
A Silicon Photonic Multi-DNN Accelerator

Yuan Li∗, Ahmed Louri∗, Avinash Karanth†
∗Department of Electrical and Computer Engineering, George Washington University, Washington, DC, USA

†School of Electrical Engineering and Computer Science, Ohio University, Athens, Ohio, USA
Emails: ∗{liyuan5859, louri}@gwu.edu, †karanth@ohio.edu

Abstract—In shared environments like cloud-based datacenters,
hardware accelerators are deployed to meet the scale-out compu-
tation demands of deep neural network (DNN) inference tasks.
As conventional hardware accelerators optimized for single-DNN
execution cannot effectively resolve the dynamic interaction of
these inference-as-a-service (INFaaS) tasks, several multi-DNN
hardware accelerators have been developed to improve the overall
system performance while adhering to the constraints of individual
tasks. Some of such multi-DNN hardware accelerators temporally
schedule tasks by incorporating the preemption or load-balancing-
based algorithm but suffer from resource underutilization because
of unmanaged mismatch between resource demand and provision.
Other multi-DNN hardware accelerators enable spatial colocation
of tasks to improve resource utilization and system flexibility, but
the irregular communication patterns between the fragmented
resource partitions cannot be adequately supported by the
metallic-based interconnects due to their rigidity and other
inherent scaling limitations. We introduce a photonic multi-DNN
accelerator named ASPIRE in this paper. The fundamental novelty
of ASPIRE lies in the ability to adaptively create sub-accelerators
for different tasks by assembling fine-grained resource partitions
in the same architecture. Seamless communications between those
fragmented resource partitions from a sub-accelerator are realized
by exploiting photonic interconnects. Specifically, ASPIRE includes
three novel designs: (1) a photonic network that can be adaptively
partitioned into several sub-networks, each seamlessly connecting
the fragmented resource partitions to construct sub-accelerators;
(2) a dataflow that simultaneously leverages temporal and spatial
data reuse opportunities within each resource partition and across
several resource partitions, respectively; (3) an algorithm that
allocates resource partitions at task granularity and derives
optimal tile size and execution order at DNN layer granularity.
Simulation studies show that ASPIRE outperforms other state-of-
the-art multi-DNN accelerators, delivering 64% execution time
reduction, 69% energy saving, 51% improvement in service-level
agreement satisfaction rate, and 7.9× improvement in fairness.

Index Terms—Deep neural network, Accelerator, Silicon pho-
tonics

I. INTRODUCTION

Large-scale accelerators are increasingly being deployed

in shared multi-DNN environments (such as in cloud data

centers [1]–[4]) in order to meet the demands of large-scale

compute-intensive deep neural network (DNN) workloads.

Typically, these inference-as-a-service (INFaaS) requests from

different DNN applications are satisfied by partitioning the large

accelerator into multiple smaller accelerators by distributing the

workloads and allocating resources to each inference request

[5]–[8]. As INFaaS demands increase with stringent quality

of service (QoS) guarantees for DNN applications, DNN

accelerators will be required to allocate resources incrementally

while allowing seamless communication for data movement.

Most prior single-task execution-based DNN accelerators [1],

[9]–[19] cannot be directly utilized for multi-DNN workload

since the underlying hardware was not designed for guarantee-

ing fairness or other service-level agreements (SLA). Further,

naively applying single-task DNN accelerators to multi-DNN

workloads can also lead to underutilized hardware resources

which can impact throughput and increase latency.

Several temporal multi-DNN accelerators [5], [6] have been

proposed in the literature to address the QoS and fairness

problems by incorporating preemption [5] and load-balancing

[6] into task scheduling. This allows resources such as PE

arrays to be allocated while load-balancing the workload

with QoS guarantees. Due to temporal variations in INFaaS

requests, there is a mismatch between computation demand and

resources allocated which leads to underutilized resources. For

example, systolic-array-based temporal multi-DNN accelerators

such as PREMA [5] and AI-MT [6] allocate all processing

elements (PEs) to a single task at any time regardless of

computation demand which can lead to underutilized PE arrays.

On the other hand, recent spatial multi-DNN accelerators such

as [7], [8] address the resource underutilization problem by

partitioning and allocating only the right amount of hardware

resources to each ongoing task, but are often curtailed by the

amount of communication between partitioned regions due

to the high-latency and power consumption of metallic-based

interconnects. For example, systolic-array-based spatial multi-

DNN accelerators such as Dataflow Mirroring [8] and Planaria

[7] partition the systolic array into several partitions and

allocate one or several partitions to each ongoing task. Dataflow

Mirroring prohibits communications between partitions and,

as a result, lacks flexibility and does not fully exploit spatial

parallelism. By contrast, Planaria adopts metallic-based ring-

buses for communications between partitions. Although the

proposed design is flexible, the communication latency can be

significantly affected by the physical location of the partitions.

While temporal and spatial multi-DNN accelerators im-

prove the design, traditional metallic interconnects impose

fundamental limits on scale-out performance due to high

performance/Watt, complex data movement between distant

partitions, and rigidity in allocating compute resources. Tra-

ditional metallic interconnects will be required to carry the

additional burden of connecting together distant islands of

accelerators (PE arrays) for INFaaS requests which can result

in higher power consumption than single-task accelerators due

to excessive data movement. The data movement problem will

exacerbate in the future scale-out accelerators that need to

238

2023 32nd International Conference on Parallel Architectures and Compilation Techniques (PACT)

979-8-3503-4254-3/23/$31.00 ©2023 IEEE
DOI 10.1109/PACT58117.2023.00028

20
23

 3
2n

d
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 P
ar

al
le

l A
rc

hi
te

ct
ur

es
 a

nd
 C

om
pi

la
tio

n
Te

ch
ni

qu
es

 (P
AC

T)
 |

 9
79

-8
-3

50
3-

42
54

-3
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
PA

CT
58

11
7.

20
23

.0
00

28

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 21:20:33 UTC from IEEE Xplore. Restrictions apply.

accommodate several INFaaS requests simultaneously.
Silicon photonics is a disruptive technology that has the

potential to alleviate the communication issues that limit the

performance of traditional electronic interconnects [17], [20]–

[30]. Photonic interconnects have several desirable properties

such as the (1) ability to design flexible topologies by

implementing broadcast, multicast, and unicast, (2) reducing

energy consumption by consuming power only at the endpoints

of the communication channels, and (3) providing very high

bandwidth-density for tighter integration of photonic compo-

nents. Silicon photonics offers distance-independent latency for

connecting distant PE arrays, thereby providing opportunities

to seamlessly interconnect PE arrays without any rigidity.
In this paper, we propose a multi-DNN accelerator named

ASPIRE which exploits both temporal and spatial techniques

along with the high flexibility and distance-independent latency

properties of silicon photonics. In ASPIRE, we exploit the

distance-independent latency feature of silicon photonics to

construct sub-accelerators by providing the required compu-

tational resources to each of the concurrent inference tasks

for the simultaneous transmission of inputs and kernels, even

when the arbitrarily partitioned sub-arrays could be physically

distant from each other. By interconnecting the sub-array

of PEs with photonic waveguides and multiple wavelengths,

we can seamlessly interconnect distant PEs, thereby building

islands of PEs for different inference tasks. ASPIRE leverages

the complete broadcast and multicast capabilities of silicon

photonics to design flexible dataflow, thereby improving the

performance/Watt. Finally, we propose an algorithm that

generates balanced resource allocation decisions, taking both

computation demand and task priority into consideration. The

algorithm ensures that we can alleviate the resource underuti-

lization problem associated with multi-DNN accelerators. The

combined effects of a reconfigurable photonic interconnect that

provides broadcast and multicast capabilities along with a task

allocation algorithm that ensures fairness and provides QoS

guarantees makes ASPIRE a novel multi-DNN accelerator for

future DNN workloads. Simulation studies using a collection of

diverse DNN models [31]–[37] show that ASPIRE architecture

outperforms other state-of-the-art temporal and spatial multi-

DNN accelerators [5]–[8] by delivering 61% execution time

reduction, 69% energy saving, 51% improvement in service-

level agreement satisfaction rate, and 7.9× improvement in

fairness. The major contributions of this work are as follows:

• Technology-Specific Dataflow: We develop a dataflow that

converts a sufficient fraction of data reuse opportunities into

data multicast opportunities through spatial parallelism to

leverage the energy-efficient multicast property of silicon

photonics while not undermining the rest of data reuse oppor-

tunities, which can still be leveraged through conventional

dataflow optimizations.

• Reconfigurable Photonic Network: We design a photonic

network that can be adaptively divided into several sub-

networks, each seamlessly connecting some fragmented

PE partitions to construct a sub-accelerator for a task.

