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ABSTRACT

The process of regionalization involves clustering a set of spatial
areas into spatially contiguous regions. Given the NP-hard nature
of regionalization problems, all existing algorithms yield approxi-
mate solutions. To ascertain the quality of these approximations,
it is crucial for domain experts to obtain statistically significant
evidence on optimizing the objective function, in comparison to
a random reference distribution derived from all potential sam-
ple solutions. In this paper, we propose a novel spatial regional-
ization problem, denoted as SISR (Statistical Inference for Spatial
Regionalization), which generates random sample solutions with a
predetermined region cardinality. The driving motivation behind
SISR is to conduct statistical inference on any given regionalization
scheme. To address SISR, we present a parallel technique named
PRRP (P-Regionalization through Recursive Partitioning). PRRP op-
erates over three phases: the region growing phase constructs initial
regions with a predefined cardinality, while the region merging and
region splitting phases ensure the spatial contiguity of unassigned
areas, allowing for the growth of subsequent regions with prede-
fined cardinalites. An extensive evaluation shows the effectiveness
of PRRP using various real datasets.
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1 INTRODUCTION

Spatial regionalization aggregates a set of spatial polygons (i.e.,
areas) into spatially contiguous groups of areas (i.e., regions) that
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satisfy one or more user-defined criteria [18]. It plays a vital role
in various domains, addressing a wide range of problems such as
land-use allocation [42], healthcare resources allocation [24], dis-
tricting [10, 12, 29], community detection [34], and epidemic analy-
sis [7, 14]. Since regionalization problems are NP-hard [17, 35], it
is very challenging to efficiently explore the entire solution space
and identify an optimal solution. For a tiny dataset of 16 areas, the
mixed integer programming (MIP) formulation takes 10 hours to
converge using the fast MIP solver Gurobi [25]. Even with more
efficient exact algorithms, it takes more than four hours to generate
a solution for tiny datasets of only 36, 49, and 64 areas [17]. Con-
sequently, all existing techniques employ heuristics that generate
approximate solutions for reasonably large datasets of thousands
of areas to solve real-world critical problems. However, those ap-
proximate solutions do not provide any quality guarantees on the
produced output. Therefore, domain experts need a way to perform
statistical inference and assess the quality of output solutions. To
conduct statistical inference, a random reference distribution of
sample solutions is necessary for comparison against the assessed
solution. These sample solutions within the reference distribution
must be similar to the assessed solution in terms of the number
of regions and each region’s cardinality (i.e., the number of areas
within each region) to provide meaningful statistical evidence.
Assume the Max-P regions [1, 2, 17, 25, 41] that produces the
maximum number of regions satisfying a floor constraint in each
region and minimizing the dissimilarity (heterogeneity) between
the areas within the same region. If a geographer aims to divide
California counties into regions with at least 900K households and
are homogeneous in terms of the number of individuals aged 30
to 39 using an approximate Max-P regions technique in [1, 25].
The output consists of 7 regions with cardinalities: 31, 8, 7, 5, 2,
2, 1 (shown in Figure 1a). To verify if this approximate solution
truly minimizes the regional dissimilarity rather than being ran-
dom, we generate a reference distribution of 100 sample solutions
with the same number of regions (i.e., 7) and regions’ cardinali-
ties (i.e, 31, 8, 7, 5, 2, 2, 1). Figure 1b shows one sample solution
from the reference distribution. We then plot in Figure 2 the his-
togram of the objective function values (regions’ heterogeneity)
of the reference distribution compared to the assessed Max-P so-
lution. The assessed solution’s objective function is 10641 x 10,
which is substantially lower than other sample solutions. This pro-
vides statistical evidence on minimizing the heterogeneity. Another
statistical evidence is calculating the pseudo P-Value as follows:
(1431 solution;<=10641x10%)

13100 ~ 0.01 [38], leading to rejecting the
null hypothesis that the assessed solution is due to random chance
at the 1% significance level. These pieces of statistical evidence can
be also shown for the algorithms in [17, 41] to compare their quality
to the ones in [1, 25] and evaluate different approximate solutions.
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Figure 1: An Example of Max-P Regions Output and a Corre-
sponding Sample Solution
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Figure 2: Histogram-based Statistical Significance Analysis
for Max-P Solution Quality

The above statistical significance analysis is general and can
be applied to different types of regionalization problems, such as
p-regions [16, 35], compact regions [33], flexible user-constrained
regions [21, 25], network-based regions [40, 43], and graph-based
regions [5, 6]. However, performing this statistical analysis is im-
possible without generating a reference distribution of sample so-
lutions. Existing computational techniques cannot produce such
distribution as they face four main challenges. First, the high com-
putational cost of generating multiple sample solutions poses a
significant challenge. Existing regionalization techniques, such
as [16, 17, 25, 35, 41], take 1.42-297 seconds, 139-184 seconds, and
256-500 seconds to generate a single solution for 400 areas, 3K
areas, and 10K areas, respectively. This makes the generation of
hundreds of sample solutions even more challenging. Second, the
introduction of a cardinality constraint, which specifies the number
of areas in each output region, is a new restrictive requirement that
has not been addressed in existing regionalization problems. This
constraint limits the solution’s search space, making it impossible
to adapt current approximate techniques to solve the problem. Ex-
isting techniques typically build regions in two phases: developing
initial regions and then assigning the remaining areas to those re-
gions. However, in our case, assigning any area to existing regions
violates the cardinality constraint, rendering the region invalid.

Third, the addition of a cardinality constraint decreases the like-
lihood of finding feasible sample solutions. This is due to the fact
that it restricts the spatial contiguity of the region being grown
and future regions as illustrated in Figure 3. If the unassigned ar-
eas become spatially disconnected at any point during any region
growth, it prevents the future regions (to be grown in the follow-
ing iterations) from reaching their cardinality target. Empirical
results demonstrate that existing techniques always fail to generate
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Figure 3: Growing regions with a dataset of 20 areas

a complete distribution due to the failure of generating 15-56% of
regions since they do not enforce spatial contiguity. Lastly, the
fourth challenge is ensuring randomness, as regions must be grown
in a completely random manner for the sample solution to qualify
as a random solution in a random distribution. This restriction
limits the ability to control the shape of regions, e.g., compactness.
This makes it more challenging to maintain the spatial contiguity
of both the unassigned areas and output regions while building
regions when area removal is necessary in some phases.

In this paper, we introduce a novel regionalization problem called
Statistical Inference for Spatial Regionalization (SISR). SISR aims
to generate a random sample distribution of size M, with each
sample solution consisting of a set of p regions with predefined
regions’ cardinalities (i.e., the number of areas in each region).
This random sample distribution serves as a reference distribution,
drawn randomly from the set of all possible solutions sharing the
same number of regions and regions’ cardinalities. Consequently, it
enables domain experts to perform statistical significance analysis
for assessing the quality of approximate regionalization solutions
for the first time in the extensive regionalization literature.

