
46 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 1, JANUARY 2024

A High-Performance and Energy-Efficient Photonic
Architecture for Multi-DNN Acceleration

Yuan Li , Member, IEEE, Ahmed Louri , Fellow, IEEE, and Avinash Karanth , Senior Member, IEEE

Abstract—Large-scale deep neural network (DNN) accelerators
are poised to facilitate the concurrent processing of diverse DNNs,
imposing demanding challenges on the interconnection fabric.
These challenges encompass overcoming performance degradation
and energy increase associated with system scaling while also ne-
cessitating flexibility to support dynamic partitioning and adapt-
able organization of compute resources. Nevertheless, conventional
metallic-based interconnects frequently confront inherent limita-
tions in scalability and flexibility. In this paper, we leverage silicon
photonic interconnects and adopt an algorithm-architecture co-
design approach to developMDA, a DNN accelerator meticulously
crafted to empower high-performance and energy-efficient concur-
rent processing of diverseDNNs. Specifically,MDAconsists of three
novel components: 1) a resource allocation algorithm that assigns
compute resources to concurrent DNNs based on their computa-
tional demands and priorities; 2) a dataflow selection algorithm
that determines off-chip and on-chip dataflows for each DNN, with
the objectives ofminimizing off-chip and on-chipmemory accesses,
respectively; 3) a flexible silicon photonic network that can be dy-
namically segmented into sub-networks, each interconnecting the
assigned compute resources of a certain DNNwhile adapting to the
communication patterns dictated by the selected on-chip dataflow.
Simulation results show that the proposed MDA accelerator out-
performs other state-of-the-art multi-DNN accelerators, including
PREMA, AI-MT, Planaria, and HDA. MDA accelerator achieves a
speedup of 3.6, accompanied by substantial improvements of 7.3×,
12.7×, and9.2× in energy efficiency, service-level agreement (SLA)
satisfaction rate, and fairness, respectively.

Index Terms—Accelerator, dataflow, deep neural network,
silicon photonics.

I. INTRODUCTION

THE proliferation of deep neural network (DNN) accelera-
tors within the realm of cloud computing has emerged as a

prominent trend [1], [2], [3], [4] driven by an overarching goal of
facilitating concurrent processing of various DNNs. It imposes
stringent demand on the underlying interconnection fabric [5],
necessitating not only the support for addressing challenges in
latency, bandwidth, and energy stemming from system scaling

Manuscript received 27 April 2023; revised 11 October 2023; accepted 22
October 2023. Date of publication 25 October 2023; date of current version
20 November 2023. This work was supported by the National Science Founda-
tion under Grants CCF-1702980, CCF-1812495, CCF-1901165, CCF-1953980,
CCF-1513606, CCF-1703013, and CCF-1901192. Recommended for accep-
tance by Y. Yang. (Corresponding author: Yuan Li.)

YuanLi andAhmedLouri arewith theDepartment of Electrical andComputer
Engineering, George Washington University, Washington, DC 20052 USA
(e-mail: liyuan5859@gwu.edu; louri@gwu.edu).

Avinash Karanth is with the School of Electrical Engineering and Computer
Science, Ohio University, Athens, OH 45701 USA (e-mail: karanth@ohio.edu).

Digital Object Identifier 10.1109/TPDS.2023.3327535

but also the provision of connection flexibility required for active
partitioning and adaptable organization of compute resources.
However, conventional metallic-based interconnects confront
increasingly pronounced scaling limitations [6] as well as inher-
ent rigidity [7], [8], [9], rendering them inadequate to facilitate
high-performance and energy-efficient concurrent processing of
diverse DNNs. For instance, some previous accelerators [10],
[11], [12], [13] facilitate the concurrent processing of multiple
DNNs but are confined to a fixed dataflow [4]. Conversely, other
accelerators [14], [15], [16] accommodate multiple dataflows
but are only capable of concurrently processing a limited number
of DNNs.
Silicon photonic interconnects [17], [18] offer several well-

established advantages when compared to the metallic-based
counterparts, such as distance-independent latency [17], high
bandwidth density [18], and high energy efficiency, making
them a compelling alternative to architect the interconnection
fabric for large-scale DNN accelerators [7], [19]. Moreover,
due to their unique characteristics in modulation, transmission,
multiplexing, and filtering [17], silicon photonic interconnects
exhibit remarkable inherent flexibility which enables efficient
support for dynamic resource partitioning to minimize the com-
munication interference between concurrently processedDNNs,
as well as adaptable resource organization to accommodate the
diversity in DNN characteristics and dataflows.
We introduce the MDA accelerator in this paper, which is

specifically designed to enhance the performance and energy
efficiency of Multi-DNN Acceleration. MDA is optimized via
an algorithm-architecture co-design approach and incorporates
three components: 1) a resource allocation algorithm that as-
signs compute resources to concurrent DNNs based on their
computational demands and priorities; 2) a dataflow selection
algorithm that sequentially determines off-chip and on-chip
dataflows for a DNN to minimize the incurred off-chip and
on-chip memory accesses, respectively; 3) a flexible silicon
photonic network that can be dynamically segmented into sub-
networks, each interconnecting compute resources assigned to a
certain DNNwhile adapting to communication patterns dictated
by the selected on-chip dataflow.Simulation results show that the
proposed MDA accelerator outperforms other state-of-the-art
multi-DNN accelerators [10], [11], [12], [15], achieving evident
speedup and improvements in energy efficiency, service-level
agreement (SLA) satisfaction rate, and fairness. The significant
contributions of this paper include:
� Resource Allocation Algorithm: The proposed MDA re-
source allocation algorithm assigns compute resources to

1045-9219 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 20:47:58 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5067-5522
https://orcid.org/0000-0003-4262-6688
https://orcid.org/0000-0002-9472-4637
mailto:liyuan5859@gwu.edu
mailto:louri@gwu.edu
mailto:karanth@ohio.edu

LI et al.: HIGH-PERFORMANCE AND ENERGY-EFFICIENT PHOTONIC ARCHITECTURE FOR MULTI-DNN ACCELERATION 47

Fig. 1. Computation in 〈K : E : F : C : R : S〉 convolutional layer and a
processing tile

〈
Tk : Te : Tf : Tc : R : S

〉
.

concurrently processed DNNs by considering two pivotal
factors: the remaining multiple-accumulate (MAC) oper-
ations and the time left until the predefined completion
deadline. The factors encapsulate the computational de-
mand and priority of a DNN. The output of this resource
allocation algorithm serves as input for the next dataflow
selection algorithm.

� DataflowSelection Algorithm:Weundertake an exhaustive
search for dataflow design space and establish quantitative
models to precisely quantify the relation between dataflow
configuration andmemory access count both in the off-chip
and on-chip cases. The proposed MDA dataflow selection
algorithm harnesses these models in conjunction with the
output of the MDA resource allocation algorithm and the
parameters specific to a given DNN, to ascertain both off-
chip and on-chip dataflows that result in minimum off-chip
and on-chip memory accesses, respectively. Moreover, the
exhaustive search yields a set of communication patterns
thatmust be accommodated by the flexible silicon photonic
network.

� Flexible Silicon Photonic Network: We design a novel
versatile silicon photonic network that can be actively
segmented to sub-networks, each interconnecting compute
resources assigned to a certain DNN to minimize the com-
munication interference while being adaptively configured
into a set of working modes to adequately facilitate the
communication patterns dictated by the selected on-chip
dataflow.

II. BACKGROUND

A. DNN Computation

The computation involved in a typical convolutional layer
of a DNN is described in Fig. 1 and represented as a nested
loop over weight kernels, input features, and output features
in Algorithm 1. This nested loop includes iterations on six
dimensions, namely the number of input feature channels 〈c〉, the
number of output feature channels 〈k〉, the height 〈r〉 and width
〈s〉 of weight kernels, and the height 〈e〉 and width 〈f〉 of output
feature channels. It should be noted that the height and width of
input feature channels are not independent and can be derived
from other dimensions. With the assumption of stride Str = 1
and batch size N = 1, we can identify the reuse opportunities
of input features along the 〈k〉 dimension, as well as the reuse
opportunities of weights or input features along both 〈e〉 and 〈f〉

Algorithm 1: Computation of a Convolutional Layer.
1: for (k = 0; k < K; k += 1)
2: for (e = 0; e < E; e += 1)
3: for (f = 0; f < F ; f += 1)
4: for (c = 0; c < C; c += 1)
5: for (r = 0; r < R; r += 1)
6: for (s = 0; s < S; s += 1)
7: O[k e f] +=

I[r + e− 1 s+ f − 1 c]×W [k r s c]

Fig. 2. (a) A silicon photonic interconnect which connects a transmitter and
a receiver and (b) an MRR with a resonant wavelength of λ0 and a split ratio of
α/(1− α).

dimensions, following the taxonomy outlined in [20]. We focus
on accelerating the convolutional layers, the fully-connected
layers, as well as the depth-wise separable convolutional layers
as they constitute a significant fraction of all layers in typical
DNNs [21], [22].

