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Abstract

The widespread of geotagged data combined with modern map

services allows for the accurate attachment of data to spatial net-

works. Applying statistical analysis, such as hotspot detection, over

spatial networks is very important for precise quanti�cation and

patterns analysis, which empowers e�ective decision-making in var-

ious important applications. Existing hotspot detection algorithms

on spatial networks either lack statistical evidence on detected

hotspots, such as clustering, or they provide statistical evidence at

a prohibitive computational overhead. In this paper, we propose

e�cient algorithms for detecting hotspots based on the network

local K-function for prede�ned and unknown hotspot radii. The

network local K-function is a widely adopted statistical approach

for network pattern analysis that enables the understanding of

the density and distribution of activities and events in the spatial

network. However, its practical application has been limited due to

the ine�ciency of existing algorithms, particularly for large-sized

networks. Extensive experimental evaluation using real and syn-

thetic datasets shows that our algorithms are up to 28 times faster

than the state-of-the-art algorithms in computing hotspots with a

prede�ned radius and up to more than four orders of magnitude

faster in identifying hotspots without a prede�ned radius.
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• Information systems → Geographic information systems; •
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1 Introduction

The rapid growth of spatial data has sparked considerable interest

in spatial analysis [2, 22, 38]. Spatial data is usually associated with

spatial networks [5, 13, 27, 28, 31, 33, 37]. Spatial networks signi�-

cantly in�uence various aspects of society, from daily commuting

patterns [25] to the distribution of goods and services [10]. Hotspot

detection along the spatial network is an important problem that

identi�es regionswhere objects are signi�cantly concentrated. Com-

pared to Euclidean space, hotspot detection proves to be more

precise along spatial networks, given the fact that most human ac-

tivities are centered around these networks [22]. Hotspot detection

in spatial networks is applied in diverse �elds such as tra�c man-

agement [27], epidemiology control [28], and crime analysis [13].

In some cases, practitioners having speci�c domain knowledge aim

to identify hotspots within predetermined radii. For example, in

environmental studies [12], certain pollutants tend to a�ect a spe-

ci�c radius around the point of release, so, �xed-radius hotspots

could be established at this distance to pinpoint high-risk areas.

However, in many cases, the hotspot radius may not be known, e.g.,

identifying crime regions and tra�c congestion. Therefore, most

hotspot detection algorithms used in spatial networks automatically

determine the appropriate radius through enumeration [32–34, 39].

Existing hotspot detection methods along spatial networks fall

into two categories: clustering-based methods [6, 29, 31, 37, 41]

and statistical-based methods [2, 22, 32–34, 39]. While clustering

methods have e�cient runtime, they might produce false-positive

results [38]. In contrast, statistical-based methods o�er a thorough

statistical examination of the detected hotspots, typically by using

a scoring function for quanti�cation, e.g., log-likelihood score [33],

density score [32, 34], to �lter candidates. However, the scoring

function doesn’t directly give a statistical signi�cance guarantee

because it doesn’t take into account the variability that could arise

from random sampling. Consequently, randomization techniques

such as Monte Carlo Simulation are followed to further validate

the statistical signi�cance. However, performing such simulations

is expensive and can lead to performance issues.

The network local K-function [22, 40] is a statistical function for

the analysis of the distribution of objects in the spatial network. For

a given center, it computes the sum of edge weights and the number

of reachable objects in the network within a speci�c distance from

the center and derives a distribution function. Consequently, the

network local K-function can be used directly to compute a measure

of statistical signi�cance due to its incorporation of the distribution

function, without using randomization techniques for statistical

validation. This makes its computation e�cient and solution quality

statistically supported. Consequently, the network local K-function

can e�ciently and e�ectively detect hotspots in spatial networks.
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Detecting hotspots in spatial networks is challenging for several

reasons. Firstly, modern network datasets are extensive, including

up to millions of objects [24], whereas existing statistical meth-

ods for network hotspot detection are typically designed to handle

smaller datasets, usually thousands of objects [32–34]. Second, the

distances between objects are constrained by the network topology,

where edges in the network are intricate and interconnected, mak-

ing the distance computation more complicated compared to that

in Euclidean space. Third, determining the range of each hotspot

is computationally expensive. Existing statistical-based methods

for hotspot detection are mainly based on enumeration [15, 32–34],

which does not scale due to the vast candidate size involved.

In this paper, we address the limitations of the current hotspot

detection algorithms in spatial networks based on the network local

K-function. Our contribution can be summarized as follows:

• Wepropose two problems on spatial networks: Hotspot Detection

with Prede�ned Radius (HDPR) and Hotspot Detection With-

out Prede�ned Radius (HDWPR) based on the network local

K-function.

• We propose e�cient algorithms to solve the HDPR problem.

• We de�ne optimal hotspots radii and propose an approximate

algorithm to solve the HDWPR problem.

• We present complexity analysis and correctness proof for the

proposed algorithms.

• We conduct extensive experimental evaluations on both real and

synthetic spatial network datasets to demonstrate the e�ciency

of our methods.

The rest of the paper is organized as follows: Section 2 presents

the related work. Section 3 de�nes the problems. Section 4 and

Section 5 detail our proposed algorithms. Section 6 presents the

experimental evaluation and Section 7 concludes the paper.

2 Related Work

In this section, we discuss the work related to hotspot detection in

spatial networks and the evaluation of the network K-function.

Hotspot detection: Spatial hotspot detection is an important

problem with numerous applications, e.g., identifying regions with

high occurrences of diseases in the study of epidemiology [17, 30],

pinpointing locations with a high concentration of accidents or

congestion in tra�c management [18, 27], and revealing areas with

high crime rates in public safety [1]. Hotspot detection has been

studied extensively in the Euclidean space [38]. However, in this pa-

per we focus on hotspot detection in spatial networks as it provides

accurate insights based on actual edge distances.

Consider a set of events happening on a spatial network, a

hotspot [33] in a spatial network denotes a region in the network

that exhibits a high density of events compared to the mean number

of events. There are two main approaches for identifying hotspots

in spatial networks: (1) clustering-based hotspot detection, and (2) sta-

tistical analysis-based hotspot detection. Clustering-based hotspot

detection [6, 29, 31, 37, 41] aims to identify groups of events that

are close to each other in the network space. Extensions of tra-

ditional clustering approaches have been developed to support

spatial networks, e.g., partition-based clustering [16, 41], DBSCAN-

based [8, 37, 41], and hierarchical-based clustering [41]. While

clustering-based hotspot detection algorithms are considered com-

putationally e�cient, they lack strong statistical robustness, i.e.,

they can result in biased or misleading results [38]. For example,

partition-based clustering [41] and DBSCAN-based clustering [37]

algorithms will always return clusters even if the points are ran-

domly distributed. These clusters are not statistically robust and

are considered false positives for statistical methods.

Statistical-based hotspot detection [2, 22, 32–34, 39] de�nes

hotspots based on statistical models. These models identify regions

where the density of events signi�cantly exceeds the expected den-

sity assuming a speci�c event distribution. Khalid et al. [13] use

the NetKDE [18] to detect crime hotspots and the Getis-Ord GI* [9]

is adopted as the statistical evidence of hotspot properties. How-

ever, this method is rather computationally expensive for large

networks as it needs to compute the pairwise correlation between

events. Tang et al. [33], propose NPP, which is the most relevant

statistical method for object-centered hotspot detection in spatial

networks. NPP assigns a log-likelihood score for all possible radii

of hotspots, and uses network partitioning to prune spatial objects

that do not contribute to hotspots. Candidate hotspots are validated

using Monte Carlo simulation trials. While NPP provides strong

statistical evidence for detected hotspots, NPP is computationally

expensive because of the large number of Monte Carlo simulation

trails and the scoring of multiple radii per hotspot.

The network K-function: [22] is proposed as a robust measure

for density and distribution of spatial patterns in the network space.

It is divided into two categories: the network global K-function [5,

21, 22] and the network local K-function [22, 40]. Chan et al. [5]

introduced the state-of-the-art algorithm for the evaluation of the

network global K-function, which counts the object pairs within a

speci�c distance threshold. It speeds up the processing by sharing

the processing of nearby objects, i.e., neighborhood sharing. One

important limitation of the network global K-function is its inability

to identify objects that are part of dense clusters.

Recently, the network local K-function [22, 40] has been intro-

duced to better analyze the densities and distribution of spatial

objects surrounding a center object. It calculates the total number

of spatial objects that are within a speci�c network distance from

the center object as well as the sum of network distances between

those spatial objects and the center object. The main advantage of

the network local K-function is that it provides strong statistical

evidence on the densities of spatial objects in the network.