To solve SISR, we propose a parallel technique named PRRP: P-
Regionalization through Recursive Partitioning that addresses the
challenges detailed above. PRRP grows each region using three
phases. The first phase grows one initial region with a predefined
cardinality. The second and third phases perform merge and split
operations to maintain the spatial contiguity of the remaining unas-
signed areas. The three phases are repeated for each region to
recursively partition the unassigned areas into two parts, one re-
gion and one set of spatially contiguous unassigned areas, so that
all unassigned areas are spatially contiguous at all times. Maintain-
ing the spatial contiguity of unassigned areas is a major step for
PRRP to allow subsequent regions to grow with their predefined
cardinality and prevent scattered unassigned areas that cannot be
grouped together to form a single region. Figure 3 emphasizes the
significance of maintaining the spatial contiguity of unassigned
areas and the distinction of PRRP from existing state-of-the-art
techniques for growing two regions with cardinalities of 12 and 8.
In state-of-the-art techniques, a single region is grown with 12
areas, resulting in the unassigned areas being fragmented into two
separate spatially contiguous components, thereby preventing the
formation of the second region (Figure3a). In contrast, PRRP groups
the remaining unassigned areas into a single spatially contiguous
component after growing the first region, thus ensuring enough
space for the subsequent growth of the second region (Figure 3b).

PRRP grows regions in a completely random way by random-
izing area selection for additions and removals in the first and
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third phases. Such randomization increases the probability of gen-
erating different sample solutions and satisfies the randomization
requirements for statistical inference. To alleviate the high cost of
generating multiple solutions, PRRP generates different solutions
in parallel, exploiting the natural independence of solutions.

The experimental evaluation of PRRP on real datasets demon-
strates its effectiveness in solving SISR. PRRP outperforms all alter-
natives in different performance measures and has a 100% success
probability of generating random and distinct sample solutions.
PRRPis more efficient and is four times faster than other techniques.
Our contributions are summarized as follows:

e We introduce a novel spatial regionalization problem, SISR,
that generates random reference distributions to perform
statistical inference on regionalization output.

e We introduce a novel spatial partitioning technique that sig-
nificantly increases the probability of success for generating
random distributions of regionalization output.

e We introduce a parallel technique PRRP that uses our novel
partitioning to solve SISR effectively and efficiently.

e We conduct extensive experiments using real datasets.

The rest of the paper is organized as follows. Section 2 provides
an overview of the related work. Section 3 formulates the SISR prob-
lem. Section 4 presents our proposed technique PRRP. Section 5
presents the performance evaluation of PRRP and Section 6 con-
cludes the paper. Appendix A presents additional experiments and
Appendix B presents a complexity analysis for PRRP.

2 RELATED WORK

To the best of our knowledge, no current techniques set cardinality
constraints on the output regions. As a result, these techniques
fail to address our problem. There are two relevant domains in
the literature: (a) spatial regionalization with different variations of
constraints, and (b) graph partitioning techniques that are applicable
to various regionalization problems. Each is briefly discussed below.

Spatial Regionalization. Existing regionalization tech-
niques [16, 18, 21, 25-28, 30, 33, 35, 40, 41] either require the
number of regions p as an input or they automatically discover
the appropriate number of regions. Techniques that require p
as an input include the p-regions problem [16] and different
variations that impose a constraint on the shape of the region (ie.,
compact) [30, 33] or type of the region (i.e., functional) [26-28, 35].
Other variations solve the problem in a different spatial space, such
as a network space [43]. On the other hand, Max-P regions [17]
enforces a user-defined threshold at the regional level to auto-
matically discover the number of regions p. Several variations
of Max-P regions [21, 25, 40, 41] have been proposed to address
problems in various domains, such as the map generalization
in automated cartography, which aggregates areas to produce
small-scale maps [22, 23, 31, 32, 36].

Our problem requires p as an input, therefore, it is more related
to the p-regions problem and its variations. However, none of them
can be adapted to apply a different cardinality constraint on dif-
ferent regions since their constraints are unified for all regions,
which makes the proposed solutions inherently inapplicable. In
fact, adapting these techniques to solve cardinality constraints fail
solve any instance of our problem (as shown in our experiments),
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since they do not maintain the spatial contiguity of unassigned
areas while building the regions as illustrated in Figure 3.

Graph Partitioning. Several graph partitioning techniques
could be adapted to generate p regions in which areas are repre-
sented as graph nodes and output regions are represented as graph
partitions (i.e., sub-graphs). SKATER [5] and SKATER-CON [6] gen-
erate k sub-graphs by removing edges from spanning trees. K-way
graph partitioning [3, 8, 39] divides a graph into k sub-graphs while
minimizing the number of edges between sub-graphs. The graph
bisection technique bisects a graph into two sub-graphs of roughly
the same size while minimizing the number of edges connecting
different sub-graphs [15, 19, 20]. Graph bisection, when applied
recursively, produces p sub-graphs with a minimum number of
edges between sub-graphs. Attributed graph clustering [9, 13, 44]
generates k homogeneous sub-graphs based on a set of attributes
associated with each node. All of the aforementioned techniques
focus on generating k sub-graphs while satisfying one or more
constraints. However, non of these techniques enforce a cardinality
constraint on the number of nodes in each sub-graph, making them
inapplicable for the same reasons above.

Standing apart from all existing research, we are the first to intro-
duce the generation of a reference distribution of random sample
solutions for statistical inference to assess the quality of approxi-
mate regionalization techniques. To achieve this, our novel problem
is the first to impose a cardinality constraint that is different on
each output region to empower such statistical inference.

3 PROBLEM DEFINITION

This section formally defines the SISR problem. We first give pre-
liminary definitions. Then, we formally define the problem.

Definition Set 1. (Area). An area a; is represented by two at-
tributes (i, g), where i is the area’s unique identifier and g is the
area’s geometry represented as an arbitrary spatial polygon.

The area spatial neighbors SN, of area a; are the areas that
share a boundary (i.e., line or curve) with area a;. In Figure 4a, the
spatial neighbors of a4 are: SNg,, = {ai2, a13, a15}. An area g; is
a nested area if its spatial polygon is completely enclosed within
another area’s spatial polygon. An area a; is a parent area if its
spatial polygon fully encloses the spatial polygon of another area.
The degree of a parent area is the number of its nested areas. Non-
nested areas are pairwise disjoint while nested areas are enclosed
within larger areas’ boundaries. An area g; is an articulation area
of a set of areas U if its removal breaks the spatial contiguity of the
remaining areas in U. In Figure 4a, area a4 is a nested area, area a3
is a parent area, and area aj9 is an articulation area for region rq
since its removal disconnects ayo from the rest of r;’s areas.

Definition Set 2. (Region). A region r = {aj, as, a3, ...am} is a
set of spatially contiguous areas.

Spatially contiguous areas mean that Va;,a; € r,3 as se-
quence of areas {ay, ....a;} such that both a;, ax and aj, a;j are spa-
tial neighbors and every two consecutive areas in the sequence are
spatial neighbors.

The cardinality constraint c; on a region r; is a user-defined
constraint on the region’s size and it represents the total number
of areas that must belong to r; (i.e., |r;|). A region is valid if its size
equals to its predefined cardinality, i.e., |r;j| = c;.
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The region spatial neighbors SN,, of any region r; are the
set of areas that do not belong to r; but have at least one spatial
neighbor that belongs to r;. The boundary areas BA,, of a region
r; are the areas in r; that have at least one spatial neighbor that does
not belong to r;. In Figure 4a, r3 is a region containing the following
areas: {aj, az, as, a4, as }, its cardinality is 5, its spatial neighbors
SNy, = {as, as, a12, a13}, and its boundary areas BA,, = {ay, a3, as}.
A seed area is the first area added to the region (i.e., the area that a
region starts growing from). An area q; is assigned if it belongs to
aregion and unassigned if does not belong to any region.

Definition Set 3. (Sample Solution). A sample solution R; is
the division of any given set of areas into spatially contiguous
regions: {ry,r2,73, ..., rp}. Figure 4 shows two sample solutions R;
in Figure 4a and Ry in Figure 4b. A sample solution is feasible if all
its regions are valid regions that satisfy the cardinality constraints.