B. Silicon Photonic Interconnects

We demonstrate the architecture of a typical simple silicon
photonic interconnect in Fig. 2. Light in a certain wavelength
λ 0 is coupled from an off-chip laser to an on-chip waveguide
and traverses from a transmitter to a receiver. On transmitter
end, electrical data is serialized and utilized as a modulation
signal to modulate the microring resonator (MRR) labeled as
MRR0. On receiver end, the MRR labeled as MRR1 collects
the light in wavelength λ 0 and forwards it to a photodetector
to generate a photocurrent signal, which is then amplified by
a transimpedance amplifier (TIA) and sent to a comparator to
retrieve the original electrical data. A communication channel
is established when MRR0 and MRR1 in this example share
a resonant wavelength λ0. A resistive heater controlled by a
thermal tuningmodule is attached to everyMRR tomitigate both
thermal and process variations. The latency and power consump-
tion of this communication channel depend on the transmitter
and receiver, and are largely independent of the physical distance
between them [17]. The bandwidth density of this communica-
tion channel can be easily scaled by adding additional trans-
mitters and receivers with distinct resonant wavelengths other
than λ0, known as wavelength-division multiplexing (WDM).
When adding additional receivers that possess λ0 as resonant
wavelength, a single-write-multiple-read (SWMR) multicast
channel is created. It achieves higher power efficiency compared
to the original unicast channel by sharing the transmitter at
the cost of a moderate increase in laser power. The proposed
MDA accelerator leverages the advantages of silicon photonic

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 20:47:58 UTC from IEEE Xplore. Restrictions apply.

48 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 1, JANUARY 2024

interconnects to overcome the challenges stemming from system
scaling.
The resonant wavelength of an MRR could be thermally

tuned [23], [24]. Recent work has reported tuning latency and
power as low as 50 ns and 2.06 nm/mW [24], respectively. The
split ratio (ratio of light observed in drop and through ports
shown inFig. 2) of anMRRcould be electrically tuned [25], [26].
Recent work has reported tuning latency as low as 500 ps [25].
The flexible silicon photonic network inside the proposed MDA
accelerator exploits thermal and electrical tuning approaches
to construct a variety of working modes to adapt to different
communication patterns.

III. MDA RESOURCE ALLOCATION

Algorithm 2 describes how the proposed MDA resource
allocation and dataflow selection algorithms are sequentially
performed. TheTASKUPDATE (Task, alloc) function oversees
theworking status of theMDAaccelerator byperiodically updat-
ing Task. The MDA resource allocation algorithm is activated
by setting alloc upon arrival of new or completion of existing
DNNs. In the casewhere a newDNNarrives, its number ofMAC
operations Woverall, predefined completion deadline Ttarget,
estimated execution timewhen executedon theMDAaccelerator
alone without interruptions Tisolate, and parameters from each
layer are extracted from the offline information, before alloc is
set. Similarly, in the case where an existing DNN is completed,
the corresponding entry in Task is deleted while its shares of
compute resources M i and on-chip memory Oi are released
beforealloc is set. In either case above, the output of the previous
invocation of the MDA resource allocation algorithm no longer
reflects the latest computational demands and priorities of the
concurrently processed DNNs, calling for a new invocation
of the MDA resource allocation algorithm. During operation
without the arrival of new or completion of existing DNNs, the
estimated remaining execution time Tremain and the remaining
time until the predefined completion deadline Tdeadline, which
are defined in Equation (1) and (2), respectively, are regularly
updated for each concurrently processed DNN. Please note that
Wremain and Tcurrent represent the number of remainingMAC
operations and current time, respectively.

T i
remain = T i

isolate ×W i
remain/W

i
overall (1)

T i
deadline = T i

target − Tcurrent (2)

The MDA resource allocation algorithm assigns compute
resources to concurrently processed DNNs following Equa-
tion (3). M and M i represent the overall compute resources
and the share assigned to a DNN, respectively. M i is lin-
early proportional to the computational demand represented by
Tremain and exponentially proportional to priority estimated
by Tdeadline. Such exponential proportion significantly favors
DNNs with high priorities (small Tdeadline values), promoting
equal progress of concurrently processed DNNs while ensuring
adherence to the predefined completion deadlines. Moreover, it
helps assignproper compute resources toDNNs that havemissed
their predefined completion deadlines (with negative Tdeadline

values). The share of on-chip memory Oi is proportionally

Algorithm 2:MDA Algorithms.
1: function MDAALGORITHMS (Task) � Task:

multiplexed DNNs
2: for time ← [0, ∞) do � Update the progress

of each DNN
3: TASKUPDATE (Task, alloc) � alloc: set for

new/completed DNN
4: if alloc = true then
5: TASKALLOCATION (Task) � Resource

allocation
6: TASKDATAFLOW (Task) � Dataflow

selection
7: alloc = false � Clear alloc
8: end if
9: time +=1
10: end for
11: end function

assigned based on M i. The proposed MDA dataflow selection
algorithm is performed upon completion of the MDA resource
allocation algorithm, as the updated assignment of compute
resources and on-chip memory can potentially make current
dataflow decisions non-optimal.

M i = M × T i
remain × e−T i

deadline

∑
T i
remain × e−T i

deadline

(3)

IV. MDA DATAFLOW SELECTION

We take a two-step approach to sequentially select the off-chip
and on-chip dataflows for each concurrently processed DNN,
with the objectives of minimizing off-chip and on-chip memory
accesses, respectively. Please note that this approach does not
necessarily yield optimal dataflow decisions as off-chip and
on-chip dataflows will interact with each other, and there is no
clear definition of the global optimization target. The proposed
two-step approach may potentially lead to sub-optimal dataflow
decisions, however, significantly reduces the search space.

A. Off-Chip Dataflow Selection

A DNN accelerator typically consists of off-chip memory
(e.g., DRAM), on-chip memory (e.g., global buffer (GLB)),
and processing elements (PEs) [27]. Fig. 1 illustrates how a
convolutional layer 〈K : E : F : C : R : S〉 can be partitioned
into tiles with tile size 〈Tk : Te : Tf : Tc : R : S〉. The tiling
process naturally divides the overall dataflow into two parts:
off-chip dataflow which orchestrates data movements between
off-chip memory and on-chip memory, and on-chip dataflow
which orchestrates data movements between on-chip memory
and numerous PEs. Please note that we assume a unified on-chip
memory shared by all PEs as in [27] in this work. The off-chip
dataflow optimization goal is to minimize the off-chip memory
accesses as they are notably more costly than the actual MAC
operations [20].

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 20:47:58 UTC from IEEE Xplore. Restrictions apply.

LI et al.: HIGH-PERFORMANCE AND ENERGY-EFFICIENT PHOTONIC ARCHITECTURE FOR MULTI-DNN ACCELERATION 49

TABLE I
OFF-CHIP SECTION DATAFLOW EXPLORATION

The input of the off-chip dataflow selection algorithm is the
share of on-chip memory for a DNN Oi and the parameters
of a certain layer in that DNN 〈K : E : F : C : R : S〉. The
output of the off-chip dataflow selection algorithm includes
the proper tile size represented by 〈Tk : Te : Tf : Tc : R : S〉
and the tile processing order. Note that we only perform tiling
on 〈k〉, 〈e〉, 〈f〉, and 〈c〉 dimensions to avoid breaking indi-
vidual weight kernel input channels. A tile with a tile size
of 〈Tk : Te : Tf : Tc : R : S〉 needs to store Tk × Tc ×R×
S weights, Tc × (R+ Te − 1)× (S + Tf − 1) input features,
and Tk × Te × Tf partial sums in the on-chip memory, which
must be fully accommodated by the assigned share Oi. For a
given tile size, three processing orders that maximize the reuse
of partial sums, input features, and weights could be derived by
processing the 〈c〉, 〈k〉, and 〈e f〉 dimensions in the innermost
loops. Algorithm 3 shows an example of an off-chip dataflow
that maximizes the reuse of partial sums.
We conduct an exhaustive search for the off-chip memory

access count when varying the tile size and tile processing
order and list the quantitative model in Table I. The overall
off-chip memory access count values for three different tile
processing orders Vweight, Vinput, and Voutput for a given tile
size 〈Tk : Te : Tf : Tc : R : S〉 can be obtained by adding up
the corresponding entries in the last column of Table I. The right
combination of tile size and tile processing order that yields
minimum off-chip memory accesses is considered the optimal
off-chip dataflow, which is defined in Equation (4). An optimal
off-chip dataflow for a DNN shall fully leverage the assigned
on-chip memory shareOi while maximizing data reuse between
the successively processed tiles.

