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Abstract

The widespread of geotagged data combined with modern map
services allows for the accurate attachment of data to spatial net-
works. Applying statistical analysis, such as hotspot detection, over
spatial networks is very important for precise quantification and
patterns analysis, which empowers effective decision-making in var-
ious important applications. Existing hotspot detection algorithms
on spatial networks either lack statistical evidence on detected
hotspots, such as clustering, or they provide statistical evidence at
a prohibitive computational overhead. In this paper, we propose
efficient algorithms for detecting hotspots based on the network
local K-function for predefined and unknown hotspot radii. The
network local K-function is a widely adopted statistical approach
for network pattern analysis that enables the understanding of
the density and distribution of activities and events in the spatial
network. However, its practical application has been limited due to
the inefficiency of existing algorithms, particularly for large-sized
networks. Extensive experimental evaluation using real and syn-
thetic datasets shows that our algorithms are up to 28 times faster
than the state-of-the-art algorithms in computing hotspots with a
predefined radius and up to more than four orders of magnitude
faster in identifying hotspots without a predefined radius.
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1 Introduction

The rapid growth of spatial data has sparked considerable interest
in spatial analysis [2, 22, 38]. Spatial data is usually associated with
spatial networks [5, 13, 27, 28, 31, 33, 37]. Spatial networks signifi-
cantly influence various aspects of society, from daily commuting
patterns [25] to the distribution of goods and services [10]. Hotspot
detection along the spatial network is an important problem that
identifies regions where objects are significantly concentrated. Com-
pared to Euclidean space, hotspot detection proves to be more
precise along spatial networks, given the fact that most human ac-
tivities are centered around these networks [22]. Hotspot detection
in spatial networks is applied in diverse fields such as traffic man-
agement [27], epidemiology control [28], and crime analysis [13].
In some cases, practitioners having specific domain knowledge aim
to identify hotspots within predetermined radii. For example, in
environmental studies [12], certain pollutants tend to affect a spe-
cific radius around the point of release, so, fixed-radius hotspots
could be established at this distance to pinpoint high-risk areas.
However, in many cases, the hotspot radius may not be known, e.g.,
identifying crime regions and traffic congestion. Therefore, most
hotspot detection algorithms used in spatial networks automatically
determine the appropriate radius through enumeration [32-34, 39].

Existing hotspot detection methods along spatial networks fall
into two categories: clustering-based methods [6, 29, 31, 37, 41]
and statistical-based methods [2, 22, 32-34, 39]. While clustering
methods have efficient runtime, they might produce false-positive
results [38]. In contrast, statistical-based methods offer a thorough
statistical examination of the detected hotspots, typically by using
a scoring function for quantification, e.g., log-likelihood score [33],
density score [32, 34], to filter candidates. However, the scoring
function doesn’t directly give a statistical significance guarantee
because it doesn’t take into account the variability that could arise
from random sampling. Consequently, randomization techniques
such as Monte Carlo Simulation are followed to further validate
the statistical significance. However, performing such simulations
is expensive and can lead to performance issues.

The network local K-function [22, 40] is a statistical function for
the analysis of the distribution of objects in the spatial network. For
a given center, it computes the sum of edge weights and the number
of reachable objects in the network within a specific distance from
the center and derives a distribution function. Consequently, the
network local K-function can be used directly to compute a measure
of statistical significance due to its incorporation of the distribution
function, without using randomization techniques for statistical
validation. This makes its computation efficient and solution quality
statistically supported. Consequently, the network local K-function
can efficiently and effectively detect hotspots in spatial networks.



Detecting hotspots in spatial networks is challenging for several
reasons. Firstly, modern network datasets are extensive, including
up to millions of objects [24], whereas existing statistical meth-
ods for network hotspot detection are typically designed to handle
smaller datasets, usually thousands of objects [32-34]. Second, the
distances between objects are constrained by the network topology,
where edges in the network are intricate and interconnected, mak-
ing the distance computation more complicated compared to that
in Euclidean space. Third, determining the range of each hotspot
is computationally expensive. Existing statistical-based methods
for hotspot detection are mainly based on enumeration [15, 32-34],
which does not scale due to the vast candidate size involved.

In this paper, we address the limitations of the current hotspot
detection algorithms in spatial networks based on the network local
K-function. Our contribution can be summarized as follows:

e We propose two problems on spatial networks: Hotspot Detection
with Predefined Radius (HDPR) and Hotspot Detection With-
out Predefined Radius (HDWPR) based on the network local
K-function.

o We propose efficient algorithms to solve the HDPR problem.

o We define optimal hotspots radii and propose an approximate
algorithm to solve the HDWPR problem.

o We present complexity analysis and correctness proof for the
proposed algorithms.

e We conduct extensive experimental evaluations on both real and
synthetic spatial network datasets to demonstrate the efficiency
of our methods.

The rest of the paper is organized as follows: Section 2 presents
the related work. Section 3 defines the problems. Section 4 and
Section 5 detail our proposed algorithms. Section 6 presents the
experimental evaluation and Section 7 concludes the paper.

2 Related Work

In this section, we discuss the work related to hotspot detection in
spatial networks and the evaluation of the network K-function.

Hotspot detection: Spatial hotspot detection is an important
problem with numerous applications, e.g., identifying regions with
high occurrences of diseases in the study of epidemiology [17, 30],
pinpointing locations with a high concentration of accidents or
congestion in traffic management [18, 27], and revealing areas with
high crime rates in public safety [1]. Hotspot detection has been
studied extensively in the Euclidean space [38]. However, in this pa-
per we focus on hotspot detection in spatial networks as it provides
accurate insights based on actual edge distances.

Consider a set of events happening on a spatial network, a
hotspot [33] in a spatial network denotes a region in the network
that exhibits a high density of events compared to the mean number
of events. There are two main approaches for identifying hotspots
in spatial networks: (1) clustering-based hotspot detection, and (2) sta-
tistical analysis-based hotspot detection. Clustering-based hotspot
detection [6, 29, 31, 37, 41] aims to identify groups of events that
are close to each other in the network space. Extensions of tra-
ditional clustering approaches have been developed to support
spatial networks, e.g., partition-based clustering [16, 41], DBSCAN-
based [8, 37, 41], and hierarchical-based clustering [41]. While

clustering-based hotspot detection algorithms are considered com-
putationally efficient, they lack strong statistical robustness, i.e.,
they can result in biased or misleading results [38]. For example,
partition-based clustering [41] and DBSCAN-based clustering [37]
algorithms will always return clusters even if the points are ran-
domly distributed. These clusters are not statistically robust and
are considered false positives for statistical methods.

Statistical-based hotspot detection [2, 22, 32-34, 39] defines
hotspots based on statistical models. These models identify regions
where the density of events significantly exceeds the expected den-
sity assuming a specific event distribution. Khalid et al. [13] use
the NetKDE [18] to detect crime hotspots and the Getis-Ord GI* [9]
is adopted as the statistical evidence of hotspot properties. How-
ever, this method is rather computationally expensive for large
networks as it needs to compute the pairwise correlation between
events. Tang et al. [33], propose NPP, which is the most relevant
statistical method for object-centered hotspot detection in spatial
networks. NPP assigns a log-likelihood score for all possible radii
of hotspots, and uses network partitioning to prune spatial objects
that do not contribute to hotspots. Candidate hotspots are validated
using Monte Carlo simulation trials. While NPP provides strong
statistical evidence for detected hotspots, NPP is computationally
expensive because of the large number of Monte Carlo simulation
trails and the scoring of multiple radii per hotspot.

