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ABSTRACT

Spatial regionalization is the process of combining a collection of

spatial polygons into contiguous regions that satisfy user-de�ned

criteria and objectives. Numerous techniques for spatial regional-

ization have been proposed in the literature, which employ varying

methods for region growing, seeding, optimization and enforce

di�erent user-de�ned constraints and objectives. This paper in-

troduces a scalable uni�ed system for addressing seeding spatial

regionalization queries e�ciently. The proposed system provides

a usable and scalable framework that employs a wide-range of

existing spatial regionalization techniques and allows users to sub-

mit novel combinations of queries that have not been previously

explored. This represents a signi�cant step forward in the �eld

of spatial regionalization as it provides a robust platform for ad-

dressing di�erent regionalization queries. The system is mainly

composed of three components: query parser, query planner, and

query executor. Preliminary evaluations of the system demonstrate

its e�cacy in e�ciently addressing various regionalization queries.
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1 INTRODUCTION

Spatial regionalization is a crucial process in numerous domains,

aiming to group a collection of spatial polygons (i.e., areas) into

spatially contiguous regions that minimize a given objective and sat-

isfy user-de�ned constraints [23]. Each spatial polygon represents

a fundamental spatial area, e.g., city block, city, or county. Region-

alization has been extensively applied to address various problems

across di�erent domains, including epidemic analysis [10], weather

temperature classi�cation [24], healthcare resource allocation [31],

political districting [38, 39], and metropolitan area delineation [54].

Seeding-based regionalization can be abstracted into two fundamen-

tal problems: (1) clustering spatial areas into a prede�ned number
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of p regions, as seen in the p-regions problem [21], and (2) cluster-

ing spatial areas into an arbitrary number of regions, depending

on data distribution, as seen in the max-p-regions problem [20].

These problems correspond to similar categories in the traditional

clustering literature, such as the k-means and DBScan algorithms.

However, in this context, clustering is spatially constrained, and

the unit is a spatial polygon rather than a d-dimensional point.

There is a multitude of regionalization techniques presented in

the literature to address di�erent variations of the p-regions and

max-p-regions problems. These techniques employ a diverse range

of region growing, seeding, and optimization tactics while adher-

ing to various user-de�ned constraints and objectives. Examples

include compact regionalization [13, 14, 27, 40–43], multiple con-

straints regionalization [32], random region regionalization [2, 55],

and connected region regionalization [43]. While these approaches

di�er in certain aspects, they also share some similarities. This

unique combination of similarities and di�erences creates an oppor-

tunity to develop a uni�ed framework capable of handling all these

techniques using common constructs. The bene�ts of such a frame-

work are manifold. First, users would be able to submit regionaliza-

tion queries to a uni�ed system using high-level query languages,

eliminating the need to deal with the complexity of implementing

various algorithms or optimizations. Second, by supporting a wide

range of queries at the system level, this framework would enable

system-level optimizations that are not feasible for individual al-

gorithms implemented separately on top of existing computing

frameworks, such as Apache Sedona [6]. However, despite the nu-

merous regionalization techniques proposed in the literature, none

have yet addressed the need for a uni�ed system for processing

regionalization queries. By designing and implementing such a

system, researchers can bene�t from a more streamlined approach

to spatial regionalization, ultimately leading to more e�cient and

e�ective solutions in various application domains.

This paper presents RegioNinja, a scalable, uni�ed system for

addressing regionalization queries. In addition to providing solu-

tions to existing queries, the system enables exploring novel com-

binations of queries that are not previously investigated, such as

p-regions queries with average aggregation constraints. It enables

users to submit a diverse range of queries tailored to their speci�c

needs, representing a signi�cant advancement in the �eld of spatial

regionalization. RegioNinja incorporates a range of techniques, in-

cluding region-growing algorithms and optimization strategies, to

provide e�cient and e�ective solutions for regionalization queries.

The utilization of optimization strategies allows the system to de-

liver high-quality results while minimizing computational costs.

A primary challenge in developing such a uni�ed system lies in

identifying the abstract building blocks out of the diverse range
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of available regionalization techniques. Abstracting these tech-

niques into a single system that e�ciently processes queries is

not a straightforward task. This is similar in spirit to identifying

SELECT, PROJECT, and JOIN operations for building SQL-based

systems. The diversity of existing techniques poses a signi�cant

challenge on building blocks that are �exible to support various

queries, yet, few enough to be supported in a practical system.

Our framework can function as an independent system with

specialized functionality in spatial regionalization or as a major

extension for existing spatial query processing engines. This ad-

vancement moves the spatial regionalization literature from an

era of individual, scattered algorithms to one of system-level sup-

port. As a query processing framework, it consists of three com-

ponents: a query parser, a query planner, and a query executor.

The query parser analyzes the input query and extracts elements

that are passed to the query planner, which generates execution

plans for the executor. Finally, the executor carries out the query

plan. Users can pose high-level SQL-like queries, as well as natural

language queries (text-based and speech-based) built atop modern

AGI platforms, such as GPT-3.5-Turbo APIs. Furthermore, the query

executor incorporates several building blocks that enable �exible

data preprocessing, region seeding, region growing with various

constraints, enclave assignment, and heuristic-based optimization.

One of the prominent features of our system is enabling users to

assess the quality of regionalization approximate solutions for the

�rst time in the spatial regionalization literature. This is achieved by

enabling statistical inference and generating reference distributions

for various statistical tests. This systemmarks a major advancement

in the spatial regionalization literature, o�ering a robust platform

for processing a wide range of regionalization queries.

The rest of the paper is organized as follows. Section 2 discusses

related work. Section 3 outlines basic regionalization de�nitions.

Section 4 formulates the uni�ed seeding regionalization problem.

Section 5 provides an overview of the proposed system, and Sec-

tions 6- 9 o�er a detailed explanation of the system’s core compo-

nents. Finally, Section 10 presents a preliminary evaluation of the

system, and Section 11 concludes the paper and discusses future

milestones for the system.

2 RELATED WORK

The current literature on spatial regionalization techniques can

be broadly classi�ed into two primary categories: regionalization

through graph partitioning and regionalization through seeding.