Silicon photonic interconnects facilitate flexible network

C
o

u
p

le
r

Thermal
Tuning

+ -Driver

Thermal
Tuning

TIA

Comparator

Photodetector

WaveguidO
ff

-C
h

ip
 L

a
se

r

Thermal
Tuning

TIA

Comparator

λ0

Transmitter (TX) Receiver (RX) Receiver (RX)

MRR 0 MRR 1 MRR n

Serializer

……

Thermal
Tuning

TIA

Comparator

Receiver (RX)

MRR 2 ……
1/(n-1) 1/(n-2) 1/0

Fig. 1. A single-write-multiple-read (SWMR) silicon photonic channel using
wavelength λ0 with one transmitter and n receivers, each equipped with a
microring resonator (MRR).

reconfiguration and low-overhead communication between

distant partitions.

• Allocation Algorithm: We propose an allocation algorithm

that produces a balanced allocation of PE partitions based

on computing demand and task priority, and allocation of

on-chip memory capacity based on DNN topology and data

reuse pattern, while conventional allocation algorithms focus

on dividing computing resource only.

II. BACKGROUND AND MOTIVATION

A. Photonic Interconnects

Figure 1 shows a photonic interconnect with one transmitter

and n receivers connected by a waveguide. The light including

wavelength λ0 is generated by the off-chip laser source and

coupled to the waveguide through an optical coupler [38].

Within the transmitter, a microring resonator (MRR) [39]

labeled MRR 0 works as an optical modulator to modulate

on λ0 with input data as modulation signals. Within the n
receivers, MRRs labeled MRR 1-n work as optical filters to

forward a fraction of light in λ0 to the local photodetectors

[20] and the rest of light in λ0 to downstream receivers. The

electrical signals generated by the local photodetectors are

amplified by the transimpedance amplifiers (TIAs) and sent

to comparators to retrieve the original data. Each MRR works

as either an optical modulator or optical filter and is tuned

by a resistive heater controlled by a thermal tuning unit to

mitigate thermal and process variations [20]. Please note that

the MRR in each receiver is tuned to have a specific split ratio

based on the number of downstream receivers. For example,

the MRR in the first receiver is tuned to have a split ratio of

1/(n-1) as there are n− 1 downstream receivers. The MRR in

the last receiver is tuned to have a split ratio of 1/0, which is

equivalent to the on-resonant state. Since all receivers as shown

in Figure 1 receive the same photonic signals which are then

retrieved to the same data, the photonic interconnect in Figure

1 acts as a single-write-multiple-read (SWMR) channel, which

is especially energy-efficient for multicast communication. An

SWMR channel achieves 0.1 pJ/bit/receiver communication

(using parameters listed in Section 6.1), which is 17× lower

than the metallic-based wires with the state-of-the-art ground-

referenced signaling (GRS) technique [9]. This work leverages

the energy-efficient multicast property of silicon photonics and

239

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 21:20:33 UTC from IEEE Xplore. Restrictions apply.

s[0:S) w[0:H)

r[0:R
)

c[0:C)

k[0:K)

h[0:W)

c[0:C)

f[0:F)

E’

F’

K’

W[k r s c]
Weight Kernels

I[h w c]
Input Feature Maps

O[k e f]
Output Feature Maps

Parallel Output Feature
Computation Array

e[0:E)

k[0:K)

E’×F’

K’

Fig. 2. Computations in a convolutional layer 〈K E F C RS〉.

Algorithm 1: Computation of a Convolutional Layer

1 for (k = 0; k < K; k += 1)

2 for (e = 0; e < E; e += 1)

3 for (f = 0; f < F ; f += 1)

4 for (c = 0; c < C; c += 1)

5 for (r = 0; r < R; r += 1)

6 for (s = 0; s < S; s += 1)

7 O[k e f] += I[r + e− 1 s+ f − 1 c]×W [k r s c]

investigates the optimization opportunities of promoting data

multicast opportunities through spatial parallelism.

B. DNN Communication

The computations involved in a typical convolutional layer in

DNN inference tasks shown in Figure 2 can be represented by

a nested loop over weight kernels, input feature maps (ifmaps),

and output feature maps (ofmaps) as shown in Algorithm 1.

The nested loop includes iterations on six dimensions: the

number of ofmaps 〈k〉, the height 〈e〉 and width 〈f〉 of ofmaps,

the number of ifmaps 〈c〉, and the height 〈r〉 and width 〈s〉 of

weight kernels. Please note that the height 〈h〉 and width 〈w〉 of

ifmaps are not independent dimensions and can be represented

by the above dimensions. Figure 2 shows the computations of

an iteration in the 〈f〉 loop (Line 3 of Algorithm 1) to generate

a specific output O[k e f]. Since DNN hardware accelerators

often leverage parallelism among a large amount of PEs, we

can generate K
′ ×

(
E

′ × F
′
)

outputs in parallel using a PE

array with height and width equal K
′

and E
′×F

′
, respectively

(processing all or part of Line 1-3 of Algorithm 1 in parallel).

This PE array is considered the sub-accelerator for a given

inference task and can be constructed by combining several

PE partitions in the system.

Data communication when processing a convolutional layer

includes transmitting weight kernels and ifmaps to PEs and

collecting the generated ofmaps or partial sums (psums)

from PEs. Unlike generic applications, data communication

for DNN inference tasks is regular and can be derived

from parameters in the nested loop and underlying hardware

accelerator. From Figure 2, we can observe four types of

data reuse opportunities: (1) weight data reuse opportunities

due to convolutional operations in 〈e f〉 dimensions; (2) input

data reuse opportunities due to convolutional operations in

〈e f r s〉 dimensions; (3) input data reuse opportunities due to

multiple weight filter channels in 〈k〉 dimension; (4) psum reuse

PE Array

(a) (b) (c)

Task 0 Task 1 Task 0 Task 1

Task 2 Task 3 Task 2 Task 3Task 0

Fig. 3. (a) Systolic array based accelerator with metallic-based interconnects
between adjacent PEs [1]. (b) Spatial multi-DNN accelerator with 4 partitions.
(c) Spatial multi-DNN accelerator with 4 sub-accelerators constructed by
smaller partitions and ring bus network.

opportunities due to local accumulation in 〈c r s〉 dimensions.

Please note that data reuse opportunities in categories (1)

and (2) cannot be simultaneously exploited due to the pair-

wise multiplication nature of convolutional operations. Spatial

parallelism can convert data reuse opportunities into data

multicast opportunities. For example, spatial parallelism in the

〈k〉 dimension completely converts data reuse opportunities in

category (3) into data multicast opportunities while data reuse

opportunities in categories (1), (3), and (4) are not undermined.

By contrast, spatial parallelism in the 〈c〉 dimension does

not generate any data multicast opportunities while partially

undermining data reuse opportunities in category (4). The

target of this work is to convert a sufficient amount of data

reuse opportunities into data multicast opportunities to leverage

the energy-efficient multicast property of silicon photonics

while not undermining the rest of the data reuse opportunities,

which can still be leveraged through conventional dataflow

optimizations.

C. Inter-Partition Communication Bottleneck

Spatial multi-DNN accelerators require partitioning the

uniform PE array into smaller partitions so that a single partition

or a collection of partitions can be allocated to a particular

inference task [7], [8]. The inter-partition communication is

often considered the system bottleneck. Consider, for example,

the systolic-array-based accelerator [1], which is the baseline

architecture, of many prior multi-DNN accelerators [5]–[8]

as shown in Figure 3 (a). PEs are organized in a planar

array and augmented with distributed buffers for weights

and inputs. Metallic-based interconnects are implemented

between adjacent PEs to facilitate inter-PE data reuse. When

partitioning the uniform PE array into smaller partitions for

concurrent inference tasks, the metallic-based interconnects

on partition boundaries are removed. In this case, the inter-

partition communication fabric determines how partitions can

be combined and allocated to concurrent inference tasks.

As shown in Figure 3(b), Dataflow Mirroring [8] partitions

the uniform 6×6 PE array into four partitions of different

sizes and allocates each partition to a given inference task.

The intra-partition communication is supported by the metallic-

based interconnects in the original systolic array while the

inter-partition communication is not supported. Since Dataflow

Mirroring enforces the constraint that each inference task must

be allocated with a physical PE array, it can only accommodate

240

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 21:20:33 UTC from IEEE Xplore. Restrictions apply.

up to four concurrent inference tasks, which does not fully ex-

ploit the spatial task parallelism on the accelerator. By contrast,

as shown in Figure 3(c), Planaria [7] partitions the uniform

6×6 PE array into identical 2×2 partitions and allocates a

partition or a collection of partitions to a given inference task.

Several fragmented partitions may act as a sub-accelerator and

communicate through ring buses [7]. For inference Task 1

shown in Figure 3(c), the communication between the partitions

takes one to four hops. The number of communication hops

can be even higher when partition size decreases, system scales,

or when communicating partitions are distant from each other,

which negatively affects the performance and energy efficiency

of the multi-DNN accelerator.