The network K-function: [22] is proposed as a robust measure
for density and distribution of spatial patterns in the network space.
It is divided into two categories: the network global K-function [5,
21, 22] and the network local K-function [22, 40]. Chan et al. [5]
introduced the state-of-the-art algorithm for the evaluation of the
network global K-function, which counts the object pairs within a
specific distance threshold. It speeds up the processing by sharing
the processing of nearby objects, i.e., neighborhood sharing. One
important limitation of the network global K-function is its inability
to identify objects that are part of dense clusters.

Recently, the network local K-function [22, 40] has been intro-
duced to better analyze the densities and distribution of spatial
objects surrounding a center object. It calculates the total number
of spatial objects that are within a specific network distance from
the center object as well as the sum of network distances between
those spatial objects and the center object. The main advantage of
the network local K-function is that it provides strong statistical
evidence on the densities of spatial objects in the network.

In this paper, we address the problem of efficient hotpot iden-
tification with strong statistical evidence using the network local
K-function. Notice that, existing statistical-based hotspot detection
algorithms [32-34] enumerate and score a large number of hotspot
radii. This is computationally expensive, even with the proposal
of pruning algorithms [33] that reduce the search space of hotspot
radii. On the contrary, we identify hotspots with and without a
predefined radius while avoiding the expensive enumeration. This
significantly improves efficiency without affecting utility.

3 Preliminaries and Problem Definition

In this section, we formally define the terminologies used and the
problems addressed in the paper.



(a) Spatial Network
Figure 1: Spatial Network Example

(b) Isodistance sub-network

A spatial network [22], denoted as G = (V,E), is an undi-
rected weighted graph where V is a set of vertices and E is a set
of edges. V has two types of vertices: (1) location vertices that
represent physical locations, e.g., road intersections and turning
points, and (2) event vertices that represent spatial events, e.g.,
vehicle locations, 911 calls, or traffic collisions. Practically, the set
V is the union of two sets: a set of location vertices and a set of
event vertices. The spatial events are overlaid over the physical
straight lines that connect physical locations. E represents the set of
connections among graph vertices. w(u, v) represents the weight of
the connection (u,v) and it is the network travel distance between
vertices u and v. Every connection e € E is either: (1) an edge, or
(2) a segment. An edge is a direct connection between two location
vertices. A segment is a direct connection that connects an event
vertex to another event vertex or to a location vertex. Each segment
is overlaid on an edge and each edge is associated with zero or
more overlaid segments. Figure 1a gives a spatial network where
location vertices and event vertices are denoted by uppercase and
lowercase letters, respectively. In Figure 1a, Edge (F, J) is an edge
associated with zero segments, while Edge (J, S) is an edge associ-
ated with four segments (J, d), (d, ), (b, a), and (a, S). E maintains
both edges and their overlaid segments as graph connections in
one set differentiated with a flag attribute indicating their type. We
denote the shortest path distance between any pair of vertices x
and y, as dist(x, y), where x and y can be location or event vertices.
In Figure 1a, w(J,S) = 7, and event vertex o is overlaid on Edge
(B, H) with dist(o, H) = 8, dist(o, B) = 10, and dist(o, m) = 10.

The number of overlaid event vertices along an Edge e in G is
denoted as |e|. The number of location vertices and event vertices
in G are denoted as |V;| and |V;|, respectively, so |V| = |Vj| + |V¢|.
The number of edges and segments are denoted as |E,| and |E;|,
respectively, so |E| = |E.| + |Es].

An isodistance sub-network [33] I(t|9) of an event Vertex &
with a given distance ¢ is a network that consists of vertices, edges,
and segments that are reachable from ¢ within a distance ¢. Edges
and segments could be fully or partially covered by I(¢|9).

L(t|9) is the sum of weights of all the edges and segments in
I(t|9) and L(G) is the total weight of edges in G. If an edge or
a segment is partially covered by I(t|9), only the covered parts
are considered in L(t|3). The weights of edges and their overlaid
segments are not added twice. The number of event vertices in
I(t|9) is denoted as N (¢|3). Figure 1b shows an example of I(5|a)
where all the edges, segments, and the event vertices encountered
in L(5|a) are highlighted in red. In this example, L(5|a) = 10 and
N(5|a) = 3 (counting event vertices a, b, d). In Figure 1a, L(G) = 116.
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Figure 2: Probability Distribution Function

Whenever there is no ambiguity, L(¢|3) is abbreviated as L and
N(t|9) is abbreviated as N.
The network local K-function [22, 40] is a statistical function
to analyze the density and distribution of events surrounding a
center vertex. This function takes two inputs, an event Vertex ¢
and a network distance t. Formally,
K(t]9) = N9

where p = Igzlc_)l represents the overall density of event vertices

within the entire network. In Figure 1a, p = % = 0.103, and
K(10]a) = 5355 = 29.

Complete spatial randomness (CSR) hypothesis [22] is a fun-
damental spatial statistical hypothesis that describes random oc-
currence of spatial events. CSR states that random locations of
spatial events follow a homogeneous binomial point process [22].
We use the CSR hypothesis to represent a hypothetical distribution
of spatial events surrounding a center vertex without hotspots. The
expectation y and variance o2 of the hypothetical spatial distribu-
tion surrounding & are calculated as follows:

p(K(t]9)) = L(t|9)

2 __ v . Y1 Lald)
o“(K(t]9)) = AR L(G) * L(t]9) = (1 LG )
In Figure 1b, #(K(5]a)) = L(5|a) = 10, and ¢*(K(10]a)) = ;55 *

116 % 10 = (1 — %) = 88.33.

For a specific radius ¢, an event Vertex J is a hotspot when
the actual density of events within ¢ distance from ¢ exceeds the
expected density. We find the quantile of the actual local K-function
K(t|9) compared to the hypothetical distribution. If it is above a
preset threshold, e.g., 90%, ¢ is considered a hotspot [22]. Formally,

¢ is a hotspot when
K(t]9) > Ko (t|9)

where « is a preset quantile threshold that serves as the statistical
evidence of the identified hotspot. K, (t|9) represents the o quantile
of the K(t|9) distribution function.

Figure 2 represents the CSR-based probability distribution of
events surrounding Vertex a in Figure 1b and radius t = 5, given
(K (5]a)) = 10, and o (K(5|a)) = 88.33. The 22.04 is the 90% quan-
tile of the hypothetical local K-function. The actual value of the local
K-function, i.e., K(5|a) is 29. Hence a is considered a hotspot with
confidence exceeding 90%. The quantile of a is 97.83% which repre-
sents an even higher statistical significance of the hotspot a. Higher



quantile values (>90%) make hotspot detection more stringent [40],
which improves the confidence in the detected hotspots and avoids
false positives [38]. Based on the above discussion, we define the
following problems for hotspot detection in spatial networks.

ProBLEM 1. Hotspot Detection with Predefined Radius
(HDPR): Given a spatial network G = (V,E), a minimum statis-
tical significance threshold a, and a distance value t, find the set of
event vertices Vi, such that § € Vi if 9 satisfies K(t|9) > Ku(t|3).

In HDPR, hotspot detection is based on a predefined network
distance, t, and a statistical significance threshold, a. Any event
Vertex ¢ is identified as a hotspot if K(¢|9) > K4 (t|3). However, in
some situations, users may not have a specific idea about the best
radius to choose for hotspots. Hence, we define the following prob-
lem for hotspot detection that returns hotspots alongside their radii.
Instead of a predetermined radius, each hotspot is characterized by
an optimal radius discovered by the algorithm.