Problem Formulation: The SISR problem is formally defined as
follows:

Input: (1) A set of n areas: A = {ay, az, a3, ..., an }, in which all
the areas in A are spatially contiguous. (2) An integer p which
represents the number of regions, 1 < p < n. (3) An integer M
which represents the sample size. (4) A list of cardinality constraints

of p integers: C = {c1, c2,¢3, ..., ¢p}, where Z’l.ozl ci =n, Y¢; € C.

Output: A random reference distribution of M sample solutions:
S ={R1, Ry, ..., Ryr}, where each sample solution R; contains a set
of p regions R = {r1,r,....,rp} and each region r; is composed of a
c; spatially contiguous areas. The set of sample solutions in S must
satisfy the constraints mentioned below.

Constraints:
o |ri| > 1, Vri € R
erinrj=0, Vri,rj€ RN i#j
[ Uf:l ri = A, Vri €R

V¢; € C,3r; € Rsuch that |rj| = ¢;
R; # R; VR, Rj €SN i#]j

All the input areas € A form a single spatially contiguous compo-
nent. This increases the randomness chances of the sample solutions
as having separate disjoint sets of areas will reduce the space to
start and grow regions in any random area. The first three con-
straints ensure that each area is assigned to exactly one region and
each region has at least one area. The last two constraints imply
providing M distinct sample solutions that satisfy all the cardinality
constraints in C. In other words, for every integer c; in C, there
must be a region r; in R whose size (i.e., number of areas) equals c;.
This is a unique feature of SISR that is not addressed in any previous
spatial regionalization problem.

Figure 4 presents an example of SISR using a dataset with 20 areas.
When M = 2,p = 3,and C = {9, 6,5}. The output is two sample solu-
tions S = {R1, Rz} and each sample solution contains three regions
r1, re, and r3 with cardinalites 9, 6, and 5.

4 PRRP:P-REGIONALIZATION THROUGH
RECURSIVE PARTITIONING

This section introduces our proposed technique P-Regionalization
through Recursive Partitioning (PRRP) to solve the SISR problem.
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Figure 4: An example of SISR with a dataset of 20 areas

(b) Sample solution R,

A standard way to build regions in existing regionalization tech-
niques [16, 17, 25, 35] is to randomly select a seed area and then
add neighboring areas based on the objective value until a region
is formed. However, this implies that regions are grown with no re-
gard to the spatial contiguity of the unassigned areas that do not yet
belong to any region. Consequently, in most cases, there is a high
possibility that unassigned areas are scattered over two or more
spatially contiguous components. This is not an issue for existing
regionalization problems as they do not impose strict cardinality
constraints on output regions. However, for SISR, such scattered
areas cannot be grouped in a single spatially contiguous region,
preventing one or more of the future regions from reaching their
cardinality target as illustrated in Figure 3. This leads to generating
invalid regions with a low success probability (practically, 0% suc-
cess) of finding a feasible solution in which all the regions satisfy
their cardinalities.

PRRP main ideas. To build valid SISR regions effectively, we
propose the general framework of PRRP that is based on the re-
cursive partitioning of n input areas A into exactly two spatially
contiguous components. The first component represents one re-
gion r; with a predefined cardinality c; and the second component
represents the remaining unassigned (n — ¢;) areas. When another
region r; grows, PRRP still maintains the spatial contiguity of the re-
maining unassigned areas. So, PRRP gives new regions ample space
to grow by grouping all the unassigned areas into a single spatially
contiguous component at all times as illustrated in Figure 3. This
increases the success probability of finding feasible solutions from
0% for state-of-the-art techniques to 100% for PRRP, as shown in
our experiments.

One of PRRP novel heuristics is growing regions in a descending
order of cardinality values. This provides more flexibility for regions
with larger cardinality to grow as there will be a large number of
unassigned areas, reducing the needed merge and split costs in the
following iterations. Moreover, larger regions have a larger set of
neighboring areas, which ensures that the following region’s seed
is chosen randomly from a sizable set and improves the randomness
chances of a sample solution.

PRRP framework. The recursive partitioning in PRRP is
achieved through three phases: the region growing phase, the region
merging phase, and the region splitting phase. The region growing
phase builds one region r; that satisfies one of the given cardinal-
ities ¢; € C. Then, the region merging phase enforces the spatial
contiguity constraint on the unassigned areas by merging any dis-
connected components with r;. Enforcing spatial contiguity in a
separate merging phase is much more efficient than enforcing it
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in the growing phase, as detailed in Section 4.1. However, it might
violate the cardinality constraint of r;. To fix this potential violation,
the region splitting phase adjusts the size of r; by removing any
excess areas that might result from the region merging phase to
meet the cardinality constraint again. The three phases are repeated
for each region to recursively partition the remaining unassigned
areas until all the regions are formed. The three phases are carefully
designed to maintain the spatial contiguity of unassigned areas effi-
ciently and find a feasible solution with high probability, as detailed
below. If finding a solution fails, due to randomness, we repeat the
process for a maximum number of iterations MS to increase the
probability of finding a feasible solution.

PRRP randomness. As PRRP is mainly designed to produce a
random reference distribution for statistical inference, it inherently
incorporates mechanisms that ensure the randomness and indepen-
dence of the produced M sample solutions. First, PRRP constructs
the M solutions in parallel, completely independent from each other.
This ensures statistical independence and reduces the overall run-
time. Second, for each solution, the seed area is picked randomly
for each region, and the regions are grown in a completely random
way by adding the areas randomly in the region growing phase.
Third, the areas are added/removed to/from regions in both the
region merging and region splitting phases randomly. Fourth, after
producing all solutions randomly and independently, PRRP checks
if there are duplicate solutions. The high level of randomness in-
troduced in the different phases of PRRP always produces distinct
solutions based on all conducted experiments.

PRRP Preprocessing. PRRP includes two preprocessing steps.
(1) Constructing a neighborhood graph G that captures the
spatial neighborhood relationships among the input areas A. Each
area a; € A is represented by a node in G and each spatial neighbor
aj of a; is connected to a; by an edge in G. The neighborhood rela-
tionships between areas in G are defined by the rook neighborhood
relation. The rook neighborhood relation considers two areas to be
neighbors only when a common edge or curve exists between them.
G is constructed by iterating over each input area and checking if it
intersects with any other area by more than one point (i.e., edge or
curve). (2) Constructing a degree list D to store only parent areas
with a degree value > 0. The parent area’s degree is the number of
its nested areas (see Definition Set 1). To construct the degree list D,
the spatial boundaries of all areas are checked against each other to
check if one boundary is completely enclosed within another area.
The degree list is used to check for the feasibility of moving areas
and ensure the spatial contiguity of regions.

4.1 Region Growing Phase

This phase initially grows the regions to satisfy the cardinality con-
straint. While PRRP is based on maintaining spatial contiguity of
unassigned areas, enforcing this while growing the region requires
checking if every area is an articulation area before it is added to
the region. This is prohibitively inefficient and involves travers-
ing the entire set of unassigned areas frequently. Therefore, this
phase allows growing regions without enforcing spatial contiguity,
delegating this to the following phases.