In addition to the common advantages over metallic-based

interconnects such as high communication bandwidth density

and high energy efficiency [20]–[22], [26], the distance-

independent latency feature [20] of silicon photonics can

potentially tackle the inter-partition communication challenge

and enable the construction of the sub-accelerator for a

particular inference task by combining fragmented partitions via

seamless inter-partition communication support. For example,

by adopting photonic interconnects instead of the metallic-

based ring buses shown in Figure 3(c), one-hop communication

can be achieved between any partitions allocated to inference

Task 1. We implement only photonic interconnects in the

ASPIRE architecture so that one-hop communication is achieved

between fragmented partitions and a global buffer (GLB) [40].

III. ASPIRE DATAFLOW

Section 2.2 suggests that data reuse opportunities can be

turned into data multicast opportunities when performing oper-

ations in certain dimensions in parallel. Here we examine the

impact of parallelism in different dimensions. Parallelism in the

〈k〉 dimension completely turns input data reuse opportunities

due to multiple weight filters into multicast opportunities while

maintaining all other data reuse opportunities. Parallelism in

the 〈e f〉 dimensions turns either weight or input data reuse

opportunities due to convolutional operations into multicast op-

portunities while maintaining all other data reuse opportunities.

Parallelism in the 〈c〉 dimension does not create any multicast

opportunities while partially undermining psum data reuse

opportunities. Parallelism in the 〈r s〉 dimensions turns input

data reuse opportunities due to convolutional operations into

multicast opportunities while partially undermining psum data

reuse opportunities. Since the optimization target of the ASPIRE

dataflow is to promote data multicast opportunities while

maintaining data reuse opportunities, we decide to perform

operations in 〈k e f〉 dimensions in parallel. Algorithm 2 is

one possible configuration of the proposed ASPIRE dataflow

with parallelism in 〈k e f〉 dimensions and an emphasis on

psum data reuse. Pk, Pe, and Pf represent the number of

PEs working in parallel in the 〈k〉, 〈e〉, and 〈f〉 dimensions,

respectively.

Please note that the proposed ASPIRE dataflow has a variety

of configurations. We can generate a configuration with an

emphasis on weight data reuse by moving the loops in 〈c r s〉

Algorithm 2: ASPIRE Dataflow

1 for (pk = 0; pk < K; pk+ = Pk)
2 for (pe = 0; pe < E; pe+ = Pe)
3 for (pf = 0; pf < F ; pf+ = Pf)
4 parallel for (k = pk; k < min (K, pk + Pk) ; k ++)
5 parallel for (e = pe; e < min (E, pe + Pe) ; e++)
6 parallel for (f = pf ; f < min (F, pf + Pf) ; f ++)
7 for (c = 0; c < C; c++)
8 for (r = 0; r < R; r ++)
9 for (s = 0; s < S; s++)

10 O [k e f] + = I [r + e− 1 s+ f − 1 c]×W [k r s c]

dimensions before the loop in the 〈e〉 dimension, in other words,

moving Line 7-9 before Line 2 in Algorithm 2. We can also

generate a configuration with an emphasis on input data reuse

by moving the loops in 〈c r s〉 dimensions after the loop in

the 〈f〉 dimension and moving the loop in the 〈k〉 dimension

after the loop in the 〈c〉 dimension, in other words, moving

Line 7-9 after Line 3 and moving Line 1 before Line 4 in

Algorithm 2. The other ASPIRE dataflow configurations can

be derived by changing the order of the six loops (Line 1-3

and Line 7-9 in Algorithm 2).

We can also derive the overall data footprint D of each

invocation of operations shown in Algorithm 2, which is the

summation weight data footprint C ×R× S × Pk, input data

footprint C × (R+ Pe − 1) × (S + Pf − 1), and psum data

footprint Pe×Pf ×Pk. The value D will be utilized to allocate

the shared GLB on-chip memory resource.

IV. ASPIRE ARCHITECTURE

A. Architecture Overview

Figure 4 describes the ASPIRE architecture with M ×M =
16 PEs in the whole system and N × N = 4 PEs in each

partition. ASPIRE includes a uniform GLB [40] with capacity

G as an intermediate memory hierarchy between off-chip

memory and PEs. The auxiliary function unit is responsible

for operations such as pooling, activation, and normalization.

Since these operations are often fast to process [41], [42],

we focus on accelerating convolutional and general matrix

multiply (GEMM) operations here. The GLB is equipped with

M2/N2 transmitter sets, each including 2 × N transmitters,

for GLB-to-PE communication. The GLB is also equipped

with M2/N2 receiver sets, each including N receivers, for

PE-to-GLB communication. Each PE is equipped with one

transmitter and two receivers for transmitting and receiving

data, respectively. The multi-DNN controller (MTC) performs

allocation of PE partitions and GLB and correspondingly

tunes the MRRs at runtime, based on the per-task progress

information and system status.

B. Waveguide & Wavelength Allocation

There are 2×M2/N2 waveguides in the ASPIRE architecture.

The first set of M2/N2 waveguides (Waveguide 0-3 in

Figure 4) is used for GLB-to-PE communication or forwarding

unmodulated light to corresponding PE partitions for PE-to-

GLB communication. The second set of M2/N2 waveguides

241

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 21:20:33 UTC from IEEE Xplore. Restrictions apply.

O
ff

-C
h

ip
 D

R
A

M

Receivers

Transmitters

Global Buffer
(GLB)

MTC

O
ff

-C
h

ip

L
a

se
r

S
o

u
rc

e Waveguide 0

Waveguide 1

Waveguide 2

Waveguide 3

Waveguide 4

Waveguide 5

Waveguide 6

Waveguide 7

Partition 0 Partition 1 Partition 2 Partition 3

Auxiliary Func.

λ0 λ1 λ2 λ3

MRR with Tunability

MRR Modulator

1 2

3

λ0 λ1

ASPIRE Architecture

Fig. 4. ASPIRE architecture overview with 4 partitions and 4 PEs per partition. Waveguide 0-3 and 4-7 are implemented for GLB-to-PE and PE-to-GLB
communications, respectively. Wavelengths λ0 - λ3 are utilized for GLB-to-PE communication while wavelengths λ0 - λ1 are reused for PE-to-GLB
communication.

(Waveguide 4-7 in Figure 4) is solely used for PE-to-GLB

communication. Please note that each PE partition can receive

data from the GLB via any waveguide in the first set while

only sending data to the GLB via a specific waveguide in the

second set. For example, Partition 0 can receive data from

the GLB via Waveguide 0-3 while only sending data to the

GLB via Waveguide 4.

There are 2 × N wavelengths utilized in the ASPIRE

architecture. The first set of N wavelengths (λ0 - λ1 in Figure

4) is used for row-wise GLB-to-PE multicast communication

within each PE partition or across several partitions, as well

as PE-to-GLB unicast communication. The second set of N
wavelengths (λ2 - λ3 in Figure 4) is solely used for column-

wise GLB-to-PE multicast communication within each PE

partition or across several partitions. Within each PE partition,

one receiver attached to each PE in a row resonates on a

wavelength from the first set (e.g., λ0 for PE0
00 and PE0

01)

while the other receiver attached to each PE in a column

resonates on another wavelength from the second set (e.g., λ2

for PE0
00 and PE0

10). We can derive that the GLB bandwidth

scales with M2/N . When maintaining the number of PEs in a

partition N2 fixed, the GLB bandwidth increases linearly with

the number of PEs in the whole system M2.

C. Photonic Network

The ASPIRE photonic network can be dynamically config-

ured to support seamless communication between fragmented

PE partitions allocated to each inference task. We described

how the proposed photonic network is configured in Table I to

support the three working cases shown in Figure 5. In Table I,

”�” and ”�” represent the corresponding MRRs are tuned to

on-resonant and off-resonant states, respectively. Split ratios

of 1/0 and 0/1 are equivalent to on-resonant and off-resonant

states, respectively.

CASE I: In the case shown in Figure 5 (a) where each

PE partition works independently as a sub-accelerator, a

PE partition receives data from the GLB via a designated

waveguide and transmits data to the GLB via another designated

waveguide. For example, as shown in Figure 4 1 , Partition
0 receives data via Waveguide 0. As a result, the 4 MRRs

corresponding to Parittion 0 and Waveguide 0 and working

on wavelengths λ0 - λ3 are tuned to the on-resonant state to

forward the data. The MRRs corresponding to Partition 0

and other waveguides are tuned to the off-resonant state as

these waveguides carry data for other partitions. The MRRs

corresponding to other partitions and Waveguide 0 are also

tuned to the off-resonant state as these partitions receive data

from Partition 0. Within Partition 0, data is multicast

to different rows using different wavelengths. For example,

PE0
00 and PE0

01 receive the same data using wavelength

λ0. Hence, the MRRs working on λ0 and corresponding to

PE0
00 and PE0

01 are tuned to split ratios of 1/1 and 1/0,

respectively. Similarly, PE0
10 and PE0

11 receive the same data

using wavelength λ1. Hence, the MRRs working on λ1 and

corresponding to PE0
10 and PE0

11 are tuned to split ratios of

1/1 and 1/0, respectively. Data is also multicast to different

columns using different wavelengths. For example, PE0
00 and

PE0
10 receive the same data using wavelength λ2. Hence, the

MRRs working on λ2 and corresponding to PE0
00 and PE0

10

are tuned to split ratios of 1/1 and 1/0, respectively.