In this paper, we address the problem of e�cient hotpot iden-

ti�cation with strong statistical evidence using the network local

K-function. Notice that, existing statistical-based hotspot detection

algorithms [32–34] enumerate and score a large number of hotspot

radii. This is computationally expensive, even with the proposal

of pruning algorithms [33] that reduce the search space of hotspot

radii. On the contrary, we identify hotspots with and without a

prede�ned radius while avoiding the expensive enumeration. This

signi�cantly improves e�ciency without a�ecting utility.

3 Preliminaries and Problem De�nition

In this section, we formally de�ne the terminologies used and the

problems addressed in the paper.



(a) Spatial Network (b) Isodistance sub-network

Figure 1: Spatial Network Example

A spatial network [22], denoted as � = (+ , �), is an undi-

rected weighted graph where + is a set of vertices and � is a set

of edges. + has two types of vertices: (1) location vertices that

represent physical locations, e.g., road intersections and turning

points, and (2) event vertices that represent spatial events, e.g.,

vehicle locations, 911 calls, or tra�c collisions. Practically, the set

+ is the union of two sets: a set of location vertices and a set of

event vertices. The spatial events are overlaid over the physical

straight lines that connect physical locations. � represents the set of

connections among graph vertices.F (D, E) represents the weight of

the connection (D, E) and it is the network travel distance between

vertices D and E . Every connection 4 ∈ � is either: (1) an edge, or

(2) a segment. An edge is a direct connection between two location

vertices. A segment is a direct connection that connects an event

vertex to another event vertex or to a location vertex. Each segment

is overlaid on an edge and each edge is associated with zero or

more overlaid segments. Figure 1a gives a spatial network where

location vertices and event vertices are denoted by uppercase and

lowercase letters, respectively. In Figure 1a, Edge (�, � ) is an edge

associated with zero segments, while Edge (� , () is an edge associ-

ated with four segments (� , 3), (3, 1), (1, 0), and (0, (). � maintains

both edges and their overlaid segments as graph connections in

one set di�erentiated with a �ag attribute indicating their type. We

denote the shortest path distance between any pair of vertices G

and ~, as 38BC (G,~), where G and ~ can be location or event vertices.

In Figure 1a, F (� , () = 7, and event vertex > is overlaid on Edge

(�,� ) with 38BC (>, � ) = 8, 38BC (>, �) = 10, and 38BC (>,<) = 10.

The number of overlaid event vertices along an Edge 4 in � is

denoted as |4 |. The number of location vertices and event vertices

in � are denoted as |+Ģ | and |+ě |, respectively, so |+ | = |+Ģ | + |+ě |.

The number of edges and segments are denoted as |�ě | and |�ĩ |,

respectively, so |� | = |�ě | + |�ĩ |.

An isodistance sub-network [33] � (C |o) of an event Vertex o

with a given distance C is a network that consists of vertices, edges,

and segments that are reachable from o within a distance C . Edges

and segments could be fully or partially covered by � (C |o).

!(C |o) is the sum of weights of all the edges and segments in

� (C |o) and !(�) is the total weight of edges in � . If an edge or

a segment is partially covered by � (C |o), only the covered parts

are considered in !(C |o). The weights of edges and their overlaid

segments are not added twice. The number of event vertices in

� (C |o) is denoted as # (C |o). Figure 1b shows an example of � (5|0)

where all the edges, segments, and the event vertices encountered

in !(5|0) are highlighted in red. In this example, !(5|0) = 10 and

# (5|0) = 3 (counting event vertices0, 1, 3). In Figure 1a, !(�) = 116.

Figure 2: Probability Distribution Function

Whenever there is no ambiguity, !(C |o) is abbreviated as ! and

# (C |o) is abbreviated as # .

The network local K-function [22, 40] is a statistical function

to analyze the density and distribution of events surrounding a

center vertex. This function takes two inputs, an event Vertex o

and a network distance C . Formally,

 (C |o) =
# (C |o)

d

where d =

|Ēě |−1
Ĉ (ă )

represents the overall density of event vertices

within the entire network. In Figure 1a, d =
13−1
116 = 0.103, and

 (10|0) = 3
0.103 = 29.

Complete spatial randomness (CSR) hypothesis [22] is a fun-

damental spatial statistical hypothesis that describes random oc-

currence of spatial events. CSR states that random locations of

spatial events follow a homogeneous binomial point process [22].

We use the CSR hypothesis to represent a hypothetical distribution

of spatial events surrounding a center vertex without hotspots. The

expectation ` and variance f2 of the hypothetical spatial distribu-

tion surrounding o are calculated as follows:

` ( (C |o)) = !(C |o)

f2 ( (C |o)) =
1

|+ě | − 1
∗ !(�) ∗ !(C |o) ∗ (1 −

!(C |o)

!(�)
)

In Figure 1b, ` ( (5|0)) = !(5|0) = 10, and f2 ( (10|0)) = 1
13−1 ∗

116 ∗ 10 ∗ (1 − 10
116 ) = 88.33.

For a speci�c radius C , an event Vertex o is a hotspot when

the actual density of events within C distance from o exceeds the

expected density. We �nd the quantile of the actual local K-function

 (C |o) compared to the hypothetical distribution. If it is above a

preset threshold, e.g., 90%, o is considered a hotspot [22]. Formally,

o is a hotspot when

 (C |o) >  Ă (C |o)

where U is a preset quantile threshold that serves as the statistical

evidence of the identi�ed hotspot. Ă (C |o) represents the U quantile

of the  (C |o) distribution function.

Figure 2 represents the CSR-based probability distribution of

events surrounding Vertex 0 in Figure 1b and radius C = 5, given

` ( (5|0)) = 10, and f2 ( (5|0)) = 88.33. The 22.04 is the 90% quan-

tile of the hypothetical local K-function. The actual value of the local

K-function, i.e.,  (5|0) is 29. Hence 0 is considered a hotspot with

con�dence exceeding 90%. The quantile of 0 is 97.83% which repre-

sents an even higher statistical signi�cance of the hotspot 0. Higher



quantile values (>90%) make hotspot detection more stringent [40],

which improves the con�dence in the detected hotspots and avoids

false positives [38]. Based on the above discussion, we de�ne the

following problems for hotspot detection in spatial networks.

Problem 1. Hotspot Detection with Prede�ned Radius

(HDPR): Given a spatial network � = (+ , �), a minimum statis-

tical signi�cance threshold U , and a distance value C , �nd the set of

event vertices +Ą , such that o ∈ +Ą if o satis�es  (C |o) >  Ă (C |o).

In HDPR, hotspot detection is based on a prede�ned network

distance, C , and a statistical signi�cance threshold, U . Any event

Vertex o is identi�ed as a hotspot if  (C |o) >  Ă (C |o). However, in

some situations, users may not have a speci�c idea about the best

radius to choose for hotspots. Hence, we de�ne the following prob-

lem for hotspot detection that returns hotspots alongside their radii.

Instead of a predetermined radius, each hotspot is characterized by

an optimal radius discovered by the algorithm.

Problem 2. Hotspot Detection Without Prede�ned Radius

(HDWPR): Given a spatial network � = (+ , �) and a minimum

statistical signi�cance threshold UģğĤ , �nd a set of hotspots � , each

hotspot ℎ ∈ � is de�ned with a triple (oℎ, Cℎ, Uℎ) where oℎ ∈ + is

an event vertex with radius Cℎ and statistical signi�cance Uℎ , where

 (Cℎ |oℎ) >  ĂģğĤ (Cℎ |oℎ) and Uℎ ≥ UģğĤ . oℎ is considered the center

of a hotspot with radius Cℎ and statistical signi�cance Uℎ .

4 Hotspot Detection with Prede�ned Radius

(HDPR)

In this section, we present our solution to HDPR problem, i.e.,

hotspot detection with prede�ned radius. The key idea is to e�-

ciently use the network local K-function at a speci�c distance and

statistical signi�cance to detect hotspots. This requires e�cient

computation of # and ! for every vertex. For Vertex o with net-

work distance C , # (C |o) represents the number of event vertices

reachable from o within distance C , and !(C |o) represents the sum

of edge weights within distance C . There are three main components

of our algorithms for HDPR: (1) Graph Traversal, (2) Batch-Based

Traversal, and (3) Incremental Batched Traversal.

