 Ĩğ = ý, ∀Ĩğ ∈ Ď

• ∀ ęğ ∈ ÿ , ∃ Ĩğ ∈ Ď such that |Ĩğ | = ęğ
• Ďğ ≠ Ď Ġ ∀Ďğ , Ď Ġ ∈ ď ∧ ğ ≠ Ġ

All the input areas ∈ ý form a single spatially contiguous compo-

nent. This increases the randomness chances of the sample solutions

as having separate disjoint sets of areas will reduce the space to

start and grow regions in any random area. The �rst three con-

straints ensure that each area is assigned to exactly one region and

each region has at least one area. The last two constraints imply

providingĉ distinct sample solutions that satisfy all the cardinality

constraints in ÿ . In other words, for every integer ęğ in ÿ , there

must be a region Ĩğ in Ď whose size (i.e., number of areas) equals ęğ .

This is a unique feature of SISR that is not addressed in any previous

spatial regionalization problem.

Figure 4 presents an example of SISR using a dataset with 20 areas.

Whenĉ = 2, Ħ = 3, andÿ = {9, 6, 5}. The output is two sample solu-

tions ď = {Ď1, Ď2} and each sample solution contains three regions

Ĩ1, Ĩ2, and Ĩ3 with cardinalites 9, 6, and 5.

4 PRRP : P-REGIONALIZATION THROUGH
RECURSIVE PARTITIONING

This section introduces our proposed technique P-Regionalization

through Recursive Partitioning (PRRP) to solve the SISR problem.
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Figure 4: An example of SISR with a dataset of 20 areas

A standard way to build regions in existing regionalization tech-

niques [16, 17, 25, 35] is to randomly select a seed area and then

add neighboring areas based on the objective value until a region

is formed. However, this implies that regions are grown with no re-

gard to the spatial contiguity of the unassigned areas that do not yet

belong to any region. Consequently, in most cases, there is a high

possibility that unassigned areas are scattered over two or more

spatially contiguous components. This is not an issue for existing

regionalization problems as they do not impose strict cardinality

constraints on output regions. However, for SISR, such scattered

areas cannot be grouped in a single spatially contiguous region,

preventing one or more of the future regions from reaching their

cardinality target as illustrated in Figure 3. This leads to generating

invalid regions with a low success probability (practically, 0% suc-

cess) of �nding a feasible solution in which all the regions satisfy

their cardinalities.

PRRP main ideas. To build valid SISR regions e�ectively, we

propose the general framework of PRRP that is based on the re-

cursive partitioning of Ĥ input areas ý into exactly two spatially

contiguous components. The �rst component represents one re-

gion Ĩğ with a prede�ned cardinality ęğ and the second component

represents the remaining unassigned (Ĥ − ęğ ) areas. When another

region Ĩ Ġ grows, PRRP still maintains the spatial contiguity of the re-

maining unassigned areas. So, PRRP gives new regions ample space

to grow by grouping all the unassigned areas into a single spatially

contiguous component at all times as illustrated in Figure 3. This

increases the success probability of �nding feasible solutions from

0% for state-of-the-art techniques to 100% for PRRP, as shown in

our experiments.

One of PRRP novel heuristics is growing regions in a descending

order of cardinality values. This provides more �exibility for regions

with larger cardinality to grow as there will be a large number of

unassigned areas, reducing the needed merge and split costs in the

following iterations. Moreover, larger regions have a larger set of

neighboring areas, which ensures that the following region’s seed

is chosen randomly from a sizable set and improves the randomness

chances of a sample solution.

PRRP framework. The recursive partitioning in PRRP is

achieved through three phases: the region growing phase, the region

merging phase, and the region splitting phase. The region growing

phase builds one region Ĩğ that satis�es one of the given cardinal-

ities ęğ ∈ ÿ . Then, the region merging phase enforces the spatial

contiguity constraint on the unassigned areas by merging any dis-

connected components with Ĩğ . Enforcing spatial contiguity in a

separate merging phase is much more e�cient than enforcing it
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in the growing phase, as detailed in Section 4.1. However, it might

violate the cardinality constraint of Ĩğ . To �x this potential violation,

the region splitting phase adjusts the size of Ĩğ by removing any

excess areas that might result from the region merging phase to

meet the cardinality constraint again. The three phases are repeated

for each region to recursively partition the remaining unassigned

areas until all the regions are formed. The three phases are carefully

designed to maintain the spatial contiguity of unassigned areas e�-

ciently and �nd a feasible solution with high probability, as detailed

below. If �nding a solution fails, due to randomness, we repeat the

process for a maximum number of iterations ĉď to increase the

probability of �nding a feasible solution.

PRRP randomness. As PRRP is mainly designed to produce a

random reference distribution for statistical inference, it inherently

incorporates mechanisms that ensure the randomness and indepen-

dence of the producedĉ sample solutions. First, PRRP constructs

theĉ solutions in parallel, completely independent from each other.