These techniques are primarily used to address two types of re-

gionalization problems: regionalization with a prede�ned number

of regions [13, 14, 21, 37, 40–42, 56] and regionalization with an

arbitrary number of regions [7, 20, 22, 29, 46, 48, 49, 51–53, 55].

The �rst type aims to generate Ħ spatially contiguous and homoge-

neous regions that optionally satisfy certain constraints. In contrast,

the second type generates the maximum number of homogeneous

regions to determine the appropriate spatial scale of the studied

phenomena by enforcing user-de�ned constraints on the regions to

calculate the number of regions automatically. We brie�y outline

and distinguish our work from the existing literature below.

Graph partitioning techniques.Graph partitioning techniques

could be used to generate p-regions where the sub-graphs represent

the regions and the nodes within the sub-graphs represent the areas.

Graph partitioning techniques include SKATER [8] and SKATER-

CON [9] to address the p-regions problem. In SKATER, edges are

removed from a minimum spanning tree (MST) derived from the

graph until Ħ sub-graphs are formed. In SKATER-CON, multiple

random spanning trees (RST) are generated, and SKATER is applied

to each RST. The results of all RSTs are combined to form the �nal

solution. K-way graph partitioning [5, 11, 28, 34, 36, 50] aims to

generate k sub-graphs with the minimum number of edges connect-

ing the sub-graphs. The graph bisection divides a graph into two

sub-graphs of approximately the same number of nodes while min-

imizing the number of edges between the sub-graphs [19, 25, 26, 33,

35, 44]. Recursively performing a graph bisection on a graph gen-

erates p sub-graphs. Node attributed graph partitioning [12, 17, 57]

generates k sub-graphs while minimizing the dissimilarity of sub-

graphs. Graph partitioning techniques are expensive and cannot

solve large datasets, leading to the proposal of seeding techniques,

which are the focus of this paper.

Seeding techniques. Seeding techniques grow a region by select-

ing a seed area and then adding neighboring areas until the region

satis�es the constraints. The seeding technique is highly generic

and �exible, allowing it to solve the two types of regionalization

problems, including the traditional p-regions [13, 14, 21, 37, 40, 56]

and max-p-regions problems [7, 20, 22, 29, 46, 48, 49, 51–53, 55].

Additionally, it is applied to various variations, such as the compact

p-regions [41, 42] and the compactmax-p-regions [27] that focus on

building regions with a compact shape, and the user-constrained

p-regions [43] and max-p-regions [32] that build regions with one

or more user-de�ned constraints. A few recent techniques address

the scalability issue in seeding-based regionalization. A generalized

p-regions problem called PRUC [43] is another seeding problem

that solves the p-regions problem with a threshold constraint. To

optimize the process of growing regions, PRUC builds connected re-

gions, i.e., regionswhere the edges between the areas aremaximized.

The EMP problem [32] is a generalization of the max-p-regions

problem that generates homogeneous regions while considering

multiple constraints, i.e., aggregate functions: MIN, MAX, SUM,

COUNT, AVG. There are two techniques that primarily address the

scalability issue of themax-p-regions problem. The �rst technique is

SMP [2], which employs e�cient partitioning and region-growing

techniques to solve the max-p-regions problem. It also presents a

novel seed selection technique that aims to reduce the gaps be-

tween the regions by selecting the seed for the next region from

the neighboring areas for the previously grown region. The second

technique [55] introduces a randomized region-growing approach

to expedite the traditional max-p-regions problem.

Our work falls within the second category of performing seeding-

based spatial regionalization; however, it is complementary to all

existingwork. It proposes a uni�ed system, RegioNinja, that answers

di�erent combinations of queries, including existing ones and those

that have not been studied before such as p-regions queries with

MIN and AVG constraints. By using a �exible and modular design,

our system can handle various types of data and constraints, making

it more applicable to real-world problems.
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3 PRELIMINARY DEFINITIONS

This section provides de�nitions for the basic concepts in the re-

gionalization literature.

De�nition 1. (Area). An area ėğ is a spatial polygon that is rep-

resented by four attributes (ğ, ĝğ , ĩğ , Ěğ ), where ğ is the area’s unique

identi�er, ĝğ is the area’s geometry represented as an arbitrary

spatial polygon, ĩğ is a spatially extensive attribute, and Ěğ is a

dissimilarity attribute.

An area ėğ is an articulation area if its removal breaks the

spatial contiguity of any given set of areas.

The area neighbors Ċėğ of any area ėğ are the areas that share

a boundary (i.e., line or curve) with area ėğ .

A spatially extensive a�ribute ĩğ of an area ėğ is an at-

tribute whose value is distributed among its smaller ġ sub-areas

ėğ0, ėğ1, ..., ėğġ when the area is divided, and the sum of the attribute

values of all sub-areas is equal to the value of the attribute of the

original area, i.e.,
∑

∀ėğ Ġ ∈ėğ ĩğ Ġ = ĩğ . An example of a spatially ex-

tensive attribute is the population of a county, which is divided over

its constituent cities. This is unlike spatially intensive attributes,

such as temperature, that are not divided over sub-areas.

De�nition 2. (Region). A region Ĩğ = {ė1, ė2, ė3, ..., ėĤ} is a set

of spatially contiguous areas.

The region neighbors ĊĨğ of any region Ĩğ are the set of areas

that do not belong to Ĩğ but have at least one neighbor that belongs

to Ĩğ .

A spatially contiguous areas mean that ∀ėğ , ė Ġ ∈ Ď, ∃ a se-

quence of areas {ėġ , ....ėĢ } such that both ėğ , ėġ and ėĢ , ė Ġ are spatial

neighbors and every two consecutive areas in the sequence are spa-

tial neighbors.

A seed area is the �rst area added to the region (i.e., the area

that a region starts growing from). An area ėğ is assigned if it is

part of a region and unassigned if it is not part of any region.

The boundary areas þýĨğ of a region Ĩğ are the areas in Ĩğ that

have at least one spatial neighbor that does not belong to Ĩğ .