4.1 Graph Traversal (GT)

GT is the core technique for computing # and ! values for any

event vertex. GT initiates a Dijkstra shortest path-based traver-

sal [7] that originates from an event node, say o . The objective is to

count events that are within a shortest path distance C and use this

count to compute # (C |o) and !(C |o) and hence the network local

K-function value for o . GT starts with setting # (C |o) and !(C |o) to

0. Initially, the isodistance sub-network of o is not discovered. GT

incrementally explores edges and segments and keeps track of all

vertices (event and location) that are reachable from o sorted based

on their shortest path distances. Then, GT visits VertexD that is clos-

est to o . If D is an event vertex, then # (C |o) is incremented by 1. To

update !(C |o), GT checks the weight D can contribute to the neigh-

boring Edge or Segment (D, E), which is<8=(C −38BC (o,D),F (D, E)).

If C − 38BC (o,D) ≥ F (D, E) then (D, E) is fully traversed. Otherwise,

(D, E) is partially traversed. This means Edge/Segment (D, E) par-

tially contributes to !(C |o). We keep track of the partial contribution

of (D, E) to !(C |o), i.e., % (D, E) = C − 38BC (o,D). GT keeps iterating

until all vertices within the distance C from o are visited.

Running Example: In Figure 1, wewant to check if 8 is a hotspot

with C = 10 and signi�cance level U = 90%. To compute # (C |8) and

!(C |8), we traverse the graph starting from 8 . 9 is the �rst vertex

visited and# (C |8) is incremented to 2 (from Events 8 , and 9 ). !(C |8) =

10 because (8, 9) is fully traversed and Segment ( 9, �) is partially

traversed with % ( 9, �) = 6. Then, Location Vertex � is visited, with

!(C |8) = 20. This is because Segment (8, �) is fully traversed and

Edge (�,�) is partially traversed with % (�,�) = 10− 8 = 2. Hence

 (10, 8) =
Ċ (Ī |ğ )

Ā =
2

0.103 = 19.33 and that is a signi�cance of level

of 47.9%. Recall that d =

|Ēě |−1
Ĉ (ă )

=
12
116 = 0.103. This indicates that 8

does not qualify as a hotspot.

4.2 Batch-Based Traversal (BBT)

While GT accurately computes # and ! for each event vertex, GT

is ine�cient as events are processed individually. We speed up GT

by adding batch processing of events, i.e., Batched-Based Traversal

(BBT). BBT computes # and ! values of events that belong to a

single Edge 4 in a single batch. The key idea here is that events on

the same edge are close to each other and have the same neighboring

events. This allows sharing the computation among events on the

same edge. The objective in BBT is to compute # and ! for the

events along 4 in a single batch. This is done by traversing each edge

in � and evaluating the edge’s contribution to # and ! of events

along 4 . To speed up the processing of event batches within an edge,

events within an edge are sorted according to their distances to one

of the edge’s endpoints, and the list of sorted events on 4 is stored

as (ě . In the following, we discuss how to batch compute the # and

! of events along Edge 4 = (%,&).

First, we evaluate the contribution of events of Edge 4 to their

own # and ! values. If C > F (4), then we increment # by |4 |, i.e.,

the number of events along 4 , and ! by F (4), i.e., the weight of

Edge 4 , for all events. The reason is that all events on 4 are within

distance C of each other. Otherwise, we apply a sliding-window-

based approach that incrementally computes the # and ! for each

event. The length of the window is 2C to account for the situation

where an event is in the middle of Edge 4 and there are events on

both sides of this event on 4 . Initially, the sliding window begins at

the �rst event in (ě , say o . # (C |o) and !(C |o) are updated according

to the vertices, edges, and segments covered in the window. When

the processing of o is complete, the window slides towards the

next event in (ě . This results in the addition of new segments to

the window and the removal of other segments. The # and ! of

the new event can be updated according to the # , ! of o , and the

di�erence in the window segments. The window keeps sliding until

all events along 4 are processed. Figure 3 shows an example.

Then, we categorize any Edge, say 41, from graph � into the

following categories:

(1) Category1: All events in 41 are within C distance from all

events in 4 . # and ! for events on 4 are batch increased by

|41 | andF (41), respectively.

(2) Category2:No events in 41 are within C distance from events

in 4 . In this case, 41 does not a�ect the values of # and ! for

events on 4 .



Figure 3: Sliding Window Figure 4: Edge Categories

(3) Category3: Some events in 41 are within C distance from

events in 4 .

The processing of Categories 1 and 2 has been described above.

To present our solution to Category 3, we de�ne the notions of

maximum distance and minimum distance between edges. For an

Edge 4̃ = (%̃, &̃), we de�ne the minimum distance between 4 and

4̃ , as the minimum distance between any endpoint in 4 and any

endpoint in 4̃ . Formally,

�ģğĤ (4, 4̃) =<8={38BC (%, %̃), 38BC (%, &̃), 38BC (&, %̃), 38BC (&, &̃)}

The maximum distance between 4 and 4̃ is the upper-bound on the

shortest network travel distance between any event in 4 and any

event in 4̃ . Formally,

�ģėĮ (4, 4̃) = �ģğĤ (4, 4̃) +F (4) +F (4̃)

In Figure 4, �ģğĤ ((�,�), (�, �)) is the distance between D and G,

which equals to 8. �ģėĮ ((�,�), (�, �)) = �ģğĤ ((�,�), (�, �)) +

F (�,�)+F (�, �) = 8+10+28 = 46. For Category 3,�ģğĤ (4, 4̃) ≤ C

and�ģėĮ (4, 4̃) > C and some events in 4̃ may not be reachable from

events on 4 . This requires events in 4 to be examined individually.

In this case, BBT sequentially visits the events along 4 , i.e., (ě [8]

for 8 = 1, ..., |(ě |. For each event, (ě [8], along Edge 4 , we calculate the

shortest distance from (ě [8] to %̃ , denoted as 38BC ((ě [8], %̃), where

38BC ((ě [8], %̃) = <8=(38BC ((ě [8], %) + 38BC (%, %̃), 38BC ((ě [8], &) +

38BC (&, %̃)).

Then we compute C − 38BC ((ě [8], %̃), which is the remaining

weight that (ě [8] can disseminate along Edge 4̃ from %̃ to &̃ . Simi-

larly, we compute C −38BC ((ě [8], &̃), which is the remaining weight

that (ě [8] can disseminate along Edge 4̃ from &̃ to %̃ .

Denote Ağ (%̃) = <0G (C − 38BC ((ě [8], %̃), 0) and Ağ (&̃) = <0G (C −

38BC ((ě [8], &̃), 0), we de�ne the following scenarios based on the

relationship between Ağ (%̃) + Ağ (&̃) andF (4̃):

(1) Case 1: Ağ (%̃) + Ağ (&̃) ≥ F (4̃). In this case, (ě [8] can reach any

place on 4̃ within C distance. !(C |(ě [8]) is incremented byF (4̃) and

# (C |(ě [8]) is incremented by |4̃ |.

(2) Case 2: Ağ (%̃) + Ağ (&̃) < F (4̃). In this case, !(C |(ě [8]) is incre-

mented by Ağ (%̃) + Ağ (&̃). As for # (C |(ě [8]), since the events along

each edge are sorted, we perform a binary search with key equals

to Ağ (%̃) to retrieve the number of events on 4̃ reachable from %̃

to &̃ , and update # (C |(ě [8]). Similarly, we perform another binary

search with key equals to Ağ (&̃) to retrieve the number of events

reachable from &̃ to %̃ and update # (C |(ě [8]).

BBT creates a set �ě,Ī to store edges such that ∀4̃ ∈ �ě,Ī ,

�ģğĤ (4, 4̃) ≤ C . Then, BBT computes the set of location vertices

reachable from % or & within C shortest distance, denoted as �Č,č ,

using the Dijkstra single source shortest path algorithm [7]. Finally,

BBT iterates over location vertices in�Č,č . For each vertex in�Č,č ,

denoted as %̃ , we add every edge connected to %̃ , say 4̃ = (%̃, &̃),

to the set �ě,Ī . Then, edges 4̃ in �ě,Ī are visited incrementally and

assessed for the contribution of 4̃ towards the # and ! values of

events along Edge 4 . BBT batch updates # and ! for edges in Cat-

egory 1 and applies a binary-search based method to update #

and ! for edges in Category 3. The time complexity of BBT is

$ ( |+ě | |�ě | log
|Ēě |
|āě |

+ |�ě |
2;>6|+Ģ | + |+ě |;>6|+ě |). The space complex-

ity is $ ( |+ě | + |+Ģ | + |�ě |). The proof is given in Appendix A.1.