V i = min(V i
weight, V

i
input, V

i
output)

s.t. O<Tk:Te:Tf :Tc:R:S> ≤ Oi
(4)

B. On-Chip Dataflow Selection

The goal of on-chip dataflow optimization is to minimize the
on-chip memory accesses which are also more costly thanMAC
operations [20]. Unlike off-chip dataflows which likely incur
only temporal data reuse, on-chip dataflows can result in both
temporal and spatial data reuse occasions.
The input of the on-chip dataflow selection algorithm is the

share of compute resources for a DNN M i as well as the tile
parameters of a certain layer 〈Tk : Te : Tf : Tc : R : S〉 in that
DNN. Please note thatM i is measured by the number of PEs, or
PE partitions if allocation of compute resources is performed

Algorithm 3: Off-Chip Section Dataflow Example.
1: for (tk = 0; tk < K; tk += Tk) � Off-chip section
2: for (te = 0; te < E; te += Te)
3: for (tf = 0; tf < F ; tf += Tf)
4: for (tc = 0; tc < C; tc += Tc)
5: for (k = tk; k < min (K, tk + Tk); k += 1) �

On-chip section
6: for (e = te; e < min (E, te + Te); e += 1)
7: for (f = tf ; f < min (F, tf + Tf); f += 1)
8: for (c = tc; c < min (C, tc + Tc); c += 1)
9: for (r = 0; r < R; r += 1)
10: for (s = 0; s < S; s += 1)
11: O[k e f] += I[r + e− 1 s+ f −

1 c]×W [k r s c]

Algorithm 4: On-Chip Section Dataflow Example.
1: parallel_for (pk = tk; pk < min (K, tk + Tk);

pk += �Tk/Pk�)
2: parallel_for (pe = te; pe < min (E, te + Te);

pe += �Te/Pe�)
3: parallel_for (pf = tf ; pf < min (F, tf + Tf);

pf += �Tf/Pf�)
4: for (k = pk; k < min

(K, tk + Tk, pk + �Tk/Pk�); k += 1)
5: for (e = pe; e < min

(E, te + Te, pe + �Te/Pe�); e += 1)
6: for (f = pf ; f < min

(F, tf + Tf , pf + �Tf/Pf�); f += 1)
7: for (c = tc; c < min (C, tc + Tc); c += 1)
8: for (r = 0; r < R; r += 1)
9: for (s = 0; s < S; s += 1)
10: O[k e f] += I[r + e− 1 s+ f −

1 c]×W [k r s c]

at a coarser granularity. The output of the on-chip dataflow
selection algorithm is the right spatial and temporal distribution
ofMAC operations across PEs and within each PE, respectively.
Algorithm 4 shows an example of an on-chip dataflow that
processes the MAC operations in parallel in Pk × (Pe × Pf)
PEs while maximizing reuse of partial sums within each PE
similar to [19], [28]. Pk × (Pe × Pf) must not exceed the as-
signed compute resourcesM i. An optimal on-chip dataflow for
a DNN tile shall fully leverage the spatial parallelism capability

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 20:47:58 UTC from IEEE Xplore. Restrictions apply.

50 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 1, JANUARY 2024

Fig. 3. Tile example to illustrate on-chip dataflow selection.

TABLE II
COMMUNICATION PATTERNS

provided by the numerous PEs while maximizing temporal data
reuse inside each individual PE.
1) On-Chip Dataflow Exploration: We study the data reuse

opportunities of different on-chip dataflows on tile in Fig. 3
and summarize the resulting set of communication patterns that
must be accommodated by the flexible silicon photonic network
in the proposed MDA accelerator in Table II. We identify four
communication patterns: GLB → PE unicast, GLB ← PE uni-
cast, PE → PE unicast, and GLB → PE multicast. In cases
like processingMAC operations in parallel in 〈e f〉 dimensions,
transmissions of weights and input features incur the GLB →
PE multicast communication pattern. As a result, the flexible
silicon photonic network in the proposedMDA accelerator must
support simultaneous multicast fromGLB to two orthogonal PE
sets.
No Parallelism: Fig. 4(a) lists the MAC operations involved

in processing the DNN tile shown in Fig. 3. Only PE0 is used.
There are four types of temporal data reuse occasions: weight
reuse due to convolutional sliding window (e.g., weight 00 in
00 × a0, 00 × b0, 00 × d0, and 00 × e0), input feature reuse
due to convolutional sliding window (e.g., input feature e0 in
30 × e0, 20 × e0, 10 × e0, and 00 × e0), input feature reuse due
to multiple weight kernels (e.g., input feature a0 in 00 × a0
and 40 × a0), and partial sum reuse in generating any output
feature. Please note that the weight and input feature reuse
occasions due to convolutional sliding window do not occur
simultaneously because of the pairwise operation nature. The

temporal data reuse occasions can be leveraged by adjusting
the MAC operations inside PE0. For instance, sequentially
processing 00 × a0, 00 × b0, 00 × d0, and 00 × e0 leverages the
weight reuse opportunitieswhile sacrificing the input feature and
partial sum reuse opportunities. GLB → PE unicast and GLB
← PE unicast communication patterns are involved.
Parallelism in 〈k〉Dimension: Fig. 4(b) demonstrates the par-

allel distribution of MAC operations in the 〈k〉 dimension. PE0

and PE1 are used as Tk = 2. We observe that temporal input
feature reuse due tomultiple weight kernels is turned into spatial
reuse (e.g., input feature a0 in 00 × a0 on PE0 and 40 × a0 on
PE1) while the other three temporal data reuse occasions re-
main unchanged. Consequently, one additional communication
pattern, GLB → PE multicast, is involved in potential input
feature transmission.
Parallelism in 〈c〉 Dimension: Fig. 4(c) demonstrates the

parallel distribution of MAC operations in the 〈c〉 dimension.
PE0 and PE1 are used as Tc = 2. We observe that temporal
partial sum reuse is undermined in part while the other three tem-
poral data reuse occasions remain unchanged. The partial sums
generated from PE0 and PE1 must be accumulated to generate
any output feature. One additional communication pattern, PE
→ PE unicast, is accordingly involved in potential partial sum
transmission.
Parallelism in 〈e f〉 Dimensions: Fig. 4(d) illustrates the

parallel distribution of MAC operations in both 〈e〉 and 〈f〉
dimensions. Four PEs, PE0 to PE3, are used as Te × Tf = 4.
We observe that temporal weight and input feature reuse occa-
sions due to convolutional sliding window are turned into spatial
reuse occasions (e.g., weight 00 in 00 × a0, 00 × b0, 00 × d0,
and 00 × e0, input feature e0 in 30 × e0, 20 × e0, 10 × e0, and
00 × e0) while the other two temporal data reuse occasions
remain unchanged. Note that the generated spatial weight and
input feature reuse occasions still do not occur simultaneously
because of the pairwise operation nature. Consequently, the
GLB → PE multicast communication pattern is involved in the
potential transmission of either weight or input feature data type.
Parallelism in 〈r s〉 Dimensions: Fig. 4(e) illustrates the

parallel distribution of MAC operations in both 〈r〉 and 〈s〉
dimensions. Four PEs, PE0 to PE3, are used sinceR× S = 4.
We observe that temporal partial sum reuse is undermined in part
while temporal input feature reuse due to convolutional sliding
window is turned into spatial reuse (e.g., input feature e0 in
30 × e0, 20 × e0, 10 × e0, and 00 × e0). Meanwhile, another
two temporal data reuse occasions remain unchanged. As a
result, the additional GLB→ PEmulticast and PE→ PE unicast
communication patterns are involved to potentially transmit
input feature and partial sum data types, respectively.
Parallelism in 〈k e f〉 Dimensions: Fig. 4(f) illustrates the

parallel distribution of MAC operations in 〈k〉, 〈e〉, and 〈f〉
dimensions. Eight PEs, PE0 to PE7, are used as Tk × Te ×
Tf = 8. We observe that only the temporal reuse of partial sum
remains unchanged. Temporal weight and input feature reuse
occasions due to convolutional sliding window (e.g., weight 00
in 00 × a0, 00 × b0, 00 × d0, and 00 × e0, input feature e0 in
30 × e0, 20 × e0, 10 × e0, and 00 × e0), as well as temporal

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 20:47:58 UTC from IEEE Xplore. Restrictions apply.

