Check for
Updates

A Scalable Unified System for Seeding Regionalization Queries

Hussah Alrashid
Department of Computer Science and Engineering
University of California, Riverside
Riverside, USA
halra004@ucr.edu

ABSTRACT

Spatial regionalization is the process of combining a collection of
spatial polygons into contiguous regions that satisfy user-defined
criteria and objectives. Numerous techniques for spatial regional-
ization have been proposed in the literature, which employ varying
methods for region growing, seeding, optimization and enforce
different user-defined constraints and objectives. This paper in-
troduces a scalable unified system for addressing seeding spatial
regionalization queries efficiently. The proposed system provides
a usable and scalable framework that employs a wide-range of
existing spatial regionalization techniques and allows users to sub-
mit novel combinations of queries that have not been previously
explored. This represents a significant step forward in the field
of spatial regionalization as it provides a robust platform for ad-
dressing different regionalization queries. The system is mainly
composed of three components: query parser, query planner, and
query executor. Preliminary evaluations of the system demonstrate
its efficacy in efficiently addressing various regionalization queries.

ACM Reference Format:

Hussah Alrashid and Amr Magdy. 2023. A Scalable Unified System for
Seeding Regionalization Queries. In Symposium on Spatial and Temporal
Data (SSTD °23), August 23-25, 2023, Calgary, AB, Canada. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3609956.3609980

1 INTRODUCTION

Spatial regionalization is a crucial process in numerous domains,
aiming to group a collection of spatial polygons (i.e., areas) into
spatially contiguous regions that minimize a given objective and sat-
isfy user-defined constraints [23]. Each spatial polygon represents
a fundamental spatial area, e.g., city block, city, or county. Region-
alization has been extensively applied to address various problems
across different domains, including epidemic analysis [10], weather
temperature classification [24], healthcare resource allocation [31],
political districting [38, 39], and metropolitan area delineation [54].
Seeding-based regionalization can be abstracted into two fundamen-
tal problems: (1) clustering spatial areas into a predefined number

This work is partially supported by the National Science Foundation, USA, under
grants IIS-2237348, SES-1831615, and CNS-2031418, and the Google-CAHSI research
grant.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SSTD °23, August 23-25, 2023, Calgary, AB, Canada

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0899-2/23/08....$15.00
https://doi.org/10.1145/3609956.3609980

96

Amr Magdy
Department of Computer Science and Engineering
University of California, Riverside
Riverside, USA
amr@cs.ucr.edu

of p regions, as seen in the p-regions problem [21], and (2) cluster-
ing spatial areas into an arbitrary number of regions, depending
on data distribution, as seen in the max-p-regions problem [20].
These problems correspond to similar categories in the traditional
clustering literature, such as the k-means and DBScan algorithms.
However, in this context, clustering is spatially constrained, and
the unit is a spatial polygon rather than a d-dimensional point.

There is a multitude of regionalization techniques presented in
the literature to address different variations of the p-regions and
max-p-regions problems. These techniques employ a diverse range
of region growing, seeding, and optimization tactics while adher-
ing to various user-defined constraints and objectives. Examples
include compact regionalization [13, 14, 27, 40—43], multiple con-
straints regionalization [32], random region regionalization [2, 55],
and connected region regionalization [43]. While these approaches
differ in certain aspects, they also share some similarities. This
unique combination of similarities and differences creates an oppor-
tunity to develop a unified framework capable of handling all these
techniques using common constructs. The benefits of such a frame-
work are manifold. First, users would be able to submit regionaliza-
tion queries to a unified system using high-level query languages,
eliminating the need to deal with the complexity of implementing
various algorithms or optimizations. Second, by supporting a wide
range of queries at the system level, this framework would enable
system-level optimizations that are not feasible for individual al-
gorithms implemented separately on top of existing computing
frameworks, such as Apache Sedona [6]. However, despite the nu-
merous regionalization techniques proposed in the literature, none
have yet addressed the need for a unified system for processing
regionalization queries. By designing and implementing such a
system, researchers can benefit from a more streamlined approach
to spatial regionalization, ultimately leading to more efficient and
effective solutions in various application domains.

This paper presents RegioNinja, a scalable, unified system for
addressing regionalization queries. In addition to providing solu-
tions to existing queries, the system enables exploring novel com-
binations of queries that are not previously investigated, such as
p-regions queries with average aggregation constraints. It enables
users to submit a diverse range of queries tailored to their specific
needs, representing a significant advancement in the field of spatial
regionalization. RegioNinja incorporates a range of techniques, in-
cluding region-growing algorithms and optimization strategies, to
provide efficient and effective solutions for regionalization queries.
The utilization of optimization strategies allows the system to de-
liver high-quality results while minimizing computational costs.

A primary challenge in developing such a unified system lies in
identifying the abstract building blocks out of the diverse range

SSTD °23, August 23-25, 2023, Calgary, AB, Canada

of available regionalization techniques. Abstracting these tech-
niques into a single system that efficiently processes queries is
not a straightforward task. This is similar in spirit to identifying
SELECT, PROJECT, and JOIN operations for building SQL-based
systems. The diversity of existing techniques poses a significant
challenge on building blocks that are flexible to support various
queries, yet, few enough to be supported in a practical system.

Our framework can function as an independent system with
specialized functionality in spatial regionalization or as a major
extension for existing spatial query processing engines. This ad-
vancement moves the spatial regionalization literature from an
era of individual, scattered algorithms to one of system-level sup-
port. As a query processing framework, it consists of three com-
ponents: a query parser, a query planner, and a query executor.
The query parser analyzes the input query and extracts elements
that are passed to the query planner, which generates execution
plans for the executor. Finally, the executor carries out the query
plan. Users can pose high-level SQL-like queries, as well as natural
language queries (text-based and speech-based) built atop modern
AGI platforms, such as GPT-3.5-Turbo APIs. Furthermore, the query
executor incorporates several building blocks that enable flexible
data preprocessing, region seeding, region growing with various
constraints, enclave assignment, and heuristic-based optimization.

One of the prominent features of our system is enabling users to
assess the quality of regionalization approximate solutions for the
first time in the spatial regionalization literature. This is achieved by
enabling statistical inference and generating reference distributions
for various statistical tests. This system marks a major advancement
in the spatial regionalization literature, offering a robust platform
for processing a wide range of regionalization queries.

The rest of the paper is organized as follows. Section 2 discusses
related work. Section 3 outlines basic regionalization definitions.
Section 4 formulates the unified seeding regionalization problem.
Section 5 provides an overview of the proposed system, and Sec-
tions 6- 9 offer a detailed explanation of the system’s core compo-
nents. Finally, Section 10 presents a preliminary evaluation of the
system, and Section 11 concludes the paper and discusses future
milestones for the system.