De�nition 3. (User-De�ned Constraints). The user-de�ned

constraints ÿ = ęğ , ęğ+1, ...ęĤ are conditions that are enforced on

the output regions. Each constraint ęğ is de�ned with four attributes

{Ĝğ , ĩğ , Ģğ , īğ } where Ĝğ is one of the aggregate functions: minimum

(MIN), maximum (MAX), average (AVG), summation (SUM), and

count (COUNT), ĩğ is the spatially extensive attribute in which the

constraint is de�ned over, Ģğ is the lower bound of ĩğ and has a range

between −∞ and ∞, īğ is the upper bound of ĩğ and has a range

between −∞ and∞. So, ęğ is enforced through the inequality

Ģğ ≤ Ĝğ (ĩğ ) ≤ īğ .

De�nition 4. (Homogeneous Region). A homogeneous region

Ĩğ is a region where the areas are similar with regards to an attribute,

called the dissimilarity attribute Ěğ , that is associated with each

area ėğ [20]. The objective is to minimize the dissimilarity between

the areas in any region Ĩğ . The dissimilarity for any region Ĩğ is

calculated as follows [20]:∑

∀ėğ Ġ ,ėğġ ∈Ĩğ

|Ěğ Ġ − Ěğġ | (1)

De�nition 5. (Compact Region). A compact region is a region

that is grown with the objective of maximizing its compactness in

terms of its shape [27, 40–42]. The compactness of any region Ĩğ is

calculated as follows:
ďĨğ

2 ÿ ĉąĨğ
(2)

Where ďĨğ is the area of region Ĩğ andĉąĨğ is the second moment

of inertia of region Ĩğ .

De�nition 6. (Connected Region). A connected region is a re-

gion where the areas are strongly connected with each other. The

concept was �rst introduced in [43] as an optimization to allevi-

ate the cost of growing homogeneous regions. The connectivity

between an area ėğ and a region Ĩğ is de�ned as the number of

neighbors of ėğ that belong to Ĩğ .

De�nition 7. (Random Region). A random region is a region

where the areas are added randomly when growing the region.

Similar to connected regions, random regions is proposed in [55]

as an optimization technique to build regions e�ciently.

De�nition 8. (Gapless Regions). Gapless regions are regions

that are grown next to each other to minimize the space between

them [2]. The seed area for the �rst region Ĩ1 is picked at random.

For the following regions, the seed area is picked from the region

neighbors of the previously grown regions. For region Ĩğ+1, the seed

area is picked from the region neighbors for the previously grown

region Ĩğ . If all the region neighbors of Ĩğ are assigned, then the

seed area is picked from the region neighbors of Ĩğ−1 and so on.

De�nition 9. (Scattered Seeds). Sca�ered seeds are seed areas

that are as far away as possible from each other. The distance

between two areas ėğ and ė Ġ is represented as ĚğĩĪ (ėğ , ė Ġ ) and is

de�ned as the Euclidean distance between the centroids of the two

areas. The goal is to maximize the minimum Euclidean distance

between the centroids of all pairs of areas in ď . The minimum

Euclidean distance of a set of areas is de�ned as follows:

ģğĤėğ ∈ď∧ė Ġ ∈ď∧ğ≠Ġ ĚğĩĪ (ėğ , ė Ġ ) (3)

4 UNIFIED SEEDING REGIONALIZATION
PROBLEM

This section provides a formal de�nition for the uni�ed seeding

regionalization problem that abstracts the majority of existing prob-

lems in the literature.

Input: (1) A set of Ĥ areas; ý = {ė1, ė2, ė3, ..., ėĤ}. (2) Number

of regions Ħ; which could be a positive integer or a �ag ĦĉýĔ

indicating the maximum number of regions. (3) Optional set of

user-de�ned constraints; ÿ = {ę1, ę2, ..., ęģ}. If not provided, the

number of regions Ħ must be a positive integer. (4) An objective

function Ą computed on a dissimilarity attribute Ěğ of each area

ėğ ∈ ý.

Output: A set of regions Ď = {Ĩ1, Ĩ2, ..., ĨĦ } of size Ħ , where each

region Ĩğ is a non-empty set of spatially continuous areas satisfying

the below constraints and objectives.

Constraints:

• 1 ≤ Ħ ≤ Ĥ

• |Ĩğ | ≥ 1, ∀Ĩğ ∈ Ď

• Ĩğ ∩ Ĩ Ġ = ∅, ∀Ĩğ , Ĩ Ġ ∈ Ď ∧ ğ ≠ Ġ

• Ĩğ satis�es all the constraints in ÿ , ∀Ĩğ ∈ Ď

Objectives:
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Figure 1: System Architecture

• Minimizing the objective function Ą .

Examples of the objective function are heterogeneous and com-

pact regions as de�ned in Equation 1 and Equation 2, respectively.

5 SYSTEM OVERVIEW

This section provides an overview of RegioNinja. The system is

mainly designed to process the uni�ed seeding regionalization

query as de�ned in Section 4. This problem is generic and allows

the discovery of both a pre-de�ned and arbitrary number of regions.

In addition, it solves queries with no constraints at all or with a

variety of user-de�ned constraints that are �exible and support the

major SQL-inspired aggregate functions as de�ned in Section 3.

Such a generic query signature incorporates the major work on

seeding spatial regionalization queries in the existing literature.

Moreover, it enables new combinations of queries that are not

possible in existing literature, e.g., p-regions query with MAX or

AVG aggregate constraints.

Figure 1 depicts the RegioNinja system architecture that con-

sists of three components: query parser, query planner, and query

executor. We give a brief overview of each one below.

Query Parser. The query parser checks if the query follows the

speci�cations of our query language, called RSQL, and identi�es

the query elements and passes it to the query planner. The details

of the query parser are presented in Section 6.

Query Planner. The query planner generates a query plan from

the parsed query. It determines which components should be ex-

ecuted and in what order. The details of the query planner are

presented in Section 7.

Query Executor. The query executor executes the query plan

generated by the query planner. The details of the query executor

are presented in Section 8.