LI et al.: HIGH-PERFORMANCE AND ENERGY-EFFICIENT PHOTONIC ARCHITECTURE FOR MULTI-DNN ACCELERATION 51

Fig. 4. Temporal and spatial distribution of MAC operations across PEs and within each PE and the consequent data reuse instances. We use the DNN tile〈
Tk : Te : Tf : Tc : R : S

〉
= 〈2 : 2 : 2 : 2 : 2 : 2〉 as an example.

input feature reuse due to multiple weight kernels (e.g., input
feature a0 in 00 × a0 on PE0 and 40 × a0 on PE1), are turned
into spatial reuse occasions. Hence, the GLB → PE multicast
communication pattern is involved in the potential transmission
of both weight and input feature data types.
Parallelism in 〈k e f c〉 Dimensions: If compared against the

above case of distributing MAC operations in parallel in 〈k〉,
〈e〉, and 〈f〉 dimensions, increasing parallel distribution in the
additional 〈c〉 dimension does not incur any conversions of
temporal data reuse opportunities into spatial data reuse opportu-
nities while the temporal partial sum reuse is somehow partially
undermined. Consequently, distributingMAC operations in par-
allel in the additional 〈c〉 dimension is only beneficial when the
benefit from doubling the involved PEs (Tc = 2) can mitigate
the drawback due to the partial loss of temporal data locality.

Parallelism in 〈k e f c r s〉 Dimensions: This represents an
extreme situation where MAC operations are processed in par-
allel in every possible dimension while temporal locality is
completely lost. The optimal on-chip dataflow lies between
the two extremes of not having computation parallelism in any
dimension, and having parallelism in all dimensions.
2) Key Observations: We make the following five obser-

vations according to the on-chip dataflow exploration from
the perspective of parallel processing: 1) increasing process-
ing parallelism among PEs leads to the loss of temporal data
reuse opportunities, which, however, are converted into spatial
data reuse opportunities that can be leveraged by the efficient
multicast capability of silicon photonics; 2) parallel processing
in the 〈k〉, 〈e〉, and 〈f〉 dimensions is most beneficial as the
lost temporal data reuse opportunities are entirely converted

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 20:47:58 UTC from IEEE Xplore. Restrictions apply.

52 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 1, JANUARY 2024

Fig. 5. MDA architecture overview and configurations for different working modes.

into spatial data reuse opportunities; 3) parallel processing in
the 〈r〉 and 〈s〉 dimensions is less beneficial because the same
spatial input feature reuse opportunities can be obtained through
parallel processing in the 〈e〉 and 〈f〉 dimensions while extra
fraction of the temporal partial sum reuse opportunities is lost;
4) parallel processing in the 〈c〉 dimension is least beneficial
as it only leads to the lost of a fraction of the temporal partial
sum reuse opportunities; 5) parallel processing in all three 〈k〉,
〈e〉, and 〈f〉 dimensions represents an ideal case where high
parallelism and full usage of the data reuse opportunities are
achieved simultaneously [19].

V. MDA ACCELERATOR ARCHITECTURE

A. Architecture Overview

Fig. 5(a) shows an architectural overview of the proposed
MDA accelerator. It includes a GLB and M partitions, where
each partition contains N ×N (N = 4 in Fig. 5 for clarity)
PEs. Each partition is connected to the GLB through a dedicated
waveguidewithN transmitters andN receivers on theGLB end.
Each PE in any partition is equipped with a transmitter whose
resonant wavelength is thermally tuned and a receiver whose
resonantwavelength and split ratio are thermally and electrically
tuned, respectively. In front of each row of PEs in a partition,N
MRRs with fixed resonant wavelengths and tunable split ratios
are implemented to forward a particular fraction of laser power
in N wavelengths to PEs in this row. There are in total M ×

N × (3×N + 2) MRRs in the MDA accelerator. Please note
that each PE performs dot-product along the 〈c〉 dimension to
exploit efficient spatial reduction as in [6]. Besides, we can use
the space-division multiplexing technique to deploy multiple
waveguides between the GLB and a given partition. The MDA
Controller is responsible for undertaking the resource allocation
and dataflow selection algorithms described in Algorithm 3 and
tuning the resonant wavelength and split ratio of each MRR
inside a partition.

B. MDA Silicon Photonic Network Working Modes

The flexible silicon photonic network in the MDA acceler-
ator can be segmented at runtime and adaptively configured
into a collection of working modes to efficiently facilitate the
communication patterns extracted from the on-chip dataflow
exploration. Fig. 5(b)-(f) and Table III describe all five working
modes in support of four communication patterns and how they
are implemented in one partition. Please note that we utilize a
specific color to represent a resonant wavelength. In particular, ✗
and� represent that an MRR is at off-resonant and on-resonant
states, respectively. a/b represents the split ratio of an MRR.
GLB → PE Unicast Mode: Fig. 5(b) illustrates the working

mode that facilitates the GLB → PE unicast communication
pattern. In this working mode, the GLB sequentially commu-
nicates with different rows of PEs in a partition due to the
mismatch between the number of PEs in a partition N ×N
and the number of available wavelengths N . Fig. 5(b) shows

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 20:47:58 UTC from IEEE Xplore. Restrictions apply.

LI et al.: HIGH-PERFORMANCE AND ENERGY-EFFICIENT PHOTONIC ARCHITECTURE FOR MULTI-DNN ACCELERATION 53

TABLE III
MDA SILICON PHOTONIC NETWORK WORKING MODES

the case of unicast communication from the GLB to Row 0 of
PEs in a partition. The transmitters on the GLB end work on
resonant wavelengths λ0 − λ3 to send data. The four tunable
MRRsR0 −R3 alsowork on resonantwavelengthsλ0 − λ3 and
are electrically tuned to a universal split ratio of 1/0, forwarding
all the laser power of wavelengths λ0 − λ3 to PEs in Row 0.
Meanwhile, the receivers connected toPE0−PE3 inRow 0 are
thermally tuned to resonant wavelengths λ0 − λ3, respectively,
and electrically tuned to a universal split ratio of 1/0. In a
sense, all the laser power of any specific wavelength that carries
transmitted data is received by a corresponding PE in Row 0,
facilitating the unicast communication from the GLB to PEs in
Row 0. Unicast communications to other rows are subsequently
accomplished following a similar approach.
GLB ← PE Unicast Mode: Fig. 5(c) illustrates the working

mode that facilitates the GLB ← PE unicast communication
pattern. In thisworkingmode, different rows of PEs in a partition
sequentially communicate with the GLB due to the mismatch
between the number of PEs in a partition N ×N and the
number of available wavelengths N . Fig. 5(b) shows the case
of unicast communication from Row 0 of PEs in a partition
to the GLB. The four tunable MRRs R0 −R3 still work on
resonant wavelengths λ0 − λ3 and are electrically tuned to a
universal split ratio of 1/0, forwarding all the laser power of
unmodulated wavelengths λ0 − λ3 to PEs in Row 0. Mean-
while, the transmitters connected to PE0−PE3 in Row 0 are
thermally tuned to resonant wavelengths λ0 − λ3, respectively,
to send data. The receivers on the GLB end work on resonant
wavelengths λ0 − λ3. Therefore, data sent by any PE in Row 0

on the associatedwavelength is received by theGLB, facilitating
the unicast communication from the PEs in Row 0 to the GLB.
Unicast communications from other rows are subsequently ac-
complished following a similar approach.
PE→ PE Unicast Mode: Fig. 5(d) demonstrates the working