2 RELATED WORK

The current literature on spatial regionalization techniques can
be broadly classified into two primary categories: regionalization
through graph partitioning and regionalization through seeding.
These techniques are primarily used to address two types of re-
gionalization problems: regionalization with a predefined number
of regions [13, 14, 21, 37, 40-42, 56] and regionalization with an
arbitrary number of regions [7, 20, 22, 29, 46, 48, 49, 51-53, 55].
The first type aims to generate p spatially contiguous and homoge-
neous regions that optionally satisfy certain constraints. In contrast,
the second type generates the maximum number of homogeneous
regions to determine the appropriate spatial scale of the studied
phenomena by enforcing user-defined constraints on the regions to
calculate the number of regions automatically. We briefly outline
and distinguish our work from the existing literature below.
Graph partitioning techniques. Graph partitioning techniques
could be used to generate p-regions where the sub-graphs represent

97

Hussah Alrashid and Amr Magdy

the regions and the nodes within the sub-graphs represent the areas.
Graph partitioning techniques include SKATER [8] and SKATER-
CON [9] to address the p-regions problem. In SKATER, edges are
removed from a minimum spanning tree (MST) derived from the
graph until p sub-graphs are formed. In SKATER-CON, multiple
random spanning trees (RST) are generated, and SKATER is applied
to each RST. The results of all RSTs are combined to form the final
solution. K-way graph partitioning [5, 11, 28, 34, 36, 50] aims to
generate k sub-graphs with the minimum number of edges connect-
ing the sub-graphs. The graph bisection divides a graph into two
sub-graphs of approximately the same number of nodes while min-
imizing the number of edges between the sub-graphs [19, 25, 26, 33,
35, 44]. Recursively performing a graph bisection on a graph gen-
erates p sub-graphs. Node attributed graph partitioning [12, 17, 57]
generates k sub-graphs while minimizing the dissimilarity of sub-
graphs. Graph partitioning techniques are expensive and cannot
solve large datasets, leading to the proposal of seeding techniques,
which are the focus of this paper.

Seeding techniques. Seeding techniques grow a region by select-
ing a seed area and then adding neighboring areas until the region
satisfies the constraints. The seeding technique is highly generic
and flexible, allowing it to solve the two types of regionalization
problems, including the traditional p-regions [13, 14, 21, 37, 40, 56]
and max-p-regions problems [7, 20, 22, 29, 46, 48, 49, 51-53, 55].
Additionally, it is applied to various variations, such as the compact
p-regions [41, 42] and the compact max-p-regions [27] that focus on
building regions with a compact shape, and the user-constrained
p-regions [43] and max-p-regions [32] that build regions with one
or more user-defined constraints. A few recent techniques address
the scalability issue in seeding-based regionalization. A generalized
p-regions problem called PRUC [43] is another seeding problem
that solves the p-regions problem with a threshold constraint. To
optimize the process of growing regions, PRUC builds connected re-
gions, i.e., regions where the edges between the areas are maximized.
The EMP problem [32] is a generalization of the max-p-regions
problem that generates homogeneous regions while considering
multiple constraints, i.e., aggregate functions: MIN, MAX, SUM,
COUNT, AVG. There are two techniques that primarily address the
scalability issue of the max-p-regions problem. The first technique is
SMP [2], which employs efficient partitioning and region-growing
techniques to solve the max-p-regions problem. It also presents a
novel seed selection technique that aims to reduce the gaps be-
tween the regions by selecting the seed for the next region from
the neighboring areas for the previously grown region. The second
technique [55] introduces a randomized region-growing approach
to expedite the traditional max-p-regions problem.

Our work falls within the second category of performing seeding-
based spatial regionalization; however, it is complementary to all
existing work. It proposes a unified system, RegioNinja, that answers
different combinations of queries, including existing ones and those
that have not been studied before such as p-regions queries with
MIN and AVG constraints. By using a flexible and modular design,
our system can handle various types of data and constraints, making
it more applicable to real-world problems.

A Scalable Unified System for Seeding Regionalization Queries

3 PRELIMINARY DEFINITIONS

This section provides definitions for the basic concepts in the re-
gionalization literature.

Definition 1. (Area). An area a; is a spatial polygon that is rep-
resented by four attributes (i, g;, si, d;), where i is the area’s unique
identifier, g; is the area’s geometry represented as an arbitrary
spatial polygon, s; is a spatially extensive attribute, and d; is a
dissimilarity attribute.

An area q; is an articulation area if its removal breaks the
spatial contiguity of any given set of areas.

The area neighbors Ny, of any area a; are the areas that share
a boundary (i.e., line or curve) with area a;.

A spatially extensive attribute s; of an area g; is an at-
tribute whose value is distributed among its smaller k sub-areas
aio, ait, ..., ajx. When the area is divided, and the sum of the attribute
values of all sub-areas is equal to the value of the attribute of the
original area, i.e., ZVa,-jeal- sij = si. An example of a spatially ex-
tensive attribute is the population of a county, which is divided over
its constituent cities. This is unlike spatially intensive attributes,
such as temperature, that are not divided over sub-areas.

Definition 2. (Region). A region r; = {aj, az, as, ... an} is a set
of spatially contiguous areas.

The region neighbors Ny, of any region r; are the set of areas
that do not belong to r; but have at least one neighbor that belongs
to rj.

A spatially contiguous areas mean that Va;,aj € R, 3 a se-
quence of areas {a,a;} such that both a;, a. and a;, a; are spatial
neighbors and every two consecutive areas in the sequence are spa-
tial neighbors.

A seed area is the first area added to the region (i.e., the area
that a region starts growing from). An area q; is assigned if it is
part of a region and unassigned if it is not part of any region.

The boundary areas BA,, of a region r; are the areas in r; that
have at least one spatial neighbor that does not belong to r;.

Definition 3. (User-Defined Constraints). The user-defined
constraints C = cj, cj+1, ...cp, are conditions that are enforced on
the output regions. Each constraint c; is defined with four attributes
{fi, si, li, ui } where f; is one of the aggregate functions: minimum
(MIN), maximum (MAX), average (AVG), summation (SUM), and
count (COUNT), s; is the spatially extensive attribute in which the
constraint is defined over, J; is the lower bound of s; and has a range
between —co and oo, u; is the upper bound of s; and has a range
between —co and . So, ¢; is enforced through the inequality
I < fi(si) < u.

Definition 4. (Homogeneous Region). A homogeneous region
ri is aregion where the areas are similar with regards to an attribute,
called the dissimilarity attribute d;, that is associated with each
area a; [20]. The objective is to minimize the dissimilarity between
the areas in any region r;. The dissimilarity for any region r; is
calculated as follows [20]:

D iy —diel

Vaij,a,-keri

)

Definition 5. (Compact Region). A compact region is a region
that is grown with the objective of maximizing its compactness in

98

SSTD °23, August 23-25, 2023, Calgary, AB, Canada

terms of its shape [27, 40-42]. The compactness of any region r; is

calculated as follows: S
i
Py @)
2 MI,
Where S;, is the area of region r; and MI,, is the second moment

of inertia of region r;.

Definition 6. (Connected Region). A connected region is a re-
gion where the areas are strongly connected with each other. The
concept was first introduced in [43] as an optimization to allevi-
ate the cost of growing homogeneous regions. The connectivity
between an area g; and a region r; is defined as the number of
neighbors of a; that belong to r;.

Definition 7. (Random Region). A random region is a region
where the areas are added randomly when growing the region.
Similar to connected regions, random regions is proposed in [55]
as an optimization technique to build regions efficiently.

Definition 8. (Gapless Regions). Gapless regions are regions
that are grown next to each other to minimize the space between
them [2]. The seed area for the first region r; is picked at random.
For the following regions, the seed area is picked from the region
neighbors of the previously grown regions. For region r;;1, the seed
area is picked from the region neighbors for the previously grown
region r;. If all the region neighbors of r; are assigned, then the
seed area is picked from the region neighbors of r;_; and so on.

Definition 9. (Scattered Seeds). Scattered seeds are seed areas
that are as far away as possible from each other. The distance
between two areas a; and a; is represented as dist(a;, aj) and is
defined as the Euclidean distance between the centroids of the two
areas. The goal is to maximize the minimum Euclidean distance
between the centroids of all pairs of areas in S. The minimum
Euclidean distance of a set of areas is defined as follows:

®)

ming;esna;esaizj dist(ai, aj)

4 UNIFIED SEEDING REGIONALIZATION
PROBLEM

This section provides a formal definition for the unified seeding
regionalization problem that abstracts the majority of existing prob-
lems in the literature.