This ensures statistical independence and reduces the overall run-

time. Second, for each solution, the seed area is picked randomly

for each region, and the regions are grown in a completely random

way by adding the areas randomly in the region growing phase.

Third, the areas are added/removed to/from regions in both the

region merging and region splitting phases randomly. Fourth, after

producing all solutions randomly and independently, PRRP checks

if there are duplicate solutions. The high level of randomness in-

troduced in the di�erent phases of PRRP always produces distinct

solutions based on all conducted experiments.

PRRP Preprocessing. PRRP includes two preprocessing steps.

(1) Constructing a neighborhood graph ă that captures the

spatial neighborhood relationships among the input areas ý. Each

area ėğ ∈ ý is represented by a node ină and each spatial neighbor

ė Ġ of ėğ is connected to ėğ by an edge in ă . The neighborhood rela-

tionships between areas ină are de�ned by the rook neighborhood

relation. The rook neighborhood relation considers two areas to be

neighbors only when a common edge or curve exists between them.

ă is constructed by iterating over each input area and checking if it

intersects with any other area by more than one point (i.e., edge or

curve). (2) Constructing a degree list Ā to store only parent areas

with a degree value > 0. The parent area’s degree is the number of

its nested areas (see De�nition Set 1). To construct the degree list Ā ,

the spatial boundaries of all areas are checked against each other to

check if one boundary is completely enclosed within another area.

The degree list is used to check for the feasibility of moving areas

and ensure the spatial contiguity of regions.

4.1 Region Growing Phase

This phase initially grows the regions to satisfy the cardinality con-

straint. While PRRP is based on maintaining spatial contiguity of

unassigned areas, enforcing this while growing the region requires

checking if every area is an articulation area before it is added to

the region. This is prohibitively ine�cient and involves travers-

ing the entire set of unassigned areas frequently. Therefore, this

phase allows growing regions without enforcing spatial contiguity,

delegating this to the following phases.

Growing regions randomly in the spatial space causes the unas-

signed areas to break into two or more spatially contiguous compo-

nents. To reduce the probability of breaking the spatial contiguity

of the unassigned areas and to alleviate the computational cost of

the following phases, PRRP employs a gapless random seed selection

strategy when growing regions. Instead of choosing seed areas

from the set of unassigned areas, only the �rst seed area for region

Ĩ1 is picked from the unassigned areas, and the seed area of any

subsequent region (Ĩğ , ğ > 1) is picked randomly from the spatial

neighbors of Ĩ Ġ , Ġ < ğ , Ġ = ğ −1, ğ −2, ğ −3, ..., 1 in sequence. If the list

of spatial neighbors ďĊĨğ−1 is empty, then the seed is picked from

the neighbors of Ĩğ−2, and so on. This gapless seed selection strat-

egy takes into account the relative spatial distribution of regions

and ensures that regions are grown next to each other in one part

of the spatial space. The seed selection process is still completely

random, but the drawing sample is limited to the neighboring ar-

eas. As regions grow in arbitrary directions, the set of neighboring

areas could be any subset of areas, so the process is still completely

random and not biased. If a region fails to satisfy the cardinality

constraint, the algorithm restarts the building process with a seed

that is picked from all unassigned areas.

As discussed before, the regions are grown in descending order of

cardinalities ęğ ∈ ÿ . The region growing phase starts by initializing

a set of unassigned areasýī
= ý and a set of assigned areasýė

= č .

Then, the largest region Ĩ1 grows targeting ę1 areas. A seed area ĩ

is randomly selected from ýī , added to region Ĩ1, and marked as

assigned by adding it to ýė . A list of unassigned spatial neighbors

of Ĩ1, ďĊĨ1 , is initialized with all unassigned spatial neighbors of

the seed area ĩ , i.e., ďĊĨ1 = ďĊĩ . ďĊĨ1 is maintained while growing

Ĩ1 to ensure the disjointness of regions and the spatial contiguity in

the following iterations of growing Ĩğ , ğ > 1. To grow region Ĩ1, an

area ėğ is selected at random from ďĊĨ1 and is added to the region.

The list ďĊĨ1 is updated accordingly by removing ėğ and adding the

unassigned neighbors from ďĊėğ . We keep adding areas to Ĩ1 from

ďĊĨ1 until Ĩ1 cardinality reaches the target cardinality ę1.

After Ĩ1 becomes a valid region, a queue for the seed areas ĩěěĚĩ

is initialized with all the unassigned spatial neighbors of Ĩ1. Seed

areas in the following iterations are drawn randomly from ĩěěĚĩ .

ĩěěĚĩ is updated in the following region growing iterations for

Ĩğ , ğ > 1 by removing the areas that have been assigned to Ĩğ and

adding the unassigned spatial neighbors from ďĊĨğ .

If a region fails to reach its cardinality value for any reason, then

the region growing phase is restarted as long as the number of

restarts does not exceed a parameter ĉĎ, representing the maxi-

mum allowed number of growing a region. In this case, the seed

area is not picked from ĩěěĚĩ . Instead, it is picked randomly fromýī

to increase the probability of growing a valid region successfully.