As shown in Figure 4 3 , Partition 0 transmits data via

Waveguide 4. As a result, the 4 MRRs corresponding to

Partition 0 and Waveguide 0 and working on wavelengths

λ0 - λ3 are tuned to the on-resonant state to forward the

unmodulated light to Partition 0 for data transmission. The

MRRs corresponding to other partitions or waveguides are

tuned to the off-resonant state. Within Partition 0, PE0
00

and PE0
10 transmit data via Waveguide 4 using wavelengths

λ0 and λ1, respectively. PE0
01 and PE0

11 transmit data via

Waveguide 4 using wavelengths λ0 and λ1, respectively, in a

different time slot. The PE-to-GLB unicast communication is

done sequentially in each row of PEs within a partition. Hence,

a one-bit token is propagated circularly between columns to

determine which column has access to the PE-to-GLB unicast

242

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 21:20:33 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Partition 0Partition 0

()

Partition 1

Partition 2 Partition 3

Task 0 Task 1

Task 2 Task 3

Partition 0/2
Task 0

Task 1
Partition 1/3

Partition 0 Partition 1
Task 0

Task 2
Partition 2/3

Task 1

(c)

Fig. 5. ASPIRE working cases: (a) Partition 0-3 are allocated for Task
0-3; (b) Partition 0 & 2 and Partition 1 & 3 are allocated for Task 0
and Task 1, respectively; (c) Partition 0, Partition 1, and Partition 2
& 3 are allocated for Task 0, Task 1, and Task 2, respectively.

communication channel. We do not show the token propagation

network in Figure 4 for simplicity.

Please note that, in this case, all partitions can work

independently without any interference because communication

between each partition and the GLB is done by separate waveg-

uides. It is also unnecessary to synchronize the operations on

different partitions. For example, it is possible that Partition
0 is loading data from the GLB through Waveguide 0 while

Partition 1 is sending data to the GLB using Waveguide 1

and 5.

CASE II/III: In the case shown in Figure 5 (b) and (c)

where several PE partitions work jointly as a sub-accelerator,

these partitions are likely to receive data from the GLB via

a designated waveguide and transmit data to the GLB via

separate waveguides. For example, as shown in Figure 5 (b),

Partition 0 and Partition 2 are horizontally combined as

a sub-accelerator. They receive row-wise multicast data from

Waveguide 0 but receive column-wise multicast data from

Waveguide 0 and Waveguide 2, respectively. To receive

row-wise multicast data from Waveguide 0, the 2 MRRs

corresponding to Partition 0 and Waveguide 0 and working

on wavelengths λ0 - λ1 are tuned to the split ratio of 1/1 to

forward half of the light power to Partition 0. Meanwhile, the

2 MRRs corresponding to Partition 2 and Waveguide 0 and

working on wavelengths λ0 - λ1 are tuned to the on-resonant

state to forward the rest of light power to Partition 2, as

shown in Figure 4 2 . The states of other MRRs outside each

partition can be similarly derived. We summarize the state of

each MRR in all three working cases in Table I.

V. ASPIRE ALLOCATION ALGORITHM

Allocation of the PE partitions and GLB capacity is invoked

in either the presence of a new inference task or the completion

of an existing inference task. The MTC shown in Figure 4 keeps

track of the concurrent inference tasks. An entry is created

upon arrival of a new inference task using CREATEENTRY()
(Line 17-20 in Algorithm 3). The arrival time is recorded as

well as the overall number of MAC operations and the isolate

execution time, which can be obtained offline. An entry is

deleted upon completion of an existing inference task using

DELETEENTRY() (Line 8-15 in Algorithm 3). The MTC

constantly monitors and updates the progress of the concurrent

inference tasks using UPDATEENTRY() (Line 6 in Algorithm

3). An allocation is invoked after request signal is set while

TABLE I
MRR WORKING STATE IN ASPIRE ARCHITECTURE

Partition 0 Partition 1 Partition 2 Partition 3

λ0/λ1 λ2/λ3 λ0/λ1 λ2/λ3 λ0/λ1 λ2/λ3 λ0/λ1 λ2/λ3

Case shown in Figure 5 (a)

Waveguide 0 � � � � � � � �
Waveguide 1 � � � � � � � �
Waveguide 2 � � � � � � � �
Waveguide 3 � � � � � � � �

Case shown in Figure 5 (b)

Waveguide 0 1/1 � � � � � � �
Waveguide 1 � � � 1/1 � � � �
Waveguide 2 � � � � � � � �
Waveguide 3 � � � � � � � �

Case shown in Figure 5 (c)

Waveguide 0 � � � � � � � �
Waveguide 1 � � � � � � � �
Waveguide 2 � � � � � 1/1 � �
Waveguide 3 � � � � � � � �

the implementation of the previous allocation is complete

(allocation signal is cleared). The necessary operations

(e.g., MRR tuning) to implement the current allocation are

pushed in the Ctrl queue to be performed asynchronously.

Inference tasks losing one or several partitions in the allocation

can release the partition(s) at the end of the current invocation

and continue the next updated one without interruptions. By

contrast, inference tasks gaining one or more partitions in the

allocation have to wait until all added partition(s) are released.

In this way, we minimize the timing overhead of updating the

allocation of the PE partitions and GLB capacity.

ALLOCATIONALGORITHM() is the key function of the

proposed allocation algorithm. It includes the allocation of

PE partitions Si, allocation of parallelism in three dimensions

〈P i
k P

i
e P

i
f 〉, and allocation of GLB capacity Gi for Task i.

The MTC keeps track of the following parameters and feeds

them to the allocation algorithm:

T i
isolate: The execution time of Task i when it is processed on

ASPIRE alone without interruptions. This value can be obtained

offline.

T i
remain: An implication of computing resource demand which

is defined by Equation (1).

T i
deadline: The difference between the expected comple-

tion time and current time. It is within the range of(−∞, SLA× T i
isolate

]
.

T i
remain =

No. of remainedMACs

No. of total MACs
× T i

isolate (1)

The allocation of PE partitions Si is derived from Equation

(2) which holistically considers the computing resource demand

represented by T i
remain and task priority represented by

e−T i
deadline . Compared to the linear expression of task priority

in prior work [7], [8], the proposed exponential expression can

assign proper priorities to tasks that have passed their deadlines

(T i
deadline < 0) and significantly favor tasks with tight

deadlines, facilitating equal progress of tasks and adherence to

SLA.

243

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 21:20:33 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3: ASPIRE Allocation Algorithm

1 function ALLOCATIONSCHEME (count, LIST, TASK)

2 request = false
3 allocation = false
4 for cycle ← [0 : ∞) do
5 // update information of existing DNN inference tasks
6 UPDATEENTRY (count, LIST)

7 // check completion of any existing DNN inference task
8 if count �= -1 then
9 for i ← [0 : count] do

10 if LIST[i] . remain = 0 then
11 DELETEENTRY (i, count, LIST)

12 request = true
13 end if
14 end for
15 end if
16 // looking for newly arrived tasks
17 while TASK �= NULL do
18 CREATEENTRY (Deq(TASK), count, LIST)

19 request = true
20 end while
21 // initiate allocation algorithm
22 if request = true then
23 if allocation = false then
24 Enq(CTRL, ALLOCATIONALGORITHM (count, LIST))

25 allocation = true
26 request = false
27 end if
28 end if
29 // test completion of allocation
30 if CTRL = NULL then
31 allocation = false
32 end if
33 cycle ++

34 end for
35 end function

Si =
M2

N2
× T i

remain × e−T i
deadline

∑
T i
remain × e−T i

deadline

(2)

The parallelism in three dimensions 〈P i
k P

i
e P

i
f 〉 is deter-

mined through heuristic search with the target of minimizing

GLB accesses and the constraint of �Pk/N�×�Pe × Pf/N� ≤
Si. The allocation of GLB capacity Gi is derived from equation

Gi = Di × G/∑Di, where Di is defined in Section 3 and

G is the overall GLB capacity. In the case of Gi < Di, tiling

along 〈c〉 dimension is performed.