Input: (1) A set of n areas; A = {a1, az, a3, ..., an }. (2) Number
of regions p; which could be a positive integer or a flag pyrax
indicating the maximum number of regions. (3) Optional set of
user-defined constraints; C = {cj, ¢z, ..., ¢, }. If not provided, the
number of regions p must be a positive integer. (4) An objective
function H computed on a dissimilarity attribute d; of each area
a; € A.

Output: A set of regions R = {r1,r2,...,rp} of size p, where each
region r; is a non-empty set of spatially continuous areas satisfying
the below constraints and objectives.

Constraints:

e 1<p<n

o |ril>1, VrieR

(] riﬁrj=(2), Vri,rjeR/\ i#]

r; satisfies all the constraints in C, Vr; € R

Objectives:

SSTD °23, August 23-25, 2023, Calgary, AB, Canada

¢) Voice 1 !

User B Tot 2| Query ’2‘ Query Query]:
1 1

® Qrea p\Paser J L Planner J _Executor J;

Figure 1: System Architecture

e Minimizing the objective function H.

Examples of the objective function are heterogeneous and com-
pact regions as defined in Equation 1 and Equation 2, respectively.

5 SYSTEM OVERVIEW

This section provides an overview of RegioNinja. The system is
mainly designed to process the unified seeding regionalization
query as defined in Section 4. This problem is generic and allows
the discovery of both a pre-defined and arbitrary number of regions.
In addition, it solves queries with no constraints at all or with a
variety of user-defined constraints that are flexible and support the
major SQL-inspired aggregate functions as defined in Section 3.
Such a generic query signature incorporates the major work on
seeding spatial regionalization queries in the existing literature.
Moreover, it enables new combinations of queries that are not
possible in existing literature, e.g., p-regions query with MAX or
AVG aggregate constraints.

Figure 1 depicts the RegioNinja system architecture that con-
sists of three components: query parser, query planner, and query
executor. We give a brief overview of each one below.

Query Parser. The query parser checks if the query follows the
specifications of our query language, called RSQL, and identifies
the query elements and passes it to the query planner. The details
of the query parser are presented in Section 6.

Query Planner. The query planner generates a query plan from
the parsed query. It determines which components should be ex-
ecuted and in what order. The details of the query planner are
presented in Section 7.

Query Executor. The query executor executes the query plan
generated by the query planner. The details of the query executor
are presented in Section 8.

RSQL query language uses four clauses that are inspired by SQL
language, SELECT, FROM, WHERE, ORDER BY, to express eight basic
query processing components that are pipelined to form query
plans for various queries. The eight components perform six com-
plementary tasks: (1) Checking the feasibility of finding a solution
given the user constraints. (2) Selecting seed areas with different
settings. (3-4) Growing initial regions and assigning enclave
areas to them. (5) Adjusting the regions’ structure at multi-
ple stages to satisfy all the query constraints. (6) Finding the final
regions through heuristic search optimization for the initial
regions. The RSQL clauses are detailed in Section 6, and the basic
query processing components are detailed in Section 8.

This system can function independently or as a major extension
of existing spatial query processing engines. The following sections
detail each of the core components: query parser, query planner,
and query executor.

6 QUERY PARSER

This section introduces our query parser. Our main contribution
in this component is introducing new convenient ways for users
to pose regionalization queries. Specifically, we introduce the first

99

Hussah Alrashid and Amr Magdy

high-level query language, RSQL, that facilitates posing spatial
regionalization queries in SQL-like format for the first time in
literature. In addition, we provide natural language interfaces, text-
based and speech-based interfaces, built on top of the modern AGI
models to enable a wider base of users to interact with RegioNinja.

We define specifications for our new query language. The query
parser checks if the query follows our query language specifica-
tions, parses its different parts, and pass it to the query planner to
generate the execution plan. Our query language is directly built on
the standard SQL query language that is used in many data manage-
ment systems. This enables easy integration of our building blocks
of spatial regionalization queries into existing systems, which leads
to further system-level optimizations at later stages of the system
development.

The rest of this section describes the query language specifica-
tions and capabilities for the proposed system.

6.1 RSOQL Query Signature

Our unified query has the following general form, where the op-
tional clauses and constructs are enclosed within square brackets:

SELECT REGIONS, [REGIONS.p, REGIONS.HET];

[ORDER BY (HET | CARD) [(ASC | DESC)];]

FROM (dataset_name | path);

WHERE p = (k | pmax),

OBJECTIVE (HETEROGENEOUS | COMPACT) ON attribute_name,
[lower_bound (< | <=) (SUM | MIN | MAX | COUNT | AVG)
(< | <=) upper_bound ON attribute_name],
[OPTIMIZATION (RANDOM | CONNECTED)IJ,

[GAPLESS],

[HEURISTIC (MSA | TABU)I;

The following sections clarify this general form through query
examples and description for different clauses and constructs.

6.2 Query Examples

The following are examples of regionalization queries using our
query language:
e SELECT REGIONS;

ORDER BY HET DESC;

FROM US_counties;

WHERE p=14, GAPLESS,

11,000 < SUM < 20,000 ON population, 500 <= MIN

ON population,

OBJECTIVE HETEROGENEOUS ON average_house_price;

This query generates 14 regions from the US counties. Each re-
gion has a total population that is larger than 11K and less than 20K,
and the minimum population of each county is 500. The objective
is minimizing the overall heterogeneity of regions based on the
average house price in the counties and grow them without gaps
in between (gapless) as proposed in [2, 3]. Regions are ordered by
heterogeneity in a descending order.

e SELECT REGIONS, REGIONS.p;
FROM NYC_census_tracts;
WHERE p=pmax,

A Scalable Unified System for Seeding Regionalization Queries

5000 <= MAX ON population, OBJECTIVE COMPACT,
OPTIMIZATION CONNECTED, HEURISTIC TABU;

This query generates the maximum number of compact regions
from the NYC census tracts data and regions are optimized to be
more connected. Each region must have a maximum of at least 5K
of population in each census tract. The heuristic method used in
the local search to optimize the initial solution is tabu search.

6.3 Clauses and Constructs

This section details our query language clauses and constructs.
All keywords are case insensitive, e.g., SELECT is the same
as select. Keywords are either clause (i.e., operational) key-
words or non-clause keywords. Clause keywords include SELECT,
ORDER BY, FROM, WHERE and they come at the beginning of
each clause in the query. Non-clause keywords include REGIONS,
REGIONS.p, REGIONS.HET, p, pamax DESC, ASC, CARD, HET,
OBJECTIVE, OPTIMIZATION, HEURISTIC, RANDOM, CONNECTED,
HETEROGENEOUS, COMPACT, TABU, MSA, GAPLESS, MIN, MAX,
AVG, SUM, COUNT, ON.Each clause in the query must start with
an operational keyword, followed by one or more terms, and end
with a semicolon. Below are the description of each clause.

SELECT clause instructs to output the regions, the heterogeneity,
or the number of regions p of a regionalization result. It is followed
by three keywords: (1) REGIONS, which outputs regions as a list of
pairs of integers, each pair is <area id, region id>, where all areas
affiliated with the same region are labeled with the same region id.
(2) REGIONS. p, which outputs the number of regions (integer), and
(3) REGIONS.HET, which outputs the regions heterogeneity (double).
REGIONS is required, while the REGIONS.p and REGIONS.HET are
optional.

ORDER BY clause is an optional clause that orders the regions by
cardinality or heterogeneity in an ascending or descending order.
It is followed by two possible keywords: (1) CARD, which orders
regions by their cardinality, i.e., number of areas in each region, or
(2) HET, which orders regions by their heterogeneity values. The
order, i.e., ASC or DESC, is optional and the default value is ASC.