ProBLEM 2. Hotspot Detection Without Predefined Radius
(HDWPR): Given a spatial network G = (V,E) and a minimum
statistical significance threshold omn, find a set of hotspots H, each
hotspot h € H is defined with a triple (3y, ty, a,) where 9y, € V is
an event vertex with radius t, and statistical significance ay,, where
K(ty|9) > Ka,,;, (tn|9,) and a, > amin. 9y, is considered the center
of a hotspot with radius ty, and statistical significance ay,.

4 Hotspot Detection with Predefined Radius
(HDPR)

In this section, we present our solution to HDPR problem, i.e.,
hotspot detection with predefined radius. The key idea is to effi-
ciently use the network local K-function at a specific distance and
statistical significance to detect hotspots. This requires efficient
computation of N and L for every vertex. For Vertex ¢ with net-
work distance t, N(¢|3) represents the number of event vertices
reachable from J within distance ¢, and L(t|J) represents the sum
of edge weights within distance ¢. There are three main components
of our algorithms for HDPR: (1) Graph Traversal, (2) Batch-Based
Traversal, and (3) Incremental Batched Traversal.

4.1 Graph Traversal (GT)

GT is the core technique for computing N and L values for any
event vertex. GT initiates a Dijkstra shortest path-based traver-
sal [7] that originates from an event node, say J. The objective is to
count events that are within a shortest path distance ¢ and use this
count to compute N(¢|?) and L(¢|9) and hence the network local
K-function value for J. GT starts with setting N(¢|J) and L(¢|9) to
0. Initially, the isodistance sub-network of ¢ is not discovered. GT
incrementally explores edges and segments and keeps track of all
vertices (event and location) that are reachable from & sorted based
on their shortest path distances. Then, GT visits Vertex u that is clos-
est to J. If u is an event vertex, then N (¢|9) is incremented by 1. To
update L(t|9), GT checks the weight u can contribute to the neigh-
boring Edge or Segment (u, v), which is min(t — dist(8,u), w(u,v)).
If t — dist(9,u) > w(u,v) then (u,v) is fully traversed. Otherwise,
(u,v) is partially traversed. This means Edge/Segment (u,v) par-
tially contributes to L(¢|3). We keep track of the partial contribution

of (u,v) to L(t|9), i.e., P(u,v) =t — dist(J, u). GT keeps iterating
until all vertices within the distance t from & are visited.
Running Example: In Figure 1, we want to check if i is a hotspot
with t = 10 and significance level @ = 90%. To compute N (¢|i) and
L(t|i), we traverse the graph starting from i. j is the first vertex
visited and N (¢|i) is incremented to 2 (from Events i, and j). L(t|i) =
10 because (i, j) is fully traversed and Segment (j, A) is partially
traversed with P(j, A) = 6. Then, Location Vertex D is visited, with
L(t|i) = 20. This is because Segment (i, D) is fully traversed and
Edge (D, G) is partially traversed with P(D, G) = 10 — 8 = 2. Hence

K(10,i) = N(;li) = o,fw = 19.33 and that is a significance of level
of 47.9%. Recall that p = % = % = 0.103. This indicates that i

does not qualify as a hotspot.

4.2 Batch-Based Traversal (BBT)

While GT accurately computes N and L for each event vertex, GT
is inefficient as events are processed individually. We speed up GT
by adding batch processing of events, i.e., Batched-Based Traversal
(BBT). BBT computes N and L values of events that belong to a
single Edge e in a single batch. The key idea here is that events on
the same edge are close to each other and have the same neighboring
events. This allows sharing the computation among events on the
same edge. The objective in BBT is to compute N and L for the
events along e in a single batch. This is done by traversing each edge
in G and evaluating the edge’s contribution to N and L of events
along e. To speed up the processing of event batches within an edge,
events within an edge are sorted according to their distances to one
of the edge’s endpoints, and the list of sorted events on e is stored
as Se. In the following, we discuss how to batch compute the N and
L of events along Edge e = (P, Q).

First, we evaluate the contribution of events of Edge e to their
own N and L values. If t > w(e), then we increment N by |e|, i.e.,
the number of events along e, and L by w(e), i.e., the weight of
Edge e, for all events. The reason is that all events on e are within
distance t of each other. Otherwise, we apply a sliding-window-
based approach that incrementally computes the N and L for each
event. The length of the window is 2t to account for the situation
where an event is in the middle of Edge e and there are events on
both sides of this event on e. Initially, the sliding window begins at
the first event in Se, say J. N(¢|3) and L(t|8) are updated according
to the vertices, edges, and segments covered in the window. When
the processing of 9 is complete, the window slides towards the
next event in S,. This results in the addition of new segments to
the window and the removal of other segments. The N and L of
the new event can be updated according to the N, L of J, and the
difference in the window segments. The window keeps sliding until
all events along e are processed. Figure 3 shows an example.

Then, we categorize any Edge, say e1, from graph G into the
following categories:

(1) Category1: All events in e; are within ¢ distance from all
events in e. N and L for events on e are batch increased by
le1| and w(eq), respectively.

(2) Category2: No events in e are within ¢ distance from events
in e. In this case, e; does not affect the values of N and L for
events on e.



Figure 3: Sliding Window  Figure 4: Edge Categories

(3) Category3: Some events in e; are within ¢ distance from
events in e.

The processing of Categories 1 and 2 has been described above.
To present our solution to Category 3, we define the notions of
maximum distance and minimum distance between edges. For an
Edge é = (P, Q), we define the minimum distance between e and
€, as the minimum distance between any endpoint in e and any
endpoint in é. Formally,

Din (e, &) = min{dist(P, P), dist(P, Q), dist(Q, P), dist (0, 0)}

The maximum distance between e and é is the upper-bound on the
shortest network travel distance between any event in e and any
event in €. Formally,

Dmax (e, €) = Dmin(e, €) + w(e) + w(€)

In Figure 4, Dpin((H, G), (A, D)) is the distance between D and G,
which equals to 8. Dyax ((H, G), (A, D)) = Dmin((H,G), (A, D)) +
w(H, G)+w(A, D) = 8+10+28 = 46. For Category 3, Diin(e, €) < t
and Dyax (e, €) > t and some events in € may not be reachable from
events on e. This requires events in e to be examined individually.

In this case, BBT sequentially visits the events along e, i.e., Se[i]
fori =1,...,|Se|. For each event, S, [i], along Edge e, we calculate the
shortest distance from S, [i] to P, denoted as dist(Se[i], P), where
dist(Se[i],P) = min(dist(Se[i],P) + dist(P,P),dist(Se[i], Q) +
dist(Q, P)).

Then we compute ¢ — dist(Se[i], P), which is the remaining
weight that S [i] can disseminate along Edge ¢ from P to Q. Simi-
larly, we compute ¢ — dist(Se|[i], 0), which is the remaining weight
that Se[i] can disseminate along Edge € from Oto P.

Denote r; (P) = max(t — dist(S.[i], P), 0) and r;(Q) = max(t —
dist(S.[i],0),0), we define the following scenarios based on the
relationship between r; (P) + r;(0) and w(é):

(1) Case 1: r;(P) + ri(Q) > w(é). In this case, Se[i] can reach any
place on é within ¢ distance. L(#|S¢[i]) is incremented by w(€é) and
N(t|Se[i]) is incremented by |é|.