RSQL query language uses four clauses that are inspired by SQL

language, SELECT, FROM, WHERE, ORDER BY, to express eight basic

query processing components that are pipelined to form query

plans for various queries. The eight components perform six com-

plementary tasks: (1) Checking the feasibility of �nding a solution

given the user constraints. (2) Selecting seed areas with di�erent

settings. (3-4) Growing initial regions and assigning enclave

areas to them. (5) Adjusting the regions’ structure at multi-

ple stages to satisfy all the query constraints. (6) Finding the �nal

regions through heuristic search optimization for the initial

regions. The RSQL clauses are detailed in Section 6, and the basic

query processing components are detailed in Section 8.

This system can function independently or as a major extension

of existing spatial query processing engines. The following sections

detail each of the core components: query parser, query planner,

and query executor.

6 QUERY PARSER

This section introduces our query parser. Our main contribution

in this component is introducing new convenient ways for users

to pose regionalization queries. Speci�cally, we introduce the �rst

high-level query language, RSQL, that facilitates posing spatial

regionalization queries in SQL-like format for the �rst time in

literature. In addition, we provide natural language interfaces, text-

based and speech-based interfaces, built on top of the modern AGI

models to enable a wider base of users to interact with RegioNinja.

We de�ne speci�cations for our new query language. The query

parser checks if the query follows our query language speci�ca-

tions, parses its di�erent parts, and pass it to the query planner to

generate the execution plan. Our query language is directly built on

the standard SQL query language that is used in many data manage-

ment systems. This enables easy integration of our building blocks

of spatial regionalization queries into existing systems, which leads

to further system-level optimizations at later stages of the system

development.

The rest of this section describes the query language speci�ca-

tions and capabilities for the proposed system.

6.1 RSQL Query Signature

Our uni�ed query has the following general form, where the op-

tional clauses and constructs are enclosed within square brackets:

SELECT REGIONS, [REGIONS.p, REGIONS.HET];

[ORDER BY (HET | CARD) [(ASC | DESC)];]

FROM (dataset_name | path);

WHERE p = (k | ĦĉýĔ ),

OBJECTIVE (HETEROGENEOUS | COMPACT) ON attribute_name,

[lower_bound (< | <=) (SUM | MIN | MAX | COUNT | AVG)

(< | <=) upper_bound ON attribute_name],

[OPTIMIZATION (RANDOM | CONNECTED)],

[GAPLESS],

[HEURISTIC (MSA | TABU)];

The following sections clarify this general form through query

examples and description for di�erent clauses and constructs.

6.2 Query Examples

The following are examples of regionalization queries using our

query language:

• SELECT REGIONS;

ORDER BY HET DESC;

FROM US_counties;

WHERE p=14, GAPLESS,

11,000 < SUM < 20,000 ON population, 500 <= MIN

ON population,

OBJECTIVE HETEROGENEOUS ON average_house_price;

This query generates 14 regions from the US counties. Each re-

gion has a total population that is larger than 11K and less than 20K,

and the minimum population of each county is 500. The objective

is minimizing the overall heterogeneity of regions based on the

average house price in the counties and grow them without gaps

in between (gapless) as proposed in [2, 3]. Regions are ordered by

heterogeneity in a descending order.

• SELECT REGIONS, REGIONS.p;

FROM NYC_census_tracts;

WHERE p=ĦĉýĔ ,
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5000 <= MAX ON population, OBJECTIVE COMPACT,

OPTIMIZATION CONNECTED, HEURISTIC TABU;

This query generates the maximum number of compact regions

from the NYC census tracts data and regions are optimized to be

more connected. Each region must have a maximum of at least 5K

of population in each census tract. The heuristic method used in

the local search to optimize the initial solution is tabu search.

6.3 Clauses and Constructs

This section details our query language clauses and constructs.

All keywords are case insensitive, e.g., SELECT is the same

as select. Keywords are either clause (i.e., operational) key-

words or non-clause keywords. Clause keywords include SELECT,

ORDER BY, FROM, WHERE and they come at the beginning of

each clause in the query. Non-clause keywords include REGIONS,

REGIONS.p, REGIONS.HET, p, ĦĉýĔ DESC, ASC, CARD, HET,

OBJECTIVE, OPTIMIZATION, HEURISTIC, RANDOM, CONNECTED,

HETEROGENEOUS, COMPACT, TABU, MSA, GAPLESS, MIN, MAX,

AVG, SUM, COUNT, ON. Each clause in the query must start with

an operational keyword, followed by one or more terms, and end

with a semicolon. Below are the description of each clause.

SELECT clause instructs to output the regions, the heterogeneity,

or the number of regions Ħ of a regionalization result. It is followed

by three keywords: (1) REGIONS, which outputs regions as a list of

pairs of integers, each pair is <area id, region id>, where all areas

a�liated with the same region are labeled with the same region id.

(2) REGIONS.p, which outputs the number of regions (integer), and

(3) REGIONS.HET, which outputs the regions heterogeneity (double).

REGIONS is required, while the REGIONS.p and REGIONS.HET are

optional.

ORDER BY clause is an optional clause that orders the regions by

cardinality or heterogeneity in an ascending or descending order.

It is followed by two possible keywords: (1) CARD, which orders

regions by their cardinality, i.e., number of areas in each region, or

(2) HET, which orders regions by their heterogeneity values. The

order, i.e., ASC or DESC, is optional and the default value is ASC.

FROM clause speci�es the name or path of the dataset that con-

tains the areas to be regionalized. The supported format is Well-

Known Text (WTK) format.