FROM clause specifies the name or path of the dataset that con-
tains the areas to be regionalized. The supported format is Well-
Known Text (WTK) format.

WHERE clause is used to provide different query parameters. First,
it specifies the number of desired regions, p, either a positive integer
k ranges from 1 to n (total number of input areas), or a flag pprax
to get the maximum number of regions. Second, it specifies the
objective function used to optimize the regions using the keyword
OBJECTIVE. The currently supported objectives are heterogeneity
(HETEROGENEOUS) and compactness (COMPACT). If the objective is set
to HETEROGENEOUS, then it must be defined over an attribute using
the keyword ON. Third, it could be used to specify the optimization
criteria in growing initial regions, either to optimize runtime (speed
up the process) or the spatial contiguity robustness using the key-
word OPTIMIZATION which takes the values RANDOM or CONNECTED
or a flag GAPLESS. Fourth, it can be used to specify the heuristic
algorithm to optimize the initial solution after growing the initial
regions using the keyword HEURISTIC that is followed two key-
words: MSA or TABU. The default value is MSA. The p and OBJECTIVE

100

SSTD °23, August 23-25, 2023, Calgary, AB, Canada

are required while the OPTIMIZATION, GAPLESS, and HEURISTIC are
optional. Finally, it allows flexible user-defined constraints on mul-
tiple attributes of the region. The constraints include the following
aggregate functions: summation (SUM), minimum (MIN), maximum
(MAX), average (AVG), and count (COUNT). The aggregate functions
are defined over an attribute using the keyword ON. A lower bound
or upper bound or both are set for each aggregate function as shown
in the examples. At least one constraint is required when p=paax.

6.4 Natural Language Interface

Users of RegioNinja can also post queries through a natural language
interface, both text-based queries and speech-based queries. This
is achieved by integrating Artificial Intelligence chabots, such as
ChatGPT [1], with our system. Users then can provide the language
description and the query parameters in a natural human language
in the chatbot prompt and the interface generates a query according
to the given language specifications. To have a more human-like
interaction, chat-to-voice extensions, such as Talk to ChatGPT by
Google Chrome [16], could also be incorporated to allow users to
submit voice queries and receive voice responses.

7 QUERY PLANNER

The query planner is an essential part of RegioNinja, specifically
designed to support arbitrary queries that are expressed in terms
of basic constructs. Our current model operates on a One-Plan-Fits-
All paradigm, meaning that all queries are subjected to a similar
master plan, except for minor reordering in the adjustment stages.
The primary difference lies in the parameterization of the different
modules within the plan, which allows tailored execution based
on the specifics of each query. The core sequence of operations
includes: Feasibility, Seed Selection, Region Growing, Enclaves
Assignment, p Adjustment, Extrema Adjustment, Monotonic
Adjustment, and Local Heuristic Search. The query executor
carries out these different stages as detailed in the following section.

8 QUERY EXECUTOR

The query executor executes the different stages of the query plan
to produce the query results. This section discusses the operations
in order of execution: Feasibility, Seed Selection, Region Growing,
Enclaves Assignment, p Adjustment, Extrema Adjustment, Mono-
tonic Adjustment, and Local Heuristic Search.

(1) Feasibility. This phase serves as a crucial initial step, as it
determines whether the formulation of a solution is possible given
the set of constraints. Based on that, it filters out invalid areas
that fail to meet these constraints to produce feasible solutions.
In the case of the AVG constraint, if the cumulative average of
all areas either falls below the lower bound or exceeds the upper
bound, the construction of a solution that fulfills the constraints is
an impossibility as proven in [32]. Regarding the MIN constraint, a
solution cannot be generated if the smallest value within the areas
is above the upper bound or if the maximum value does not reach
the lower bound. Under these circumstances, no area satisfies the
constraint. Otherwise, any areas with minimum values below the
lower bound are removed from the areas. A similar approach is
taken with the MAX constraint. If the minimum value is above the
upper bound, or the maximum value is below the lower bound, it is

SSTD °23, August 23-25, 2023, Calgary, AB, Canada

Algorithm 1: Seed Selection

1 Input : List of areas A, list of constraints C, number of regions
p, number of iterations m, Boolean scattered.

2 Output: Set of seed areas S.

3 Initialization:

4 S ={f

5 for eachac Ado

6 if a satisfies the MIN or MAX constrains in C then

7 | S.add(a);

8 Srandom = P seed areas selected randomly from S;

9 if scattered == true then

10 Snot seeds =S ~ Srandoms

1 while m # 0 do

12 amin = area pair with the minimum Euclidean
distance;

13 Arandom = area selected randomly from Sy seeds:

14 if a,qndom improves the quality of S if replaced with
one of the areas in amin then

15 replace ay4n4om With one of the areas in amin;

16 m=m-1;
17 return S;

impossible to formulate a solution, as no areas meet the constraint.
However, if areas are found with a maximum value that exceeds
the upper bound, they must be filtered out.

When it comes to the SUM constraint, if the lowest value ex-
ceeds the upper bound, then the construction of a valid solution is
impossible. Moreover, if the combined sum of all areas is less than
the lower bound, it becomes impossible for any region to satisfy
the sum constraint. Otherwise, areas with sum values that exceed
the upper bound must be excluded to generate a feasible solution.
Finally, in the case of the COUNT constraint, if the total count of
areas is less than the lower bound, then no solution can be formed.

(2) Seed Selection. Algorithm 1 outlines the seed selection
process. First, all the areas that satisfy the MIN or MAX constraint
are filtered and saved in a set S (Lines 5-7). After that, if p is not
set to pprax, then p areas are chosen randomly to be kept in S
(Line 8). If the seed strategy is scattered, then the areas in S are
replaced with the areas that are not in S to ensure that the seeds
in S are as far away as possible from each other (Lines 9-16). An
area d,qndom that is not in S is selected at random to replace one of
the areas in the area pair having the minimum Euclidean distance.
Arandom 18 replaced with one of the two areas only if it improves the
overall distance of the seeds in S. This process is repeated m times
to improve the quality of the seeds. The seed selection strategy, i.e.,
scattered, is determined by the query planner based on the type
of query. For p-regions queries, the query planner sets the seed
selection strategy to scattered by default to ensure that regions
have enough room to grow.

(3) Region Growing. The region growing module serves the
purpose of developing initial regions, ensuring adherence to the
AVG constraint and the given objective. It starts with the seeds
produced by the seed selection component. For each seed area, this
component selects a neighboring area that not only satisfies the
AVG constraint but also minimizes the objective function, which

101

Hussah Alrashid and Amr Magdy

may either follow the heterogeneity model as depicted in Equation 1
or the compactness model as demonstrated in Equation 2. This
selection is performed from the region neighbors N;; of the region
ri. The process of adding areas to a region continues until the AVG
constraint is met. If a situation arises where the region does not
satisfy the AVG constraint and there are no more region neighbors
Nyi, the region is retained only when the parameter p is not assigned
the value pyrax. In this case, the region’s AVG is adjusted in the
p adjustment phase. In instances where an optimization (random
or connected) is specified, the growth of regions will adhere to the
optimization rules, and the objective will be optimized during the
local heuristic search phase.

(4) Enclaves Assignment Upon completion of the region grow-
ing phase, there might be areas that have not been allocated to any
region, referred to as enclaves. The enclave assignment module
seeks to allocate these areas to regions through a two-step process.
The first phase involves assigning enclaves that align with the AVG
constraint. All such enclaves that satisfy the AVG constraint are au-
tomatically incorporated into a neighboring region, as integrating
an area that already satisfies the average does not violate the AVG
constraint of the recipient region. The subsequent step addresses
the remaining enclaves that fail to satisfy the AVG constraint. This
step is conducted by iterating over these enclaves, and for each en-
clave, neighboring regions are identified. The updated average of a
region, computed by considering the enclave area, is then assessed.
If the newly calculated average of the region still meets the AVG
constraint, the enclave area is added to the region. This procedure
continues until all enclaves are allocated to regions. However, if
certain enclaves violate the AVG constraint for all neighboring re-
gions, they are eliminated from the solution, only if the parameter
p has been set to parax. Otherwise, the enclaves are added to the
regions randomly even if they do not satisfy the AVG constraint
and the regions’ AVG will be adjusted in the p Adjustment phase.