VI. EVALUATION METHODOLOGY

We extend the open-source SCALE-Sim simulator [51] to

support temporal and spatial multiplexing of heterogeneous

DNN inference tasks. The execution time includes time for

both computation and communication. The extended simulator

can track the number of MAC operations and the number of

accesses to each memory hierarchy (local register, GLB, and

off-chip memory), from which the time for both computation

and communication is derived. The derivation process has

taken the interference between multiple existing DNN inference

tasks into consideration and enforced the bandwidth limitation

of each metallic-based or photonic interconnects. The delay

for tuning MRRs is set to 500 ps [52], indicating that DNN

TABLE II
ASPIRE SIMULATION PARAMETERS

Parameter Value
PE Array Dimension 128×128

PE Partition Dimension 8×8 8×16 16×16 16×32 32×32

PE Operating Frequency 700 MHz

Global Buffer (GLB) 12 MB

Data Width 8-bit Weight & Input Feature 16-bit Psum

GLB Read Bandwidth 1280 GB/s

GLB Write Bandwidth 640 GB/s

GLB Access Latency 1 cycle

Off-chip Memory Model
DDR3 (34 GB/s)

HBM (128/256/358/512 GB/s)

TABLE III
SIMULATION PHOTONIC PARAMETERS

Component Value Component Value

Laser Source 5 dB [43] Ring Drop 0.7 dB [44]

Coupler 1 dB [43] Ring Through 0.01 dB [45]

Splitter 0.2 dB [46] Photodetector 0.1 dB [43]

Waveguide 1 dB/cm [43] Waveguide-to-receiver 0.5 dB [47]

Waveguide Bend 0.01 dB [48] Receiver Sensitivity -23.4 dBm [49]

Waveguide Crossover 0.05 dB [47] Ring Heating 320 μW [50]

inference tasks with sufficient partitions can progress without

being interrupted by this tuning process. Similarly, the waiting

tasks can immediately start progress upon obtaining sufficient

partitions. Table II lists the key architecture parameters of

ASPIRE for simulation. We utilize similar parameters as in [5],

[7] for a fair comparison. We assume 1× 10−12 bit error rate

(BER) [49] at 10 Gbps bit rate and wavelengths around 1550

nm. We also assume a maximum free spectral range (FSR)

limit of 50 nm [22] which reflects the fabrication limitation

of MRR radius. As the maximum number of wavelengths

assumed in ASPIRE is 64, the power penalty due to crosstalk

is negligible due to prior study [53].

A. Power Model

The power consumption value of MAC operations is obtained

using Synopsys Design Compiler. The power consumption

values of access local buffers and the GLB are obtained

using CACTI 6.0 [54] while the power consumption value of

accessing off-chip memory is obtained using DRAMSim2 [55].

The power consumption value of metallic-based interconnects

is obtained using DSENT [44] and parameters in [56]. The

power consumption value of photonic interconnects is derived

from Equation (3) shown below:

Ptotal = PTX + PRX + Plaser + Pthermal (3)

The total power consumption Ptotal consists of 4 parts:

the power consumption of transmitters PTX , the power con-

sumption of receivers PRX , the power consumption of the

off-chip laser source Plaser, and the power consumption of

resistive heaters for mitigating thermal and process variations of

MRRs Pthermal. PTX and PRX are derived from parameters

244

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 21:20:33 UTC from IEEE Xplore. Restrictions apply.

in [50]. The power consumption values for each transmitter and

receiver are 0.9 mW and 0.6 mW , respectively. The power

consumption for thermal heating is assumed to be 0.32 mW
per MRR [50]. The power consumption of the off-chip laser

source is derived from Equation (4) shown below:

Plaser = Prs + Closs + Pextinction +Msystem (4)

The power consumption of the off-chip laser source consists

of 4 parts: the photodetector sensitivity Prs, the overall insertion

loss Closs which can be derived from parameters listed in Table

III, the power penalty caused by extinction ratio Pextinction

(2 dB [57]), and the system margin Msystem (4 dB [58]).

The purpose of the system margin is to allocate an amount of

power to additional power penalty sources developed during

the system’s lifetime.

B. Multi-DNN Accelerators

The proposed ASPIRE (AS) architecture is compared against

two temporal multi-DNN accelerators named PREMA [5] (PR)

and AI-MT [6] (AI), and two spatial multi-DNN accelerators

named Planaria [7] (PL) and Dataflow Mirroring (DM) [8]. For

a fair comparison, these multi-DNN accelerators and ASPIRE

are all scaled to include M ×M = 16384 PEs and N ×N =
1024 PEs per partition unless otherwise stated. The GLB size

is set to 12 MB [5], [7]. Weights and inputs are assumed to

be 8-bit wide while psums are assumed to be 24-bit wide [9].

The PE clock frequency is set to 700 MHz. We perform cycle-

level memory simulation [55] by assuming a high bandwidth

memory (HBM) module with 358 GB/s bandwidth as in [5],

[7]. We also explore the impact of memory bandwidth on

system performance by implementing a DDR3 memory model

as in [1] and varying HBM bandwidth as shown in Table II.

C. Multi-DNN Benchmark

We generate a multi-DNN benchmark from eleven convo-

lutional neural networks (CNNs), recurrent neural networks

(RNNs), and transformers in four categories: (1) EfficientNet-b0

[36], EfficientNet-b7 [36], MobileNet-v1 [37], DenseNet-201

[33], ResNet=50 [34], and VGG-16 [32] using ImageNet

dataset for image classification; (2) YOLO-v3 [31] and SSD-

MobileNet-v1 [37] using COCO dataset for object detection;

(3) GNMT [37] using WMT E-G dataset for translation; (4)

BERT [37] using SQuAD v1.1 dataset for natural language

processing. A certain sequence of the mixed DNN models

is generated and applied to simulation on both ASPIRE

architecture and other multi-DNN accelerators. Please note that

the sequence is long enough to model diverse task multiplexing

cases. The arrival time of each DNN inference task in the

sequence is randomly assigned from a Poisson distribution as

in [7]. The task arrival rate can be adjusted by tuning the rate

parameter λ. We evaluate ASPIRE architecture performance

under different task arrival rates in our simulation. Please

note that only the convolutional and fully-connected layers are

considered in our simulation.

SLA=3 λ=2/Million

0

0.3

0.6

0.9

1.2

PR AI PL DM AS

Execution Time Energy

0

0.3

0.6

0.9

1.2

PR AI PL DM AS
0

0.3

0.6

0.9

1.2

PR AI PL DM AS

0

0.3

0.6

0.9

1.2

PR AI PL DM AS

Execution Time Energy

0

0.3

0.6

0.9

1.2

PR AI PL DM AS
0

0.3

0.6

0.9

1.2

PR AI PL DM AS

SLA=6 λ=2/Million SLA=10 λ=2/Million

SLA=3 λ=10/Million SLA=6 λ=10/Million SLA=10 λ=10/Million

Fig. 6. Execution time and energy consumption comparison between ASPIRE

and other multi-DNN accelerators when varying SLA and task arrival rate λ.

D. Evaluation Metrics

We utilize the following four metrics to evaluate ASPIRE

architecture and other multi-DNN accelerators. The first two

metrics are from the perspective of cloud vendors while the

last two metrics are from the perspective of end users.

• Execution Time: the time spent to process the above sequence

of mixed DNN inference tasks.

• Energy Consumption: the energy consumption of processing

the above sequence of mixed DNN inference tasks.

• SLA Satisfaction Rate: the fraction of multiplexed DNN

inference tasks that adhere to the SLA profile. SLA of Task
i is defined as T i

deadline/T
i
isolate.

• Fairness: the measurement of the equal progress of the

multiplexed DNN inference tasks [59].

VII. EXPERIMENT RESULTS

A. Execution Time & Energy Consumption

We model three different SLA values SLA=3, SLA=6, and

SLA=10, which represent cases with strict, medium, and

relaxed deadlines, respectively. We also model two different

task arrival rate λ values λ = 2/Million and λ = 10/Million,

which represent cases with low and high task arrival rates.

λ = 2/Million means on average 2 DNN inference tasks

are expected in a one-million clock cycle interval. Figure 6

shows the execution time and energy consumption comparison

between ASPIRE and other multi-DNN accelerators. All values

are normalized to PR. We make the following observations.

First, in the cases with strict or medium deadlines (SLA=3 or

SLA=6) and low task arrival rate λ = 2/Million, spatial multi-

DNN accelerators PL and DM perform worse than temporal

multi-DNN accelerators PR and AI because the chance of

spatially co-executing several inference tasks is low in such

cases. As a result, the spatial task parallelism capability in PL

and DM is not fully leveraged while the control overhead still

exists. Second, in other cases with a high chance of spatially

co-executing several inference tasks, PL and DM perform better

245

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 21:20:33 UTC from IEEE Xplore. Restrictions apply.