Example. Figure 5 presents an example of the three phases

of building a region in PRRP. Figure 5a shows the result

of growing a region with cardinality = 6 after the region

growing phase. This region splits the unassigned areas ýī

into three spatially contiguous components: {ė18}, {ė20}, and

{ė1, ė2, ė3, ė4, ė5, ė6, ė7, ė8, ė9, ė10, ė11, ė12, ė13, ė17}.

4.2 Region Merging Phase

This phase is the �rst step in ensuring the spatial contiguity of the

remaining unassigned areasýī after growing a region Ĩğ . When Ĩğ is

grown, the remaining unassigned areas ýī could break into two or

more spatially contiguous components. It is important that the areas

in ýī stay spatially contiguous at all times to allow the remaining
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Figure 5: The phases of constructing a region in PRRP

regions to grow correctly and become valid. When the areas in

ýī become disconnected, spatially-scattered areas cannot form a

spatially contiguous region, and subsequent regions cannot reach

their prede�ned cardinality targets and fail to produce any correct

solution. For instance, in Figure 3a after growing region Ĩ1, ý
ī

contains 8 areas and the last region to be formed have a cardinality

value of 8. However, growing Ĩ1 has disconnected ýī into two

spatially contiguous components each with 4 areas preventing the

next region from growing with cardinality 8.

To prevent this from happening, the spatially contiguous com-

ponents for the unassigned areas ýī are calculated after the region

growing phase. If the number of the spatially contiguous compo-

nents is one, then both the region merging and region splitting

phases are skipped, and the algorithm moves to the next region

growing phase. If there is more than one spatially contiguous com-

ponent, then only the largest component is kept as unassigned and

the rest of them are removed from ýī and added to region Ĩğ and

the set of the assigned areas ýė . In this case, more areas are added

to Ĩğ , and it exceeds its cardinality constraint. Therefore, Ĩğ must

go through the region splitting phase to remove the excess areas to

bring it back to its prede�ned cardinality value.

Example. Figure 5b depicts the region merging phase merging

the small components, in terms of the number of areas, {ė18} and

{ė20} with the region to produce a region Ĩ1 with a total of 8 areas.

4.3 Region Splitting Phase

This phase is required when the region Ĩğ is merged in the region

merging phase to reduce its size and bring it back to its cardinality

target ęğ . To this end, it removes areas from the region Ĩğ and adds

them back to the list of unassigned areas ýī .

Removing areas from Ĩğ focuses on removing a subset of bound-

ary areas of Ĩğ . A list of boundary areas þýĨğ is computed as the

areas in Ĩğ that have spatial neighbors belonging to ýī . A naive

way to process þýĨğ is computing and excluding articulation areas,

removing one of the boundary areas at a time, and recomputing

boundary and articulation areas for each boundary area to be re-

moved. Such a naive way to process þýĨğ has several limitations.

First, recomputing boundary and articulations areas with every

area removal is prohibitively expensive since it requires travers-

ing all the areas in the region. Second, removing only boundary

areas that are not articulation areas is restrictive and could pre-

vent the removal of excess areas when all the boundary areas are

also articulation areas. To overcome these limitations, we employ a

randomized technique that permits the removal of any area from

þýĨğ then checks if the spatial contiguity constraint still holds for Ĩğ
and makes the necessary adjustments. Removing a boundary area

randomly has several advantages: (1) it provides more �exibility

while removing areas when all the areas in þýĨğ are articulation

areas, (2) it increases the randomness of the sample solution by

allowing the removal of articulation areas, (3) it alleviates the cost

of recomputing the boundary areas’ list; instead the same list is

used until it becomes empty. This does not a�ect the randomness

of the solution as the areas are still chosen randomly from the list.

Another issue with removing areas is that a parent area ėĪ is

always an articulation area. Since one or more areas are enclosed

within ėĪ ∈ Ĩğ , some or all of its nested areas could also belong to

Ĩğ . So, removing ėĪ breaks the spatial contiguity of Ĩğ . This prevents

ėĪ from ever being removed from Ĩğ as it is always identi�ed as an

articulation area. To solve this, we construct and use the degree

list Ā during preprocessing to identify parent and nested areas. So

when a boundary area that is also a parent area is removed, all the

of its nested areas are also removed.

Splitting the excess areas from the region is performed over two

steps: the region shrinking and the region expansion. The region

shrinking step removes areas randomly from the region and the

region expansion step adds areas to the region if the region size

falls under the cardinality target after the region shrinking step.