Running Example: In Figure 4, when processing the events

along Edge 4 = (� , (), we have � Ć ,ď = {�, � , (, /, ', �,�} when

C = 15, and �ě,Ī includes all edges except for (�,�) and (�, �).

We �rst process 4 itself. Since C = 15 > F (4) = 10, we batch

update # = 3 and ! = 7 for all events. Then, other edges satisfying

Category 1, 2, and 3 are colored blue, red, and green, respectively.

After processing the edge 4 itself and traversing all edges of Cat-

egory 1: (�, � ), (�, / ), ((, '), and (',�), the # and ! of events are

batch updated to 3 and 22, respectively. Edges satisfying Category

2 are red-colored and pruned as they do not contribute to # and

! of any event along 4 . Then we evaluate the edges in Category

3. Take (�,�) as an example, the minimum distance between 4

and (�,�) is 8, but the maximum distance is 25. Say (ě = [3, 1, 0].

We have A1 (� ) = <0G (C − 38BC (3, � ), 0) = <0G (15 − 12, 0) = 3,

and A1 (�) = <0G (C − 38BC (3,�), 0) = <0G (15 − 14, 0) = 1. Since

A1 (� ) + A1 (�) = 4 < 10, this falls into Case 2. We invoke a binary

search with a key equals to 3 from � to � to �nd that the number

of reachable events is 0. Similarly, we invoke a binary search with

a key equal to 1 from� to � and �nd that the number of reachable

events is 1. Thus we increment !(C |3) by 4 and # (C |3) by 1. After

batch evaluation of# and !, we have# (15|0) = 9, # (15|1) = 7, and

# (15|3) = 5. Further, !(15|0) = 42, !(15|1) = 43, and !(15|3) = 45.

Their respective K function values are  (15|0) =
Ċ (15 |ė)

Ā =
9

0.103 =

87,  (15|1) =
Ċ (15 |Ę )

Ā =
7

0.103 = 67.66, and  (15|3) =
Ċ (15 |Ě )

Ā =

5
0.103 = 48.33, where d =

|Ēě |−1
Ĉ (ă )

=
13−1
116 = 0.103. Finally, the statis-

tical signi�cance for 0, 1, 3 are 99.74%, 93.64%, 58.09%. Hence, 0 and

1 are hotspots with C = 15 and U = 90%.

4.3 Incremental Batched Traversal (IBT)

BBT requires a binary search for each event along Edge 4 to �nd

the number of events reachable from both ends of Edge 4̃ . This

operation is repeated for every event which can be expensive. We

introduce Incremental Batched Traversal (IBT) to solve this problem.

IBT employs incremental processing to compute # and ! values

for an event vertex based on the # and ! values of its neighbor.

Similar to BBT, IBT also processes events along Edge 4 , repre-

sented as (ě [8], in sequential order, for 8 ranging from 1 to |(ě |. For

each event along 4 , i.e., (ě [8], IBT calculates values Ağ (%̃) and Ağ (&̃).

The handling of Case 1 in Category 3 is identical to that of BBT.

However, IBT handles Case 2 incrementally.

For the �rst event along Edge 4 , represented as (ě [8] with 8 = 1,

IBT initiates a binary search with key equals to Ağ (%̃) along (ě̃ .

Then IBT maintains a pointer, denoted as ?CA
Č̃
. This pointer points

to the furthest vertex that (ě [8] can reach from %̃ to &̃ . Likewise,

another binary search with a key equal to Ağ (&̃) is invoked and



Algorithm 1: Incremental Batched Traversal (IBT)

Input: � : The spatial network

C : The network traverse distance

Output: # and ! for each event vertex

1 Ns, Ls = { }, { }

2 for each Edge 4 = (%,&) in G do

3 �Č,č = location vertices reachable from % or & within C

4 �ě,Ī = (4C ()

5 for %̃ in �Č,č do

6 for &̃ in %̃ ’s neighbors do

7 4̃ = (%̃, &̃)

8 add 4̃ to �ě,Ī
9 for 4̃ in �ě,Ī do

10 //edges in �ě − �ě,Ī are in Category 2 and are pruned

11 if 4 == 4̃ then

12 apply the Sliding Window approach

13 else

14 compute �ģğĤ (4, 4̃) and �ģėĮ (4, 4̃)

15 if �ģėĮ (4, 4̃) ≥ C then

16 update # ,! based on Category 1

17 else

18 incrementally update # ,! based on Category 3

19 update #B and !B with the events along 4

20 return Ns, Ls

IBT maintains another pointer, denoted as ?CA
č̃
, that points to the

furthest vertex reachable by (ě [8] from &̃ to %̃ along 4̃ .

Beginning from 8 = 2, when computing the number of events

on 4̃ that can be reached from (ě [8] (either from &̃ to %̃ or from

%̃ to &̃), IBT starts from the previous pointers, ?CA
č̃
and ?CA

Č̃
. It

then compares Ağ (%̃) against Ağ−1 (%̃) and Ağ (&̃) against Ağ−1 (&̃),

and updates the positions of the two pointers, e�ectively tracking

the current furthest event that can be reached from both ends and

updating# (C |(ě [8]) and !(C |(ě [8]) accordingly. IBT continues until

all the events along 4 have been processed. The time complexity of

IBT is$ ( |+ě | |�ě | + |�ě |
2;>6|+Ģ | + |+ě |;>6|+ě |). The space complexity

is $ ( |+ě | + |+Ģ | + |�ě |). The proof is presented in Appendix A.2.

Running Example: In Figure 4, when processing events along

Edge 4 = (� , () with C = 15 regarding Edge (�,�), in the �rst

iteration, (ě [1] = 3 , and we have A1 (� ) = 3 and A1 (�) = 1, because

C − 38BC (3, � ) = 3 and C − 38BC (3,�) = 1. We have two pointers,

?CAĄ pointing to � , and ?CAă pointing to @. Then, in the second

iteration, (ě [2] = 1, and we have A2 (� ) = 1 and A2 (�) = 3, because

C −38BC (1, � ) = 1 and C −38BC (1,�) = 3. Since A2 (� ) − A1 (� ) = −2,

?CAĄ still points to � . On the other hand, A2 (�) − A1 (�) = 2 and

?CAă now points to 5 . Algorithm 1 gives the pseudocode for IBT.

5 Hotspot Detection without Prede�ned Radius

(HDWPR)

In this section, we present the solution for HDWPR problem, i.e.,

hotspot detection without a prede�ned radius. For each hotspot

vertex, there exists an optimal radius that most accurately de�nes

Figure 5: Statistical Signi�cance under Di�erent Radii

(a) Local Maximum (b) Global Maximum

Figure 6: Hotspot Detection Example

the precise locality of the hotspot. In the following, we discuss how

to determine the optimal radius for a hotspot.

5.1 Optimal Hotspot Radius Determination

Consider a hotspot Vertex o , there can be $ ( |+ě |) distinct shortest

distances between o to other event vertices. The possible radii

for o come from distinct shortest distances between o to all other

event vertices [33]. For example, in Figure 1a, there are 11 distinct

distances from Event 0 to other event vertices. Suppose that the

distances are sorted as (A1, ...A11) where Ağ < Ağ+1. For 8 ∈ [1, 11],

we have A1 = 38BC (0, 1) = 3 and A11 = 38BC (0, ?) = 30. Each Ağ
corresponds to a statistical signi�cance level Uğ . Figure 5 shows the

statistical signi�cance for each radius. From the �gure, we see that

when C = 5, 8 .4 ., A2, we achieve the �rst local maximum signi�cance

of 97.83%. In this case, the isodistance subnetwork of 0 includes

0, 1, and 3 , as shown in Figure 6a. When C = 15, 8 .4 ., A8, we achieve

the global maximum statistical signi�cance of 97.83%. In this case,

the isodistance subnetwork of 0 includes 0, 1, 3,<,ℎ, 6, 5 ,F, @, as

shown in Figure 6b. The events in the isodistancce subnetwork

shown in Figure 6a are more localized compared to the events in

the isodistance subnetwork shown in Figure 6b.

For a given event vertex, we aim to identify the radius C that

yields the �rst local maximum statistical signi�cance. This

ensures that the identi�ed hotspot is as localized as possible. The

radius that brings the �rst local maximum statistical signi�cance

re�ects a region where event occurrences are truly dense and not

a�ected by other nearby clusters. This approach ensures spatial

locality in hotspot detection, maximizing the relevance and accu-

racy of detected hotspots. This conforms to Tobler’s �rst law of

geography [35], "Everything is related to everything else, but near

things are more related than distant things".