(2) Case 2: r;(P) + i (Q) < w(é). In this case, L(¢|S,[i]) is incre-
mented by r;(P) +r;(Q). As for N(t|S.[i]), since the events along
each edge are sorted, we perform a binary search with key equals
to r;(P) to retrieve the number of events on ¢ reachable from P
to O, and update N(t|Se[i]). Similarly, we perform another binary
search with key equals to ri(Q) to retrieve the number of events
reachable from O to P and update N (¢|S,[i]).

BBT creates a set E.; to store edges such that Vé € E.;,
Dmin(e,€) < t. Then, BBT computes the set of location vertices
reachable from P or Q within ¢ shortest distance, denoted as Dp’Q,
using the Dijkstra single source shortest path algorithm [7]. Finally,

BBT iterates over location vertices in Dp . For each vertex in Dp g,
denoted as P, we add every edge connected to P, say € = (15, Q)
to the set E. ;. Then, edges € in E. ; are visited incrementally and
assessed for the contribution of € towards the N and L values of
events along Edge e. BBT batch updates N and L for edges in Cat-
egory 1 and applies a binary-search based method to update N
and L for edges in Category 3. The time complexity of BBT is
O(|Ve||Ee|log :}s/i‘l +|Ee|2log|Vy| + |Ve|log| Ve |). The space complex-
ity is O(|Ve| + |Vj| + |Ee|). The proof is given in Appendix A.1.
Running Example: In Figure 4, when processing the events
along Edge e = (J,S), we have Djs = {F,],S,Z,R,H,G} when
t = 15, and E.; includes all edges except for (B,C) and (A, D).
We first process e itself. Since t = 15 > w(e) = 10, we batch
update N = 3 and L = 7 for all events. Then, other edges satisfying
Category 1, 2, and 3 are colored blue, red, and green, respectively.
After processing the edge e itself and traversing all edges of Cat-
egory 1: (F, J),(F,Z), (S,R), and (R, G), the N and L of events are
batch updated to 3 and 22, respectively. Edges satisfying Category
2 are red-colored and pruned as they do not contribute to N and
L of any event along e. Then we evaluate the edges in Category
3. Take (H,G) as an example, the minimum distance between e
and (H, G) is 8, but the maximum distance is 25. Say S, = [d, b, a].
We have ri(H) = max(t — dist(d, H),0) = max(15 — 12,0) = 3,
and r1(G) = max(t — dist(d, G),0) = max(15 — 14,0) = 1. Since
r1(H) +r1(G) = 4 < 10, this falls into Case 2. We invoke a binary
search with a key equals to 3 from H to G to find that the number
of reachable events is 0. Similarly, we invoke a binary search with
a key equal to 1 from G to H and find that the number of reachable
events is 1. Thus we increment L(t|d) by 4 and N(¢|d) by 1. After
batch evaluation of N and L, we have N(15|a) = 9, N(15|b) = 7,and
N(15|d) = 5. Further, L(15|a) = 42, L(15|b) = 43, and L(15|d) = 45.

Their respective K function values are K(15|a) = %ﬂ‘l) = ﬁ =
N(15|b N(15|d
87, K(15]p) = NI = T = 67.66, and K(15d) = Y110 —
5 Ve|—-1 13—1 . .
o303 = 48.33, where p = % = 31 = 0.103. Finally, the statis-

tical significance for a, b, d are 99.74%, 93.64%, 58.09%. Hence, a and
b are hotspots with t = 15 and @ = 90%.

4.3 Incremental Batched Traversal (IBT)

BBT requires a binary search for each event along Edge e to find
the number of events reachable from both ends of Edge é. This
operation is repeated for every event which can be expensive. We
introduce Incremental Batched Traversal (IBT) to solve this problem.
IBT employs incremental processing to compute N and L values
for an event vertex based on the N and L values of its neighbor.

Similar to BBT, IBT also processes events along Edge e, repre-
sented as Se[i], in sequential order, for i ranging from 1 to |S|. For
each event along e, i.e., Se[i], IBT calculates values ri(P) and r;(Q).
The handling of Case 1 in Category 3 is identical to that of BBT.
However, IBT handles Case 2 incrementally.

For the first event along Edge e, represented as S, [i] withi =1,
IBT initiates a binary search with key equals to r;(P) along S;.
Then IBT maintains a pointer, denoted as ptr. This pointer points
to the furthest vertex that S, [i] can reach from P to Q. Likewise,
another binary search with a key equal to r;i(Q) is invoked and



Algorithm 1: Incremental Batched Traversal (IBT)
Input: G : The spatial network
t : The network traverse distance
Output: N and L for each event vertex

1 Ns,Ls={},{}

2 for each Edgee = (P,Q) in G do

3 Dp,p = location vertices reachable from P or Q within t

4 Eet = Set()

5 for P in Dpp do

6 for Q in P’s neighbors do

7 é=(P,Q)

8 addé toEe;

9 for e in E.; do
10 //edges in E¢ — E¢ ¢ are in Category 2 and are pruned
1 if e == ¢ then

12 ‘ apply the Sliding Window approach
13 else

14 compute Dpin (e, €) and Dppax (e, €)

15 if Dpax(e, €) > t then

16 ‘ update N,L based on Category 1

17 else

18 ‘ incrementally update N,L based on Category 3
19 update Ns and Ls with the events along e

20 return Ns, Ls

IBT maintains another pointer, denoted as ptr s, that points to the

furthest vertex reachable by S,[i] from O to P along é.

Beginning from i = 2, when computing the number of events
on ¢ that can be reached from S,[i] (either from O to P or from
P to Q), IBT starts from the previous pointers, piry and ptrp. It
then compares r;(P) against r;_1(P) and r;(Q) against r;_1(0),
and updates the positions of the two pointers, effectively tracking
the current furthest event that can be reached from both ends and
updating N (t|Se[i]) and L(¢|Se[i]) accordingly. IBT continues until
all the events along e have been processed. The time complexity of
IBT is O(|Ve||Ee| + |Ee|?log|Vj| + |Ve|log|Ve|). The space complexity
is O(|Ve| + |V;| + |Ee|). The proof is presented in Appendix A.2.

Running Example: In Figure 4, when processing events along
Edge e = (J,S) with t = 15 regarding Edge (H, G), in the first
iteration, S¢[1] = d, and we have r1 (H) = 3 and r1 (G) = 1, because
t —dist(d,H) = 3 and t — dist(d,G) = 1. We have two pointers,
ptry pointing to H, and ptrg pointing to g. Then, in the second
iteration, S¢[2] = b, and we have ry(H) = 1 and r2(G) = 3, because
t —dist(b,H) = 1and t — dist(b,G) = 3. Since ry(H) —r1 (H) = -2,
ptry still points to H. On the other hand, r2(G) — r1(G) = 2 and
ptrg now points to f. Algorithm 1 gives the pseudocode for IBT.

5 Hotspot Detection without Predefined Radius
(HDWPR)

In this section, we present the solution for HDWPR problem, i.e.,
hotspot detection without a predefined radius. For each hotspot
vertex, there exists an optimal radius that most accurately defines
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the precise locality of the hotspot. In the following, we discuss how
to determine the optimal radius for a hotspot.