Region shrinking. Algorithm 1 shows the pseudo-code of the

region shrinking step. The algorithm starts by initializing a counter

ġ that is equal to the number of areas to be removed from region Ĩğ
where ġ = |Ĩğ | − ęğ (Line 5). Then a list of boundary areas þýĨğ for

region Ĩğ is computed (Line 8). An area ėğ is randomly selected from

þýĨğ and checked against the degree list Ā . If Ā contains ėğ , then

ėğ and all of its nested areas that belong to Ĩğ are removed from Ĩğ
and added to ýī . Then, the counter ġ is updated by subtracting the

total number of removed areas and þýĨğ is updated by removing all

the removed areas (Lines 9-15). The spatial contiguity of region Ĩğ
is checked after the removal of area ėğ by calculating the spatially

contiguous components of Ĩğ . If there is more than one component,

then only the large component is kept and the other components

are removed from Ĩğ and added to ýī . The number of areas in the

components removed from Ĩğ is subtracted from ġ (Lines 16-20). To

speed up the removal of areas, the list of boundary areas þýĨğ is

only computed when it becomes empty. The process of removing

areas continues until the counter ġ <= 0. If ġ is zero, then region Ĩğ
becomes valid and the algorithm moves to building the next region.

Otherwise, if ġ < 0 and the region is not empty after the shrinking

step, then the region is adjusted in the region expansion step by

removing areas from ýī and adding them to the region to meet the

cardinality constraint. If ġ < 0 and the region becomes empty after

the region shrinking step, then the region splitting phase terminates

and the region is re-grown in a new iteration. The region could

become empty when, for instance, the region cardinality is one

and it currently contains two areas: one parent area and its nested

area. In this case, only one area should be removed. However, since
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Algorithm 1: Region Shrinking Step

1 Input : Area list ýī , Region r, Integer c, Neighborhood list G,

Degree list D.

2 Output: Region r.

3 Initialization:

4 þýĨ = {} // list of boundary areas for r ;

5 k = |Ĩ | - c;

6 while k > 0 do

7 if |þýĨ | == 0 then

8 þýĨ = boundary areas for r ;

9 a = random area ∈ þýĨ ;

10 if a ∈ D then

11 NA = nested areas for a that belong to r ;

12 r = (r - a) - NA;

13 ýī = (ýī ∪ a) ∪ NA;

14 þýĨ = (þýĨ - a) - NA;

15 k = k - (|Ċý| + 1);

16 cc = connected components for r ;

17 if |ęę | > 1 then

18 r = r - smallest connected components;

19 ýī = ýī ∪ smallest connected components;

20 k = k - |smallest connected components|;

21 return r ;

the shrinking step removes the parent area and its nested areas to

maintain the spatial contiguity of the areas, then the two areas are

removed and the region becomes empty.

Region expansion. The process of removing areas from ýī is

very similar to the process of removing areas from the region. How-

ever, the calculation of the articulation areas every time an area is

removed is necessary here since the removal of an exact number of

areas from ýī is required to maintain the region’s cardinality and

to prevent the region from exceeding the prede�ned cardinality

target again. A counter ĭ which represents the number of areas

to be added to the region is initialized as follows: ĭ = ęğ − |Ĩğ |.

After that, a list of boundary areas for the unassigned areas ýī is

calculated þýýī . Then, the articulation areas of ýī are computed

without considering the nested areas of the parent areas in þýýī .

This ensures that parent areas are only identi�ed as articulation

areas when they actually connect other areas to the region beside

their nested areas. The articulation areas of ýī are computed us-

ing Trajan’s algorithm [37] and subtracted from þýýī to maintain

the spatial contiguity of ýī . Next, we pick an area ėğ from þýýī ,

if Ā contains ėğ , then ėğ and ėğ ’s unassigned nested areas are re-

moved fromýī and added to region Ĩğ . The counterĭ is updated by

subtracting the number of areas that are added to Ĩğ . This process

continues until the value ofĭ reaches zero.

If the value ofĭ falls under zero after the region splitting phase,

then the cardinality of Ĩğ is checked against the values in ÿ . If |Ĩğ |

∈ ÿ then the region is kept. Otherwise: Ĩğ is removed, ýī is reset to

its previous state before growing Ĩğ , and a new building iteration

begins. The value of ĭ can fall under zero if, for example, ĭ = 1

and all the areas in þýýī are parent areas containing at least one

unassigned nested area. In this case, all the unassigned nested areas

would have to be removed with the area andĭ will fall under zero.

Example. In Figure 5c, the region splitting phase removes 2 areas

from the region (ė12 and ė17) to satisfy the cardinality.

At the end, our algorithm checks if there are duplicate sample

solutions by checking if the sample solutions have the same regions,

i.e., the same cardinality and set of areas. Therefore, the sample

solutions in the reference distribution are guaranteed to be distinct.

5 EXPERIMENTAL EVALUATION

This section provides an extensive performance evaluation for our

proposed technique PRRP. Section 5.1 presents the experimental

setup and Section 5.2 evaluates the performance of PRRP.