mode facilitating the PE → PE unicast communication pattern.
In this working mode, each PE sends data to its downstream
adjacent PE in the same row while the last PE sends data to
the GLB. The four tunable MRRs R0 −R3 work on resonant

wavelengths λ0 − λ3 but are electrically tuned to different split
ratios depending on their physical locations. Specifically, tun-
able MRRs in Row 0, Row 1, Row 2, Row 3 are tuned to split
ratios 1/3, 1/2, 1/1, and 1/0, respectively, forwarding a quarter
of the laser power of unmodulated wavelengths λ0 − λ3 to PEs
in each row. In the meantime, the transmitter connected to each
PE is thermally tuned to the same resonant wavelength as its
downstream adjacent PE in the same row, while the transmitters
connected to the last PEs of different rows are thermally tuned
to different resonant wavelengths. For instance, the transmitter
and receiver connected to PE0 and PE1 in Row 0 share the
resonant wavelength λ0, while the last PEs in Row 0, Row 1,
Row 2, and Row 3 are tuned to resonant wavelengths λ3, λ0,
λ1, and λ2, respectively. The receivers on the GLB end work
on resonant wavelengths λ0 − λ3. Therefore, a chain of data
transmission is constructed between PE0, PE1, PE2, and
PE3 in each row and the GLB, facilitating the inter-PE unicast
communication.
GLB→Row-WiseMulticastMode:Fig. 5(e) demonstrates the

working mode facilitating the GLB→ PE row-wise multicast
(R multicast) communication pattern. In this working mode,
PEs in different rows receive different data sent from the GLB
while PEs in each row receive the same data. The transmitters
on the GLB end work on resonant wavelengths λ0 − λ3 to
send data. Only one tunable MRR is activated and electrically
tuned to a split ratio of 1/0 to forward all the laser power of
a specific wavelength to a row. For instance, tunable MRR R0

in Row 0 work on resonant wavelength λ0, forwarding all the
laser power of wavelength λ0 to PEs in Row 0. Meanwhile, the
receivers connected toPE0−PE3 inRow 0 are thermally tuned
to resonant wavelength λ0 and electrically tuned to split ratios
1/3, 1/2, 1/1, and 1/0, respectively, so that each PE in Row 0

receives a quarter of the laser power of the modulated wave-
length λ0. Therefore, multicast communication from the GLB
to PEs in Row 0 is accomplished. Multicast communications
to other rows are accomplished in parallel following a similar
approach.
GLB → Column-Wise Multicast Mode: Fig. 5(f) illustrates

the working mode that facilitates the GLB→ PE column-wise
multicast (CMulticast) communication pattern. PEs in each row
receive different data sent from the GLB while PEs in each col-
umn (PEs in the same relative physical position but in different
rows) receive the same data. The transmitters on the GLB end
work on resonant wavelengths λ0 − λ3 to send data. Tunable
MRRs with the same resonant wavelength in all four rows are
electrically tuned to different split ratios. For instance, tunable
MRRs labeled as R0 in Row 0, Row 1, Row 2, and Row 3 are
tuned to split ratios of 1/3, 1/2, 1/1, and 1/0, respectively,
forwarding a quarter of the laser power of wavelength λ0 to each
row. In the meantime, the receivers connected to PEs labeled as
PE0 in four rows are thermally tuned to the resonantwavelength
λ0 and a universal split ratio of 1/0, so that each PE labeled as
PE0 receives a quarter of the laser power of the modulated
wavelength λ0. Hence, multicast communication from the GLB
to PEs in the first column is accomplished. Multicast communi-
cations to other columns are accomplished in parallel in a similar
approach.

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 20:47:58 UTC from IEEE Xplore. Restrictions apply.

54 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 1, JANUARY 2024

TABLE IV
SIMULATION PARAMETERS

VI. EVALUATION METHODOLOGY

A. Evaluation Setup

We extend the open-source MAESTRO simulator [29] to
model the concurrent processing of heterogeneous DNNs to ex-
tract the numbers of MAC operations as well as accesses to each
memory hierarchy including local registers, shared GLB, and
off-chipmemory. The obtained numbers are utilized to derive the
execution time that covers both computation and communication
aspectswhen taking the inter-DNN interference into account and
enforcing bandwidth constraints along metallic-based or silicon
photonic interconnects. The energy consumption can also be de-
rived from these numbers and the power model discussed below.
Table IV demonstrates the key simulation parameters we have
assumed when modeling the MDA accelerator architecture. We
have assumed similar parameters as in prior studies [10], [12]. To
model the silicon photonic interconnects, we have assumed a bit
error rate of 1× 10−12 at the bit rate of 10Gbps andwavelengths
around 1550 nm.Wehave also assumed amaximum free spectral
range limit of 50 nm [18], reflecting the fabrication limitation of
MRR radius. The number of wavelengths utilized in the MDA
accelerator architecture is 16. The power penalty due to crosstalk
is negligible [30].

B. Power Consumption Model

We extract the power consumption of MAC operations using
Synopsys Design Compiler. The power consumption
of accessing local registers and the on-chip GLB is obtained
using CACTI 6.0 [31] while the power consumption of ac-
cessing off-chipmemory is obtained usingDRAMSim2 [32]. The
energy consumption of ametallic-based interconnect is assumed
to be 170 fJ/bit/mm [33] while the power consumption of a
silicon photonic interconnect is obtained from Equation (5).

Poverall = Ptx + Prx + Plaser + Pthermal (5)

The overall power consumption (Poverall) includes four sep-
arate parts: the power consumption of transmitters (Ptx), the
power consumption of receivers (Prx), the power consumption
of the off-chip laser source (Plaser), and the power consumption
of the resistive heaters co-located with MRRs to mitigate both
thermal and process variations (Pthermal).We assume the power
consumption of a transmitter per wavelengthPtx = 0.9mWand
the power consumption of a receiver per wavelength Prx = 0.6
mW [34]. We also assume the power consumption of the re-
sistive heater per MRR Pthermal = 0.15 mW [35]. The power

consumption of the off-chip laser source (Plaser) is obtained
from Equation (6), when assuming the photodetector sensitivity
Prs = −26 dBm [19], the power penalty due to extinction ratio
Pextinction = 2 dB [36], and the system margin Csystem = 4
dB [37]. Note that the overall insertion loss Closs is obtained
by accumulating the insertion loss of each component along a
silicon photonic communication channel.

Plaser = Prs + Closs + Pextinction +Msystem (6)

C. Baseline Architectures

The proposed MDA accelerator architecture is compared
against other state-of-the-art multi-DNN accelerators including
PREMA (PR) [10], AI-MT (AI) [11], Planaria (PL) [12], and
HDA [15]. PREMA and AI-MT only support temporal multi-
plexing of DNNs while Planaria supports temporal and spatial
multiplexing of DNNs. HDA supports multiplexing of DNNs
on three sub-accelerators with distinct dataflow optimizations.
All four baseline architectures as well as the proposed MDA
accelerator architecture are set to the same computation capacity
for fair comparison. They also share the same GLB size of 12
MB [10], [12], the same data width of 16 bits [27], the same
PE clock frequency of 700MHz, and the same off-chip memory
bandwidth of 358 GB/s assuming a high-bandwidth memory
(HBM) module.

D. Evaluation Benchmarks

We compile a multi-DNN benchmark from nine DNN mod-
els [38], [39], [40], [41], [42], [43], [44] for both image process-
ing and object detection application cases. A randomly arranged
sequence of DNNs from the pool of the nine models is applied
to the simulation of the proposed MDA accelerator architecture
and other baseline architectures. The length of this sequence
of DNNs is sufficient to capture diverse DNN multiplexing
scenarios. The arrival time of each DNN from this sequence
follows a Poisson Distribution as in [12]. The DNN arrival rate
λ is measured by the average number of arrived DNNs in one
million clock cycles. Each DNN is also assigned an expected
completion deadline measured by SLA.