In the search for the optimal hotspot radius, we start with an

initial radius value. Then, we increment the radius until we hit

the optimal radius value. Two questions arise here, (1) what is the



starting radius value, and (2) how to increment the radius. The

starting radius of a hotspot needs to be neither too small nor large.

If the starting radius is set too small, it could potentially lead to false

positive detection of hotspots. Conversely, if we set the starting

radius too large, we might overshoot and the large initial radius

could encompass multiple event clusters that are not in the same

spatial vicinity. Setting the starting radius to the distance between

the center and the event closest to it can be problematic. The reason

is that in most practical applications many events can be mapped to

the same location. This is due to the low accuracy of event mapping

or obfuscation of locations due to privacy constraints. In this case,

the starting radius will be set to 0. This will result in a statistical

signi�cance of 1. This high statistical signi�cance can lead to false

detection of hotspots.

We set the starting radius to the weight of the edge on which

the event is located. For instance, in Figure 6, we assign a starting

radius of 7 to event 0, which corresponds toF (� , (). The rationale

behind this choice stems from the observation that events situated

on the same edge are inherently closer and more likely to be in-

terconnected, thus making it a suitable initial range for hotspot

analysis. After obtaining the initial radius, we proceed with incre-

menting the radius. In each iteration, we increase the radius to the

minimum value required to include the next nearest event vertex

from the source event vertex. This iterative process continues until

we identify a radius that results in the �rst local maximum statisti-

cal signi�cance. As an illustration, in Figure 6, during the second

iteration, we set the radius for Event 0 to be 10, which corresponds

to 38BC (0, @).

An exact approach to determine the optimal hotspot radius is by

utilizing the Graph Traversal Algorithm (GT), which is discussed

in Section 4.1. GT traverses the graph incrementally, visiting ver-

tices based on their distances from the source vertex. This incre-

mental graph traversal of GT guarantees exact and optimal re-

sults. However, GT is computationally expensive as it requires

performing $ ( |+ě |) graph traversals for each event due to the ex-

istence of up to $ ( |+ě |) distinct distances. For instance, in Fig-

ure 6, the number of traversals for each event vertex can reach

up to 11. Consequently, for each event vertex, this process takes

$ ( |+ě | ( |�ě | + |�ĩ |) log( |+ě | + |+Ģ |)) time, since executing GT with a

speci�c distance C requires $ ( |�ě | + |�ĩ |) log( |+ě | + |+Ģ |)) time and

there can be $ ( |+ě |) di�erent distances before reaching the �rst

local maximum.

Running Example: In Figure 6, the initial radius for 0 is set to 7

becauseF (� , () = 7.We have# (7|0) = 3, !(7|0) = 14, and (7|0) =

29 which corresponds to a statistical signi�cance of 91.54%. The

next closest event to 0 is @ with38BC (0, @) = 10. Consequently, in the

next iteration, the radius of 0 is set to 10, and# (10|0) = 4, !(10|0) =

22, and  (10|0) = 38.67, which yields a statistical signi�cance of

89.79%. Since 89.79% < 91.54%, we conclude that the optimal radius

for event Vertex 0 is 7.

5.2 Approximate Hotspot Identi�cation

To achieve a trade-o� between scalability and solution quality, we

propose an approximate algorithm named Approximate Hotspot

Identi�cation via Incremental Batched Traversal (AH-IBT). This al-

gorithm is an adaptation of our most e�cient algorithm for hotspot

detection with a prede�ned radius, i.e., IBT.

Similar to IBT, AH-IBT computes the optimal C for the events

along the same edge in a single batch. The process involves incre-

mentally increasing the radius values but in a coarser granular-

ity. We gradually increase the radius to cover the nearby location

vertices rather than event vertices so that the nearby edges are

incrementally traversed.

While determining the optimal radii for the events along 4 =

(%,&), we store the distinct distances between % and other lo-

cation vertices in the array �Č . The array is sorted such that

�Č [8] < �Č [8 + 1] for all 1 ≤ 8 < |�Č |, with �Č [1] = 0. Dur-

ing the 8Īℎ iteration, we set the radius, Cğ , for events along Edge 4 as

Cğ = �Č [8] +F (4). This approach employs a coarser granularity in

incrementing the radius compared to the ground truth computation,

leading to enhanced computational e�ciency. However, our exper-

imental results given in Section 6.3 and Appendix C.2, show that

this approximation maintains a high level of accuracy. It exhibits

less than a 5% error in determining the optimal radius for hotspots,

e�ectively striking a balance between e�ciency and precision.

Algorithm 2 gives the outline of AH-IBT, during the �rst iter-

ation, i.e., 8 = 1, of identifying optimal radii for events along 4 ,

AH-IBT applies IBT to compute the corresponding statistical sig-

ni�cance with radius Cğ for each event, �ě , where �ě [ 9] represents

the statistical signi�cance for the 9Īℎ event along 4 . Meanwhile, we

initialize a mask array" of the same size as �ě . If �ě [ 9] surpasses

the minimum statistical signi�cance threshold in this �rst iteration,

then" [ 9] is assigned a true value, implying that the optimal C value

for event (ě [ 9] could be found at a larger C value. Conversely, if

this threshold is not met," [ 9] is set to false, signifying that further

processing of this event is unnecessary as it does not form a hotspot

from its initial radius. The statistical signi�cance from the initial

radius should be larger than a prede�ned threshold, suggesting

spatial locality of events is observed.

Starting from the second iteration, while recalculating the # and

! values for (ě with the updated radius value, we restrict our pro-

cessing to events whose mask values are set to true. Also, since the

radius monotonically increases, we incrementally compute the new

# and ! values by evaluating only the edges that become reachable

under the larger radius at each step to avoid redundant computa-

tion. Once the new statistical signi�cance is obtained, we compare

these with the previous statistical signi�cance for events marked

true in the mask array. If the new statistical signi�cance exceeds

the previous one, the mask remains true, and we update the optimal

C value and the statistical signi�cance for this event. Otherwise, the

mask is set to false, and we determine the optimal C value for this

event to be the last C value, corresponding to the local maximum

statistical signi�cance. This iterative process continues until all

entries in the mask array are false. The time complexity of AH-IBT

is $ ( |+ě | |�ě | + |�ě |
2;>6 |+Ģ | + |+ě |;>6|+ě |). The space complexity is

$ ( |+ě | + |+Ģ | + |�ě |). The proof is given in Appendix A.3.

Running Example: In Figure 6, when calculating the optimal

radii for the events along Edge 4 = (� , (), the initial radius in the

�rst iteration is set to 7. The corresponding statistical signi�cances

for vertices 3 , 1, and 0 are 84.45%, 89.36%, and 91.54%, respectively.

In the second iteration, the radius is set to 10 because the closest

location vertex to 4 [0] is � , and we have C = F (� , () +F (�, � ) = 10.

With the new radius, the statistical signi�cances for vertices 3 , 1,



Algorithm 2: Approximate Hotspot Identi�cation

Input: � : The spatial network

"(( : The minimum statistical signi�cance

Output: optimal radius for each event vertex

1 optimal_r = { }

2 for each Edge 4 = (%,&) in G do

3 <0B:ě = [)AD4,)AD4, ....] //mask array of events

4 ((ě = [0, 0, ...] //statistical signi�cance of events

5 Aě = [0, 0, ...] //optimal radii of events

6 Cě = F (%,&) // starting radius

7 �Č = sorted distances between % to other location vertices

8 while<0B:.0=~ () is True do

9 //process only events whose mask values are True

10 ((Ĥěĭ = ��) (4, C,<0B:)

11 for 8 = 1 to |4 | do

12 //process each event along 4

13 if First Iteration then

14 if ((Ĥěĭ [8] > "(( then

15 ((ě [8] = ((Ĥěĭ [8]

16 else

17 <0B:ě [8] = �0;B4

18 else

19 if <0B:ě [8] then

20 if ((Ĥěĭ [8] > ((ě [8] then

21 ((ě [8] = ((Ĥěĭ [8]

22 else

23 Aě [8] = C

24 <0B:ě [8] = �0;B4

25 8=2A4 = next smallest distance value in �Ħ

26 Cě = F (%,&) + 8=2A4

27 update >?C8<0;_A

28 return >?C8<0;_A

and 0 become 81.78%, 64.37%, and 89.79%, respectively. Therefore,

the optimal radius for events 3 , 1, and 0 is determined to be 7.