0.0

0.3

0.5

0.8

1.0

PR AI PL DM AS
0.0

0.3

0.5

0.8

1.0

PR AI PL DM ASR

0.0

0.3

0.5

0.8

1.0

PR AI PL DM AS

SLA Satisfaction Rate

0.0

0.3

0.5

0.8

1.0

PR AI PL DM AS

0.0

0.3

0.5

0.8

1.0

PR AI PL DM AS

SLA Satisfaction Rate

SLA=3 λ=2/Million SLA=6 λ=2/Million SLA=10 λ=2/Million

SLA=3 λ=10/Million SLA=6 λ=10/Million SLA=10 λ=10/Million

0.0

0.3

0.5

0.8

1.0

PR AI PL DM AS

Fig. 7. SLA satisfaction rate and fairness comparison between ASPIRE and
other multi-DNN accelerators when varying SLA and task arrival rate λ.

than PR and AI in terms of both execution time and energy

consumption. Third, ASPIRE outperforms other multi-DNN

accelerators mainly due to the proposed photonic network

design. In particular, ASPIRE achieves up to 61% and 69%

reduction in execution time and energy consumption.

B. SLA Satisfaction Rate & Fairness

Figure 7 shows the SLA satisfaction rate and fairness

comparison between ASPIRE and other multi-DNN accelerators.

All values are normalized to PR. We make the following

observations. First, in cases with different combinations of SLA

values and task arrival rates λ, temporal multi-DNN accelerators

(PR and AI) achieve lower SLA satisfaction rates and fairness

compared to spatial multi-DNN accelerators (PL, DM, and

ASPIRE), as temporal accelerators often have relatively low PE

utilization and cannot delicately allocate hardware resource to

multiple inference tasks. In particular, AI achieves as low as

4% SLA satisfaction rate and 0.08 fairness because it prompts

balancing of communication- and computation-intensive tasks

over the QoS concern. Second, the SLA satisfaction rate of

each accelerator tends to decrease when adopting a more strict

task deadline or high task arrival rate. Third, ASPIRE still

maintains a relatively high SLA satisfaction rate of 71% and

fairness of 0.60 in the case with strict task deadline (SLA=3)

and high task arrival rate (λ = 10/Million). This is due to the

combined effects of the photonic network design and partition

allocation strategy.

C. ASPIRE Contribution Breakdown Analysis

We present the contributions of the ASPIRE photonic network

design and allocation strategy to the overall system improve-

ment separately in Figure 8. We only show the case with critical

SLA (SLA=3) and high task arrival rate (λ = 10/Million).

ASPIRE is compared against PR, PL, and two additional

baselines PL/AS and AS/PL. PL/AS is a design that combines

PL architecture and ASPIRE allocation algorithm, while AS/PL

is a design that combines ASPIRE architecture and PL allocation

0.0

0.3

0.5

0.8

1.0

PR PL PL/AS AS/PL AS

SLA Satisfaction Rate Fairness

0

0.3

0.6

0.9

1.2

PR PL PL/AS AS/PL ASR

0

0.3

0.6

0.9

1.2

PR PL PL/AS AS/PL AS

0

0.3

0.6

0.9

1.2

PR PL PL/AS AS/PL AS

Execution Time Energy

SLA=3 λ=10/Million SLA=6 λ=10/Million SLA=10 λ=10/Million

SLA=3 λ=10/Million SLA=6 λ=10/Million SLA=10 λ=10/Million

s

0.0

0.3

0.5

0.8

1.0

PR PL PL/AS AS/PL AS

0.0

0.3

0.5

0.8

1.0

PR PL PL/AS AS/PL AS

Fig. 8. ASPIRE architecture and allocation algorithm benefits breakdown
analysis. All values are normalized to PR.

0.0

0.3

0.5

0.8

1.0

PR AI PL DM AS

SLA=3 SLA=6 SLA=10 Fairness=

0.0

0.3

0.5

0.8

1.0

PR AI PL DM AS

0.0

0.3

0.5

0.8

1.0

PR AI PL DM AS

λ=2/Million λ=10/Million λ=20/Million

Fig. 9. ASPIRE allocation algorithm compared with other multi-DNN
accelerators when randomly assigning SLA values to incoming inference
tasks.

algorithm. We make the following two observations. First, as

compared to PL, PL/AS achieves a minor reduction in execution

time (1.5%) and energy consumption (1.0%) while AS/PL

achieves a significant reduction in execution time (48.3%) and

energy consumption (43.2%), indicating that the reduction in

execution time and energy consumption of ASPIRE mainly

comes from the proposed photonic network design. Second,

both PL/AS and AS/PL achieve significant improvement in SLA

satisfaction rate and fairness, as compared to PL, indicating

that both the proposed photonic network architecture and the

allocation strategy help the co-executed tasks to achieve equal

progress and fulfill the deadlines.

D. Dynamic Task Deadline

In ASPIRE, the initial value of Tdeadline is considered an

implicit priority parameter and will be continuously updated.

To demonstrate the benefits of the implicit priority parameter in

ASPIRE over the explicit priority parameter in PL and DM, we

randomly assign one of the three SLA values (SLA=3, SLA=6,

and SLA=10) to each inference task. Meanwhile, since PL

and DM adopt an explicit priority in the range of 1 to 11

[7], we assign one of the three priority values (8, 5, and

1) to each corresponding inference task. Figure 9 shows the

SLA satisfaction rate of different groups of tasks, each group

corresponds to a specific priority (e.g., implicit priority SLA=3

in ASPIRE and explicit priority 8 in PL and DM). We observe

246

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 21:20:33 UTC from IEEE Xplore. Restrictions apply.

0

0.3

0.6

0.9

1.2

34 128 256 358 512

E
x

e
cu

ti
o

n
 T

im
e

computation memory stall

0

0.3

0.6

0.9

1.2

4 8 12 16 20

E
x

e
cu

ti
o

n
 T

im
e

(a) (b)

Fig. 10. GLB (a) bandwidth and (b) capacity exploration assuming SLA=3
and λ = 10/Million.

0.0

0.3

0.5

0.8

1.0

8×8 8×16 16×16 16×32 32×32

SLA Satisfaction Rate Fairness

0.0

0.3

0.5

0.8

1.0

8×8 8×16 16×16 16×32 32×32

Execution Time Energy

(a) (b)

Fig. 11. Partition size exploration assuming SLA=3 and λ = 10/Million.

that in general inference tasks with high priority, either implicit

or explicit, achieve higher SLA satisfaction rates under different

task arrival rate assumptions. Furthermore, the implicit priority

in ASPIRE is more effective in terms of SLA satisfaction rate

and fairness, as compared to the explicit priority in PL and DM

due to the fact that ASPIRE allocation strategy significantly

prompts tasks that are close to or have passed their deadlines.

We show the results of an extreme case with a very high task

arrival rate (λ = 20/Million) in which many tasks cannot be

completed in time. ASPIRE still achieves high fairness in this

case compared to other designs.

E. GLB Bandwidth and Capacity Exploration

Figure 10 (a) shows the impact of bandwidth between

main memory and GLB on execution time in ASPIRE, when

assuming SLA=3 and λ = 10/Million. We explore several

setups, DDR3 off-chip memory with 34 GB/s bandwidth as

in [1], HBM with 128-512 GB/s bandwidth (PR [5] and PL

[7] assume HBM with 358 GB/s bandwidth). The execution

time is further divided into the time for computation and

memory stall time. We observe that 358 GB/s bandwidth is

sufficient as the memory stall time only accounts for 1.8% of the

overall execution time. As the bandwidth value decreases, the

fraction of memory stall time in overall execution time increases

(83% in DDR3 with 34 GB/s bandwidth). Meanwhile, further

increasing the memory bandwidth over 358 GB/s only leads to

an insignificant reduction in memory stall time. We also explore

the impact of GLB capacity on execution time in ASPIRE as

shown in Figure 10 (b). Implementing a 12 MB GLB would

incur 31% memory stall time, which can be reduced to 21%

when implementing a 20 MB GLB.

F. Partition Size Exploration

We study the execution time and energy consumption, as

well as SLA satisfaction rate and fairness when varying the

partition size in ASPIRE architecture. The study is performed

assuming the critical SLA and high task arrival rate. As shown

in Figure 11, we observe increasing execution time as partition

size increases, which indicates that a smaller partition size can

better facilitate the process of allocating the right amount of

hardware resource to a particular inference task. By contrast,

the minimum energy consumption is achieved when assuming

16×16 partition size. Though partition size does not affect

the energy consumption of computation and data access to

different memory hierarchies, it has a profound impact on the

energy consumption of the proposed photonic network. Small

partition sizes (8×8 and 8×16) lead to a large number of MRRs

required in the photonic network and high energy consumption

for thermal tuning. Large partition sizes (16×32 and 32×32)

lead to high insertion loss and high energy consumption for the

off-chip laser source. We observe that the proposed ASPIRE

architecture achieves optimal energy-delay product value when

assuming 16×16 partition size. We can observe that the SLA

satisfaction rate and fairness decrease as the partition size

increases, which also indicates that a smaller partition size can

fully exploit the spatial task parallelism on the accelerator and

improve QoS and fairness.