(5) p Adjustment. This phase is executed when the number of
regions, p, is assigned a positive integer value. After the enclave
assignment, there may remain incomplete regions that do not yet
fulfill the AVG constraint. The p adjustment aims to ensure these
incomplete regions satisfy the AVG constraint. For each incomplete
region, all neighboring complete regions are identified, and areas
are moved from these neighboring complete regions (i.e., donor
regions) to the incomplete region (i.e., receiver region). Neighbor-
ing regions are determined by examining whether any neighboring
areas of the incomplete region’s areas belong to another region. Sub-
sequently, boundary areas of the neighboring complete regions are
moved to the incomplete region, provided they are not articulation
areas. This move may cause donor regions to become incomplete.
A subsequent step resolves this issue by identifying all complete
regions in a list, then moving areas from complete regions to neigh-
boring incomplete regions in the same manner. Following this step,
all regions should satisfy the AVG constraint.

(6) Extrema Adjustment The seed selection identifies the areas
that satisfy either the MIN or MAX constraints. Therefore, regions
are guaranteed to satisfy only one of those constraints. To ensure
that regions satisfy both constraints, the regions are checked one
by one. If the region satisfies one of the constrains, it is merged
with a neighboring region that satisfies the other constraint.

A Scalable Unified System for Seeding Regionalization Queries

(7) Monotonic Adjustment To ensure compliance with the
SUM and COUNT constraints for each formed region, it may be-
come necessary to move areas among regions. For both the SUM
and COUNT constraints, if a region exceeds the upper bound, areas
are moved to an adjacent region, providing this does not affect the
constraints of the receiving region. Conversely, if a region falls
below the lower bound, areas are added from neighboring regions,
ensuring this action does not violate the constraints of the donating
region. If the SUM or COUNT constraints are still not satisfied
after this step, then areas are removed from regions that are above
the upper bound or the regions are merged when they are below
the lower bound. The merging process repeatedly merges two re-
gions when at least one of them is below the threshold without
violating the constrains. Any regions that remain non-compliant
post-adjustment are excluded, thus finalizing the solution.

(8) Local Heuristic Search. This component focuses on opti-
mizing the quality of the solution based on the given objective. The
basic idea of local search algorithms [30, 55] is moving areas from
one region (the donor region) to another neighboring region (the
recipient region). An area is considered moveable only if it upholds
two conditions: (a) It preserves the spatial continuity of the donor
region, and (b) it does not violate the constraints of both regions.

Current techniques basically employ two local search algorithms.
The first is the Tabu Search [30]. The aim of the algorithm is to move
areas among neighboring regions while adhering to user-defined
constraints. The algorithm starts with an initial solution and pro-
ceeds iteratively towards the best possible solution. To escape a
local optimum solution, the algorithm allows moves towards solu-
tions with a worse objective function value. Tabu Search maintains
a tabu list that saves moves executed during the search to prevent
reverse movements that may trigger cycles. If a move results in
a solution better, the algorithm selects that move, even if it is in
the tabu list. The search terminates when no further advantageous
moves can be made within a specified limit of steps, and the best
solution found so far is returned as the final result.

The second algorithm is the Modified Simulated Annealing
(MSA) [2, 3, 55]. It starts by generating a set of movable areas.
Then, it randomly selects an area from the list and shifts it to an-
other region if the move enhances the objective function value of
the existing solution. If not, the move is accepted with a probability
calculated using the Boltzmann'’s equation: eA WM where -A H rep-
resents the value of the objective function variation on both donor
and recipient regions, and TM represents the temperature. The tem-
perature TM is decreased at each iteration at a fixed cooling rate
PH until TM reaches a predefined value. In contrast to the original
simulated annealing algorithm [20], the MSA algorithm introduces
two efficient techniques to expedite the optimization process. First,
it reuses the set of moveable areas until it becomes empty instead
of recalculating the set each time an area is moved [55]. Second, it
uses a tabu list with a specific size, i.e., LI, to prevent cycles. Finally,
it employs Tarjan’s algorithm [47] to find all the articulation areas
in a single graph traversal to identify the moveable areas [2, 3].

9 SPATIAL STATISTICAL INFERENCE

All current regionalization techniques employ heuristics that pro-
duce approximate solutions without providing a guarantee of their

102

SSTD °23, August 23-25, 2023, Calgary, AB, Canada

Table 1: Evaluation Datasets Description

‘ Name | No. of Areas | States

10K ~ 10 x103 CA, NV, and AZ.

20K ~ 20 X103 10K, OR, WA, ID, UT, MT, WY, CO, NM,
OK, KS, NE, SD, and ND.

30K ~ 30 X103 20K, TX, LA, AR, MO, and IA.

40K ~ 40 x103 30K, MN, MS, AL, TN, KY, IL, and W1

50K ~ 50 X103 40K, GA, IN, ML, OH, and WV.

60K ~ 60 X103 50K, FL, SC, NC, VA, and MD.

70K ~ 70 x103 60K, PA, NY, NJ, and DE.

quality. Experts within the respective field need to perform statisti-
cal inference to evaluate the quality of resultant solutions. In order
to conduct statistical inference, one would need to generate a refer-
ence distribution comprising sample solutions that can be used for
comparative analysis against the evaluated solution. These sample
solutions, known as the reference distribution, must be similar to
the evaluated solution in terms of the number of regions and the
cardinality of each region (i.e., the number of areas within each
region) to ensure the provision of significant statistical evidence.

To incorporate spatial statistical inference into RegioNinja, a
keyword (i.e., REGIONS.DISTRIBUTION) is included in the SELECT
clause to output a reference distribution of a user-defined sample
size, with a default sample size of 100 random solutions. In addition,
the Monotonic Adjustment component of the query executor is
extended to include an operation to adjust the cardinality of the
merged region. After each merge iteration, the smallest cardinality
is checked against all the merged regions. If the size of all the regions
is larger than the smallest cardinality, then areas are moved from
the smallest region to neighboring regions until its size matches
the desired cardinality. This process is repeated at each iteration
for each cardinality value, as detailed in our work [4].

10 SYSTEM EVALUATION

This section provides a preliminary evaluation for RegioNinja. We
evaluate two aspects: system performance and system usability.

10.1 System Performance

We currently support two families of queries representing the two
major categories in the existing literature: (1) p-regions query and
its variations, and (2) max-p-regions query and its variations. We use
three performance measures: runtime to measure the system’s
scalability, number of regions p and heterogeneity H to measure the
quality of the generated solutions.

Our evaluation datasets are all subsets of the census tracts
TIGER/Line shape files of the US states [15]. Areas in each dataset
represent the census tracts for certain US states. The details of the
datasets are presented in Table 1. In our experiment, the spatially
extensive attribute is defined over the aland attribute that represents
the land area. The dissimilarity attribute is defined over the awater
attribute that represents the water area. All the experiments are
based on Java 14 implementation and run on Ubuntu 16.04 with a
quad-core 3.5GHz processor and 128GB of memory.