VII. EXPERIMENT RESULTS

A. Speedup Results

Speedup measures the relative performance of two architec-
tures working on the same application task.We first fix the DNN
arrival rate at λ = 9/M while varying the predefined completion
deadline SLA from 3× Tisolate to 12× Tisolate. A small SLA
number indicates an urgent completion deadline that is challeng-
ing to fulfill. A large SLA number indicates a loose completion
deadline from the application perspective while implying op-
portunities for better DNN multiplexing setups from the system
perspective. The speedup ofAI over PR increases insignificantly
from 1.17 to 1.29 as AI does not fully leverage the opportunities
for better DNNmultiplexing setups due to its constraints of only
supporting the temporal DNNmultiplexing and a fixed dataflow.
The speedup of PL over PR increases from 1.07 to 1.62. The

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 20:47:58 UTC from IEEE Xplore. Restrictions apply.

LI et al.: HIGH-PERFORMANCE AND ENERGY-EFFICIENT PHOTONIC ARCHITECTURE FOR MULTI-DNN ACCELERATION 55

Fig. 6. Speedup compared to the PR baseline when varying SLA (left) and
arrival rate λ (right).

increase is trivial in caseswith urgent completion deadlines (1.07
for 3× Tisolate completion deadline and 1.10 for 6× Tisolate

completion deadline), however, significant in cases with loose
completion deadlines (1.40 for 9× Tisolate completion deadline
and 1.62 for 12× Tisolate completion deadline). The reason is
that its overhead for supporting spatialDNNmultiplexing is only
compensated when there are sufficient DNN multiplexing op-
portunities. The speedup of HDA over PR increases from 1.39 to
1.50. The increase is significant in cases with urgent completion
deadlines but it slows down as the completion deadline becomes
looser. This is because HDA only supports multiplexing of up to
three DNNs. The speedup of MDA over PR increases from 2.55
to 3.65. The significant speedup results from three aspects: 1) full
support of temporal and spatial concurrent processing of DNNs
like PL; 2) full support of adaptable dataflow configuration only
partially supported by HDA; 3) silicon photonic interconnects
that enable low-latency and high-bandwidth communication.
We then fix the predefined completion deadline SLA at

6× Tisolate while varying the DNN arrival rate from 3/M to
12/M . A large arrival rate has similar indications as a large SLA
number.We can expectmore intenseDNNmultiplexing,making
adherence to completion deadlines challenging while providing
more opportunities for better DNN multiplexing setups. The
speedupofAI over PR increases insignificantly from1.13 to 1.23
asAI does not leverage either better DNNmultiplexing setups or
dataflow flexibility. The speedup of PL over PR increases from
1.07 to 1.53. The increase is trivial in caseswith lowDNNarrival
rates (1.07 for λ = 3/M and λ = 6/M , and 1.09 for λ = 9/M),
however, significant in the case with the highest DNN arrival
rate (1.53 for λ = 12/M). This is because the spatial DNN
multiplexing capability of PL is only leveraged when the DNN
arrival rate is high. The speedup of HDA over PR increases from
1.19 to 1.50 for its limited spatial DNN multiplexing capability
and dataflow flexibility. The speedup ofMDA over PR increases
notably from 2.31 to 4.71 due to the combined effects of the
spatial DNN multiplexing capability, dataflow flexibility, and
silicon photonic interconnects, similar to the case of increasing
the predefined completion deadline. The speedup comparison
results are shown in Fig. 6.

B. Energy Efficiency Results

We define energy efficiency as the reciprocal of the energy
consumption of processing a sequence of DNNs. We study
the energy efficiency of MDA and other baseline architectures
by fixing the DNN arrival rate at λ = 9/M while varying
the predefined completion deadline SLA from 3× Tisolate to

Fig. 7. Energy efficiency comparison when varying SLA (left) and arrival rate
λ (right). All values are normalized to the PR baseline.

Fig. 8. SLA satisfaction rate comparison when varying SLA (left) and arrival
rate λ (right).

12× Tisolate, and fixing the predefined completion deadline
SLA at 6× Tisolate while varying the DNN arrival rate from
3/M to 12/M . The energy efficiency of AI is similar to that
of PR as they both only support a fixed dataflow. PL achieves
better energy efficiency compared to AI, especially in cases
with loose predefined completion deadline (1.68×, SLA =
12× Tisolate and λ = 9/M) or high DNN arrival rate (1.60×,
SLA = 6× Tisolate and λ = 12/M), due to its spatial DNN
multiplexing capability, which leads to higher utilization of
compute resources. HDA achieves significantly higher energy
efficiency than PR, AI, and PL as its sub-accelerators offer three
dataflow choices for the multiplexed DNNs. HDA achieves up
to 2.8× increase in energy efficiency compared to PR. The
proposed MDA architecture achieves up to 7.3 × increase in
energy efficiency compared to PR since it provides full flexibility
in dataflow selection and extremely energy-efficient communi-
cationwith silicon photonic interconnects. The energy efficiency
comparison results are shown in Fig. 7.

C. SLA Satisfaction Rate Results

We define SLA satisfaction rate as the percentage of the
DNNs that adhere to their predefined completion deadlines.
Fig. 8 shows that the SLA satisfaction rates for all architec-
tures increase when fixing the DNN arrival rate at λ = 9/M
and increasing the predefined completion deadline SLA from
3× Tisolate to 12× Tisolate, and decrease when fixing the pre-
defined completion deadline SLA at 6× Tisolate and increasing
the DNN arrival rate from 3/M to 12/M . In particular, AI and
HDA achieve low SLA satisfaction rates as their scheduling
algorithms do not prioritize DNNs with high computational
demands or short remaining time until their predefined com-
pletion deadlines. PR achieves high SLA satisfaction rates as
its scheduling algorithm favors DNNs of high priority or short
estimated completion time. However, PR still suffers from low
SLA satisfaction rates in cases where adhering to predefined

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 20:47:58 UTC from IEEE Xplore. Restrictions apply.

56 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 1, JANUARY 2024

Fig. 9. Fairness comparison when varying SLA (left) and arrival rate λ (right).

completion deadlines is challenging (10%, SLA = 6× Tisolate

and λ = 12/M). PL achieves the highest SLA satisfaction rate
in all the baseline architectures. This is because the assigned
compute resources to a DNN in PL are negatively correlated
to the estimated remaining time until its predefined completion
deadline. When fixing the DNN arrival rate at λ = 9/M , the
proposed MDA architecture achieves a 93% SLA satisfaction
rate when assuming a loose predefined completion deadline of
12× Tisolate. This number decreases to 73% when assuming
the most strict predefined completion deadline of 3× Tisolate.
Similarly, when fixing the predefined completion deadline at
6× Tisolate and increasing the DNN arrival rate from 3/M
to 12/M , the SLA satisfaction rate of MDA decreases from
98% to 81%. The reasons that the SLA satisfaction rate of the
proposedMDAarchitecture canbemaintained at a high level and
experience an insignificant decrease in cases with intense DNN
multiplexing are: 1) DNNs are processed faster on the MDA
architecture as demonstrated in Fig. 6; 2) the MDA resource
allocation algorithm assigns more compute resources to DNNs
with high computational demands or short time left until the
predefined completion deadlines.

D. Fairness Results

Fairness [45] is defined as the minimum ratio of relative
normalized progress rates of any two concurrently processed
DNNs. Fairness is a value that ranges between 0 (no fairness,
at least one of the concurrently processed DNNs starves) and 1
(perfect fairness, all concurrently processed DNNs make equal
progress). Fig. 9 illustrates that the fairness numbers ofMDAand
other baseline architectures monotonically increase when fixing
the DNN arrival rate at λ = 9/M and increasing the predefined
completion deadline from 3× Tisolate to 12× Tisolate. Further-
more, the fairness numbers monotonically decrease when fixing
the predefined completion deadline at 6× Tisolate and increas-
ing theDNNarrival rate from 3/M to 12/M . AI andHDA suffer
from low fairness because their scheduling algorithms do not
guarantee the equal progress of concurrently processed DNNs.
PR especially favors DNNs with short estimated completion
time, potentially leading to the starvation of other DNNs. PL
and MDA achieve the highest fairness because they both allo-
cate compute resources based on computational demands while
favoring DNNs with lagging progress.