5.1 Optimal Hotspot Radius Determination

Consider a hotspot Vertex J, there can be O(|V|) distinct shortest
distances between & to other event vertices. The possible radii
for 9 come from distinct shortest distances between ¢ to all other
event vertices [33]. For example, in Figure 1a, there are 11 distinct
distances from Event a to other event vertices. Suppose that the
distances are sorted as (rq,...r11) where r; < riy1. Fori € [1,11],
we have r; = dist(a,b) = 3 and r1; = dist(a,p) = 30. Each r;
corresponds to a statistical significance level «;. Figure 5 shows the
statistical significance for each radius. From the figure, we see that
when t = 5, i.e., o, we achieve the first local maximum significance
of 97.83%. In this case, the isodistance subnetwork of a includes
a, b, and d, as shown in Figure 6a. When t = 15, i.e., rs, we achieve
the global maximum statistical significance of 97.83%. In this case,
the isodistance subnetwork of a includes a,b,d,m, h,g, f, w, q, as
shown in Figure 6b. The events in the isodistancce subnetwork
shown in Figure 6a are more localized compared to the events in
the isodistance subnetwork shown in Figure 6b.

For a given event vertex, we aim to identify the radius ¢ that
yields the first local maximum statistical significance. This
ensures that the identified hotspot is as localized as possible. The
radius that brings the first local maximum statistical significance
reflects a region where event occurrences are truly dense and not
affected by other nearby clusters. This approach ensures spatial
locality in hotspot detection, maximizing the relevance and accu-
racy of detected hotspots. This conforms to Tobler’s first law of
geography [35], "Everything is related to everything else, but near
things are more related than distant things".

In the search for the optimal hotspot radius, we start with an
initial radius value. Then, we increment the radius until we hit
the optimal radius value. Two questions arise here, (1) what is the



starting radius value, and (2) how to increment the radius. The
starting radius of a hotspot needs to be neither too small nor large.
If the starting radius is set too small, it could potentially lead to false
positive detection of hotspots. Conversely, if we set the starting
radius too large, we might overshoot and the large initial radius
could encompass multiple event clusters that are not in the same
spatial vicinity. Setting the starting radius to the distance between
the center and the event closest to it can be problematic. The reason
is that in most practical applications many events can be mapped to
the same location. This is due to the low accuracy of event mapping
or obfuscation of locations due to privacy constraints. In this case,
the starting radius will be set to 0. This will result in a statistical
significance of 1. This high statistical significance can lead to false
detection of hotspots.

We set the starting radius to the weight of the edge on which
the event is located. For instance, in Figure 6, we assign a starting
radius of 7 to event a, which corresponds to w(J, S). The rationale
behind this choice stems from the observation that events situated
on the same edge are inherently closer and more likely to be in-
terconnected, thus making it a suitable initial range for hotspot
analysis. After obtaining the initial radius, we proceed with incre-
menting the radius. In each iteration, we increase the radius to the
minimum value required to include the next nearest event vertex
from the source event vertex. This iterative process continues until
we identify a radius that results in the first local maximum statisti-
cal significance. As an illustration, in Figure 6, during the second
iteration, we set the radius for Event a to be 10, which corresponds
to dist(a, q).

An exact approach to determine the optimal hotspot radius is by
utilizing the Graph Traversal Algorithm (GT), which is discussed
in Section 4.1. GT traverses the graph incrementally, visiting ver-
tices based on their distances from the source vertex. This incre-
mental graph traversal of GT guarantees exact and optimal re-
sults. However, GT is computationally expensive as it requires
performing O(|Ve|) graph traversals for each event due to the ex-
istence of up to O(|V,|) distinct distances. For instance, in Fig-
ure 6, the number of traversals for each event vertex can reach
up to 11. Consequently, for each event vertex, this process takes
O(|Ve|(|Ee| + |Es]) log(|Ve| + |V7])) time, since executing GT with a
specific distance ¢ requires O(|Ee| + |Es|) log(|Ve| + |V;|)) time and
there can be O(|V,|) different distances before reaching the first
local maximum.

Running Example: In Figure 6, the initial radius for a is set to 7
because w(J,S) = 7. We have N(7|a) = 3, L(7|a) = 14,and K(7|a) =
29 which corresponds to a statistical significance of 91.54%. The
next closest event to a is ¢ with dist(a, q) = 10. Consequently, in the
next iteration, the radius of a is set to 10, and N(10|a) = 4, L(10|a) =
22, and K(10]a) = 38.67, which yields a statistical significance of
89.79%. Since 89.79% < 91.54%, we conclude that the optimal radius
for event Vertex a is 7.

5.2 Approximate Hotspot Identification

To achieve a trade-off between scalability and solution quality, we
propose an approximate algorithm named Approximate Hotspot
Identification via Incremental Batched Traversal (AH-IBT). This al-
gorithm is an adaptation of our most efficient algorithm for hotspot
detection with a predefined radius, i.e., IBT.

Similar to IBT, AH-IBT computes the optimal ¢ for the events
along the same edge in a single batch. The process involves incre-
mentally increasing the radius values but in a coarser granular-
ity. We gradually increase the radius to cover the nearby location
vertices rather than event vertices so that the nearby edges are
incrementally traversed.

While determining the optimal radii for the events along e =
(P, Q), we store the distinct distances between P and other lo-
cation vertices in the array Dp. The array is sorted such that
Dpli] < Dpli+1] forall 1 < i < |Dp|, with Dp[1] = 0. Dur-
ing the ith iteration, we set the radius, t;, for events along Edge e as
t; = Dp[i] + w(e). This approach employs a coarser granularity in
incrementing the radius compared to the ground truth computation,
leading to enhanced computational efficiency. However, our exper-
imental results given in Section 6.3 and Appendix C.2, show that
this approximation maintains a high level of accuracy. It exhibits
less than a 5% error in determining the optimal radius for hotspots,
effectively striking a balance between efficiency and precision.

Algorithm 2 gives the outline of AH-IBT, during the first iter-
ation, i.e., i = 1, of identifying optimal radii for events along e,
AH-IBT applies IBT to compute the corresponding statistical sig-
nificance with radius ¢; for each event, C,, where C¢ [ j] represents
the statistical significance for the jth event along e. Meanwhile, we
initialize a mask array M of the same size as Ce. If C. [ j] surpasses
the minimum statistical significance threshold in this first iteration,
then M[j] is assigned a true value, implying that the optimal t value
for event S, [j] could be found at a larger ¢ value. Conversely, if
this threshold is not met, M[ ] is set to false, signifying that further
processing of this event is unnecessary as it does not form a hotspot
from its initial radius. The statistical significance from the initial
radius should be larger than a predefined threshold, suggesting
spatial locality of events is observed.

Starting from the second iteration, while recalculating the N and
L values for S, with the updated radius value, we restrict our pro-
cessing to events whose mask values are set to true. Also, since the
radius monotonically increases, we incrementally compute the new
N and L values by evaluating only the edges that become reachable
under the larger radius at each step to avoid redundant computa-
tion. Once the new statistical significance is obtained, we compare
these with the previous statistical significance for events marked
true in the mask array. If the new statistical significance exceeds
the previous one, the mask remains true, and we update the optimal
t value and the statistical significance for this event. Otherwise, the
mask is set to false, and we determine the optimal ¢ value for this
event to be the last ¢ value, corresponding to the local maximum
statistical significance. This iterative process continues until all
entries in the mask array are false. The time complexity of AH-IBT
is O(|Ve||Ee| + |Ee|?log|V;| + |Ve|log|Ve|). The space complexity is
O(|Ve| + |V;| + |Ee]). The proof is given in Appendix A.3.