6 Experimental Evaluation

In this section, we present an extensive experimental evaluation of

our proposed algorithms against the state-of-the-art algorithms for

hotspot detection over spatial networks.

6.1 Experimental Setup

We evaluate our algorithms for hotspot detection with a prede�ned

radius (HDPR), i.e., BBT and IBT against NS*. NS* is a modi�ed

version of state-of-the-art neighborhood sharing (NS) [5] algorithm

that computes the network global K-Function. While NS computes

# values for each event vertex and sums it up, NS* also tracks !

values per event vertex with shared processing among neighbor

vertices. This allows it to compute the network local K-function.

For detecting hotspots without prede�ned radius (HDWPR), we

evaluate our proposed algorithm, i.e., AH-IBT against two state-of-

the-art algorithms, namely, AH-NS* and NPP*. AH-NS* combines

NS* with our proposed approximate hotspot identi�cation algo-

rithm, i.e., AH from AH-IBT. NPP* is a modi�ed version of NPP [33].

NPP is the state-of-the-art algorithm for object-centered hotspot

detection in spatial networks. NPP returns hotspots with scores as-

signed to all possible radii. NPP* modi�es NPP to return the radius

with the maximum score per detected hotspot.

We measure the runtime for algorithms that detect hotspots with

a prede�ned radius (HDPR). For algorithms that detect hotspots

without a prede�ned radius (HDWPR), we measure both the

runtime and average error, i.e., CěĨĨ . The average error repre-

sents the mean di�erence between the radius computed by the

hotspot detection algorithm and the optimal hotspot radius. CěĨĨ =

1
Ĥ

∑Ĥ
ğ=1

|Īğę−Ī
ğ
ĝ |

ģėĮ (Īğę ,Ī
ğ
ĝ )
, where Cğę and Cğĝ refer to the radius value com-

puted by the algorithm and the optimal hotspot radius for the 8Īℎ

hotspot, respectively. The optimal hotspot radius is de�ned in Sec-

tion 5.1. We use both real and synthetic datasets in the evaluation

of the proposed algorithms. The real datasets are the car collisions

in the Seattle network [11], car collisions in the New York City

network [19], 911 calls of the Detroit network [20], and crime lo-

cations of the Chicago network [24]. Synth-Seattle-Random is a

synthetic dataset that is based on the road network of Seattle with

randomly generated events. Synth-Detroit-Hotspots is a set of syn-

thetic datasets with hotspots based on the Detroit road network

topology with di�erent numbers of location vertices and events.

The parameters of the datasets are given in Table 1.

Table 1: Datasets

Dataset #Locations #Events

Seattle 11K 0.2M

Detroit 16K 5.1M

Chicago 23K 7.6M

Synth-Seattle-Random 11K 1M

Synth-Detroit-Hotspots 1 - 5K 0.5K - 500K

Table 2: Parameters

Parameter Values

' - Radius (in meters) 200, 400, 600, 800, 1000

(( - Statistical Signi�cance 90%, 92%, 94%, 96%,98%

"(( - Min Statistical Signi�cance 90%, 92%, 94%, 96%,98%

All algorithms are implemented using Python 3.10 and all ex-

periments are conducted over an Intel Xeon(R) server with CPU

E5-2637 v4 (3.50 GHz) and 128GB RAM running Ubuntu 16.04. Ta-

ble 2 summarizes the parameters used in all experiments. Bold

values represent the default settings for each parameter.

6.2 HDPR Evaluation

This section evaluates the performance of BBT and IBT against the

state-of-the-art algorithm NS* in computing hotspots with prede-

�ned radius (HDPR).

6.2.1 The e�ect of radius (C) Figure 7 shows the runtime of

hotspot detection algorithms, i.e., BBT, IBT, and NS* while chang-

ing the prede�ned hotspot radius under both real and synthetic

datasets. In this �gure, we see that IBT consistently outperforms

other algorithms. IBT is up to 28.67 times faster than NS*. The e�-

ciency of IBT is due to the following reasons: (1) e�cient pruning of

vertices and edges that do not contribute to hotspots and (2) batch
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Figure 7: E�ect of Varying Radius in HDPR
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Figure 8: E�ect of Varying Number of Vertices in HDPR

processing of events. This batch and shared processing allow up-

dating # and ! values of multiple event vertices along the same

edge simultaneously. Although NS* uses neighborhood sharing,

NS* has a quadratic time step used to evaluate all pairs of edges

in the spatial network and it processes each event vertex individu-

ally, which is considerably expensive and leads to a longer runtime.

Also, Figure 7 shows that as the radius increases, the runtime for all

algorithms increases. The reason is that with larger radii, hotspot

detection algorithms need to explore more edges and vertices. This

results in an increase in runtime. Notice that, IBT remains stable

while increasing the radius. This is due to the e�ciency of batch

processing and neighborhood sharing used in IBT.

6.2.2 The e�ect of the number of locations In this experiment,

we investigate the e�ect of increasing the number of location ver-

tices on the performance of prede�ned-radius hotspot detection

algorithms. We generate multiple granularities of the Detroit road

network using the Python OSMnx library [23] by tuning the li-

brary’s parameters. We change the number of location vertices

from 3K to 15K. Figure 8a shows the e�ect of increasing the number

of location vertices. IBT consistently achieves performance that is

up to 4.36 times faster than NS*. Notice that, the runtime of all algo-

rithms increases as the number of location vertices increases. The

main reason is that, as the number of location vertices increases,

the number of edges connecting location vertices increases. This

increases the edge traversal overhead required by all algorithms.

6.2.3 The e�ect of the number of events To study the e�ect of

the number of events on performance, we sample events from the

Detroit road network to obtain event sets with sizes ranging from

1M to 5M. Figure 8b shows that increasing the number of event

vertices results in increasing the runtime for all algorithms. The

reason is that increasing the number of event vertices results in

more processing per hotspot for all algorithms. Notice that, IBT is

the most e�cient algorithm and consistently achieves up to 7.58

times faster compared to NS*. An additional experiment investigat-

ing how the statistical signi�cance a�ects the runtime and accuracy

is given in Appendix C.1. Statistical signi�cance has little impact on

the runtime because it only a�ects the �nal validation of hotspots.

6.3 HDWPR Evaluation

In this section, we evaluate the performance of AH-IBT against AH-

NS* and NPP* for spatial hotspot detection without a prede�ned

radius (HDWPR).

6.3.1 The e�ect of the number of events Figure 9a shows the

runtime of AH-IBT, AH-NS*, and NPP* evaluated with the number

of events ranging from 0.5K to 500K. It is worth noting that the

results for NPP* with larger datasets (events exceeding 5K) are not

shown due to its extremely long experimentation time. The �gure

reveals that AH-IBT is more than three orders of magnitude faster

than NPP* and up to 2.81 times faster than AH-NS*. The e�ciency

of AH-IBT stems from two main factors: (1) the inherent e�ciency

of IBT due to its batch processing, and (2) AH-IBT’s focus on in-

vestigating hotspot radii that are likely to contribute to the �nal

answer, unlike NPP* which performs a nearly exhaustive search

on hotspot radii. Figure 9b presents the relative error, as de�ned

in Section 6.1, for hotspot detection algorithms while varying the

number of events. This �gure clearly demonstrates that AH-IBT

achieves up to a 50% higher accuracy compared to NPP*. The reason

behind this improvement is that AH-IBT identi�es the radius that

yields the �rst local maximum statistical signi�cance, whereas NPP*

focuses more on the maximum log-likelihood ratio. Although the

log-likelihood score, combined with Monte-Carlo trials, provides

evidence of hotspot existence, it overlooks the spatial locality princi-

ple, which states that hotspots should be centralized and una�ected

by nearby clusters.

6.3.2 The e�ect of the number of locations Figure 10a illus-

trates the runtime of AH-IBT, AH-NS*, and NPP* using the synthetic

dataset that is based on the Detroit road network with varying

numbers of location nodes. Similar to the reasons discussed earlier,

AH-IBT consistently outperforms the other algorithms, being up to

more than four orders of magnitude faster than NPP* and 8.06 times

faster than AH-NS*. As the number of location vertices increases,

the runtime of all algorithms also increases due to the need to visit

more edges between the expanded nodes. However, it is important

to note that the performance of AH-IBT remains stable. Figure 10b

shows the error of AH-IBT, AH-NS*, and NPP*. For similar reasons,

both AH-IBT and AH-NS* achieve higher accuracy compared to

NPP*, with improvements of over 50%.