5.1 Experimental Setup

Our evaluation is based on Java 14 implementation and evaluated on

amachine running Ubuntu 16.04 with a quad-core 3.5GHz processor

and 128GB of memory. We compare PRRP with the state-of-the-

art p-regions technique, PRUC [35], in addition to two baseline

variations that evaluate PRRP design decisions: (1) A variation of

PRUC [35], denoted as PRUC-RP . The seed selection in PRUC

identi�es p scattered seeds. Then, it grows regions from those seeds

by adding the area that has more neighbors in the region. As SISR

is a novel problem, it is the �rst to impose a di�erent cardinality on

each region. Therefore, the cardinalites are set as threshold values

for each region in PRUC-RP and the extensive attribute of each area

is set to 1. (2) A modi�ed version of PRRP, denoted as PRRP-G,

that adopts only the region growing phase of PRRP to show the

importance of continuously maintaining the spatial contiguity in

the other two phases. (3) A sequential version of PRRP, denoted as

PRRP-S, to show the e�ect of parallelization on the runtime.

Evaluation Datasets. We evaluate the performance of all tech-

niques using 3 datasets: (1) the census tracts of the US states (de-

noted as CT ) [11], (2) the US county subdivisions (denoted as

CS) [11], and (3) the health, income diversity of the US counties

(denoted as HI ) [4]. The CT and CS datasets have three subsets of

sizes ≈2K, 5K, and 10K denoted as 2KCT, 5KCT, and 10KCT for the

CT and 2KCS, 5KCS, and 10KCS for the CS. The 2KCT represents the

census tracts for NY city, the 5KCT represents the census tracts for

NY state, and the 10KCT represents the census tracts for CA, AZ,

and NV states. The 2KCS represents the county subdivisions for CA,

NV, AZ, UT, ID, OR, WA, MT, WY, CO, and NM states. The 5KCS

is the county subdivisions of all the states in the 2KCS in addition

to TX, OK, and KS states. The 10KCS is the county subdivisions

for all the states in the 5KCS plus NE, SD, ND, LA, and AR states.

The HI dataset has ≈3K areas denoted as 3KHI and represents the

health, income, diversity of the US counties. The data available

for US counties and states form datasets that are large enough to

appropriately evaluate and stress our algorithm.

Evaluation Measures.We evaluate the performance of PRRP

and all alternatives against the following measures: (1) Execution

time, to measure scalability and runtime e�ciency. (2) Success

probability, to measure the probability of successfully producing

feasible sample solutions. It is calculated as
|ď |
ĉ , where |S| is the

number of output feasible sample solutions. It takes a range from

zero to 1 where zero indicates that the algorithm failed to generate

any feasible sample solution and 1 indicates that the algorithm

successfully produced M feasible sample solutions, so the larger,
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Table 1: Evaluation parameters

Parameter Values

DS ≈ 2, 3, 5, 10 (×103)

p (% of DS) 1%, 2%, 3%

M 10, 50, 100

MR 10, 30, 50

Q 1, 2, 4

the better. (3) E�ectiveness, to measure the e�ectiveness of pro-

ducing a feasible sample solution in early iterations. It is measured

as
|ď |∑

∀Ďğ ∈ď
ģĩğ

, where |S| is the number of output feasible sample

solutions andģĩğ is the number of executedĉď iterations until a

feasible sample solution is produced. It takes a range from zero to

1 where zero indicates that the algorithm failed to generate any

feasible sample solution after going through all the iterations and 1

indicates that the algorithm successfully produced all the sample

solutions in a single iteration. Values between 0 and 1 indicate that

generating each solution in average takes multiple iterations, so the

larger e�ectiveness, the better. (4) Completeness, this measure dis-

tinguishes solutions from each other, even failed ones, depending

on the number of valid regions built before the solution terminates

either successfully or unsuccessfully. This is measured through

counting how many valid regions were successfully generated out

of the Ħ required regions. So, failed solutions that generate only

one valid region are considered much worse than failed solutions

that generate (Ħ − 1) regions. It is measured as

∑
∀Ďğ ∈ď

|Ďğ |

Ħ

ĉ where

|Ďğ | is the number of valid regions. It takes a range from zero to 1

where zero indicates that the algorithm failed to generate any valid

region for any sample solution and 1 indicates that all the regions

are valid for all solutions, so the larger, the better.

Parameters. We study the e�ect of the parameters listed below

on the performance. Table 1 shows the values for all parameters

where the default values are emphasized in boldface.

• DS: the dataset size (i.e., number of areas in the dataset).

• p: the number of regions in each sample solution.

• M: the sample size.

• MR: the maximum iterations to build a valid region.

• Q: the number of computing cores.

The maximum number of iterations for �nding a feasible sample

solution (MS) is empirically set to 10 since there is a high probability

of �nding a feasible solutions in early iterations. The cardinality list

(C) is generated randomly, which emulates random cardinalities

generated from the majority of regionalization techniques.

5.2 Performance Evaluation

This section studies the performance of PRRP and all other alterna-

tives under di�erent parameter values.