WHERE clause is used to provide di�erent query parameters. First,

it speci�es the number of desired regions, p, either a positive integer

ġ ranges from 1 to Ĥ (total number of input areas), or a �ag ĦĉýĔ

to get the maximum number of regions. Second, it speci�es the

objective function used to optimize the regions using the keyword

OBJECTIVE. The currently supported objectives are heterogeneity

(HETEROGENEOUS) and compactness (COMPACT). If the objective is set

to HETEROGENEOUS, then it must be de�ned over an attribute using

the keyword ON. Third, it could be used to specify the optimization

criteria in growing initial regions, either to optimize runtime (speed

up the process) or the spatial contiguity robustness using the key-

word OPTIMIZATION which takes the values RANDOM or CONNECTED

or a �ag GAPLESS. Fourth, it can be used to specify the heuristic

algorithm to optimize the initial solution after growing the initial

regions using the keyword HEURISTIC that is followed two key-

words: MSA or TABU. The default value is MSA. The p and OBJECTIVE

are required while the OPTIMIZATION, GAPLESS, and HEURISTIC are

optional. Finally, it allows �exible user-de�ned constraints on mul-

tiple attributes of the region. The constraints include the following

aggregate functions: summation (SUM), minimum (MIN), maximum

(MAX), average (AVG), and count (COUNT). The aggregate functions

are de�ned over an attribute using the keyword ON. A lower bound

or upper bound or both are set for each aggregate function as shown

in the examples. At least one constraint is required when p=ĦĉýĔ .

6.4 Natural Language Interface

Users of RegioNinja can also post queries through a natural language

interface, both text-based queries and speech-based queries. This

is achieved by integrating Arti�cial Intelligence chabots, such as

ChatGPT [1], with our system. Users then can provide the language

description and the query parameters in a natural human language

in the chatbot prompt and the interface generates a query according

to the given language speci�cations. To have a more human-like

interaction, chat-to-voice extensions, such as Talk to ChatGPT by

Google Chrome [16], could also be incorporated to allow users to

submit voice queries and receive voice responses.

7 QUERY PLANNER

The query planner is an essential part of RegioNinja, speci�cally

designed to support arbitrary queries that are expressed in terms

of basic constructs. Our current model operates on a One-Plan-Fits-

All paradigm, meaning that all queries are subjected to a similar

master plan, except for minor reordering in the adjustment stages.

The primary di�erence lies in the parameterization of the di�erent

modules within the plan, which allows tailored execution based

on the speci�cs of each query. The core sequence of operations

includes: Feasibility, Seed Selection, RegionGrowing, Enclaves

Assignment, Ħ Adjustment, Extrema Adjustment, Monotonic

Adjustment, and Local Heuristic Search. The query executor

carries out these di�erent stages as detailed in the following section.

8 QUERY EXECUTOR

The query executor executes the di�erent stages of the query plan

to produce the query results. This section discusses the operations

in order of execution: Feasibility, Seed Selection, Region Growing,

Enclaves Assignment, Ħ Adjustment, Extrema Adjustment, Mono-

tonic Adjustment, and Local Heuristic Search.

(1) Feasibility. This phase serves as a crucial initial step, as it

determines whether the formulation of a solution is possible given

the set of constraints. Based on that, it �lters out invalid areas

that fail to meet these constraints to produce feasible solutions.

In the case of the AVG constraint, if the cumulative average of

all areas either falls below the lower bound or exceeds the upper

bound, the construction of a solution that ful�lls the constraints is

an impossibility as proven in [32]. Regarding the MIN constraint, a

solution cannot be generated if the smallest value within the areas

is above the upper bound or if the maximum value does not reach

the lower bound. Under these circumstances, no area satis�es the

constraint. Otherwise, any areas with minimum values below the

lower bound are removed from the areas. A similar approach is

taken with the MAX constraint. If the minimum value is above the

upper bound, or the maximum value is below the lower bound, it is

100



SSTD ’23, August 23–25, 2023, Calgary, AB, Canada Hussah Alrashid and Amr Magdy

Algorithm 1: Seed Selection

1 Input : List of areas ý, list of constraintsÿ , number of regions

Ħ , number of iterationsģ, Boolean scattered.

2 Output: Set of seed areas ď .

3 Initialization:

4 ď = {};

5 for each a ∈ A do

6 if a satis�es the MIN or MAX constrains in ÿ then

7 S.add(a);

8 ďĨėĤĚĥģ = Ħ seed areas selected randomly from ď ;

9 if scattered == true then

10 ďĤĥĪ ĩěěĚĩ = ď − ďĨėĤĚĥģ ;

11 whileģ ≠ 0 do

12 ėģğĤ = area pair with the minimum Euclidean

distance;

13 ėĨėĤĚĥģ = area selected randomly from ďĤĥĪ ĩěěĚĩ ;

14 if ėĨėĤĚĥģ improves the quality of ď if replaced with

one of the areas in ėģğĤ then

15 replace ėĨėĤĚĥģ with one of the areas in ėģğĤ ;

16 ģ =ģ − 1;

17 return S;

impossible to formulate a solution, as no areas meet the constraint.

However, if areas are found with a maximum value that exceeds

the upper bound, they must be �ltered out.

When it comes to the SUM constraint, if the lowest value ex-

ceeds the upper bound, then the construction of a valid solution is

impossible. Moreover, if the combined sum of all areas is less than

the lower bound, it becomes impossible for any region to satisfy

the sum constraint. Otherwise, areas with sum values that exceed

the upper bound must be excluded to generate a feasible solution.

Finally, in the case of the COUNT constraint, if the total count of

areas is less than the lower bound, then no solution can be formed.

(2) Seed Selection. Algorithm 1 outlines the seed selection

process. First, all the areas that satisfy the MIN or MAX constraint

are �ltered and saved in a set ď (Lines 5-7). After that, if Ħ is not

set to ĦĉýĔ , then Ħ areas are chosen randomly to be kept in ď

(Line 8). If the seed strategy is scattered, then the areas in ď are

replaced with the areas that are not in ď to ensure that the seeds

in ď are as far away as possible from each other (Lines 9-16). An

area ėĨėĤĚĥģ that is not in ď is selected at random to replace one of

the areas in the area pair having the minimum Euclidean distance.

ėĨėĤĚĥģ is replaced with one of the two areas only if it improves the

overall distance of the seeds in ď . This process is repeatedģ times

to improve the quality of the seeds. The seed selection strategy, i.e.,

scattered, is determined by the query planner based on the type

of query. For p-regions queries, the query planner sets the seed

selection strategy to scattered by default to ensure that regions

have enough room to grow.