G. Area Estimation

We synthesize ASPIRE design using Synopsys Design
Compiler and 28 nm technology. The size of the 12 MB
GLB is 89.55 mm2 while the area overhead of the photonic

network (transceivers and MRRs) is 46.06 mm2. Since ASPIRE

is not equipped with the 1 MB weight FIFO (3.92 mm2 and

2 MB Accumulation Buffer (20.43 mm2), we can mitigate

the area overhead of the photonic network by using an 8 MB
GLB in ASPIRE. According to Figure 6 and Figure 10 (b),

such a system setup can still achieve lower execution time as

compared to PL with 12 MB GLB.

VIII. CONCLUSION

In this paper, we propose a photonic multi-DNN accelerator

named ASPIRE that supports spatial and temporal co-execution

of multiple DNNs. The salient features of ASPIRE architecture

include (1) a novel dataflow that converts a sufficient fraction

of data reuse opportunities into data multicast opportunities

to leverage the energy-efficient multicast property of silicon

photonics; (2) a photonic network that can be adaptively divided

into several sub-networks, each seamlessly connecting some

fragmented PE partitions to construct a sub-accelerator for

one DNN; (3) an algorithm that produces the allocation of

PE partitions based on computing demand and task priority,

and the allocation of on-chip memory capacity based on DNN

topology and data reuse pattern. Simulation studies using a

collection of diverse CNN, RNN, and transformer models have

proven the effectiveness of ASPIRE architecture compared to

other state-of-the-art multi-DNN accelerators.

IX. ACKNOWLEDGEMENTS

This research was partially supported by NSF grants CCF-

1901165, CCF-2311543, CCF-1953980, CCF-1703013, CCF-

1901192, CCF-1936794, and CCF-2311544. We sincerely thank

the anonymous reviewers for their excellent feedback.

247

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 21:20:33 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. luc Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho,
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,
A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda,
A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn,
G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan,
G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter,
W. Wang, E. Wilcox, and D. H. Yoon, “In-Datacenter Performance
Analysis of a Tensor Processing Unit,” in Proceedings of the ACM/IEEE
International Symposium on Computer Architecture (ISCA), June 2017,
pp. 1–12.

[2] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo,
S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel,
A. Sapek, G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt, A. M.
Caulfield, E. S. Chung, and D. Burger, “A Configurable Cloud-Scale
DNN Processor for Real-Time AI,” in Proceedings of the ACM/IEEE
International Symposium on Computer Architecture (ISCA), June 2018,
pp. 1–14.

[3] U. Gupta, S. Hsia, V. Saraph, X. Wang, B. Reagen, G.-Y. Wei, H.-H. S.
Lee, D. Brooks, and C.-J. Wu, “DeepRecSys: A System for Optimizing
End-to-End At-Scale Neural Recommendation Inference,” in Proceedings
of the ACM/IEEE International Symposium on Computer Architecture
(ISCA), May 2020, pp. 982–995.

[4] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis, “INFaaS: A
Model-Less and Managed Inference Serving System,” arXiv Preprint,
pp. 1–16, May 2019.

[5] Y. Choi and M. Rhu, “PREMA: A Predictive Multi-Task Scheduling
Algorithm for Preemptible Neural Processing Units,” in Proceedings
of the IEEE International Symposium on High-Performance Computer
Architecture (HPCA), February 2020, pp. 220–233.

[6] E. Baek, D. Kwon, and J. Kim, “A Multi-Neural Network Acceleration
Architecture,” in Proceedings of the ACM/IEEE International Symposium
on Computer Architecture (ISCA), May 2020, pp. 940–953.

[7] S. Ghodrati, B. H. Ahn, J. K. Kim, S. Kinzer, B. R. Yatham, N. Alla,
H. Sharma, M. Alian, E. Ebrahimi, N. S. Kim, C. Young, and
H. Esmaeilzadeh, “Planaria: Dynamic Architecture Fission for Spatial
Multi-Tenant Acceleration of Deep Neural Networks,” in Proceedings of
the IEEE/ACM International Symposium on Microarchitecture (MICRO),
October 2020, pp. 681–697.

[8] J. Lee, J. Choi, J. Kim, J. Lee, and Y. Kim, “Dataflow Mirroring: Archi-
tectural Support for Highly Efficient Fine-Grained Spatial Multitasking
on Systolic-Array NPUs,” in Proceedings of the ACM/IEEE Design
Automation Conference (DAC), December 2021, pp. 247–252.

[9] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang,
B. Keller, A. Klinefelter, N. Pinckney, P. Raina, S. G. Tell, Y. Zhang,
W. J. Dally, J. Emer, and C. T. Gray, “Simba: Scaling Deep-Learning
Inference with Multi-Chip-Module-based Architecture,” in Proceedings of
the IEEE/ACM International Symposium on Microarchitecture (MICRO),
October 2019, pp. 14–27.

[10] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture
for Energy-Efficient Dataflow for Convolutional Neural Networks,” in
Proceedings of the ACM/IEEE International Symposium on Computer
Architecture (ISCA), June 2016, pp. 367–379.

[11] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “ShiDianNao: Shifting Vision Processing Closer to the
Sensor,” in Proceedings of the ACM/IEEE International Symposium on
Computer Architecture (ISCA), June 2015, pp. 92–104.

[12] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, “A Dynami-
cally Configurable Coprocessor for Convolutional Neural Networks,” in
Proceedings of the ACM/IEEE International Symposium on Computer
Architecture (ISCA), June 2010, pp. 247–257.

[13] L. Cavigelli, D. Gschwend, C. Mayer, S. Willi, B. Muheim, and L. Benini,
“Origami: A Convolutional Network Accelerator,” in Proceedings of the
ACM Great Lakes Symposium on VLSI (GLVLSI), May 2015, pp. 199–
204.

[14] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “Di-
anNao: A Small-Footprint High-Throughput Accelerator for Ubiquitous

Machine-Learning,” in Proceedings of the ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), February 2014, pp. 269–284.

[15] J. Albericio, P. Judd, T. Hetherington, T. Adamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network
Computing,” in Proceedings of the ACM/IEEE International Symposium
on Computer Architecture (ISCA), June 2016, pp. 1–13.

[16] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “SCNN: An
Accelerator for Compressed-Sparse Convolutional Neural Networks,” in
Proceedings of the ACM/IEEE International Symposium on Computer
Architecture (ISCA), June 2017, pp. 27–40.

[17] Y. Li, A. Louri, and A. Karanth, “SPACX: Silicon Photonics-based
Scalable Chiplet Accelerator for DNN Inference,” in Proceedings of
the IEEE International Symposium on High-Performance Computer
Architecture (HPCA), April 2022, pp. 831–845.

[18] Y. Li, K. Wang, H. Zheng, A. Louri, and A. Karanth, “ASCEND: A
Scalable and Energy-Efficient Deep Neural Network Accelerator with
Photonic Interconnects,” IEEE Transactions on Circuits and Systems I
(TCAS-I), vol. 69, no. 7, pp. 2730–2741, July 2022.

[19] Y. Li, A. Louri, and A. Karanth, “Scaling Deep-Learning Inference with
Chiplet-based Architecture and Photonic Interconnects,” in Proceedings
of the ACM/IEEE Design Automation Conference (DAC), December
2021, pp. 931–936.

[20] D. A. B. Miller, “Device Requirements for Optical Interconnects to
Silicon Chips,” Proceedings of the IEEE, vol. 97, no. 7, pp. 1166–1185,
June 2009.

[21] R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE
Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp.
1678–1687, November 2006.

[22] K. Bergman, L. P. Carloni, A. Biberman, J. Chan, and G. Hendry,
Photonic Network-on-Chip Design. Springer, 2014.

[23] Y. Demir, Y. Pan, S. Song, N. Hardavellas, J. Kim, and G. Memik,
“Galaxy: A High-Performance Energy-Efficient Multi-Chip Architecture
Using Photonic Interconnects,” in Proceedings of the ACM International
Conference on Supercomputing (ICS), June 2014, pp. 303–312.

[24] N. Kirman, M. Kirman, R. K. Dokania, J. F. Martinez, A. B. Apsel, M. A.
Watkins, and D. H. Albonesi, “Leveraging Optical Technology in Future
Bus-based Chip Multiprocessors,” in Proceedings of the IEEE/ACM
International Symposium on Microarchitecture (MICRO), December 2006,
pp. 492–503.

[25] P. Grani, R. Proietti, V. Akella, and S. J. B. Yoo, “Design and Evaluation
of AWGR-based Photonic NoC Architectures for 2.5D Integrated
High Performance Computing Systems,” in Proceedings of the IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), February 2017, pp. 289–300.