Impact of the dataset size (DS). Increasing the DS increases the

runtime for all alternatives as shown in Figure 6a. PRRP is 4 times

faster than PRRP-S for the largest dataset due to parallelization

with 4 cores. PRRP has a smaller runtime ranging from 4 to 1737,

4 to 1001, and 23 seconds than PRRP-S which ranges from 16 to 6589,

15 to 4218, 82 seconds for the CT, CS, HI datasets, respectively. The

runtime breakdown shows 0.2-3% of the runtime is for the region

growing phase, 5-13% of the runtime is for the regionmerging phase,
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Figure 6: Impact of the Dataset Size under CT, CS, HI datasets

and the region splitting phase is 74-93% of the runtime. The region

splitting phase dominates the runtime as it involves traversing the

areas to identify articulation areas. The success probability and

completeness of PRRP and PRRP-S is always 1 for all dataset sizes

(Figure 6b, Figure 6d). Similarly, PRRP and PRRP-S have a high

e�ectiveness as shown in Figure 6c.

On the contrary to PRRP and PRRP-S, both PRRP-G and PRUC-RP

have a zero success probability and e�ectiveness for all dataset

sizes, depicted in Figure 6c and Figure 6d. Both alternatives fail to

produce any feasible sample solutions for all datasets. Although

they are both faster than PRRP and PRRP-S for all datasets, they

terminate early without producing feasible sample solutions. This

is due to the fact that both PRRP-G and PRUC-RP do not main-

tain the spatial contiguity of unassigned areas causing areas to

get disconnected which prevents the regions from reaching their

cardinality targets. Regarding completeness, PRRP-G have 21%-82%

higher completeness value compared to PRUC-RP. This proves that

the seed selection and region growing strategies of PRRP helps in

producing valid regions. The seed selection strategy in PRUC-RP

selects all the seed areas in advance and then grows regions sequen-

tially from those seeds. Using this technique, later seed areas get

completely blocked by assigned areas when growing regions which

prevents those seeds from growing their own regions.

The performance di�erence of PRRP and PRRP-S under the CT

and CS datasets varies. The time for the CT dataset for both PRRP

and PRRP-S is 1-2 times slower than that of the CS dataset because

the CT dataset has more nested areas and they have to be removed

from the region to compute the boundary areas in the region split-

ting phase which increases the overall time. On the other hand, the

e�ectiveness of PRRP and PRRP-S using the 10KCS dataset is 33-43%

less than the e�ectiveness using the 10KCT dataset (0.69 and 0.73

vs. 0.98 and 0.98). This is due to the fact that the areas in the 10KCS

dataset are larger and span more space which increases the number

of articulation areas and makes regions more prone to get spatially

disconnected in the region growing and splitting phases. As a result,

more iterations are performed to produce feasible sample solutions.

Impact of the number of regions (p). The number of regions p

a�ects the runtime of PRRP, PRRP-S, and PRUC-RP for both CT and
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Figure 7: Impact of the number of regions (p)

CS as shown in Figure 7a and Figure 7b. The runtime for those alter-

natives slightly increases as the p value increases (from 128 to 196

seconds for PRRP with a 53% increase, from 490 to 693 seconds

for PRRP-S with a 41% increase, and from 92 to 144 seconds for

PRUC-RP with a 56% increase). In PRRP and PRRP-S, increasing the

p value increases the merge and split operations which are the most

expensive phases of the algorithm. In PRUC-RP, the area that is most

connected to the region is chosen, therefore, the time increases as

there are more regions. In PRRP-G, the areas are randomly picked

which does not have a signi�cant e�ect on the runtime.

In several cases, PRRP-G and PRUC-RP are faster than PRRP and

PRRP-S, however, they fail to produce feasible sample solutions as

shown in Figure 11a in Appendix A, Figure 7e, Figure 11b in Ap-

pendix A, and Figure 7f. On the contrary, PRRP and PRRP-S always

have a very high probability of success, completeness, and e�ec-

tiveness for di�erent p values because they continuously maintain

the spatial contiguity of unassigned areas.

Relatively, the time for PRRP and PRRP-S on the CT dataset is

slower than the time on the CS dataset (35%-55% increase). As

mentioned before, this is due to nature of the datasets as the CT

dataset has more nested areas which increases the merge and split

operations. Also, the e�ectiveness of PRRP (0.97) and PRRP-S (0.97)

is 14% higher for the 10KCT dataset than the e�ectiveness of the

10KCS dataset (0.83 for PRRP and 0.84 for PRRP-S). As mentioned

before, the areas in the 10KCS dataset are larger which increases

the number of articulation areas causing the areas to get spatially

disconnected which requires more attempts to build the region.
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Figure 8: Impact of the sample size (M)

Impact of the sample size (M). As the value ofM doubles, more

sample solutions need to be generated which increases the time of

all alternatives linearly as shown in Figure 8a and Figure 8b. PRRP

and PRRP-S generate valid regions for both the CT and CS datasets

which in turn produce feasible sample solutions with a success

probability and completeness of 1 for all values of M (Figure 12a in

Appendix A, Figure 8c, Figure 12b in Appendix A, and Figure 8d). As

for the e�ectiveness, Figure 8e shows that the sample size M does

not have a noticeable impact on PRRP (0.92-0.95 for the CT dataset

and 0.92-0.93 for the CS dataset) and PRRP-S (0.91-0.94 for the CT

dataset and 0.92 for the CS dataset), which is very high. PRRP-G

and PRUC-RP both fail to generate feasible sample solutions under

di�erentM values with a zero success probability and e�ectiveness.