VIII. RELATED WORK

Multi-DNN Accelerators: Several prior multi-DNN acceler-
ators [10], [11] support temporal multiplexing of DNNs. They

require minimal hardware modifications from original single-
DNN accelerators but suffer from low system utilization due
to the unmanaged mismatch [12] between hardware resource
demand and provision.Other priormulti-DNNaccelerators [12],
[13] support both temporal and spatial multiplexing of DNNs,
however, still suffer from dataflow inflexibility. Some recent
multi-DNN accelerators [15], [16] provide a certain level of
flexibility in dataflow choices. However, the choices are limited
due to the rigidity ofmetallic-based interconnects. The proposed
MDA accelerator architecture exploits silicon photonic inter-
connects to construct flexible communication fabrics required
for multi-DNN processing and free dataflow selection. To our
knowledge, this is the first attempt to solve the multi-DNN
processing challenges with silicon photonics.
Multi-DNN on GPUs and FPGAs: There is a large body of

related work on multi-DNN support on GPU [46], [47], [48]
and FPGA [49] platforms. This work focuses on facilitating
multi-DNN processing on the hardware accelerator platform
where the communication fabrics could play a pivotal role in de-
termining the functionality, performance, and energy efficiency
of the platform. That is our motivation to explore the utilization
of the disruptive silicon photonics technology.
Dataflow Exploration: Prior work has extensively studied

dataflow optimization [4], [6], [27], [50], [51], [52], [53], [54],
[55] from temporal data reuse perspective. However, some work
targeting single-DNN processing on silicon photonic accelera-
tors [8], [19] has emphasized the necessity of partially shifting
the dataflow optimization paradigm from temporal data reuse
to spatial data parallelism. This work exhaustively explores
the dataflow design space by enumerating the temporal data
reuse and spatial data parallelism opportunities, as well as the
resulting communication patterns, along all DNN dimensions or
combinations of several dimensions.

IX. CONCLUSION

In this paper, we develop the MDA accelerator architecture
which is specially crafted to empower high-performance and
energy-efficient concurrent processing of diverse DNNs. MDA
includes three notable parts: 1) a resource allocation algorithm
that assigns compute resources based on both computational
demands and priorities; 2) a dataflow selection algorithm that
finds off-chip and on-chip dataflows leading to minimum mem-
ory accesses; 3) a flexible silicon photonic network that can be
dynamically segmented and adaptively configured to facilitate
the communication patterns of concurrently processed DNNs.
Simulation studies have shown the effectiveness of the proposed
MDA accelerator architecture.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
the excellent feedback.

REFERENCES

[1] J. Fowers et al., “A configurable cloud-scale DNN processor for real-time
AI,” in Proc. ACM/IEEE Int. Symp. Comput. Archit., 2018, pp. 1–14.

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 20:47:58 UTC from IEEE Xplore. Restrictions apply.

LI et al.: HIGH-PERFORMANCE AND ENERGY-EFFICIENT PHOTONIC ARCHITECTURE FOR MULTI-DNN ACCELERATION 57

[2] U. Gupta et al., “DeepRecSys: A system for optimizing end-to-end at-
scale neural recommendation inference,” in Proc. ACM/IEEE Int. Symp.
Comput. Archit., 2020, pp. 982–995.

[3] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis, “INFaaS: A model-
less and managed inference serving system,” 2019, arXiv:1905.13348.

[4] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor process-
ing unit,” in Proc. ACM/IEEE Int. Symp. Comput. Archit., 2017, pp. 1–12.

[5] Y. Li and A. Louri, “ALPHA: A learning-enabled high-performance
network-on-chip router design for heterogeneousmanycore architectures,”
IEEE Trans. Sustain. Comput., vol. 6, no. 2, pp. 274–288, Second Quarter
2021.

[6] Y. S. Shao et al., “Simba: Scaling deep-learning inference with multi-chip-
module-based architecture,” in Proc. IEEE/ACM Int. Symp. Microarchit.,
2019, pp. 14–27.

[7] Y. Li, A. Louri, and A. Karanth, “Scaling deep-learning inference
with chiplet-based architecture and photonic interconnects,” in Proc.
ACM/IEEE Des. Automat. Conf., 2021, pp. 931–936.

[8] Y. Li, K. Wang, H. Zheng, A. Louri, and A. Karanth, “ASCEND: A scal-
able and energy-efficient deep neural network accelerator with photonic
interconnects,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 69, no. 7,
pp. 2730–2741, Jul. 2022.

[9] Y. Li, A. Louri, and A. Karanth, “SPRINT: A high-performance, energy-
efficient, and scalable chiplet-based accelerator with photonic intercon-
nects for CNN inference,” IEEE Trans. Parallel Distrib. Syst., vol. 33,
no. 10, pp. 2332–2345, Oct. 2021.

[10] Y. Choi and M. Rhu, “PREMA: A predictive multi-task scheduling algo-
rithm for preemptible neural processing units,” in Proc. IEEE Int. Symp.
High-Perform. Comput. Archit., 2020, pp. 220–233.

[11] E. Baek, D. Kwon, and J. Kim, “A multi-neural network acceleration
architecture,” in Proc. ACM/IEEE Int. Symp. Comput. Archit., 2020,
pp. 940–953.

[12] S. Ghodrati et al., “Planaria: Dynamic architecture fission for spatial multi-
tenant acceleration of deep neural networks,” in Proc. IEEE/ACM Int.
Symp. Microarchit., 2020, pp. 681–697.

[13] J. Lee, J. Choi, J. Kim, J. Lee, and Y. Kim, “Dataflow mirroring: Ar-
chitectural support for highly efficient fine-grained spatial multitasking
on systolic-array NPUs,” in Proc. ACM/IEEE Des. Automat. Conf., 2021,
pp. 247–252.

[14] H. Kwon, A. Samajdar, and T. Krishna, “MAERI: Enabling flexible
dataflow mapping over DNN accelerators via reconfigurable intercon-
nects,” in Proc. ACM Int. Conf. Architectural Support Program. Lang.
Operating Syst., 2018, pp. 461–475.

[15] H. Kwon, L. Lai, M. Pellauer, T. Krishna, Y.-H. Chen, and V. Chandra,
“Heterogeneous dataflowaccelerators formulti-DNNworkloads,” inProc.
IEEE Int. Symp. High-Perform. Comput. Archit., 2021, pp. 71–83.

[16] S.-C. Kao and T. Krishna, “MAGMA: An optimization framework for
mapping multiple DNNs on multiple accelerator cores,” in Proc. IEEE
Int. Symp. High-Perform. Comput. Archit., 2022, pp. 814–830.

[17] D. A. B. Miller, “Device requirements for optical interconnects to silicon
chips,” Proc. IEEE, vol. 97, no. 7, pp. 1166–1185, Jul. 2009.

[18] K. Bergman, L. P. Carloni, A. Biberman, J. Chan, andG. Hendry,Photonic
Network-on-Chip Design. Berlin, Germany: Springer, 2014.

[19] Y.Li,A. Louri, andA.Karanth, “SPACX:Silicon photonics-based scalable
chiplet accelerator for DNN inference,” in Proc. IEEE Int. Symp. High-
Perform. Comput. Archit., 2022, pp. 831–845.

[20] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proc. IEEE, vol. 105, no. 12,
pp. 2295–2329, Dec. 2017.

[21] X. Yang et al., “Interstellar: Using Halide’s scheduling language to ana-
lyze DNN accelerators,” in Proc. ACM Int. Conf. Architectural Support
Program. Lang. Operating Syst., 2020, pp. 369–383.

[22] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “TETRIS:
Scalable and efficient neural network acceleration with 3D memory,” in
Proc. ACM Int. Conf. Architectural Support Program. Lang. Operating
Syst., 2017, pp. 751–764.

[23] A. H. Atabaki, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Sub-
100-nanosecond thermal reconfiguration of silicon photonic devices,”Opt.
Express, vol. 21, no. 13, pp. 15 706–15 718, Jul. 2013.

[24] M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz,
“Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,”
IEEE Photon. Technol. Lett., vol. 16, no. 11, pp. 2514–2516, Nov. 2004.

[25] E. Peter, A. Thomas, A. Dhawan, and S. R. Sarangi, “Active microring
based tunable optical power splitters,” Opt. Commun., vol. 359, pp. 311–
315, Jan. 2016.

[26] T. F. de Lima et al., “Machine learning with neuromorphic photonics,”
IEEE J. Lightw. Technol., vol. 37, no. 5, pp. 1515–1534, Mar. 2019.

[27] Y.-H.Chen, J. Emer, andV.Sze, “Eyeriss:A spatial architecture for energy-
efficient dataflow for convolutional neural networks,” in Proc. ACM/IEEE
43rd Int. Symp. Comput. Archit., 2016, pp. 367–379.