Growing regions randomly in the spatial space causes the unas-
signed areas to break into two or more spatially contiguous compo-
nents. To reduce the probability of breaking the spatial contiguity
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of the unassigned areas and to alleviate the computational cost of
the following phases, PRRP employs a gapless random seed selection
strategy when growing regions. Instead of choosing seed areas
from the set of unassigned areas, only the first seed area for region
r1 is picked from the unassigned areas, and the seed area of any
subsequent region (r;, i > 1) is picked randomly from the spatial
neighbors of rj, j < i, j =i—1,i-2,i—3,..,,1in sequence. If the list
of spatial neighbors SN;,_, is empty, then the seed is picked from
the neighbors of r;_3, and so on. This gapless seed selection strat-
egy takes into account the relative spatial distribution of regions
and ensures that regions are grown next to each other in one part
of the spatial space. The seed selection process is still completely
random, but the drawing sample is limited to the neighboring ar-
eas. As regions grow in arbitrary directions, the set of neighboring
areas could be any subset of areas, so the process is still completely
random and not biased. If a region fails to satisfy the cardinality
constraint, the algorithm restarts the building process with a seed
that is picked from all unassigned areas.

As discussed before, the regions are grown in descending order of
cardinalities ¢; € C. The region growing phase starts by initializing
a set of unassigned areas A = A and a set of assigned areas A? = §.
Then, the largest region r; grows targeting c; areas. A seed area s
is randomly selected from A%, added to region rq, and marked as
assigned by adding it to A%. A list of unassigned spatial neighbors
of ri, SN;,, is initialized with all unassigned spatial neighbors of
the seed area s, i.e., SNy, = SNs. SN;, is maintained while growing
r1 to ensure the disjointness of regions and the spatial contiguity in
the following iterations of growing r;,i > 1. To grow region r, an
area a; is selected at random from SN, and is added to the region.
The list SNy, is updated accordingly by removing a; and adding the
unassigned neighbors from SNg,. We keep adding areas to r; from
SNy, until ry cardinality reaches the target cardinality c;.

After r; becomes a valid region, a queue for the seed areas seeds
is initialized with all the unassigned spatial neighbors of r1. Seed
areas in the following iterations are drawn randomly from seeds.
seeds is updated in the following region growing iterations for
ri,i > 1 by removing the areas that have been assigned to r; and
adding the unassigned spatial neighbors from SNy,.

If a region fails to reach its cardinality value for any reason, then
the region growing phase is restarted as long as the number of
restarts does not exceed a parameter MR, representing the maxi-
mum allowed number of growing a region. In this case, the seed
area is not picked from seeds. Instead, it is picked randomly from A%
to increase the probability of growing a valid region successfully.

Example. Figure 5 presents an example of the three phases
of building a region in PRRP. Figure 5a shows the result
of growing a region with cardinality = 6 after the region
growing phase. This region splits the unassigned areas A%
into three spatially contiguous components: {a1s}, {az}, and
{a1, az, as, as, as, ae, a7, as, a9, aro, a11, a1z, a13, a17}-

4.2 Region Merging Phase

This phase is the first step in ensuring the spatial contiguity of the
remaining unassigned areas A" after growing a region r;. When r; is
grown, the remaining unassigned areas A* could break into two or
more spatially contiguous components. It is important that the areas
in A" stay spatially contiguous at all times to allow the remaining
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Figure 5: The phases of constructing a region in PRRP

regions to grow correctly and become valid. When the areas in
A" become disconnected, spatially-scattered areas cannot form a
spatially contiguous region, and subsequent regions cannot reach
their predefined cardinality targets and fail to produce any correct
solution. For instance, in Figure 3a after growing region ry, A%
contains 8 areas and the last region to be formed have a cardinality
value of 8. However, growing r; has disconnected A* into two
spatially contiguous components each with 4 areas preventing the
next region from growing with cardinality 8.

To prevent this from happening, the spatially contiguous com-
ponents for the unassigned areas A¥ are calculated after the region
growing phase. If the number of the spatially contiguous compo-
nents is one, then both the region merging and region splitting
phases are skipped, and the algorithm moves to the next region
growing phase. If there is more than one spatially contiguous com-
ponent, then only the largest component is kept as unassigned and
the rest of them are removed from A* and added to region r; and
the set of the assigned areas A%. In this case, more areas are added
to ri, and it exceeds its cardinality constraint. Therefore, r; must
go through the region splitting phase to remove the excess areas to
bring it back to its predefined cardinality value.

Example. Figure 5b depicts the region merging phase merging
the small components, in terms of the number of areas, {a13} and
{ago} with the region to produce a region r; with a total of 8 areas.

4.3 Region Splitting Phase

This phase is required when the region r; is merged in the region
merging phase to reduce its size and bring it back to its cardinality
target c;. To this end, it removes areas from the region r; and adds
them back to the list of unassigned areas A*.

Removing areas from r; focuses on removing a subset of bound-
ary areas of r;. A list of boundary areas BA,, is computed as the
areas in r; that have spatial neighbors belonging to A%. A naive
way to process BAy, is computing and excluding articulation areas,
removing one of the boundary areas at a time, and recomputing
boundary and articulation areas for each boundary area to be re-
moved. Such a naive way to process BA;, has several limitations.
First, recomputing boundary and articulations areas with every
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area removal is prohibitively expensive since it requires travers-
ing all the areas in the region. Second, removing only boundary
areas that are not articulation areas is restrictive and could pre-
vent the removal of excess areas when all the boundary areas are
also articulation areas. To overcome these limitations, we employ a
randomized technique that permits the removal of any area from
BAy, then checks if the spatial contiguity constraint still holds for r;
and makes the necessary adjustments. Removing a boundary area
randomly has several advantages: (1) it provides more flexibility
while removing areas when all the areas in BA,, are articulation
areas, (2) it increases the randomness of the sample solution by
allowing the removal of articulation areas, (3) it alleviates the cost
of recomputing the boundary areas’ list; instead the same list is
used until it becomes empty. This does not affect the randomness
of the solution as the areas are still chosen randomly from the list.

Another issue with removing areas is that a parent area a; is
always an articulation area. Since one or more areas are enclosed
within a; € r;, some or all of its nested areas could also belong to
ri. So, removing a; breaks the spatial contiguity of r;. This prevents
a; from ever being removed from r; as it is always identified as an
articulation area. To solve this, we construct and use the degree
list D during preprocessing to identify parent and nested areas. So
when a boundary area that is also a parent area is removed, all the
of its nested areas are also removed.

Splitting the excess areas from the region is performed over two
steps: the region shrinking and the region expansion. The region
shrinking step removes areas randomly from the region and the
region expansion step adds areas to the region if the region size
falls under the cardinality target after the region shrinking step.

Region shrinking. Algorithm 1 shows the pseudo-code of the
region shrinking step. The algorithm starts by initializing a counter
k that is equal to the number of areas to be removed from region r;
where k = |r;| — ¢; (Line 5). Then a list of boundary areas BA,, for
region r; is computed (Line 8). An area g; is randomly selected from
BA;, and checked against the degree list D. If D contains a;, then
a; and all of its nested areas that belong to r; are removed from r;
and added to A¥. Then, the counter k is updated by subtracting the
total number of removed areas and BAy, is updated by removing all
the removed areas (Lines 9-15). The spatial contiguity of region r;
is checked after the removal of area a; by calculating the spatially
contiguous components of r;. If there is more than one component,
then only the large component is kept and the other components
are removed from r; and added to A¥. The number of areas in the
components removed from r; is subtracted from k (Lines 16-20). To
speed up the removal of areas, the list of boundary areas BAy, is
only computed when it becomes empty. The process of removing
areas continues until the counter k <= 0. If k is zero, then region r;
becomes valid and the algorithm moves to building the next region.
Otherwise, if k < 0 and the region is not empty after the shrinking
step, then the region is adjusted in the region expansion step by
removing areas from A¥ and adding them to the region to meet the
cardinality constraint. If k < 0 and the region becomes empty after
the region shrinking step, then the region splitting phase terminates
and the region is re-grown in a new iteration. The region could
become empty when, for instance, the region cardinality is one
and it currently contains two areas: one parent area and its nested
area. In this case, only one area should be removed. However, since