Similar conclusions are drawn for completeness as discussed in the

previous experiments. PRRP has a smaller run time than PRRP-S

(3-4 times faster) because it produces multiple sample solutions in

parallel but slower than PRRP-G and PRUC-RP as they terminate

early without producing any feasible sample solution.

Impact of the number of computing cores (Q). The number of

computing cores Q only a�ects the runtime of PRRP and PRRP-G as

they are the only parallelized techniques. The runtime for PRRP-S

and PRUC-RP in Figure 9 for all Q values is the same and with the

default values for all parameters. Figure 9 depicts the runtime in

a log scale and shows a linear scalability for the runtime of PRRP

and PRRP-G when increasing Q. PRRP takes 641 seconds with one

core, 291 seconds with two cores, and 179 seconds with four cores

and PRRP-G takes 25 seconds with one core, 12 seconds with two

cores, and 7 seconds with four cores for the CT dataset as shown
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Figure 9: Impact of the number of computing cores (Q)

in Figure 9a. Figure 9b shows similar scalability for the CS dataset.

This shows that the parallel technique in PRRP makes full use of

the computing resources which leads to perfect (linear) speedup.

Impact of the maximum number of iterations (MR). Fig-

ure 10 in Appendix A shows that increasing the MR value has a

slight impact on the runtime of PRRP, PRRP-S, and PRRP-G. PRRP

and PRRP-S still have a high success probability, completeness, and

e�ectiveness. More details are provided in Appendix A.

Impact of the seed selection technique. In addition to our gap-

less random seed selection technique, we employ two techniques for

PRRP and its variations PRRP-S and PRRP-G: (1) a random technique

that picks the seed area randomly from the unassigned areas, and (2)

a modi�ed gapless random technique that picks the seed from the

spatial neighbors of all regions. Figure 13 in Appendix A shows that

this random seed selection technique is 1.3 times slower than our

technique with less e�ectiveness. On the other hand, Figure 14 in

Appendix A shows that the modi�ed gapless random technique has

no apparent e�ect as the results are comparable to those produced

by our technique. More details are provided in Appendix A.

6 CONCLUSIONS

This paper introduces SISR, a regionalization problem that parti-

tions a set of spatial areas into p regions, each with a prede�ned

cardinality constraint. SISR enables spatial statisticians to generate

reference distributions to perform statistical inference and assess

the quality of regionalization solutions. We propose a parallel tech-

nique PRRP to solve SISR. PRRP works by recursively partitioning

the unassigned areas into two spatially contiguous components

over three phases: (1) region growing phase that constructs a single

region with a prede�ned cardinality, (2) region merging phase that

merges any disconnected areas with the grown region, (3) region

splitting phase that adjusts the region size after the region merging

phase by removing excess areas. Experimental results using real

datasets show the high e�ectiveness of PRRP and the invalidity of

the state-of-the-art techniques to produce any valid solutions.
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APPENDIX

A ADDITIONAL EXPERIMENTS
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Figure 10: Impact of the maximum number of iterations for

building a region (MR)

Impact of the maximum number of iterations (MR). The maxi-

mum number of iterations for building a region MR is a parameter

for PRRP and it variations PRRP-S and PRRP-G as the seed selection

and region building techniques are randomized. In PRUC-RP, the

seeds are �xed and the most connected area is added to the region,

therefore, attempting to grow the region again will always produce

the same result. Figure 10a and Figure 10b show that increasing

the MR value has a slight impact on the runtime of PRRP, PRRP-S,

and PRRP-G. PRRP and PRRP-S still have a high success probability

and completeness as they produce feasible sample solutions with

valid regions for all MR values (shown in Figure 10c, Figure 10d,

Figure 10g, and Figure 10h). Similarly, Figure 10e and Figure 10f

show that the e�ectiveness of PRRP and PRRP-S is almost constant

(between 0.90 and 0.95 for both the CT and CS datasets) under

di�erent MR values. Even with multiple attempts for growing a

region, PRRP-G still have a zero success probability and e�ective-

ness (Figure 10e, Figure 10f, Figure 10g, and Figure 10h) as it fails

to maintain the spatial contiguity of unassigned areas.
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Figure 11: Impact of the number of regions (p)
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Figure 12: Impact of the sample size (M)

The success probability under di�erent parameter values.

For all values of all performance measures p (Figure 11), andM (Fig-

ure 12), PRRP and PRRP-S always produce feasible sample solutions

and achieve the highest probability of success (i.e., 1). On the other

hand, PRRP-G and PRUC-RP both fail to generate feasible sample

solutions with a zero success probability. This is due to the fact that

PRRP and PRRP-S maintain spatial contiguity of input areas which

allows to generate valid regions.