[28] Y. Li, A. Louri, and A. Karanth, “A silicon photonic multi-DNN acceler-
ator,” in Proc. IEEE/ACM Int. Conf. Parallel Archit. Compilation Techn.,
2023, pp. 1–12.

[29] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and T. Krishna,
“Understanding reuse, performance, and hardware cost of DNNdataflows:
A data-centric approach,” in Proc. IEEE/ACM Int. Symp. Microarchit.,
2019, pp. 754–768.

[30] K. Padmaraju et al., “Intermodulation crosstalk from silicon microring
modulators in wavelength-parallel photonic networks-on-chip,” in Proc.
Annu. Meeting IEEE Photon. Soc., 2010, pp. 562–563.

[31] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0:
A tool to model large caches,” HP Lab., vol. 27, pp. 1–24, 2009.

[32] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A cycle
accurate memory system simulator,” IEEE Comput. Archit. Lett., vol. 10,
no. 1, pp. 16–19, Jan./Jun. 2011.

[33] W. J. Turner et al., “Ground-referenced signaling for intra-chip and short-
reach chip-to-chip interconnects,” in Proc. IEEE Custom Integr. Circuits
Conf., 2018, pp. 1–8.

[34] A. Joshi et al., “Silicon-photonic clos networks for global on-chip
communication,” in Proc. IEEE/ACM Int. Symp. Netw.-on-Chip, 2009,
pp. 124–133.

[35] Y. Thonnart et al., “A 10Gb/s Si-photonic transceiver with 150µW120µs-
lock-time digitally supervised analog microring wavelength stabilization
for 1Tb/s/mm2 die-to-die optical networks,” in Proc. IEEE Int. Solid-State
Circuits Conf., 2018, pp. 350–352.

[36] C. DeCusatis,Handbook of Fiber Optic Data Communication: A Practical
Guide to Optical Networking. New York, NY, USA: Academic Press,
2013.

[37] A. V. Krishnamoorthy et al., “Computer systems based on silicon photonic
interconnects,” Proc. IEEE, vol. 97, no. 7, pp. 1337–1361, Jul. 2009.

[38] M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for con-
volutional neural networks,” in Proc. Int. Conf. Mach. Learn., 2019,
pp. 6105–6114.

[39] V. J. Reddi et al., “MLPerf inference benchmark,” in Proc. ACM/IEEE Int.
Symp. Comput. Archit., 2020, pp. 446–459.

[40] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

[41] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[42] G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2017, pp. 4700–4708.

[43] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Representations,
2015, pp. 1–14.

[44] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
2018, arXiv:1804.02767.

[45] S. Eyerman and L. Eeckhout, “System-level performance metrics for
multiprogram workloads,” IEEE Micro, vol. 28, no. 3, pp. 4–53,
May/Jun. 2008.

[46] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and
F. Yang, “Analysis of large-scalemulti-tenant GPU clusters for DNN train-
ing workloads,” in Proc. USENIX Annu. Tech. Conf., 2019, pp. 947–960.

[47] F. Yu et al., “Automated runtime-aware scheduling for multi-tenant DNN
inference on GPU,” in Proc. IEEE/ACM Int. Conf. Comput. Aided Des.,
2021, pp. 1–9.

[48] J. Mohan, A. Phanishayee, J. Kulkarni, and V. Chidambaram, “Look-
ing beyond GPUs for DNN scheduling on multi-tenant clusters,”
in Proc. USENIX Symp. Operating Syst. Des. Implementation, 2022,
pp. 579–596.

[49] S. Zeng et al., “Serving multi-DNN workloads on FPGAs: A coordinated
architecture, scheduling, andmapping perspective,” IEEE Trans. Comput.,
vol. 72, no. 5, pp. 1314–1328, May 2023.

[50] Z. Du et al., “ShiDianNao: Shifting vision processing closer to the sensor,”
in Proc. ACM/IEEE Int. Symp. Comput. Archit., 2015, pp. 92–104.

[51] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, “A dynami-
cally configurable coprocessor for convolutional neural networks,” inProc.
ACM/IEEE Int. Symp. Comput. Archit., 2010, pp. 247–257.

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 20:47:58 UTC from IEEE Xplore. Restrictions apply.

58 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 1, JANUARY 2024

[52] L. Cavigelli, D. Gschwend, C. Mayer, S. Willi, B. Muheim, and L. Benini,
“Origami: A Convolutional Network Accelerator,” in Proc. ACM Great
Lakes Symp. VLSI, 2015, pp. 199–204.

[53] T. Chen et al., “DianNao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning,” in Proc. ACM Int. Conf. Architectural
Support Program. Lang. Operating Syst., 2014, pp. 269–284.

[54] M. Gao, X. Yang, J. Pu, M. Horowitz, and C. Kozyrakis, “Tangram:
Optimized coarse-grained dataflow for scalable NN accelerators,” in Proc.
ACM Int. Conf. Architectural Support Program. Lang. Operating Syst.,
2019, pp. 807–820.

[55] A. Parashar et al., “Timeloop: A systematic approach to DNN accelerator
evaluation,” in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw., 2019,
pp. 304–315.

Yuan Li (Member, IEEE) received the BS degree in
physics from the University of Science and Technol-
ogy of China in 2010, the MS degree in microelec-
tronics from the University of Newcastle upon Tyne
in 2011, and the PhD degree in computer engineering
from the GeorgeWashington University, in 2022. His
research interests include AI hardware acceleration,
chiplet-based heterogeneous integration, and on-chip
interconnection network.

Ahmed Louri (Fellow, IEEE) received the PhD
degree in computer engineering from the Univer-
sity of Southern California, Los Angeles, California,
in 1988. He is the David and Marilyn Karlgaard
Endowed chair professor of Electrical and Computer
Engineering with the George Washington University,
which he joined in 2015. He is also the director of
the High-Performance Computing Architectures and
Technologies Laboratory. From 1988 to 2015, he was
a professor of Electrical and Computer Engineering
with the University of Arizona, and during that time,

he served six years (2000 to 2006) as the chair of the Computer Engineering
Program. From 2010 to 2013, he served as a program director with the National
Science Foundation’s (NSF) Directorate for Computer and Information Science
and Engineering. He directed the core computer architecture program and
was on the management team of several cross-cutting programs. He conducts
research in the broad area of computer architecture and parallel computing, with
emphasis on interconnection networks, optical interconnects for scalable parallel
computing systems, reconfigurable computing systems, and power-efficient and
reliable Network-on-Chips (NoCs) for multicore architectures. Recently, he has
been concentrating on energy-efficient, reliable, and high-performance many-
core architectures; accelerator-rich reconfigurable heterogeneous architectures;
machine learning techniques for efficient computing, memory, and interconnect
systems; emerging interconnect technologies (photonic, wireless, RF, hybrid)
for NoCs; future parallel computing models and architectures (including convo-
lutional neural networks, deep neural networks, and approximate computing);
and cloud-computing and data centers. He is the recipient of the 2020 IEEE
Computer Society Edward J. McCluskey Technical Achievement Award, “for
pioneering contributions to the solution of on-chip and off-chip communication
problems for parallel computing and manycore architectures.” He is currently
the editor-in-chief of IEEE Transactions on Computers.

Avinash Karanth (Senior Member, IEEE) received
the BE degree in electronics and communications
from the Manipal Institute of Technology, Manga-
lore University in Feb. 2000, and the MS and PhD
degrees from the Electrical and Computer Engineer-
ing Department, The University of Arizona, in 2003
and 2006, respectively. Presently, he is the Joseph
Jachinowski professor with the School of Electrical
Engineering and Computer Science at Ohio Univer-
sity in Athens, Ohio. He directs the Technologies
for Emerging Computer Architecture Lab (TEAL),

Ohio University. His research interests include computer architecture, optical
interconnects, Network-on-Chips (NoCs) and emerging technologies such as
nanophotonics, 3D, and wireless interconnects. He is the recipient of the NSF
CAREER Award in 2011, the Presidential Research Scholar Award in 2017,
the Best Paper Award at the ICCD 2013 conference, and his papers have been
nominated for Best Paper at the IEEE Symposium onNetwork-on-Chips (NoCs)
inMay 2010 and the IEEEAsia & South Pacific Design Automation Conference
(ASP-DAC) in January 2009. He is a member of ACM.

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 20:47:58 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