Statistical Inference for Spatial Regionalization

Algorithm 1: Region Shrinking Step

1 Input : Area list A*, Region r, Integer ¢, Neighborhood list G,
Degree list D.

2 Output: Region r.

3 Initialization:

4 BA, ={} //list of boundary areas for r;

s k=|rl-¢

¢ while k> 0do

7 if |BA;| == 0 then

8 ‘ BA, = boundary areas for r;

9 a = random area € BA,;

10 if a € D then

1 ‘ NA = nested areas for a that belong to r;

12 r=(r-a)-NA;

13 A% = (A* U a) U NA;
14 BA, = (BAy - a) - NA;
15 k=k-(NA| + 1);

16 cc = connected components for r;

17 if |cc| > 1then

18 r = r - smallest connected components;

19 AY = A% U smallest connected components;
20 k = k - |smallest connected components;

21 return r;

the shrinking step removes the parent area and its nested areas to
maintain the spatial contiguity of the areas, then the two areas are
removed and the region becomes empty.

Region expansion. The process of removing areas from AY is
very similar to the process of removing areas from the region. How-
ever, the calculation of the articulation areas every time an area is
removed is necessary here since the removal of an exact number of
areas from A" is required to maintain the region’s cardinality and
to prevent the region from exceeding the predefined cardinality
target again. A counter w which represents the number of areas
to be added to the region is initialized as follows: w = ¢; — |r;].
After that, a list of boundary areas for the unassigned areas A" is
calculated BA gu. Then, the articulation areas of A* are computed
without considering the nested areas of the parent areas in BA gu.
This ensures that parent areas are only identified as articulation
areas when they actually connect other areas to the region beside
their nested areas. The articulation areas of A¥ are computed us-
ing Trajan’s algorithm [37] and subtracted from BA 4« to maintain
the spatial contiguity of A*. Next, we pick an area a; from BA 4u,
if D contains a;, then a; and a;’s unassigned nested areas are re-
moved from A* and added to region r;. The counter w is updated by
subtracting the number of areas that are added to r;. This process
continues until the value of w reaches zero.

If the value of w falls under zero after the region splitting phase,
then the cardinality of r; is checked against the values in C. If |r;|
€ C then the region is kept. Otherwise: r; is removed, A" is reset to
its previous state before growing r;, and a new building iteration
begins. The value of w can fall under zero if, for example, w = 1
and all the areas in BA4u« are parent areas containing at least one
unassigned nested area. In this case, all the unassigned nested areas
would have to be removed with the area and w will fall under zero.
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Example. In Figure 5c, the region splitting phase removes 2 areas
from the region (a2 and ajy7) to satisfy the cardinality.

At the end, our algorithm checks if there are duplicate sample
solutions by checking if the sample solutions have the same regions,
i.e.,, the same cardinality and set of areas. Therefore, the sample
solutions in the reference distribution are guaranteed to be distinct.

5 EXPERIMENTAL EVALUATION

This section provides an extensive performance evaluation for our
proposed technique PRRP. Section 5.1 presents the experimental
setup and Section 5.2 evaluates the performance of PRRP.

5.1 Experimental Setup

Our evaluation is based on Java 14 implementation and evaluated on
amachine running Ubuntu 16.04 with a quad-core 3.5GHz processor
and 128GB of memory. We compare PRRP with the state-of-the-
art p-regions technique, PRUC [35], in addition to two baseline
variations that evaluate PRRP design decisions: (1) A variation of
PRUC [35], denoted as PRUC-RP. The seed selection in PRUC
identifies p scattered seeds. Then, it grows regions from those seeds
by adding the area that has more neighbors in the region. As SISR
is a novel problem, it is the first to impose a different cardinality on
each region. Therefore, the cardinalites are set as threshold values
for each region in PRUC-RP and the extensive attribute of each area
is set to 1. (2) A modified version of PRRP, denoted as PRRP-G,
that adopts only the region growing phase of PRRP to show the
importance of continuously maintaining the spatial contiguity in
the other two phases. (3) A sequential version of PRRP, denoted as
PRRP-S, to show the effect of parallelization on the runtime.

Evaluation Datasets. We evaluate the performance of all tech-
niques using 3 datasets: (1) the census tracts of the US states (de-
noted as CT) [11], (2) the US county subdivisions (denoted as
CS) [11], and (3) the health, income diversity of the US counties
(denoted as HI) [4]. The CT and CS datasets have three subsets of
sizes ~2K, 5K, and 10K denoted as 2KCT, 5KCT, and 10KCT for the
CT and 2KCS, 5KCS, and 10KCS for the CS. The 2KCT represents the
census tracts for NY city, the 5KCT represents the census tracts for
NY state, and the 10KCT represents the census tracts for CA, AZ,
and NV states. The 2KCS represents the county subdivisions for CA,
NV, AZ, UT, ID, OR, WA, MT, WY, CO, and NM states. The 5KCS
is the county subdivisions of all the states in the 2KCS in addition
to TX, OK, and KS states. The 10KCS is the county subdivisions
for all the states in the 5KCS plus NE, SD, ND, LA, and AR states.
The HI dataset has ~3K areas denoted as 3KHI and represents the
health, income, diversity of the US counties. The data available
for US counties and states form datasets that are large enough to
appropriately evaluate and stress our algorithm.

Evaluation Measures. We evaluate the performance of PRRP
and all alternatives against the following measures: (1) Execution
time, to measure scalability and runtime efficiency. (2) Success
probability, to measure the probability of successfully producing
feasible sample solutions. It is calculated as % where |S| is the
number of output feasible sample solutions. It takes a range from
zero to 1 where zero indicates that the algorithm failed to generate
any feasible sample solution and 1 indicates that the algorithm
successfully produced M feasible sample solutions, so the larger,
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Table 1: Evaluation parameters

‘ Parameter ‘ Values ‘

DS ~2,3,5,10 (x103)
p(%0ofDS) | 1%, 2%, 3%

M 10, 50, 100

MR 10, 30, 50

o) 1,2,4

the better. (3) Effectiveness, to measure the effectiveness of pro-
ducing a feasible sample solution in early iterations. It is measured
S
solutions and ms; is the number of executed MS iterations until a
feasible sample solution is produced. It takes a range from zero to
1 where zero indicates that the algorithm failed to generate any
feasible sample solution after going through all the iterations and 1
indicates that the algorithm successfully produced all the sample
solutions in a single iteration. Values between 0 and 1 indicate that
generating each solution in average takes multiple iterations, so the
larger effectiveness, the better. (42) Completeness, this measure dis-
tinguishes solutions from each other, even failed ones, depending
on the number of valid regions built before the solution terminates
either successfully or unsuccessfully. This is measured through
counting how many valid regions were successfully generated out
of the p required regions. So, failed solutions that generate only
one valid region are considered much worse than failed solutions

5 IR;]
VR;€S p

as , where |S] is the number of output feasible sample

that generate (p — 1) regions. It is measured as where
|R;| is the number of valid regions. It takes a range from zero to 1
where zero indicates that the algorithm failed to generate any valid
region for any sample solution and 1 indicates that all the regions
are valid for all solutions, so the larger, the better.