Running Example: In Figure 6, when calculating the optimal
radii for the events along Edge e = (J, S), the initial radius in the
first iteration is set to 7. The corresponding statistical significances
for vertices d, b, and a are 84.45%, 89.36%, and 91.54%, respectively.
In the second iteration, the radius is set to 10 because the closest
location vertex to e[0] is F, and we have t = w(J,S) + w(F, J) = 10.
With the new radius, the statistical significances for vertices d, b,



Algorithm 2: Approximate Hotspot Identification

Input: G : The spatial network
MSS : The minimum statistical significance
Output: optimal radius for each event vertex
1 optimal_r={}
2 for each Edgee = (P,Q) in G do

3 maske = [True, True, ....] //mask array of events
4 SSe = [0,0,...] //statistical significance of events
5 re = [0,0,...] /optimal radii of events

6 te = w(P, Q) // starting radius

7 Dp = sorted distances between P to other location vertices
8 while mask.any() is True do

9 //process only events whose mask values are True
10 SSnew = IBT (e, t, mask)

1 fori=1tole|l do

12 //process each event along e

13 if First Iteration then

14 if SSpew[i] > MSS then

15 ‘ SSe[il = SSnewli]

16 else

17 ‘ maske[i] = False

18 else

19 if mask.[i] then

20 if SSpewli] > SSe[i] then

21 | SSelil = SSnewlil

22 else

23 reli] =t

24 maske [i] = False

25 incre = next smallest distance value in D,

26 te = w(P,Q) + incre
27 update optimal_r

28 return optimal_r

and a become 81.78%, 64.37%, and 89.79%, respectively. Therefore,
the optimal radius for events d, b, and a is determined to be 7.

6 Experimental Evaluation

In this section, we present an extensive experimental evaluation of
our proposed algorithms against the state-of-the-art algorithms for
hotspot detection over spatial networks.

6.1 Experimental Setup

We evaluate our algorithms for hotspot detection with a predefined
radius (HDPR), i.e., BBT and IBT against NS*. NS* is a modified
version of state-of-the-art neighborhood sharing (NS) [5] algorithm
that computes the network global K-Function. While NS computes
N values for each event vertex and sums it up, NS* also tracks L
values per event vertex with shared processing among neighbor
vertices. This allows it to compute the network local K-function.
For detecting hotspots without predefined radius (HDWPR), we
evaluate our proposed algorithm, i.e., AH-IBT against two state-of-
the-art algorithms, namely, AH-NS* and NPP*. AH-NS* combines
NS* with our proposed approximate hotspot identification algo-
rithm, i.e., AH from AH-IBT. NPP* is a modified version of NPP [33].

NPP is the state-of-the-art algorithm for object-centered hotspot
detection in spatial networks. NPP returns hotspots with scores as-
signed to all possible radii. NPP* modifies NPP to return the radius
with the maximum score per detected hotspot.

We measure the runtime for algorithms that detect hotspots with
a predefined radius (HDPR). For algorithms that detect hotspots
without a predefined radius (HDWPR), we measure both the
runtime and average error, i.e., terr. The average error repre-
sents the mean difference between the radius computed by the
hotspot detection algorithm and the optimal hotspot radius. terr =

to—t,

% yn [tc—t4]

i=1 max(té,t;)

puted by the algorithm and the optimal hotspot radius for the ith
hotspot, respectively. The optimal hotspot radius is defined in Sec-
tion 5.1. We use both real and synthetic datasets in the evaluation
of the proposed algorithms. The real datasets are the car collisions
in the Seattle network [11], car collisions in the New York City
network [19], 911 calls of the Detroit network [20], and crime lo-
cations of the Chicago network [24]. Synth-Seattle-Random is a
synthetic dataset that is based on the road network of Seattle with
randomly generated events. Synth-Detroit-Hotspots is a set of syn-
thetic datasets with hotspots based on the Detroit road network
topology with different numbers of location vertices and events.
The parameters of the datasets are given in Table 1.

, where t! and t; refer to the radius value com-

Table 1: Datasets

Dataset ‘ #Locations #Events

Seattle 11K 0.2M

Detroit 16K 5.1IM

Chicago 23K 7.6M
Synth-Seattle-Random 11K M
Synth-Detroit-Hotspots 1-5K 0.5K - 500K

Table 2: Parameters
Parameter ‘ Values

R - Radius (in meters) 200, 400, 600, 800, 1000
SS - Statistical Significance 90%, 92%, 94%, 96%,98%
MSS - Min Statistical Significance | 90%, 92%, 94%, 96%,98%

All algorithms are implemented using Python 3.10 and all ex-
periments are conducted over an Intel Xeon(R) server with CPU
E5-2637 v4 (3.50 GHz) and 128GB RAM running Ubuntu 16.04. Ta-
ble 2 summarizes the parameters used in all experiments. Bold
values represent the default settings for each parameter.

6.2 HDPR Evaluation

This section evaluates the performance of BBT and IBT against the
state-of-the-art algorithm NS* in computing hotspots with prede-
fined radius (HDPR).

6.2.1 The effect of radius (t) Figure 7 shows the runtime of
hotspot detection algorithms, i.e., BBT, IBT, and NS* while chang-
ing the predefined hotspot radius under both real and synthetic
datasets. In this figure, we see that IBT consistently outperforms
other algorithms. IBT is up to 28.67 times faster than NS*. The effi-
ciency of IBT is due to the following reasons: (1) efficient pruning of
vertices and edges that do not contribute to hotspots and (2) batch
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processing of events. This batch and shared processing allow up-
dating N and L values of multiple event vertices along the same
edge simultaneously. Although NS* uses neighborhood sharing,
NS* has a quadratic time step used to evaluate all pairs of edges
in the spatial network and it processes each event vertex individu-
ally, which is considerably expensive and leads to a longer runtime.
Also, Figure 7 shows that as the radius increases, the runtime for all
algorithms increases. The reason is that with larger radii, hotspot
detection algorithms need to explore more edges and vertices. This
results in an increase in runtime. Notice that, IBT remains stable
while increasing the radius. This is due to the efficiency of batch
processing and neighborhood sharing used in IBT.

6.2.2 The effect of the number of locations In this experiment,
we investigate the effect of increasing the number of location ver-
tices on the performance of predefined-radius hotspot detection
algorithms. We generate multiple granularities of the Detroit road
network using the Python OSMnx library [23] by tuning the li-
brary’s parameters. We change the number of location vertices
from 3K to 15K. Figure 8a shows the effect of increasing the number
of location vertices. IBT consistently achieves performance that is
up to 4.36 times faster than NS*. Notice that, the runtime of all algo-
rithms increases as the number of location vertices increases. The
main reason is that, as the number of location vertices increases,
the number of edges connecting location vertices increases. This
increases the edge traversal overhead required by all algorithms.
6.2.3 The effect of the number of events To study the effect of
the number of events on performance, we sample events from the
Detroit road network to obtain event sets with sizes ranging from
1M to 5M. Figure 8b shows that increasing the number of event
vertices results in increasing the runtime for all algorithms. The
reason is that increasing the number of event vertices results in
more processing per hotspot for all algorithms. Notice that, IBT is
the most efficient algorithm and consistently achieves up to 7.58
times faster compared to NS*. An additional experiment investigat-
ing how the statistical significance affects the runtime and accuracy

is given in Appendix C.1. Statistical significance has little impact on
the runtime because it only affects the final validation of hotspots.