(3) Region Growing. The region growing module serves the

purpose of developing initial regions, ensuring adherence to the

AVG constraint and the given objective. It starts with the seeds

produced by the seed selection component. For each seed area, this

component selects a neighboring area that not only satis�es the

AVG constraint but also minimizes the objective function, which

may either follow the heterogeneity model as depicted in Equation 1

or the compactness model as demonstrated in Equation 2. This

selection is performed from the region neighbors ĊĨğ of the region

Ĩğ . The process of adding areas to a region continues until the AVG

constraint is met. If a situation arises where the region does not

satisfy the AVG constraint and there are no more region neighbors

ĊĨğ , the region is retained onlywhen the parameter Ħ is not assigned

the value ĦĉýĔ . In this case, the region’s AVG is adjusted in the

Ħ adjustment phase. In instances where an optimization (random

or connected) is speci�ed, the growth of regions will adhere to the

optimization rules, and the objective will be optimized during the

local heuristic search phase.

(4) Enclaves Assignment Upon completion of the region grow-

ing phase, there might be areas that have not been allocated to any

region, referred to as enclaves. The enclave assignment module

seeks to allocate these areas to regions through a two-step process.

The �rst phase involves assigning enclaves that align with the AVG

constraint. All such enclaves that satisfy the AVG constraint are au-

tomatically incorporated into a neighboring region, as integrating

an area that already satis�es the average does not violate the AVG

constraint of the recipient region. The subsequent step addresses

the remaining enclaves that fail to satisfy the AVG constraint. This

step is conducted by iterating over these enclaves, and for each en-

clave, neighboring regions are identi�ed. The updated average of a

region, computed by considering the enclave area, is then assessed.

If the newly calculated average of the region still meets the AVG

constraint, the enclave area is added to the region. This procedure

continues until all enclaves are allocated to regions. However, if

certain enclaves violate the AVG constraint for all neighboring re-

gions, they are eliminated from the solution, only if the parameter

Ħ has been set to ĦĉýĔ . Otherwise, the enclaves are added to the

regions randomly even if they do not satisfy the AVG constraint

and the regions’ AVG will be adjusted in the Ħ Adjustment phase.

(5) Ħ Adjustment. This phase is executed when the number of

regions, Ħ , is assigned a positive integer value. After the enclave

assignment, there may remain incomplete regions that do not yet

ful�ll the AVG constraint. The Ħ adjustment aims to ensure these

incomplete regions satisfy the AVG constraint. For each incomplete

region, all neighboring complete regions are identi�ed, and areas

are moved from these neighboring complete regions (i.e., donor

regions) to the incomplete region (i.e., receiver region). Neighbor-

ing regions are determined by examining whether any neighboring

areas of the incomplete region’s areas belong to another region. Sub-

sequently, boundary areas of the neighboring complete regions are

moved to the incomplete region, provided they are not articulation

areas. This move may cause donor regions to become incomplete.

A subsequent step resolves this issue by identifying all complete

regions in a list, then moving areas from complete regions to neigh-

boring incomplete regions in the same manner. Following this step,

all regions should satisfy the AVG constraint.

(6) Extrema Adjustment The seed selection identi�es the areas

that satisfy either the MIN or MAX constraints. Therefore, regions

are guaranteed to satisfy only one of those constraints. To ensure

that regions satisfy both constraints, the regions are checked one

by one. If the region satis�es one of the constrains, it is merged

with a neighboring region that satis�es the other constraint.
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(7) Monotonic Adjustment To ensure compliance with the

SUM and COUNT constraints for each formed region, it may be-

come necessary to move areas among regions. For both the SUM

and COUNT constraints, if a region exceeds the upper bound, areas

are moved to an adjacent region, providing this does not a�ect the

constraints of the receiving region. Conversely, if a region falls

below the lower bound, areas are added from neighboring regions,

ensuring this action does not violate the constraints of the donating

region. If the SUM or COUNT constraints are still not satis�ed

after this step, then areas are removed from regions that are above

the upper bound or the regions are merged when they are below

the lower bound. The merging process repeatedly merges two re-

gions when at least one of them is below the threshold without

violating the constrains. Any regions that remain non-compliant

post-adjustment are excluded, thus �nalizing the solution.

(8) Local Heuristic Search. This component focuses on opti-

mizing the quality of the solution based on the given objective. The

basic idea of local search algorithms [30, 55] is moving areas from

one region (the donor region) to another neighboring region (the

recipient region). An area is considered moveable only if it upholds

two conditions: (a) It preserves the spatial continuity of the donor

region, and (b) it does not violate the constraints of both regions.

Current techniques basically employ two local search algorithms.

The �rst is the Tabu Search [30]. The aim of the algorithm is to move

areas among neighboring regions while adhering to user-de�ned

constraints. The algorithm starts with an initial solution and pro-

ceeds iteratively towards the best possible solution. To escape a

local optimum solution, the algorithm allows moves towards solu-

tions with a worse objective function value. Tabu Search maintains

a tabu list that saves moves executed during the search to prevent

reverse movements that may trigger cycles. If a move results in

a solution better, the algorithm selects that move, even if it is in

the tabu list. The search terminates when no further advantageous

moves can be made within a speci�ed limit of steps, and the best

solution found so far is returned as the �nal result.

The second algorithm is the Modi�ed Simulated Annealing

(MSA) [2, 3, 55]. It starts by generating a set of movable areas.

Then, it randomly selects an area from the list and shifts it to an-

other region if the move enhances the objective function value of

the existing solution. If not, the move is accepted with a probability

calculated using the Boltzmann’s equation: e-� H/TM where -�H rep-

resents the value of the objective function variation on both donor

and recipient regions, and TM represents the temperature. The tem-

perature TM is decreased at each iteration at a �xed cooling rate

PH until TM reaches a prede�ned value. In contrast to the original

simulated annealing algorithm [20], the MSA algorithm introduces

two e�cient techniques to expedite the optimization process. First,

it reuses the set of moveable areas until it becomes empty instead

of recalculating the set each time an area is moved [55]. Second, it

uses a tabu list with a speci�c size, i.e., Ĉą , to prevent cycles. Finally,

it employs Tarjan’s algorithm [47] to �nd all the articulation areas

in a single graph traversal to identify the moveable areas [2, 3].