10.1.1 Max-p-regions Queries. The max-p-regions query of
the proposed system is denoted as RegioNinja and is evaluated

SSTD °23, August 23-25, 2023, Calgary, AB, Canada

Table 2: Evaluation parameters for max-p-regions queries

‘ Parameter ‘ Values ‘

DS 10K, 20K, 30K, 40K, 50K, 60K, 70K
l 10, 30, 50, 70, 90 (x10°)

RegioNinja C——3

SOTA EEER RegioNinja C—2

SOTA B

Time (seconds)
Time (seconds)

™
Sy

oo 0
10K 20K 30K 40K 50K 60K 70K 10 30 50 70 90

Dataset

(a) Runtime varying DS values

Lower Bound (million)
(b) Runtime varying I values
Figure 2: Impact of the parameters on the runtime of the

max-p-regions queries

against the state-of-the-art max-p-regions problem, which is de-
noted as SOTA [55]. The system’s max-p-regions query, RegioNinja,
have the OPTIMIZATION set to RANDOM and the OBJECTIVE set to
HETEROGENEOUS. It has one constraint, which is SUM, with an up-
per bound set to co and varying lower bound (I) values specified in
Table 2. We evaluate the performance of the max-p-regions queries
with the following parameters:

o DS: dataset size, which represents the number of areas in the
dataset.
o [: lower bound of the SUM constraint.

Table 2 presents the parameters’ values used in this experiment.
The default value for each parameter is indicated in bold. The local
heuristic search parameters: tabu list length (LI), the temperature
of computing the Boltzmann’s probability (TM), and its cooling rate
(PH), are set to 100, 1, and 0.9, respectively, as proposed in [20].

Impact of the parameters’ values on the runtime. Figure 2
shows the impact of changing the DS and [values on the runtime
for RegioNinja and SOTA. Increasing the DS value increases the
runtime for all alternatives as shown in Figure 2a as there are more
areas to process in general. Increasing the [value decreases the run-
time of RegioNinja while the runtime of SOTA is almost consistent
with different values. The merging process in the SUM adjustment
merges each region only once in each iteration and updates the re-
gion neighbors each time it is merged. When the lower bound value
I is small, regions are more likely to satisfy the constraint in early
iterations, which lead to leaving some regions not merged which
in turn increases the number of iterations. Having more iterations
increases the runtime since the number of updates for the neigh-
borhood relationships between regions will increase. This explains
why the runtime of RegioNinja decreases as we increase the [value.
RegioNinja is slightly slower than SOTA due to its modular design.
The query have to go through the feasibility, seed selection, and
region growing components (which filters out each single area as a
region) before reaching the SUM adjustment. Overall, RegioNinja is
still efficient enough to handle large-sized datasets while hiding all
the complications from end-users and enabling future system-level
optimizations.

Impact of the parameters’ values on p and the Heterogeneity.
Increasing the DS value increases the p for all alternatives as there

103

Hussah Alrashid and Amr Magdy

SOTA B

RegioNinja 3 SOTA EXXXXA
20000
18000
16000
14000
12000

2 10000
8000

6000
4000
2000

RegioNinja C——3
20000

18000
16000
2. 14000

12000

10000

70 90
(million)

(b) p varying I values

Ll 8000
10K 20K 30K 40K 50K 60K 70K 10 30 50

Dataset Lower Bound

(a) p varying DS values
Figure 3: Impact of the parameters on p of the max-p-regions
queries

Table 3: Evaluation parameters’ values for p-regions queries

‘ Parameter ‘ Values

0.01%, 0.02%, 0.03%, 0.04%, 0.05% (of DS)

DS 10K, 20K, 30K, 40K, 50K, 60K, 70K
p
m 0.0001%, 0.0002%, 0.0003%, 0.0004%, 0.0005% (of DS)

are more input areas as shown in Figure 3a. On the other hand,
Figure 3b shows that increasing the [value decreases the number
of regions. This is due to the fact that more areas will be needed
in the region to reach the lower bound when the [value increases.
RegioNinja generates slightly less regions than SOTA since the
merging process reduces the granularity of the areas in the SUM
adjustment. At each iteration, two regions (initially two areas in the
first iteration) are merged. After that, merging two regions leads
to adding more than one area to the region which results in less
regions. Whereas in SOTA, areas are added one by one to the region
until it reaches the lower bound.

The p directly affects the heterogeneity. RegioNinja has a slightly
higher heterogeneity value than SOTA since it generates less re-
gions. This is because having a larger number of regions means
having more area pairs in each region that contribute to the hetero-
geneity. Overall, RegioNinja is able to generate solutions that are
comparable to those produced by the existing techniques efficiently
while offering a convenient way for users to submit queries.

10.1.2 P-regions Queries. The p-regions query of the proposed
system is denoted as RegioNinja and is evaluated against the gen-
eralized p-regions problem PRUC, denoted as PRUC [43]. The sys-
tem’s p-region query, RegioNinja, have the OPTIMIZATION set to
RANDOM and the OBJECTIVE set to HETEROGENEOUS. We evaluate the
performance of the p-regions queries with the following parameters:

e DS: dataset size, which represents the number of areas in the
dataset.

e p: number of regions, which is a percentage of the dataset
size DS.

e m: number of seed iterations, which is a percentage of the
dataset size DS.

Table 3 presents the parameters’ values used in this experiment.
The default value for each parameter is indicated in bold.

Impact of the parameters’ values on the runtime. The impact
of changing the DS, p, and m values on the runtime for RegioNinja
and PRUC are shown in Figure 4. Increasing the DS value increases
the runtime for all alternatives as shown in Figure 4a as there are
more areas to process in general. On the other hand, Figure 4b and
Figure 4c shows that the run time is consistent with different values

A Scalable Unified System for Seeding Regionalization Queries

RegioNinja C—3 PRUC EREEA
16
14
12

10

PRUC EXXXXA RegioNinja C—3

Time (seconds)
®

Time (seconds)
ok N oW & O o

6
: !E
2
*| o o (B
10K 20K 30K 40K 50K 60K 70K
Dataset
(a) Runtime varying DS values

RegioNinja C——=

Q-

(b) Runtime varying p values

PRUC ERXRRKA

Time (seconds)

ok N oW s w

% QQQB % QQUD‘ % QQUB %
No. of Seed Iterations

(c) Runtime varying m values
Figure 4: Impact of the parameters on the runtime of the
p-regions queries

RegioNinja C— PRUC EEERA RegioNinja C—3 PRUC EXXZZRA
1.4x10"* 6x10%*
1.2x10M 5101
14
1x101} ax1olt
8x10"° 1
T = 3x10
x
ax10%? 2x10M
2x1013 1x10"
[l
® 710 20 30 40 50 60 70 ¢ o o b o
N Q- Q- Q- Q- Q-
Dataset Size (thousand) P
(a) H varying DS values (b) H varying p values
RegioNinja == PRUC EXZS
1.4x10%
1.2x10%
1x10%*
8x10"?
= 13
6x10
4x10"?
2x10"?
o L8 B

% % % % %
R _QQ%X.Q“ql_gg%?g“qu_g@%
No. of Seed Iterations
(c) H varying m values
Figure 5: Impact of the parameters on the heterogeneity of
the p-regions queries

(only differs by a few seconds). The performance of RegioNinja
and PRUC is the same, which proves the ability of our system to
generate solutions in a very efficient manner while providing a
usable way to submit queries.

Impact of the parameters’ values on the Heterogeneity. Fig-
ure 5 shows that there is no correlation between the DS, p, and m
values on the heterogeneity for RegioNinja and PRUC. The reason
for this is that the regions are grown at random in both queries,
which gives very different results each time. The heterogeneity of
the RegioNinja is very close to that of the PRUC, which proves the
ability of our system to provide a usable way to submit queries and
generate solutions with a quality similar to the original query.