6.3 HDWPR Evaluation

In this section, we evaluate the performance of AH-IBT against AH-
NS* and NPP* for spatial hotspot detection without a predefined
radius (HDWPR).
6.3.1 The effect of the number of events Figure 9a shows the
runtime of AH-IBT, AH-NS*, and NPP* evaluated with the number
of events ranging from 0.5K to 500K. It is worth noting that the
results for NPP* with larger datasets (events exceeding 5K) are not
shown due to its extremely long experimentation time. The figure
reveals that AH-IBT is more than three orders of magnitude faster
than NPP* and up to 2.81 times faster than AH-NS*. The efficiency
of AH-IBT stems from two main factors: (1) the inherent efficiency
of IBT due to its batch processing, and (2) AH-IBT’s focus on in-
vestigating hotspot radii that are likely to contribute to the final
answer, unlike NPP* which performs a nearly exhaustive search
on hotspot radii. Figure 9b presents the relative error, as defined
in Section 6.1, for hotspot detection algorithms while varying the
number of events. This figure clearly demonstrates that AH-IBT
achieves up to a 50% higher accuracy compared to NPP*. The reason
behind this improvement is that AH-IBT identifies the radius that
yields the first local maximum statistical significance, whereas NPP*
focuses more on the maximum log-likelihood ratio. Although the
log-likelihood score, combined with Monte-Carlo trials, provides
evidence of hotspot existence, it overlooks the spatial locality princi-
ple, which states that hotspots should be centralized and unaffected
by nearby clusters.
6.3.2 The effect of the number of locations Figure 10a illus-
trates the runtime of AH-IBT, AH-NS*, and NPP* using the synthetic
dataset that is based on the Detroit road network with varying
numbers of location nodes. Similar to the reasons discussed earlier,
AH-IBT consistently outperforms the other algorithms, being up to
more than four orders of magnitude faster than NPP* and 8.06 times
faster than AH-NS*. As the number of location vertices increases,
the runtime of all algorithms also increases due to the need to visit
more edges between the expanded nodes. However, it is important
to note that the performance of AH-IBT remains stable. Figure 10b
shows the error of AH-IBT, AH-NS*, and NPP*. For similar reasons,
both AH-IBT and AH-NS* achieve higher accuracy compared to
NPP*, with improvements of over 50%.

Additional experiments investigating how the minimum statisti-
cal significance, the number of hotspots, and the radii of hotspots
in the dataset affect the runtime and accuracy are presented in
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Appendix C.2. In these experiments, AH-IBT consistently achieves
the best runtime and accuracy.

7 Conclusion

This paper studies scalable hotspot detection in spatial networks,
ensuring statistical significance. We advocate the usage of the net-
work local K-function for discerning hotspots and present IBT, a
highly efficient batch processing algorithm, specifically designed to
compute hotspots over spatial networks with predefined radii. An
exhaustive experimental evaluation employing both real and syn-
thetic datasets indicates that IBT exhibits a performance that is up
to 28 times faster than its contemporary counterparts. Additionally,
we unveil AH-IBT, an adaptive algorithm derived from IBT, pur-
posed for the detection of hotspots along with their radii. AH-IBT
boasts a speed that surpasses the state-of-the-art algorithm by up to
four orders of magnitude times and delivers an accuracy that is over
50% superior. Our future work will extend our proposed algorithms
to accommodate moving objects within spatial networks.
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Appendix
A Complexity Analysis

This section presents the time and space complexity for all the proposed
algorithms.

A.1 Batch Based Traversal (BBT)
Vel

The time complexity of the BBT algorithm is O(|Ve||Ee|log B
|Ee|%10g|V;|+|Ve|log| Ve |) and the space complexity is O(|Ve|+|V;|+|Ee|).
BBT has two steps. (1) sorting the events along each edge, which takes
O(|Ve|log|Ve|). This is because it takes O(|e| log |e|) to sort the events
along e. Consequently, the complexity of sorting events along all edges is

> O(lelloglel) < O(log|Vel) > O(lel) = O(|Vellog|Vel)

ecEe e€Ee

+

(2) batch processing of events for every edge. For an Edge e = (P, Q), we first
compute the location vertices reachable from P or Q within a predefined
distance, which takes O (|E,|log |V;|). Then, for events along e, denote the
cost of evaluating the contribution of an edge € to events along e as C, 5. If
¢ falls into Category 1, then C, s = O(1). Otherwise, é falls into Category
3,and C. s = O(|e|log|é|) . The reason is that BBT invokes binary search
along é twice for all events on edge e, which takes O(|e|log|é|). BBT
visits O(|E.|) edges when evaluating events along e. The complexity of
evaluating events along e becomes

> Olelloglé]) = O(lel) ) O(log é])

écEe é€Ee
=0(lehO(log | | lél)
éeEe
< o<|e\>o<log<%>'h‘>
_ [Vel
= O(lel Ecllog 1)
Consequently, batch processing events along e takes a complexity of
O(|e||Ee|log%) + O(|Ee|log|Vy|). Since there are |E| edges to batch

evaluate, the total time complexity for Step 2 for batch processing all edges
becomes
[Vel

2, (OUlellEe|log 10 + O(IEelioglVil)) = ( 3 1eDO(|Ee]|log

ecEe ecEe

[Vel
|Ee|

) +1Ee|* log V]

Vel
= O(VelEelog 551 + |Eel*LogIVil)
e

The total complexity for Step 2 is O(|Ve||Ee| log ‘lgj + |Ee|log|V;]).

Combining the time complexities of Step 1 and Step 2, we conclude that the
time complexity of BBT is O(|Ve||Ee| log !521 +|Ee[2log| V| +|Ve|log| Ve ).

The space complexity of BBT is O(|Ve| + |V;| + |Ee|). This is due to
the storage required for each event vertex’s distance to the endpoint of
the edge it is located on, taking up O(|V,|) space, the storage required for
shortest path distances between location vertices, taking O(V;) space since

we process one edge at a time. In addition, the set E, ; includes up to |E|
edges, which takes O(|Ee|) space. Consequently, the total space complexity
of BBT is O(|Ve| + |Vi| + |Ee]).

A.2 Incremental Batched Traversal (IBT)

The time complexity of the IBT algorithm is O(|V,||Ec| + |Ec|?log| V| +
|Vellog|Ve|) and the space complexity is O(|Ve| + |V;| + |Ee|). Similar to
BBT, IBT also has two steps. (1) sorting the events along each edge, which takes
O(|Ve|log|Ve|) as proved above, and (2) batch processing of events in every
edge. However, IBT differs from BBT in Step 2, i.e., addressing edges in Cate-
gory 3. InIBT, C, s is bounded by O(|e| +|€|) instead of O(|e| log |€]). The
reason is that IBT utilizes two pointers, ptrs and piry, and updates them

in each iteration. Given the relationship between sdist (P, P), sdist (Q, P),

and w(e), three scenarios are considered for updating p¢r (updating Piry
is similar):

Scenario 1: sdist (P, P) + w(e) < sdist(Q, P). Here, r’(P) decreases
monotonically, causing ptr to move from O to P as i increases, resulting
O(|e| + |€]) complexity.

Scenario 2: sdist (Q, P)+w(e) < sdist (P, P). The complexity is similar
to Scenario 1, i.e., O(|e| + |€]).

Scenario 3: |sdist(P,P) — sdist(Q,P)] < w(e). The update of
pointer ptrp is monotonic for i € [1,j] and i € (j,|Se|] but in oppo-
site directions, where j € [1,|Se|] such that for any events Se[i] with
i < j,sdist(Seli],P) < sdist(Se[i], Q) and for any events S [i] with
i > j,sdist(Se[i], P) > sdist(Se[i], Q). This also gives a complexity of
O(lel +é]).