Parameters. We study the effect of the parameters listed below
on the performance. Table 1 shows the values for all parameters
where the default values are emphasized in boldface.

DS: the dataset size (i.e., number of areas in the dataset).
p: the number of regions in each sample solution.

M: the sample size.

MR: the maximum iterations to build a valid region.

Q: the number of computing cores.

The maximum number of iterations for finding a feasible sample
solution (MS) is empirically set to 10 since there is a high probability
of finding a feasible solutions in early iterations. The cardinality list
(C) is generated randomly, which emulates random cardinalities
generated from the majority of regionalization techniques.

5.2 Performance Evaluation

This section studies the performance of PRRP and all other alterna-
tives under different parameter values.

Impact of the dataset size (DS). Increasing the DS increases the
runtime for all alternatives as shown in Figure 6a. PRRPis 4 times
faster than PRRP-S for the largest dataset due to parallelization
with 4 cores. PRRP has a smaller runtime ranging from 4 to 1737,
4 t0 1001, and 23 seconds than PRRP-S which ranges from 16 to 6589,
15 to 4218, 82 seconds for the CT, CS, HI datasets, respectively. The
runtime breakdown shows 0.2-3% of the runtime is for the region
growing phase, 5-13% of the runtime is for the region merging phase,
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Figure 6: Impact of the Dataset Size under CT, CS, HI datasets
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and the region splitting phase is 74-93% of the runtime. The region
splitting phase dominates the runtime as it involves traversing the
areas to identify articulation areas. The success probability and
completeness of PRRP and PRRP-S is always 1 for all dataset sizes
(Figure 6b, Figure 6d). Similarly, PRRP and PRRP-S have a high
effectiveness as shown in Figure 6c.

On the contrary to PRRP and PRRP-S, both PRRP-G and PRUC-RP
have a zero success probability and effectiveness for all dataset
sizes, depicted in Figure 6c and Figure 6d. Both alternatives fail to
produce any feasible sample solutions for all datasets. Although
they are both faster than PRRP and PRRP-S for all datasets, they
terminate early without producing feasible sample solutions. This
is due to the fact that both PRRP-G and PRUC-RP do not main-
tain the spatial contiguity of unassigned areas causing areas to
get disconnected which prevents the regions from reaching their
cardinality targets. Regarding completeness, PRRP-G have 21%-82%
higher completeness value compared to PRUC-RP. This proves that
the seed selection and region growing strategies of PRRP helps in
producing valid regions. The seed selection strategy in PRUC-RP
selects all the seed areas in advance and then grows regions sequen-
tially from those seeds. Using this technique, later seed areas get
completely blocked by assigned areas when growing regions which
prevents those seeds from growing their own regions.

The performance difference of PRRP and PRRP-S under the CT
and CS datasets varies. The time for the CT dataset for both PRRP
and PRRP-S is 1-2 times slower than that of the CS dataset because
the CT dataset has more nested areas and they have to be removed
from the region to compute the boundary areas in the region split-
ting phase which increases the overall time. On the other hand, the
effectiveness of PRRP and PRRP-S using the 10KCS dataset is 33-43%
less than the effectiveness using the 10KCT dataset (0.69 and 0.73
vs. 0.98 and 0.98). This is due to the fact that the areas in the 10KCS
dataset are larger and span more space which increases the number
of articulation areas and makes regions more prone to get spatially
disconnected in the region growing and splitting phases. As a result,
more iterations are performed to produce feasible sample solutions.

Impact of the number of regions (p). The number of regions p
affects the runtime of PRRP, PRRP-S, and PRUC-RP for both CT and
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CS as shown in Figure 7a and Figure 7b. The runtime for those alter-
natives slightly increases as the p value increases (from 128 to 196
seconds for PRRP with a 53% increase, from 490 to 693 seconds
for PRRP-S with a 41% increase, and from 92 to 144 seconds for
PRUC-RP with a 56% increase). In PRRP and PRRP-S, increasing the
p value increases the merge and split operations which are the most
expensive phases of the algorithm. In PRUC-RP, the area that is most
connected to the region is chosen, therefore, the time increases as
there are more regions. In PRRP-G, the areas are randomly picked
which does not have a significant effect on the runtime.

In several cases, PRRP-G and PRUC-RP are faster than PRRP and
PRRP-S, however, they fail to produce feasible sample solutions as
shown in Figure 11a in Appendix A, Figure 7e, Figure 11b in Ap-
pendix A, and Figure 7f. On the contrary, PRRP and PRRP-S always
have a very high probability of success, completeness, and effec-
tiveness for different p values because they continuously maintain
the spatial contiguity of unassigned areas.

Relatively, the time for PRRP and PRRP-S on the CT dataset is
slower than the time on the CS dataset (35%-55% increase). As
mentioned before, this is due to nature of the datasets as the CT
dataset has more nested areas which increases the merge and split
operations. Also, the effectiveness of PRRP (0.97) and PRRP-S (0.97)
is 14% higher for the 10KCT dataset than the effectiveness of the
10KCS dataset (0.83 for PRRP and 0.84 for PRRP-S). As mentioned
before, the areas in the 10KCS dataset are larger which increases
the number of articulation areas causing the areas to get spatially
disconnected which requires more attempts to build the region.
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Impact of the sample size (M). As the value of M doubles, more
sample solutions need to be generated which increases the time of
all alternatives linearly as shown in Figure 8a and Figure 8b. PRRP
and PRRP-S generate valid regions for both the CT and CS datasets
which in turn produce feasible sample solutions with a success
probability and completeness of 1 for all values of M (Figure 12a in
Appendix A, Figure 8c, Figure 12b in Appendix A, and Figure 8d). As
for the effectiveness, Figure 8e shows that the sample size M does
not have a noticeable impact on PRRP (0.92-0.95 for the CT dataset
and 0.92-0.93 for the CS dataset) and PRRP-S (0.91-0.94 for the CT
dataset and 0.92 for the CS dataset), which is very high. PRRP-G
and PRUC-RP both fail to generate feasible sample solutions under
different M values with a zero success probability and effectiveness.
Similar conclusions are drawn for completeness as discussed in the
previous experiments. PRRP has a smaller run time than PRRP-S
(3-4 times faster) because it produces multiple sample solutions in
parallel but slower than PRRP-G and PRUC-RP as they terminate
early without producing any feasible sample solution.

Impact of the number of computing cores (Q). The number of
computing cores Q only affects the runtime of PRRP and PRRP-G as
they are the only parallelized techniques. The runtime for PRRP-S
and PRUC-RP in Figure 9 for all Q values is the same and with the
default values for all parameters. Figure 9 depicts the runtime in
a log scale and shows a linear scalability for the runtime of PRRP
and PRRP-G when increasing Q. PRRP takes 641 seconds with one
core, 291 seconds with two cores, and 179 seconds with four cores
and PRRP-G takes 25 seconds with one core, 12 seconds with two
cores, and 7 seconds with four cores for the CT dataset as shown
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in Figure 9a. Figure 9b shows similar scalability for the CS dataset.
This shows that the parallel technique in PRRP makes full use of
the computing resources which leads to perfect (linear) speedup.

Impact of the maximum number of iterations (MR). Fig-
ure 10 in Appendix A shows that increasing the MR value has a
slight impact on the runtime of PRRP, PRRP-S, and PRRP-G. PRRP
and PRRP-S still have a high success probability, completeness, and
effectiveness. More details are provided in Appendix A.