9 SPATIAL STATISTICAL INFERENCE

All current regionalization techniques employ heuristics that pro-

duce approximate solutions without providing a guarantee of their

Table 1: Evaluation Datasets Description

Name No. of Areas States

10K ≈ 10 ×103 CA, NV, and AZ.

20K ≈ 20 ×103 10K, OR, WA, ID, UT, MT, WY, CO, NM,

OK, KS, NE, SD, and ND.

30K ≈ 30 ×103 20K, TX, LA, AR, MO, and IA.

40K ≈ 40 ×103 30K, MN, MS, AL, TN, KY, IL, and WI.

50K ≈ 50 ×103 40K, GA, IN, MI, OH, and WV.

60K ≈ 60 ×103 50K, FL, SC, NC, VA, and MD.

70K ≈ 70 ×103 60K, PA, NY, NJ, and DE.

quality. Experts within the respective �eld need to perform statisti-

cal inference to evaluate the quality of resultant solutions. In order

to conduct statistical inference, one would need to generate a refer-

ence distribution comprising sample solutions that can be used for

comparative analysis against the evaluated solution. These sample

solutions, known as the reference distribution, must be similar to

the evaluated solution in terms of the number of regions and the

cardinality of each region (i.e., the number of areas within each

region) to ensure the provision of signi�cant statistical evidence.

To incorporate spatial statistical inference into RegioNinja, a

keyword (i.e., REGIONS.DISTRIBUTION) is included in the SELECT

clause to output a reference distribution of a user-de�ned sample

size, with a default sample size of 100 random solutions. In addition,

the Monotonic Adjustment component of the query executor is

extended to include an operation to adjust the cardinality of the

merged region. After each merge iteration, the smallest cardinality

is checked against all themerged regions. If the size of all the regions

is larger than the smallest cardinality, then areas are moved from

the smallest region to neighboring regions until its size matches

the desired cardinality. This process is repeated at each iteration

for each cardinality value, as detailed in our work [4].

10 SYSTEM EVALUATION

This section provides a preliminary evaluation for RegioNinja. We

evaluate two aspects: system performance and system usability.

10.1 System Performance

We currently support two families of queries representing the two

major categories in the existing literature: (1) p-regions query and

its variations, and (2)max-p-regions query and its variations. We use

three performance measures: runtime to measure the system’s

scalability, number of regions Ħ and heterogeneity H to measure the

quality of the generated solutions.

Our evaluation datasets are all subsets of the census tracts

TIGER/Line shape �les of the US states [15]. Areas in each dataset

represent the census tracts for certain US states. The details of the

datasets are presented in Table 1. In our experiment, the spatially

extensive attribute is de�ned over the aland attribute that represents

the land area. The dissimilarity attribute is de�ned over the awater

attribute that represents the water area. All the experiments are

based on Java 14 implementation and run on Ubuntu 16.04 with a

quad-core 3.5GHz processor and 128GB of memory.

10.1.1 Max-p-regions �eries. The max-p-regions query of

the proposed system is denoted as RegioNinja and is evaluated
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Table 2: Evaluation parameters formax-p-regions queries

Parameter Values

DS 10K, 20K, 30K, 40K, 50K, 60K, 70K

l 10, 30, 50, 70, 90 (×106)
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Figure 2: Impact of the parameters on the runtime of the

max-p-regions queries

against the state-of-the-art max-p-regions problem, which is de-

noted as SOTA [55]. The system’s max-p-regions query, RegioNinja,

have the OPTIMIZATION set to RANDOM and the OBJECTIVE set to

HETEROGENEOUS. It has one constraint, which is SUM, with an up-

per bound set to ∞ and varying lower bound (Ģ ) values speci�ed in

Table 2. We evaluate the performance of the max-p-regions queries

with the following parameters:

• DS: dataset size, which represents the number of areas in the

dataset.

• l: lower bound of the SUM constraint.

Table 2 presents the parameters’ values used in this experiment.

The default value for each parameter is indicated in bold. The local

heuristic search parameters: tabu list length (LI ), the temperature

of computing the Boltzmann’s probability (TM), and its cooling rate

(PH ), are set to 100, 1, and 0.9, respectively, as proposed in [20].

Impact of the parameters’ values on the runtime. Figure 2

shows the impact of changing the DS and l values on the runtime

for RegioNinja and SOTA. Increasing the DS value increases the

runtime for all alternatives as shown in Figure 2a as there are more

areas to process in general. Increasing the l value decreases the run-

time of RegioNinja while the runtime of SOTA is almost consistent

with di�erent values. The merging process in the SUM adjustment

merges each region only once in each iteration and updates the re-

gion neighbors each time it is merged. When the lower bound value

Ģ is small, regions are more likely to satisfy the constraint in early

iterations, which lead to leaving some regions not merged which

in turn increases the number of iterations. Having more iterations

increases the runtime since the number of updates for the neigh-

borhood relationships between regions will increase. This explains

why the runtime of RegioNinja decreases as we increase the l value.

RegioNinja is slightly slower than SOTA due to its modular design.

The query have to go through the feasibility, seed selection, and

region growing components (which �lters out each single area as a

region) before reaching the SUM adjustment. Overall, RegioNinja is

still e�cient enough to handle large-sized datasets while hiding all

the complications from end-users and enabling future system-level

optimizations.

Impact of the parameters’ values on Ħ and the Heterogeneity.

Increasing the DS value increases the Ħ for all alternatives as there
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queries

Table 3: Evaluation parameters’ values for p-regions queries

Parameter Values

DS 10K, 20K, 30K, 40K, 50K, 60K, 70K

p 0.01%, 0.02%, 0.03%, 0.04%, 0.05% (of DS)

m 0.0001%, 0.0002%, 0.0003%, 0.0004%, 0.0005% (of DS)

are more input areas as shown in Figure 3a. On the other hand,

Figure 3b shows that increasing the Ģ value decreases the number

of regions. This is due to the fact that more areas will be needed

in the region to reach the lower bound when the Ģ value increases.