Updating pointer ptry also takes O(le| + |é|), proven similarly. IBT
visits O(|E.|) edges when evaluating events along e. The complexity of
evaluating events along e becomes

Do 0(el+1eh) = > Odeh+ > O(él) = Olel|Ee| + |Vel)

e€E,e écEe écEe

Consequently, batch processing events along e takes a complexity of
O(le||Ee| + |Vel) + O(|Ec|log|V;|). Since there are |E,| edges to batch
evaluate, the total complexity for Step 2 for batch processing all edges
becomes

D (O(lellEe| + Ve) + O(|EelloglVi)) = ( ) O(le))O(IEe]) + O(Vel|Eel) + O(|Ee |*log| Vi)
ecEe ecEe

= O(IVe ) O(IEe|) + O(IVel|Ee) + O(|Ee[*log|Vy])

= O(|VellEe| + |Ee[*log|Vj1)

The total complexity for Step 2is O(|Ve||Ee|+|Ee|?log|V;|). Combining
the time complexities of Step 1 and Step 2, we conclude that the time
complexity of IBT is O(|Ve||Ee| + |Ec|?log|V;| + | Ve|log|Ve|). The space
complexity of IBT is O(|Ve| + |V;| + |E¢|), proved similarly to BBT.

A.3 Approximate Hotspot Identification via

Batched Edge Traversal (AH-IBT)

AH-IBT discovers hotspots without predefined radius by incrementally
increasing the radius and computing the N and L using IBT for each radius.
Similar to IBT, AH-IBT has two steps (1) sorting the events along each edge,
and (2) batch processing of events and determine their optimal radii. Step 1
takes O(|Ve|log |Ve|), whichis proved above. Step 2 takes O (|e||E¢ |+|Ve|)
for the events along a single edge e. Since there can be O(|E,|) different
radii, plus the cost of incrementally retrieving location vertices closest to the
endpoint of é, which takes O(|E.|log |V;|), the complexity of processing a
single edge e is O(|e||Ee| + |Ve|) + O(|Ee|log|V|). Taking into account
all |E.| edges, the total complexity for Step 2 is O(|Ve||Ee | +|Ee|?log|Vi]),
proved similar to above.

Hence, the overall time complexity for AH-IBT is O(|Ve||Ee| +
|Ee|*1og|Vi| + |Ve|log|Ve|). The space complexity of AH-IBT is O(|Ve| +
|Vi| + |Ee|). The proof is similar to the above.

B Correctness Proof

In this section, we give the correctness proof for all the proposed algorithms.
We prove that the proposed algorithms, i.e., GT, BBT, and IBT compute
HDPR correctly by proving that they compute the N and L values correctly.
Then, we prove that AH-IBT correctly answers HDWPR.

GT: For an event vertex 5 if sdist (9, 1‘;) <t 9 is visited before GT’s
termination due to Dijkstra’s algorithm properties. Any Edge, or Segment,
e = (u, v) contributing to &’s L value is considered when visiting u or v.
This guarantees that all event and location vertices within ¢ distance of
& are factored into N and L updates. GT terminates when all remaining
vertices have distances to & exceeding ¢.
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Figure 11: Effect of Varying Statistical Significance (SS) in
HDPR

BBT and IBT: For an event J, BBT and IBT batch processes the compu-
tation of N and L with other events along the same edge e. Given another
event, S with dist (9, 1‘;) < t attached to € = (f’, Q), S is considered for
updating N and L since é fulfills either Category 1 or 3 for e. BBT and IBT
exclude any event 9 with dist(9,9) > t by pruning all edges that meet
Category 2 for e.

AH-IBT: The final radius ¢ output by AH-IBT is indeed the radius that
brings the first local maximum statistical significance. Suppose this local
maximum is identified at iteration i in Algorithm 2 when expanding the
radius for the event J, then for all iterations of expanding the radius before
i, the statistical significance of 3 monotonically increases according to our
definition in Section 5.2 . Then, from the i?”* to (i + 1)*” iteration of of
expanding the radius, the statistical significance of 9 drops. Thus, the radius
identified at at iteration i is the first local maximum statistical significance
for §.

C Additional Experiments
C.1 Additional Experiments for HDPR

This section presents additional experiments for HDPR, i.e., hotspot detec-
tion with predefined radius.

C.1.1 The effect of statistical significance Figure 11 shows the run-
time of BBT, IBT, and NS* while changing the statistical significance. IBT
consistently outperforms the other algorithms with up to 6.82 times speed
up for the same reasons explained in Section 6.2.1. Also, Figure 11 shows
that the runtime remains stable under different statistical significance lev-
els. The reason is that changing the statistical significance required for
hotspot detection does not significantly impact the computational overhead
of N and L in all algorithms. However, changing the required statistical
significance only affects the final validation of hotspots, as discussed in
Section 3. Although higher statistical significance results in fewer hotspots
being qualified and detected, this has little impact on the overall runtime of
algorithms.

C.2 Additional Experiments for HDWPR

This section presents additional experiments for HDWPR , i.e., hotspot
detection without a predefined radius.
C.2.1 The effect of the minimum statistical significance In this ex-
periment, we investigate how the minimum statistical significance affects
the runtime and average error for AH-IBT and AH-NS*. Notice that we
do not consider NPP* in this experiment as NPP* does not have statistical
significance as an algorithm parameter. Figure 12a shows that AH-IBT is
up to 2.44 times faster than AH-NS*. The reason is that AH-IBT is based
on IBT and AH-NS* is based on NS* which is slower than IBT. Figure 12b
shows that both AH-IBT and AH-NS* have the same average error because
they adopt the same algorithm for identifying the radii of hotspots.
Although Figure 12b shows that the average error increases as MSS
increases, there is no evident relationship between the average error and
the minimum statistical significance. This is because under different MSS,
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the hotspots involved in computing the average error are different, which
results in varying average error. However, in all cases, the average ¢ error
is less than 5%.

C.2.2 The effect of the number of hotspots and hotspots radii Fig-
ure 13a and Figure 14a show the runtime of AH-IBT, AH-NS*, and NPP*
using Synth-Detroit-Hotspots dataset defined in Table 1. Both figures show
that the number of hotspots and the radii of hotspots have a slight impact on
the runtime for all algorithms. For similar reasons discussed in Section 6.3.1,
AH-IBT consistently achieves better performance and it is up to four orders
of magnitude faster than NPP* and up to 1.88 times faster than AH-NS*.
Figure 13b and Figure 14b show the error of AH-IBT, AH-NS*, and NPP*.
AH-IBT and AH-NS* achieve better accuracy compared to NPP*, with up to
50%, for the same reason discussed in Section 6.3.1.



	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries and Problem Definition
	4 Hotspot Detection with Predefined Radius (HDPR)
	4.1 Graph Traversal (GT)
	4.2 Batch-Based Traversal (BBT)
	4.3 Incremental Batched Traversal (IBT)

	5 Hotspot Detection without Predefined Radius (HDWPR)
	5.1 Optimal Hotspot Radius Determination
	5.2 Approximate Hotspot Identification

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 HDPR Evaluation
	6.3 HDWPR Evaluation

	7 Conclusion
	References
	A Complexity Analysis
	A.1 Batch Based Traversal (BBT)
	A.2 Incremental Batched Traversal (IBT)
	A.3 Approximate Hotspot Identification via Batched Edge Traversal (AH-IBT)

	B Correctness Proof
	C Additional Experiments
	C.1 Additional Experiments for HDPR 
	C.2 Additional Experiments for HDWPR