Additional experiments investigating how the minimum statisti-

cal signi�cance, the number of hotspots, and the radii of hotspots

in the dataset a�ect the runtime and accuracy are presented in
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Appendix C.2. In these experiments, AH-IBT consistently achieves

the best runtime and accuracy.

7 Conclusion

This paper studies scalable hotspot detection in spatial networks,

ensuring statistical signi�cance. We advocate the usage of the net-

work local K-function for discerning hotspots and present IBT, a

highly e�cient batch processing algorithm, speci�cally designed to

compute hotspots over spatial networks with prede�ned radii. An

exhaustive experimental evaluation employing both real and syn-

thetic datasets indicates that IBT exhibits a performance that is up

to 28 times faster than its contemporary counterparts. Additionally,

we unveil AH-IBT, an adaptive algorithm derived from IBT, pur-

posed for the detection of hotspots along with their radii. AH-IBT

boasts a speed that surpasses the state-of-the-art algorithm by up to

four orders of magnitude times and delivers an accuracy that is over

50% superior. Our future work will extend our proposed algorithms

to accommodate moving objects within spatial networks.
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Appendix

A Complexity Analysis
This section presents the time and space complexity for all the proposed

algorithms.

A.1 Batch Based Traversal (BBT)

The time complexity of the BBT algorithm is ċ ( |Ēě | |āě | log
|Ēě |
|āě |

+

|āě |
2Ģĥĝ |ĒĢ |+ |Ēě |Ģĥĝ |Ēě | ) and the space complexity isċ ( |Ēě |+ |ĒĢ |+ |āě | ) .

BBT has two steps. (1) sorting the events along each edge, which takes

ċ ( |Ēě | log |Ēě | ) . This is because it takesċ ( |ě | log |ě | ) to sort the events

along ě . Consequently, the complexity of sorting events along all edges is
∑

ě∈āě

ċ ( |ě | log |ě | ) ≤ ċ (log |Ēě | )
∑

ě∈āě

ċ ( |ě | ) = ċ ( |Ēě |Ģĥĝ |Ēě | )

(2) batch processing of events for every edge. For an Edge ě = (Č,č ) , we �rst

compute the location vertices reachable from Č orč within a prede�ned

distance, which takesċ ( |āě | log |ĒĢ | ) . Then, for events along ě , denote the

cost of evaluating the contribution of an edge ě̃ to events along ě asÿě,ě̃ . If

ě̃ falls into Category 1, thenÿě,ě̃ = ċ (1) . Otherwise, ě̃ falls into Category

3, andÿě,ě̃ = ċ ( |ě | log |ě̃ | ) . The reason is that BBT invokes binary search

along ě̃ twice for all events on edge ě , which takes ċ ( |ě | log |ě̃ | ) . BBT

visits ċ ( |āě | ) edges when evaluating events along ě . The complexity of

evaluating events along ě becomes

∑

ě̃∈āě

ċ ( |ě | log |ě̃ | ) = ċ ( |ě | )
∑

ě̃∈āě

ċ (log |ě̃ | )

= ċ ( |ě | )ċ (Ģĥĝ
∏

ě̃∈āě

|ě̃ | )

≤ ċ ( |ě | )ċ (Ģĥĝ (

∑
ě̃∈āě |ě̃ |

|āě |
) |āě | )

= ċ ( |ě | |āě |Ģĥĝ
|Ēě |

|āě |
)

Consequently, batch processing events along ě takes a complexity of

ċ ( |ě | |āě |Ģĥĝ
|Ēě |
|āě |

) +ċ ( |āě |Ģĥĝ |ĒĢ | ) . Since there are |āě | edges to batch

evaluate, the total time complexity for Step 2 for batch processing all edges
becomes
∑

ě∈āě

(ċ ( |ě | |āě | log
|Ēě |

|āě |
) +ċ ( |āě |Ģĥĝ |ĒĢ | ) ) = (

∑

ě∈āě

|ě | )ċ ( |āě | log
|Ēě |

|āě |
) + |āě |

2 log |ĒĢ |

= ċ ( |Ēě | |āě | log
|Ēě |

|āě |
+ |āě |

2Ģĥĝ |ĒĢ | )

The total complexity for Step 2 is ċ ( |Ēě | |āě | log
|Ēě |
|āě |

+ |āě |
2Ģĥĝ |ĒĢ | ) .

Combining the time complexities of Step 1 and Step 2, we conclude that the

time complexity of BBT isċ ( |Ēě | |āě | log
|Ēě |
|āě |

+ |āě |
2Ģĥĝ |ĒĢ | + |Ēě |Ģĥĝ |Ēě | ) .

The space complexity of BBT is ċ ( |Ēě | + |ĒĢ | + |āě | ) . This is due to

the storage required for each event vertex’s distance to the endpoint of

the edge it is located on, taking upċ ( |Ēě | ) space, the storage required for

shortest path distances between location vertices, takingċ (ĒĢ ) space since

we process one edge at a time. In addition, the set āě,Ī includes up to |āě |

edges, which takesċ ( |āě | ) space. Consequently, the total space complexity

of BBT isċ ( |Ēě | + |ĒĢ | + |āě | ) .

A.2 Incremental Batched Traversal (IBT)

The time complexity of the IBT algorithm isċ ( |Ēě | |āě | + |āě |
2Ģĥĝ |ĒĢ | +

|Ēě |Ģĥĝ |Ēě | ) and the space complexity isċ ( |Ēě | + |ĒĢ | + |āě | ) . Similar to

BBT, IBT also has two steps. (1) sorting the events along each edge, which takes

ċ ( |Ēě | log |Ēě | ) as proved above, and (2) batch processing of events in every

edge. However, IBT di�ers from BBT in Step 2, i.e., addressing edges in Cate-

gory 3. In IBT,ÿě,ě̃ is bounded byċ ( |ě | + |ě̃ | ) instead ofċ ( |ě | log |ě̃ | ) . The

reason is that IBT utilizes two pointers, ĦĪĨČ̃ and ĦĪĨč̃ , and updates them

in each iteration. Given the relationship between ĩĚğĩĪ (Č, Č̃ ) , ĩĚğĩĪ (č, Č̃ ) ,

andĭ (ě ) , three scenarios are considered for updating ĦĪĨČ̃ (updating ĦĪĨč̃
is similar):

Scenario 1: ĩĚğĩĪ (Č, Č̃ ) + ĭ (ě ) < ĩĚğĩĪ (č, Č̃ ) . Here, Ĩ ğ (Č̃ ) decreases

monotonically, causing ĦĪĨČ̃ to move from č̃ to Č̃ as ğ increases, resulting

ċ ( |ě | + |ě̃ | ) complexity.

Scenario 2: ĩĚğĩĪ (č, Č̃ )+ĭ (ě ) < ĩĚğĩĪ (Č, Č̃ ) . The complexity is similar

to Scenario 1, i.e.,ċ ( |ě | + |ě̃ | ) .

Scenario 3: |ĩĚğĩĪ (Č, Č̃ ) − ĩĚğĩĪ (č, Č̃ ) | ≤ ĭ (ě ) . The update of

pointer ĦĪĨČ̃ is monotonic for ğ ∈ [1, Ġ ] and ğ ∈ ( Ġ, |ďě | ] but in oppo-

site directions, where Ġ ∈ [1, |ďě | ] such that for any events ďě [ğ ] with

ğ ≤ Ġ , ĩĚğĩĪ (ďě [ğ ], Č ) ≤ ĩĚğĩĪ (ďě [ğ ],č ) and for any events ďě [ğ ] with

ğ > Ġ , ĩĚğĩĪ (ďě [ğ ], Č ) > ĩĚğĩĪ (ďě [ğ ],č ) . This also gives a complexity of

ċ ( |ě | + |ě̃ | ) .