RegioNinja generates slightly less regions than SOTA since the

merging process reduces the granularity of the areas in the SUM

adjustment. At each iteration, two regions (initially two areas in the

�rst iteration) are merged. After that, merging two regions leads

to adding more than one area to the region which results in less

regions. Whereas in SOTA, areas are added one by one to the region

until it reaches the lower bound.

The Ħ directly a�ects the heterogeneity. RegioNinja has a slightly

higher heterogeneity value than SOTA since it generates less re-

gions. This is because having a larger number of regions means

having more area pairs in each region that contribute to the hetero-

geneity. Overall, RegioNinja is able to generate solutions that are

comparable to those produced by the existing techniques e�ciently

while o�ering a convenient way for users to submit queries.

10.1.2 P-regions �eries. The p-regions query of the proposed

system is denoted as RegioNinja and is evaluated against the gen-

eralized p-regions problem PRUC, denoted as PRUC [43]. The sys-

tem’s p-region query, RegioNinja, have the OPTIMIZATION set to

RANDOM and the OBJECTIVE set to HETEROGENEOUS. We evaluate the

performance of the p-regions queries with the following parameters:

• DS: dataset size, which represents the number of areas in the

dataset.

• p: number of regions, which is a percentage of the dataset

size DS.

• m: number of seed iterations, which is a percentage of the

dataset size DS.

Table 3 presents the parameters’ values used in this experiment.

The default value for each parameter is indicated in bold.

Impact of the parameters’ values on the runtime. The impact

of changing the DS, p, and m values on the runtime for RegioNinja

and PRUC are shown in Figure 4. Increasing the DS value increases

the runtime for all alternatives as shown in Figure 4a as there are

more areas to process in general. On the other hand, Figure 4b and

Figure 4c shows that the run time is consistent with di�erent values
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Figure 4: Impact of the parameters on the runtime of the

p-regions queries
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Figure 5: Impact of the parameters on the heterogeneity of

the p-regions queries

(only di�ers by a few seconds). The performance of RegioNinja

and PRUC is the same, which proves the ability of our system to

generate solutions in a very e�cient manner while providing a

usable way to submit queries.

Impact of the parameters’ values on the Heterogeneity. Fig-

ure 5 shows that there is no correlation between the DS, p, and m

values on the heterogeneity for RegioNinja and PRUC. The reason

for this is that the regions are grown at random in both queries,

which gives very di�erent results each time. The heterogeneity of

the RegioNinja is very close to that of the PRUC, which proves the

ability of our system to provide a usable way to submit queries and

generate solutions with a quality similar to the original query.

10.2 System Usability

To run the state-of-the-art max-p-regions [55], one would have to

write a lengthy code (1855 lines), and 2209 lines of code to run

PRUC [43]. Our proposed system allows users to execute the max-

p-regions query with only a few lines as follows:

SELECT REGIONS;

FROM census_tracts;

WHERE p=ĦĉýĔ ,

OPTIMIZATION RANDOM, OBJECTIVE HETEROGENEOUS ON awater,

SUM >= 90,000,000 ON aland;

This applies to all the other existing queries. RegioNinja pro-

vides a framework where users can submit di�erent queries within

seconds instead of having to implement each query from scratch.

11 FUTURE DIRECTIONS AND CONCLUSIONS

This paper introduces an innovative and uni�ed system for spatial

regionalization, combining a variety of techniques to achieve ef-

fective and e�cient results. The system serves as a practical and

scalable framework that not only accommodates traditional seeding

regionalization queries, but also introduces novel combinations of

queries unexplored to date. The system engages a variety of tech-

niques, encompassing region-growing algorithms and optimization

strategies that can be tailored to cater to speci�c user requirements.

The adoption of optimization strategies empowers the system to

yield high-quality results while concurrently minimizing compu-

tational expenses. This breakthrough represents a signi�cant step

forward in the �eld of spatial regionalization, o�ering a robust

and versatile platform for addressing a broad spectrum of region-

alization queries. Preliminary evaluations of the system proves its

e�ectiveness in addressing regionalization queries e�ciently.

The presented system paves the way for future signi�cant en-

hancements in the spatial regionalization domain. Such enhance-

ments range from advancing existing components of the system to

adding brand-new components to advance the existing literature.

For instance, future iterations should accommodate a broader

range of �exible user-de�ned constraints that cater to real-world

applications, e.g., variance and standard deviation constraints. Also,

the system could support more objective functions within a gener-

alized scheme, yet continue to prioritize key functions. The system

could also be made more user-friendly to facilitate handling various

dataset formats. Further, the optimization and adjustment strate-

gies could be improved to yield higher-quality solutions across

diverse query combinations. Thus, di�erent opportunities for sys-

tem improvements and optimizations could signi�cantly elevate

the e�ciency and quality of regionalization queries.

The system is also designed to incorporate revolutionary com-

ponents that could fundamentally transform the way users ap-

proach spatial regionalization queries. The inclusion of the natu-

ral language interface component is particularly signi�cant. This

component could be signi�cantly improved by enhancing the ex-

pressiveness of queries and o�ering customized and personalized

user experiences. This could be achieved through deeper and more

advanced integration with Large Language Models (LLMs) and rele-

vant systems. For example, Microsoft’s DeepSpeed-Chat [45], which

provides a simple and cost-e�ective means of training ChatGPT-like

models using reinforcement learning techniques based on human

interaction feedback, could be considered. With DeepSpeed-Chat,

a 13-billion parameter model can be trained on a single GPU, or on
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Microsoft’s Azure Cloud platform, at a low cost of just $300 and

within a relatively short timeframe, typically less than 12 hours.

Another potential avenue to explore is Databricks Dolly [18], an

open system that o�ers additional avenues for developing natu-

ral language interfaces. The integration with such systems could

dramatically enhance the user experience, marking a signi�cant

advancement in spatial regionalization technology.
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