Impact of the seed selection technique. In addition to our gap-
less random seed selection technique, we employ two techniques for
PRRP and its variations PRRP-S and PRRP-G: (1) a random technique
that picks the seed area randomly from the unassigned areas, and (2)
a modified gapless random technique that picks the seed from the
spatial neighbors of all regions. Figure 13 in Appendix A shows that
this random seed selection technique is 1.3 times slower than our
technique with less effectiveness. On the other hand, Figure 14 in
Appendix A shows that the modified gapless random technique has
no apparent effect as the results are comparable to those produced
by our technique. More details are provided in Appendix A.

6 CONCLUSIONS

This paper introduces SISR, a regionalization problem that parti-
tions a set of spatial areas into p regions, each with a predefined
cardinality constraint. SISR enables spatial statisticians to generate
reference distributions to perform statistical inference and assess
the quality of regionalization solutions. We propose a parallel tech-
nique PRRP to solve SISR. PRRP works by recursively partitioning
the unassigned areas into two spatially contiguous components
over three phases: (1) region growing phase that constructs a single
region with a predefined cardinality, (2) region merging phase that
merges any disconnected areas with the grown region, (3) region
splitting phase that adjusts the region size after the region merging
phase by removing excess areas. Experimental results using real
datasets show the high effectiveness of PRRP and the invalidity of
the state-of-the-art techniques to produce any valid solutions.

REFERENCES

[1] H. Alrashid, Y. Liu, and A. Magdy. SMP: Scalable Max-P Regionalization. In
SIGSPATIAL, pages 1-4, 2022.

[2] H. Alrashid, Y. Liu, and A. Magdy. PAGE: Parallel Scalable Regionalization
Framework. TSAS, pages 1-27, 2023.

[3] K. Andreev and H. Racke. Balanced Graph Partitioning. Theory of Computing
Systems, 39(6):929-939, 2006.

[4] 1. Anselin. GeoDa, 2003. https://geodacenter.github.io/.

[5] R. Assuncdo and et. al. Efficient Regionalization Techniques for Socio-economic
Geographical Units Using Minimum Spanning Trees. IJGIS, 20:797-811, 2006.

[6] O.Aydin, M. V. Janikas, R. Assuncao, and T.-H. Lee. SKATER-CON: Unsupervised
Regionalization via Stochastic Tree Partitioning Within a Consensus Framework
Using Random Spanning Trees. In SIGSPATIAL, pages 33-42, 2018.

[7] R.Benedetti and et. al. The Identification of Spatially Constrained Homogeneous
Clusters of Covid-19 Transmission in Italy. RSPP, 12:1169-1187, 2020.

(8]
[9]

[16]

)
=

&
5,

Hussah Alrashid, Amr Magdy and Sergio Rey

U. Benlic and J.-K. Hao. An Effective Multilevel Tabu Search Approach for
Balanced Graph Partitioning. Operations Research, 38(7):1066-1075, 2011.

D. Bereznyi, A. Qutbuddin, Y. Her, and K. Yang. Node-attributed spatial graph
partitioning. In SIGSPATIAL, pages 58-67, 2020.

S. Biswas and et. al. REGAL: A Regionalization Framework for School Boundaries.
In SIGSPATIAL, pages 544-547, 2019.

U. C. Bureau. TIGER/Line Shapefile, 2016, Series Information for the Current
Census Tract State-based Shapefile, 2019. https://catalog.data.gov/dataset.

E. Chambers and et. al. Aggregating Community Maps. In SIGSPATIAL, pages
1-12, 2022.

D. Combe, C. Largeron, E. Egyed-Zsigmond, and M. Géry. Combining Relations
and Text in Scientific Network Clustering. In ASONAM, pages 1248-1253, 2012.
A. Das, S. Ghosh, K. Das, T. Basu, L. Dutta, and M. Das. Living Environment
Matters: Unravelling the Spatial Clustering of COVID-19 Hotspots in Kolkata
Megacity, India. Sustainable Cities and Society, 65:102577, 2021.

D. Delling, D. Fleischman, A. V. Goldberg, I. Razenshteyn, and R. F. Werneck. An
Exact Combinatorial Algorithm for Minimum Graph Bisection. Mathematical
Programming, 153(2):417-458, 2015.

J. C. Duque, R. L. Church, and R. S. Middleton. The P-Regions Problem. Geo-
graphical Analysis, 43:104-126, 2011.

J. C. Duque and et. al. The Max-P-Regions Problem. jRS, 52:397-419, 2012.

J. C. Duque, R. Ramos, and J. Surifiach. Supervised Regionalization Methods: A
Survey. IRSR, 30:195-220, 2007.

U. Feige and R. Krauthgamer. A Polylogarithmic Approximation of the Minimum
Bisection. SICOM, 31(4):1090-1118, 2002.

A. Felner. Finding Optimal Solutions to the Graph Partitioning Problem with
Heuristic Search. AMAI 45(3):293-322, 2005.

D. C. Folch and S. E. Spielman. Identifying Regions Based On Flexible User-
defined Constraints. IJGIS, 28:164-184, 2014.

Gedicke and et. al. Aggregating Land-use Polygons Considering Line Features as
Separating Map Elements. CGIS, 48(2):124-139, 2021.

J.-H. Haunert and A. Wolff. Area Aggregation in Map Generalisation by Mixed-
integer Programming. IJGIS, 24(12):1871-1897, 2010.

J. Hurley. Regionalization and the Allocation of Healthcare Resources to Meet
Population Health Needs. Healthcare Papers, 5:34-39, 2004.

Y. Kang and A. Magdy. EMP: Max-P Regionalization with Enriched Constraints.
In ICDE, 2022.

H. Kim, Y. Chun, and K. Kim. Delimitation of Functional Regions Using a P-
Regions Problem Approach. IRSR, 38:235-263, 2015.

K. Kim and et. al. Spatial Optimization for Regionalization Problems with Spatial
Interaction: a Heuristic Approach. IJGIS, 30(3):451-473, 2016.

K. Kim and et. al. p-Functional Clusters Location Problem for Detecting Spatial
Clusters with Covering Approach. Geographical Analysis, 49:101-121, 2017.

Y. Kong, Y. Zhu, and Y. Wang. A Center-based Modeling Approach to Solve the
Districting Problem. IJGIS, 33(2):368-384, 2019.

J. Laura, W. Li, S.J. Rey, and L. Anselin. Parallelization of a Regionalization Heuris-
tic in Distributed Computing Platforms—a Case Study of Parallel-P-Compact-
Regions Problem. IJGIS, 29:536-555, 2015.

C.Li, Y. Yin, X. Liu, and P. Wu. An Automated Processing Method for Agglomer-
ation Areas. ISPRS, 7(6):204, 2018.

C.Li, Y. Yin, P. Wu, and W. Wu. An Area Merging Method in Map Generalization
Considering Typical Characteristics of Structured Geographic Objects. CGIS,
48(3):210-224, 2021.

W. Li, R. L. Church, and M. F. Goodchild. The p-Compact-Regions Problem.
Geographical Analysis, 46:250-273, 2014.

Y. Liang and et. al. Region2Vec: Community Detection on Spatial Networks Using
Graph Embedding with Node Attributes and Spatial Interactions. In SIGSPATIAL,
pages 1-4, 2022.

Y. Liu, A. R. Mahmood, A. Magdy, and S. Rey. PRUC: P-Regions with User-Defined
Constraint. In VLDB, pages 491-503, 2022.

J. Oehrlein and J.-H. Haunert. A Cutting-Plane Method for Contiguity-
Constrained Spatial Aggregation. JOSIS, (15):89-120, 2017.