Updating pointer ĦĪĨč̃ also takes ċ ( |ě | + |ě̃ | ) , proven similarly. IBT

visits ċ ( |āě | ) edges when evaluating events along ě . The complexity of

evaluating events along ě becomes
∑

ě̃∈āě

ċ ( |ě | + |ě̃ | ) =
∑

ě̃∈āě

ċ ( |ě | ) +
∑

ě̃∈āě

ċ ( |ě̃ | ) = ċ ( |ě | |āě | + |Ēě | )

Consequently, batch processing events along ě takes a complexity of

ċ ( |ě | |āě | + |Ēě | ) + ċ ( |āě |Ģĥĝ |ĒĢ | ) . Since there are |āě | edges to batch

evaluate, the total complexity for Step 2 for batch processing all edges

becomes

∑

ě∈āě

(ċ ( |ě | |āě | +Ēě ) +ċ ( |āě |Ģĥĝ |ĒĢ |) ) = (
∑

ě∈āě

ċ ( |ě |) )ċ ( |āě |) +ċ ( |Ēě | |āě |) +ċ ( |āě |
2Ģĥĝ |ĒĢ |)

=ċ ( |Ēě |)ċ ( |āě |) +ċ ( |Ēě | |āě |) +ċ ( |āě |
2Ģĥĝ |ĒĢ |)

=ċ ( |Ēě | |āě | + |āě |
2Ģĥĝ |ĒĢ |)

The total complexity for Step 2 isċ ( |Ēě | |āě |+ |āě |
2Ģĥĝ |ĒĢ | ) . Combining

the time complexities of Step 1 and Step 2, we conclude that the time

complexity of IBT isċ ( |Ēě | |āě | + |āě |
2Ģĥĝ |ĒĢ | + |Ēě |Ģĥĝ |Ēě | ) . The space

complexity of IBT isċ ( |Ēě | + |ĒĢ | + |āě | ) , proved similarly to BBT.

A.3 Approximate Hotspot Identi�cation via

Batched Edge Traversal (AH-IBT)
AH-IBT discovers hotspots without prede�ned radius by incrementally

increasing the radius and computing the Ċ and Ĉ using IBT for each radius.

Similar to IBT, AH-IBT has two steps (1) sorting the events along each edge,

and (2) batch processing of events and determine their optimal radii. Step 1

takesċ ( |Ēě | log |Ēě | ) , which is proved above. Step 2 takesċ ( |ě | |āě |+|Ēě | )

for the events along a single edge ě . Since there can beċ ( |āě | ) di�erent

radii, plus the cost of incrementally retrieving location vertices closest to the

endpoint of ě̃ , which takesċ ( |āě | log |ĒĢ | ) , the complexity of processing a

single edge ě isċ ( |ě | |āě | + |Ēě | ) +ċ ( |āě |Ģĥĝ |ĒĢ | ) . Taking into account

all |āě | edges, the total complexity for Step 2 isċ ( |Ēě | |āě | + |āě |
2Ģĥĝ |ĒĢ | ) ,

proved similar to above.

Hence, the overall time complexity for AH-IBT is ċ ( |Ēě | |āě | +

|āě |
2Ģĥĝ |ĒĢ | + |Ēě |Ģĥĝ |Ēě | ) . The space complexity of AH-IBT isċ ( |Ēě | +

|ĒĢ | + |āě | ) . The proof is similar to the above.

B Correctness Proof
In this section, we give the correctness proof for all the proposed algorithms.

We prove that the proposed algorithms, i.e., GT, BBT, and IBT compute

HDPR correctly by proving that they compute the Ċ and Ĉ values correctly.

Then, we prove that AH-IBT correctly answers HDWPR.

GT: For an event vertex ċ̃ , if ĩĚğĩĪ (ċ, ċ̃ ) ≤ Ī , ċ̃ is visited before GT’s

termination due to Dijkstra’s algorithm properties. Any Edge, or Segment,

ě = (ī, Ĭ) contributing to ċ ’s Ĉ value is considered when visiting ī or Ĭ.

This guarantees that all event and location vertices within Ī distance of

ċ are factored into Ċ and Ĉ updates. GT terminates when all remaining

vertices have distances to ċ exceeding Ī .
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Figure 11: E�ect of Varying Statistical Signi�cance (SS) in

HDPR

BBT and IBT: For an event ċ , BBT and IBT batch processes the compu-

tation of Ċ and Ĉ with other events along the same edge ě . Given another

event, ċ̃ with ĚğĩĪ (ċ, ċ̃ ) ≤ Ī attached to ě̃ = (Č̃, č̃ ) , ċ̃ is considered for

updating Ċ and Ĉ since ě̃ ful�lls either Category 1 or 3 for ě . BBT and IBT

exclude any event ċ with ĚğĩĪ (ċ, ċ ) > Ī by pruning all edges that meet

Category 2 for ě .

AH-IBT: The �nal radius Ī output by AH-IBT is indeed the radius that

brings the �rst local maximum statistical signi�cance. Suppose this local

maximum is identi�ed at iteration ğ in Algorithm 2 when expanding the

radius for the event ċ , then for all iterations of expanding the radius before

ğ , the statistical signi�cance of ċ monotonically increases according to our

de�nition in Section 5.2 . Then, from the ğĪℎ to (ğ + 1)Īℎ iteration of of

expanding the radius , the statistical signi�cance ofċ drops. Thus, the radius

identi�ed at at iteration ğ is the �rst local maximum statistical signi�cance

for ċ .

C Additional Experiments

C.1 Additional Experiments for HDPR
This section presents additional experiments for HDPR, i.e., hotspot detec-

tion with prede�ned radius.

C.1.1 The e�ect of statistical significance Figure 11 shows the run-

time of BBT, IBT, and NS* while changing the statistical signi�cance. IBT

consistently outperforms the other algorithms with up to 6.82 times speed

up for the same reasons explained in Section 6.2.1. Also, Figure 11 shows

that the runtime remains stable under di�erent statistical signi�cance lev-

els. The reason is that changing the statistical signi�cance required for

hotspot detection does not signi�cantly impact the computational overhead

of Ċ and Ĉ in all algorithms. However, changing the required statistical

signi�cance only a�ects the �nal validation of hotspots, as discussed in

Section 3. Although higher statistical signi�cance results in fewer hotspots

being quali�ed and detected, this has little impact on the overall runtime of

algorithms.

C.2 Additional Experiments for HDWPR
This section presents additional experiments for HDWPR , i.e., hotspot

detection without a prede�ned radius.

C.2.1 The e�ect of the minimum statistical significance In this ex-

periment, we investigate how the minimum statistical signi�cance a�ects

the runtime and average error for AH-IBT and AH-NS*. Notice that we

do not consider NPP* in this experiment as NPP* does not have statistical

signi�cance as an algorithm parameter. Figure 12a shows that AH-IBT is

up to 2.44 times faster than AH-NS*. The reason is that AH-IBT is based

on IBT and AH-NS* is based on NS* which is slower than IBT. Figure 12b

shows that both AH-IBT and AH-NS* have the same average error because

they adopt the same algorithm for identifying the radii of hotspots.

Although Figure 12b shows that the average error increases as ĉďď

increases, there is no evident relationship between the average error and

the minimum statistical signi�cance. This is because under di�erentĉďď ,
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Figure 12: E�ect of Varying Minimum Statistical Signi�cance

(MSS) in HDWPR
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Figure 13: E�ect of Varying Hotspot Numbers in HDWPR
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Figure 14: E�ect of Varying Hotspots Radii in HDWPR

the hotspots involved in computing the average error are di�erent, which

results in varying average error. However, in all cases, the average Ī error

is less than 5%.

C.2.2 The e�ect of the number of hotspots and hotspots radii Fig-

ure 13a and Figure 14a show the runtime of AH-IBT, AH-NS*, and NPP*

using Synth-Detroit-Hotspots dataset de�ned in Table 1. Both �gures show

that the number of hotspots and the radii of hotspots have a slight impact on

the runtime for all algorithms. For similar reasons discussed in Section 6.3.1,

AH-IBT consistently achieves better performance and it is up to four orders

of magnitude faster than NPP* and up to 1.88 times faster than AH-NS*.

Figure 13b and Figure 14b show the error of AH-IBT, AH-NS*, and NPP*.

AH-IBT and AH-NS* achieve better accuracy compared to NPP*, with up to

50%, for the same reason discussed in Section 6.3.1.


	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries and Problem Definition
	4 Hotspot Detection with Predefined Radius (HDPR)
	4.1 Graph Traversal (GT)
	4.2 Batch-Based Traversal (BBT)
	4.3 Incremental Batched Traversal (IBT)

	5 Hotspot Detection without Predefined Radius (HDWPR)
	5.1 Optimal Hotspot Radius Determination
	5.2 Approximate Hotspot Identification

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 HDPR Evaluation
	6.3 HDWPR Evaluation

	7 Conclusion
	References
	A Complexity Analysis
	A.1 Batch Based Traversal (BBT)
	A.2 Incremental Batched Traversal (IBT)
	A.3 Approximate Hotspot Identification via Batched Edge Traversal (AH-IBT)

	B Correctness Proof
	C Additional Experiments
	C.1 Additional Experiments for HDPR 
	C.2 Additional Experiments for HDWPR