10.2 System Usability

To run the state-of-the-art max-p-regions [55], one would have to
write a lengthy code (1855 lines), and 2209 lines of code to run

104

SSTD °23, August 23-25, 2023, Calgary, AB, Canada

PRUC [43]. Our proposed system allows users to execute the max-
p-regions query with only a few lines as follows:

SELECT REGIONS;

FROM census_tracts;

WHERE p=ppmax,

OPTIMIZATION RANDOM, OBJECTIVE HETEROGENEOUS ON awater,
SUM >= 90,000,000 ON aland;

This applies to all the other existing queries. RegioNinja pro-
vides a framework where users can submit different queries within
seconds instead of having to implement each query from scratch.

11 FUTURE DIRECTIONS AND CONCLUSIONS

This paper introduces an innovative and unified system for spatial
regionalization, combining a variety of techniques to achieve ef-
fective and efficient results. The system serves as a practical and
scalable framework that not only accommodates traditional seeding
regionalization queries, but also introduces novel combinations of
queries unexplored to date. The system engages a variety of tech-
niques, encompassing region-growing algorithms and optimization
strategies that can be tailored to cater to specific user requirements.
The adoption of optimization strategies empowers the system to
yield high-quality results while concurrently minimizing compu-
tational expenses. This breakthrough represents a significant step
forward in the field of spatial regionalization, offering a robust
and versatile platform for addressing a broad spectrum of region-
alization queries. Preliminary evaluations of the system proves its
effectiveness in addressing regionalization queries efficiently.

The presented system paves the way for future significant en-
hancements in the spatial regionalization domain. Such enhance-
ments range from advancing existing components of the system to
adding brand-new components to advance the existing literature.

For instance, future iterations should accommodate a broader
range of flexible user-defined constraints that cater to real-world
applications, e.g., variance and standard deviation constraints. Also,
the system could support more objective functions within a gener-
alized scheme, yet continue to prioritize key functions. The system
could also be made more user-friendly to facilitate handling various
dataset formats. Further, the optimization and adjustment strate-
gies could be improved to yield higher-quality solutions across
diverse query combinations. Thus, different opportunities for sys-
tem improvements and optimizations could significantly elevate
the efficiency and quality of regionalization queries.

The system is also designed to incorporate revolutionary com-
ponents that could fundamentally transform the way users ap-
proach spatial regionalization queries. The inclusion of the natu-
ral language interface component is particularly significant. This
component could be significantly improved by enhancing the ex-
pressiveness of queries and offering customized and personalized
user experiences. This could be achieved through deeper and more
advanced integration with Large Language Models (LLMs) and rele-
vant systems. For example, Microsoft’s DeepSpeed-Chat [45], which
provides a simple and cost-effective means of training ChatGPT-like
models using reinforcement learning techniques based on human
interaction feedback, could be considered. With DeepSpeed-Chat,
a 13-billion parameter model can be trained on a single GPU, or on

SSTD °23, August 23-25, 2023, Calgary, AB, Canada

Microsoft’s Azure Cloud platform, at a low cost of just $300 and
within a relatively short timeframe, typically less than 12 hours.
Another potential avenue to explore is Databricks Dolly [18], an
open system that offers additional avenues for developing natu-
ral language interfaces. The integration with such systems could
dramatically enhance the user experience, marking a significant
advancement in spatial regionalization technology.

REFERENCES

[1] Open AL 2023. Introducing ChatGPT. https://openai.com/blog/chatgpt.

[2] Hussah Alrashid, Yongyi Liu, and Amr Magdy. 2022. SMP: Scalable Max-P

Regionalization. In SIGSPATIAL. Association for Computing Machinery, New

York, NY, USA, 1-4.

Hussah Alrashid, Yongyi Liu, and Amr Magdy. 2023. PAGE: Parallel Scalable

Regionalization Framework. Under minor revision in TSAS (2023), 1-27.

[4] Hussah Alrashid, Amr Magdy, and Sergio Rey. 2023. Statistical Infer-
ence for Spatial Regionalization. In Under submission to SIGSPATIAL.
Association for Computing Machinery, New York, NY, USA, 1-10.
https://drive.google.com/file/d/1m1C7IYhK6155U0Idsqa4YCBWqPHB22Lf/view.

[5] Konstantin Andreev and Harald Racke. 2006. Balanced Graph Partitioning.

Theoretical Computer Science 39, 6 (2006), 929-939.

] Apache. 2023. Apache Sedona. https://sedona.apache.org/latest-snapshot/.

[7] Daniel Arribas-Bel and Charles R Schmidt. 2013. Self-Organizing Maps and the
US Urban Spatial Structure. EPB 40 (2013), 362-371.

[8] Renato M Assungdo, Marcos Corréa Neves, Gilberto Camara, and Corina da
Costa Freitas. 2006. Efficient Regionalization Techniques for Socio-economic
Geographical Units Using Minimum Spanning Trees. IJGIS 20 (2006), 797-811.

[9] Orhun Aydin, Mark V Janikas, Renato Assungéo, and Ting-Hwan Lee. 2018.
SKATER-CON: Unsupervised Regionalization via Stochastic Tree Partitioning
Within a Consensus Framework Using Random Spanning Trees. In ACMGeoAL
Association for Computing Machinery, New York, NY, USA, 33-42.

[10] Roberto Benedetti, Federica Piersimoni, Giacomo Pignataro, and Francesco Vidoli.

2020. The Identification of Spatially Constrained Homogeneous Clusters of Covid-

19 Transmission in Italy. RSPP 12 (2020), 1169-1187.

Una Benlic and Jin-Kao Hao. 2011. An Effective Multilevel Tabu Search Approach

for Balanced Graph Partitioning. Operations Research 38, 7 (2011), 1066-1075.

[12] Daniel Bereznyi, Ahmad Qutbuddin, YoungGu Her, and KwangSoo Yang. 2020.

Node-attributed Spatial Graph Partitioning. In SIGSPATIAL. Association for Com-

puting Machinery, New York, NY, USA, 58-67.

Subhodip Biswas, Fanglan Chen, Zhiqian Chen, Chang-Tien Lu, and Naren Ra-

makrishnan. 2020. Incorporating Domain Knowledge into Memetic Algorithms

for Solving Spatial Optimization Problems. In SIGSPATIAL. Association for Com-

puting Machinery, New York, NY, USA, 25-35.

Subhodip Biswas and et. al. 2019. REGAL: A Regionalization Framework for

School Boundaries. In SIGSPATIAL. Association for Computing Machinery, New

York, NY, USA, 544-547.

[15] US. Census Bureau. 2019. TIGER/Line Shapefile, 2016, Series
Information for the Current Census Tract State-based Shapefile.
https://catalog.data.gov/dataset/tiger-line-shapefile-2016-series-information-
for-the-current-census-tract-state-based-shapefile.

[16] Google Chrome. 2023. Talk to ChatGPT. https://github.com/C-Nedelcu/talk-to-

chatgpt.

David Combe, Christine Largeron, E16d Egyed-Zsigmond, and Mathias Géry. 2012.

Combining Relations and Text in Scientific Network Clustering. In ASONAM.

IEEE Computer Society, Washington, D.C., USA, 1248-1253.

[18] Mike Conover and et. al. 2023. Free Dolly: Introduc-
ing the World’s First Truly Open Instruction-Tuned LLM.
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-
viable-instruction-tuned-llm.

[19] Daniel Delling, Daniel Fleischman, Andrew V Goldberg, Ilya Razenshteyn, and
Renato F Werneck. 2015. An Exact Combinatorial Algorithm for Minimum Graph
Bisection. Mathematical Programming 153, 2 (2015), 417-458.

[20] Juan C Duque, Luc Anselin, and Sergio J Rey. 2012. The Max-P-Regions Problem.
9IRS 52 (2012), 397-419.