Impact of the seed selection technique. In addition to our gap-

less random seed selection technique, we employ two techniques

for PRRP and its variations PRRP-S and PRRP-G: (1) a random tech-

nique that picks the seed area randomly from the unassigned areas,

and (2) a modi�ed gapless random technique that picks the seed

from the spatial neighbors of all regions. Figure 13 shows that

the random seed selection technique is 1.3 times slower than our

technique with less e�ectiveness. This is because the random seed

selection technique builds regions without minimizing the gaps be-

tween them which increases the probability of breaking the spatial

contiguity of the unassigned areas into two or more connected com-

ponents with a larger size duo to the large space between regions.

This leads to having to merge/remove more areas in the region

merging and region splitting phases which increases the runtime

of the algorithm. In addition, having a larger number of areas to

remove in the region splitting phase decreases the probability of

building valid regions, which in turn, decreases the e�ectiveness.
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Figure 13: Random seed selection
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Figure 14: Modi�ed gapless random seed selection

On the other hand, Figure 14 shows that the modi�ed gapless ran-

dom technique has no apparent e�ect as the results are comparable

to those produced by our gapless random technique.

B COMPLEXITY ANALYSIS

This appendix provides a complexity analysis for PRRP. We denote

the the size of the unassigned areas ýī as s(ýī ) and the size of the

spatial neighbors ďĊė of an area a as s(ďĊė).

Preprocessing. The preprocessing step �rst reads n areas which

takes O(n). Then it builds the neighborhood graph and the degree

list by checking the boundary of each area against all the areas

which takes O(Ĥ2) time. So the overall complexity of the prepro-

cessing is O(n) + O(Ĥ2) = O(Ĥ2).

Region growing phase. The region growing phase randomly

adds an area to a region in O(1) time. Adding n areas takes O(1)×n

= O(n). After growing the region, we compute the number of con-

nected components for the remaining unassigned areas ýī by per-

forming a single graph traversal over the areas in ýī . In the worst

case, s(ýī ) = n - 1, therefore, it takes O(n) to compute the connected
components for ýī . So, the overall time complexity of the region

growing phase is O(n) + O(n) = O(n).

Region merging phase. The region merging phase merges the

smallest connected components with the region. In the worst case,

the total size of the smallest connected components cannot exceed

n, so its worst case complexity is O(n).

Region spli�ing phase. This phase involves two steps. First,

the shrinking step identi�es the region’s boundary areas, removes

them, and then computes the number of connected components

for the region. Identifying the boundary areas þýĨ for any region r

involves evaluating the spatial neighbors ďĊė of every area a in r.

The set of areas A in our problem is represented as a planar graph

of the spatial neighborhood relation among areas in A. In the worst

case, the degree of a vertex is O(n-1) and it takes O((n-1)×n) = O(Ĥ2)

to identify the region’s boundary areas. There are a total of k areas

to be removed in the shrinking step. In the worst case, we need to

identify the region’s boundary areas each time an area is removed

from the region. Since k < n, i.e., k = O(n), the time complexity

for removing ġ boundary areas is O(Ĥ3). Computing the number

of connected components for a region performs a single graph

traversal over the region’s areas which takes O(n) time in the worst

case. Consequently, the time complexity for the shrinking step is

(O(Ĥ3) + O(n)) = O(Ĥ3) in its worst case. Second, the expansion

step identi�es ýī ’s boundary areas and removes the articulation

areas from the list of boundary areas. Identifying the boundary

areas þýĨ for ý
ī is similar to the shrinking step and takes O(Ĥ2) in

the worst case. Identifying the articulation areas forýī is done over

a single graph traversal using Tarjan’s algorithm [37] and takes

O(n). So, identifying theýī ’s boundary areas and articulation areas

takes O(n) + O(Ĥ2) = O(Ĥ2) in the worst case. To add any area from

the boundary areas back to the region, its nested areas must be also

added with the area. There are w areas to add where w < n, i.e., w =

O(n) and e nested areas which gives a total complexity of O(ě×n).

In the worst case, we need to identify ýī ’s boundary areas each

time an area is added to the region. Therefore, the time complexity

for addingĭ boundary areas is O(ě × Ĥ3) in the worst case. So, the

total time complexity for the expansion step is O(ě × Ĥ3) + O(n)=

O(ě × Ĥ3) in the worst case.

Overall complexity. The overall time complexity of the three

phases excluding the preprocessing is O(n) + O(n) + O(ě × Ĥ3) =

O(ě × Ĥ3) in the worst case. The three phases are repeated p times

to grow p regions and each region is constructed MR times in the

worst case. M sample solutions are generated in parallel using q

cores and each sample solution is constructedMS times in the worst

case. So, this gives an overall complexity of ĉ
ħ × MS × MR × p ×

O(ě × Ĥ3).
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