T. R. Depth-first Search and Linear Graph Algorithms. SICOM, 1:114-121, 1971.
S. Rey. Random Regions, 2021. https://github.com/sjsrey/spopt/blob /randomre-
gion/notebooks/randomregion.ipynb.

K. Schloegel, G. Karypis, and V. Kumar. Parallel Multilevel Algorithms for Multi-
Constraint Graph Partitioning. In European Conference on Parallel Processing,
pages 296-310, 2000.

B. She, J. C. Duque, and X. Ye. The network-max-p-regions model. IJGIS, 31:962—
981, 2017.

R. Wei, S. Rey, and E. Knaap. Efficient Regionalization for Spatially Explicit
Neighborhood Delineation. I7GIS, 35:1-17, 2020.

J. Yao, X. Zhang, and A. T. Murray. Spatial Optimization for Land-use Allocation:
Accounting for Sustainability Concerns. IRSR, 41(6):579-600, 2018.

X. Ye, B. She, and S. Benya. Exploring Regionalization in the Network Urban
Space. JGSA, 2:4, 2018.

Y. Zhou, H. Cheng, and J. X. Yu. Graph Clustering Based on Structural/Attribute
Similarities. PVLDB, 2:718-729, 2009.



Statistical Inference for Spatial Regionalization

APPENDIX
A ADDITIONAL EXPERIMENTS
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Figure 10: Impact of the maximum number of iterations for
building a region (MR)

Impact of the maximum number of iterations (MR). The maxi-
mum number of iterations for building a region MR is a parameter
for PRRP and it variations PRRP-S and PRRP-G as the seed selection
and region building techniques are randomized. In PRUC-RP, the
seeds are fixed and the most connected area is added to the region,
therefore, attempting to grow the region again will always produce
the same result. Figure 10a and Figure 10b show that increasing
the MR value has a slight impact on the runtime of PRRP, PRRP-S,
and PRRP-G. PRRP and PRRP-S still have a high success probability
and completeness as they produce feasible sample solutions with
valid regions for all MR values (shown in Figure 10c, Figure 10d,
Figure 10g, and Figure 10h). Similarly, Figure 10e and Figure 10f
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show that the effectiveness of PRRP and PRRP-S is almost constant
(between 0.90 and 0.95 for both the CT and CS datasets) under
different MR values. Even with multiple attempts for growing a
region, PRRP-G still have a zero success probability and effective-
ness (Figure 10e, Figure 10f, Figure 10g, and Figure 10h) as it fails
to maintain the spatial contiguity of unassigned areas.
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Figure 11: Impact of the number of regions (p)
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Figure 12: Impact of the sample size (M)

The success probability under different parameter values.
For all values of all performance measures p (Figure 11), and M (Fig-
ure 12), PRRP and PRRP-S always produce feasible sample solutions
and achieve the highest probability of success (i.e., 1). On the other
hand, PRRP-G and PRUC-RP both fail to generate feasible sample
solutions with a zero success probability. This is due to the fact that
PRRP and PRRP-S maintain spatial contiguity of input areas which
allows to generate valid regions.

Impact of the seed selection technique. In addition to our gap-
less random seed selection technique, we employ two techniques
for PRRP and its variations PRRP-S and PRRP-G: (1) a random tech-
nique that picks the seed area randomly from the unassigned areas,
and (2) a modified gapless random technique that picks the seed
from the spatial neighbors of all regions. Figure 13 shows that
the random seed selection technique is 1.3 times slower than our
technique with less effectiveness. This is because the random seed
selection technique builds regions without minimizing the gaps be-
tween them which increases the probability of breaking the spatial
contiguity of the unassigned areas into two or more connected com-
ponents with a larger size duo to the large space between regions.
This leads to having to merge/remove more areas in the region
merging and region splitting phases which increases the runtime
of the algorithm. In addition, having a larger number of areas to
remove in the region splitting phase decreases the probability of
building valid regions, which in turn, decreases the effectiveness.
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Figure 13: Random seed selection
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Figure 14: Modified gapless random seed selection

On the other hand, Figure 14 shows that the modified gapless ran-
dom technique has no apparent effect as the results are comparable
to those produced by our gapless random technique.

B COMPLEXITY ANALYSIS

This appendix provides a complexity analysis for PRRP. We denote
the the size of the unassigned areas A" as s(A¥) and the size of the
spatial neighbors SN, of an area a as s(SNg).

Preprocessing. The preprocessing step first reads n areas which
takes O(n). Then it builds the neighborhood graph and the degree
list by checking the boundary of each area against all the areas
which takes O(n?) time. So the overall complexity of the prepro-
cessing is O(n) + O(n?) = O(n?).

Hussah Alrashid, Amr Magdy and Sergio Rey

Region growing phase. The region growing phase randomly
adds an area to a region in O(1) time. Adding n areas takes O(1)xn
= O(n). After growing the region, we compute the number of con-
nected components for the remaining unassigned areas A* by per-
forming a single graph traversal over the areas in A¥. In the worst

case, s(A%) = n - 1, therefore, it takes O(n) to compute the connected
components for A¥. So, the overall time complexity of the region

growing phase is O(n) + O(n) = O(n).

Region merging phase. The region merging phase merges the
smallest connected components with the region. In the worst case,
the total size of the smallest connected components cannot exceed
n, so its worst case complexity is O(n).

Region splitting phase. This phase involves two steps. First,
the shrinking step identifies the region’s boundary areas, removes
them, and then computes the number of connected components
for the region. Identifying the boundary areas BA, for any region r
involves evaluating the spatial neighbors SN;; of every area ain r.
The set of areas A in our problem is represented as a planar graph
of the spatial neighborhood relation among areas in A. In the worst
case, the degree of a vertex is O(n-1) and it takes O((n-1)xn) = O(n?)
to identify the region’s boundary areas. There are a total of k areas
to be removed in the shrinking step. In the worst case, we need to
identify the region’s boundary areas each time an area is removed
from the region. Since k < n, i.e., k = O(n), the time complexity
for removing k boundary areas is O(n®). Computing the number
of connected components for a region performs a single graph
traversal over the region’s areas which takes O(n) time in the worst
case. Consequently, the time complexity for the shrinking step is
(O(m3) + O(n)) = O(n®) in its worst case. Second, the expansion
step identifies A“’s boundary areas and removes the articulation
areas from the list of boundary areas. Identifying the boundary
areas BA, for A% is similar to the shrinking step and takes O(n?) in
the worst case. Identifying the articulation areas for A* is done over
a single graph traversal using Tarjan’s algorithm [37] and takes
O(n). So, identifying the A%’s boundary areas and articulation areas
takes O(n) + O(n?) = O(n?) in the worst case. To add any area from
the boundary areas back to the region, its nested areas must be also
added with the area. There are w areas to add where w < n, i.e,, w =
O(n) and e nested areas which gives a total complexity of O(exn).
In the worst case, we need to identify A*’s boundary areas each
time an area is added to the region. Therefore, the time complexity
for adding w boundary areas is O(e x n3) in the worst case. So, the
total time complexity for the expansion step is Oe X n®) + O(n)=
O(e x n3) in the worst case.

Overall complexity. The overall time complexity of the three
phases excluding the preprocessing is O(n) + O(n) + O(e x n%) =
O(e x n3) in the worst case. The three phases are repeated p times
to grow p regions and each region is constructed MR times in the
worst case. M sample solutions are generated in parallel using g
cores and each sample solution is constructed MS times in the worst
case. So, this gives an overall complexity of % X MS X MR X p X

Ofe x n3).
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