[21] Juan C Duque, Richard L Church, and Richard S Middleton. 2011. The P-Regions
Problem. Geographical Analysis 43 (2011), 104-126.

[22] Juan C Duque, Jorge E Patino, Luis A Ruiz, and Josep E Pardo-Pascual. 2015.
Measuring Intra-urban Poverty Using Land Cover and Texture Metrics Derived
from Remote Sensing Data. LUP 135 (2015), 11-21.

[23] Juan Carlos Duque, Raul Ramos, and Jordi Surifiach. 2007. Supervised Regional-
ization Methods: A Survey. IRSR 30 (2007), 195-220.

[24] Ahmed El Kenawy, Juan I Lopez-Moreno, and Sergio M Vicente-Serrano. 2013.
Summer Temperature Extremes in Northeastern Spain: Spatial Regionalization
and Links to Atmospheric Circulation (1960-2006). TAC 113 (2013), 387-405.

[3

[11

(13

[14

[17

Hussah Alrashid and Amr Magdy

[25] Uriel Feige and Robert Krauthgamer. 2002. A Polylogarithmic Approximation of

the Minimum Bisection. SICOM 31, 4 (2002), 1090-1118.

Ariel Felner. 2005. Finding Optimal Solutions to the Graph Partitioning Problem
with Heuristic Search. AMAI 45, 3 (2005), 293-322.

Xin Feng, Sergio Rey, and Ran Wei. 2022. The max-p-compact-regions Problem.
Transactions in GIS 26, 2 (2022), 717-734.

Thomas Feo, Olivier Goldschmidt, and Mallek Khellaf. 1992. One-Half Approxi-
mation Algorithms for the k-Partition Problem. Operations Research 40 (1992),
$170-S173.

David C Folch and Seth E Spielman. 2014. Identifying Regions Based On Flexible
User-defined Constraints. IJGIS 28 (2014), 164-184.

Fred Glover. 1989. Tabu Search—Part I. ORSA Journal on Computing 1 (1989),
190-206.

Jeremiah Hurley. 2004. Regionalization and the Allocation of Healthcare Re-
sources to Meet Population Health Needs. Healthcare Papers 5 (2004), 34-39.
Yunfan Kang and Amr Magdy. 2022. EMP: Max-P Regionalization with Enriched
Constraints. In ICDE. IEEE, 1914-1926.

David R Karger. 1993. Global Min-cuts in RNC, and Other Ramifications of a
Simple Min-Cut Algorithm.. In SODA. Society for Industrial and Applied Mathe-
matics, USA, 21-30.

George Karypis and Vipin Kumar. 1998. Multilevel K-Way Partitioning Scheme
for Irregular Graphs. J. Parallel and Distrib. Comput. 48, 1 (1998), 96-129.

Brian W Kernighan and Shen Lin. 1970. An Efficient Heuristic Procedure for
Partitioning Graphs. The Bell System Technical Journal 49, 2 (1970), 291-307.
MS Khan and KF Li. 1995. Fast Graph Partitioning Algorithms. In PACRIM. IEEE
Computer Society, Washington, D.C., USA, 337-342.

Hyun Kim, Yongwan Chun, and Kamyoung Kim. 2015. Delimitation of Functional
Regions Using a P-Regions Problem Approach. IRSR 38 (2015), 235-263.

Myung Kim and Ningchuan Xiao. 2017. Contiguity-based Optimization Models
for Political Redistricting Problems. IJAGR 8, 4 (2017), 1-18.

Yunfeng Kong, Yanfang Zhu, and Yujing Wang. 2019. A Center-based Modeling
Approach to Solve the Districting Problem. IFGIS 33, 2 (2019), 368-384.

Jason Laura, Wenwen Li, Sergio J Rey, and Luc Anselin. 2015. Parallelization of a
Regionalization Heuristic in Distributed Computing Platforms—a Case Study of
Parallel-P-Compact-Regions Problem. IJGIS 29 (2015), 536-555.

Wenwen Li, Richard L Church, and Michael F Goodchild. 2014. An Extend-
able Heuristic Framework to Solve the P-Compact-Regions Problem for Urban
Economic Modeling. CEUS 43 (2014), 1-13.

Wenwen Li, Richard L Church, and Michael F Goodchild. 2014. The p-Compact-
Regions Problem. Geographical Analysis 46 (2014), 250-273.

Yongyi Liu, Ahmed R. Mahmood, Amr Magdy, and Sergio Rey. 2022. PRUC:
P-Regions with User-Defined Constraint. In VLDB. 491-503.

Joe Marks, Wheeler Ruml, Stuart Shieber, and] Thomas Ngo. 1998. A Seed-Growth
Heuristic for Graph Bisection. Proceedings of Algorithms and Experiments’ 98
(1998), 76-87.

Microsoft. 2023. DeepSpeed Chat: Easy, Fast and Afford-
able RLHF Training of ChatGPT-like Models at All Scales.
https://github.com/microsoft/DeepSpeed/tree/master/blogs/deepspeed-chat.
Jorge E Patino, Juan C Duque, Josep E Pardo-Pascual, and Luis A Ruiz. 2014.
Using Remote Sensing to Assess the Relationship Between Crime and the Urban
Layout. Applied Geography 55 (2014), 48—60.

Tarjan R. 1971. Depth-first Search and Linear Graph Algorithms. SICOM 1 (1971),
114-121.

Sergio J Rey, Luc Anselin, David C Folch, Daniel Arribas-Bel, Myrna L Sas-
tré Gutiérrez, and Lindsey Interlante. 2011. Measuring Spatial Dynamics in
Metropolitan Areas. EDQ 25 (2011), 54-64.

Sergio] Rey and Myrna L Sastré-Gutiérrez. 2010. Interregional Inequality Dy-
namics in Mexico. SEA 5 (2010), 277-298.

Kirk Schloegel, George Karypis, and Vipin Kumar. 2000. Parallel Multilevel
Algorithms for Multi-Constraint Graph Partitioning. In European Conference on
Parallel Processing. Springer, Berlin, Heidelberg, 296-310.

Bing She, Juan C Duque, and Xinyue Ye. 2017. The Network-Max-P-Regions
Model. IJGIS 31 (2017), 962-981.

V. Sindhu. 2018. Exploring Parallel Efficiency and Synergy for Max-P Region
Problem Using Python. Master’s thesis. Georgia State University.

Seth E Spielman and David C Folch. 2015. Reducing Uncertainty in the American
Community Survey through Data-driven Regionalization. PloS ONE 10 (2015),
€0115626.

Daoqin Tong and David A Plane. 2014. A New Spatial Optimization Perspective on
the Delineation of Metropolitan and Micropolitan Statistical Areas. Geographical
Analysis 46, 3 (2014), 230-249.

Ran Wei, Sergio Rey, and Elijah Knaap. 2020. Efficient Regionalization for Spatially
Explicit Neighborhood Delineation. I7GIS 35 (2020), 1-17.

Xinyue Ye, Bing She, and Samuel Benya. 2018. Exploring Regionalization in the
Network Urban Space. JGSA 2 (2018), 4.

Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. 2009. Graph Clustering Based on
Structural/Attribute Similarities. PVLDB 2 (2009), 718-729.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary Definitions
	4 Unified Seeding Regionalization Problem
	5 System Overview
	6 Query Parser
	6.1 RSQL Query Signature
	6.2 Query Examples
	6.3 Clauses and Constructs
	6.4 Natural Language Interface

	7 Query Planner
	8 Query Executor
	9 Spatial Statistical Inference
	10 System Evaluation
	10.1 System Performance
	10.2 System Usability

	11 Future Directions and Conclusions
	References