[26] D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. P. Jouppi,
M. Fiorentino, A. Davis, N. Binkert, R. G. Beausoleil, and J. H. Ahn,
“Corona: System Implications of Emerging Nanophotonic Technology,”
in Proceedings of the ACM/IEEE International Symposium on Computer
Architecture (ISCA), June 2008, pp. 153–164.

[27] A. K. Ziabar, J. L. Abellan, R. Ubal, C. Chen, A. Joshi, and D. Kaeli,
“Leveraging Silicon-Photonic NoC for Designing Scalable GPUs,” in
Proceedings of the ACM International Conference on Supercomputing
(ICS), June 2015, pp. 273–282.

[28] Y. Pan, P. Kumar, J. Kim, G. Memik, Y. Zhang, and A. Choudhary,
“Firefly: Illuminating Future Network-on-Chip with Nanophotonics,” in
Proceedings of the ACM/IEEE International Symposium on Computer
Architecture (ISCA), June 2009, pp. 429–440.

[29] Y. Thonnart, S. Bernabe, J. Charbonnier, C. Bernard, D. Coriat, C. Fuguet,
P. Tissier, B. Charbonnier, S. Malhouitre, D. Saint-Patrice, M. Assous,
A. Narayan, A. Coskun, D. Dutoit, and P. Vivet, “POPSTAR: A Robust
Modular Optical NoC Architecture for Chiplet-based 3D Integrated
Systems,” in Porceedings of the Design, Automation & Test in Europe
Conference & Exhibition (DATE), March 2020, pp. 1456–1461.

[30] Y. Li, A. Louri, and A. Karanth, “SPRINT: A High-Performance,
Energy-Efficient, and Scalable Chiplet-based Accelerator with Photonic
Interconnects for CNN Inference,” IEEE Transactions on Parallel and
Distributed Systems (TPDS), vol. 33, no. 10, pp. 2332–2345, October
2022.

[31] J. Redmon and A. Farhadi, “Yolov3: An Incremental Improvement,”
arXiv Preprint, 2018.

[32] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” arXiv preprint, 2014.

248

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 21:20:33 UTC from IEEE Xplore. Restrictions apply.

[33] G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, “Densely
Connected Convolutional Networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

[35] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going Deeper with Convolutions,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

[36] M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks,” in Proceedings of the International
Conference on Machine Learning (ICML), 2019.

[37] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J.
Wu, B. Anderson, M. Breughe, M. Charlebois, W. Chou, R. Chukka,
C. Coleman, S. Davis, P. Deng, G. Diamos, J. Duke, D. Fick, J. S.
Gardner, I. Hubara, S. Idgunji, T. B. Jablin, J. Jiao, T. S. John, P. Kanwar,
D. Lee, J. Liao, A. Lokhmotov, F. Massa, P. Meng, P. Micikevicius,
C. Osborne, G. Pekhimenko, A. T. R. Rajan, D. Sequeira, A. Sirasao,
F. Sun, H. Tang, M. Thomson, F. Wei, E. Wu, L. Xu, K. Yamada,
B. Yu, G. Yuan, A. Zhong, P. Zhang, and Y. Zhou, “MLPerf Inference
Benchmark,” in Proceedings of the ACM/IEEE International Symposium
on Computer Architecture (ISCA), May 2020, pp. 446–459.

[38] R. Marchetti, C. Lacava, L. Carroll, K. Gradkowski, and P. Minzioni,
“Coupling Strategies for Silicon Photonics Integrated Chips,” Photonics
Research, vol. 7, no. 2, pp. 201–239, January 2019.

[39] W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja,
T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon
Microring Resonators,” Laser & Photonics Reviews, vol. 6, no. 1, pp.
47–73, January 2012.

[40] P. Fotouhi, S. Werner, J. Lowe-Power, and S. J. B. Yoo, “Enabling
Scalable Chiplet-based Uniform Memory Architectures with Silicon
Photonics,” in Proceedings of the International Symposium on Memory
Systems (MEMSYS), September 2019, pp. 222–234.

[41] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “TETRIS:
Scalable and Efficient Neural Network Acceleration with 3D Memory,”
in Proceedings of the ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2017.

[42] X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell, K. Cao, H. Ha,
P. Raina, C. Kozyrakis, and M. Horowitz, “Interstellar: Using Halide’s
Scheduling Language to Analyze DNN Accelerators,” in Proceedings
of the ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2020.

[43] R. Morris, A. Karanth, and A. Louri, “Dynamic Reconfiguration of 3D
Photonic Networks-on-Chip for Maximizing Performance and Improv-
ing Fault Tolerance,” in Proceedings of the IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2012.

[44] C. Sun, C.-H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-
S. Peh, and V. Stojanovic, “DSENT - A Tool Connecting Emerging
Photonics with Electronics for Opto-Electronic Networks-on-Chip Mod-
eling,” in Proceedings of the IEEE/ACM International Symposium on
Networks-on-Chip (NOCS), May 2012, pp. 201–210.

[45] S. Pasricha and S. Bahirat, “OPAL: A Multi-Layer Hybrid Photonic
NoC for 3D ICs,” in Proceedings of the Asia and South Pacific Design
Automation Conference (ASP-DAC), 2011.

[46] S. Werner, J. Navaridas, and M. Lujan, “Designing Low-Power, Low-
Latency Networks-on-Chip by Optimally Combining Electrical and
Optical Links,” in Proceedings of the IEEE International Symposium on
High-Performance Computer Architecture (HPCA), February 2017, pp.
265–276.

[47] R. W. Morris and A. Karanth, “Power-Efficient and High-Performance
Multi-Level Hybrid Nanophotonic Interconnect for Multicores,” in
Proceedings of the IEEE/ACM International Symposium on Networks-
on-Chip (NOCS), 2010.

[48] A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan,
J. S. Levy, M. Lipson, and K. Bergman, “Photonic Network-on-
Chip Architectures Using Multilayer Deposited Silicon Materials for
High-Performance Chip Multiprocessors,” ACM Journal on Emerging
Technologies in Computing Systems (JETC), 2011.

[49] H. T. Chen, J. Verbist, P. Verheyen, P. D. Heyn, G. Lepage, J. D.
Coster, P. Absil, X. Yin, J. Bauwelinck, J. V. Campenhout, and
G. Roelkens, “High Sensitivity 10Gb/s Si Photonic Receiver based on a

Low-Voltage Waveguide-Coupled Ge Avalanche Photodetector,” Optics
Express, vol. 23, no. 2, 2015.

[50] A. Joshi, C. Batten, Y.-J. Kwon, S. Beamer, I. Shamim, K. Asanovic,
and V. Stojanovic, “Silicon-Photonic Clos Networks for Global On-
Chip Communication,” in Proceedings of the IEEE/ACM International
Symposium on Networks-on-Chip (NOCS), May 2009, pp. 124–133.

[51] A. Samajdar, J. M. Joseph, Y. Zhu, P. Whatmough, M. Mattina, and
T. Krishna, “A Systematic Methodology for Characterizing Scalability
of DNN Accelerators using SCALE-Sim,” in 2020 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS).
IEEE, 2020, pp. 58–68.

[52] E. Peter, A. Thomas, A. Dhawan, and S. R. Sarangi, “Active Microring
Based Tunable Optical Power Splitters,” Optics Communications, vol.
359, pp. 311–315, January 2016.

[53] K. Padmaraju, N. Ophir, A. Biberman, L. Chen, E. Swan, J. Chan,
M. Lipson, and K. Bergman, “Intermodulation crosstalk from silicon
microring modulators in wavelength-parallel photonic networks-on-chip,”
in Annual Meeting of the IEEE Photonics Society, 2010.

[54] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0:
A Tool to Model Large Caches,” HP Laboratories, pp. 1–24, April 2009.

[55] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A Cycle
Accurate Memory System Simulator,” IEEE Computer Architecture
Letters (CAL), vol. 10, no. 1, pp. 16–19, January 2011.

[56] J. M. Wilson, W. J. Turner, J. W. Poulton, B. Zimmer, X. Chen, S. S.
Kudva, S. Song, S. G. Tell, N. Nedovic, W. Zhao, S. R. Sudhakaran,
C. T. Gray, and W. J. Dally, “A 1.17 pJ/b 25Gb/s/pin Ground-Referenced
Single-Ended Serial Link for Off- and On-Package Communication
in 16nm CMOS Using a Process- and Temperature-Adaptive Voltage
Regulator,” in Proceedings of the IEEE International Solid-State Circuits
Conference (ISSCC), February 2018, pp. 276–278.

[57] C. DeCusatis, Handbook of Fiber Optic Data Communication: A Practical
Guide to Optical Networking. Academic Press, 2013.

[58] A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau,
P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer Systems
Based on Silicon Photonic Interconnects,” Proceedings of the IEEE,
vol. 97, no. 7, pp. 1337–1361, July 2009.

[59] S. Eyerman and L. Eeckhout, “System-Level Performance Metrics for
Multiprogram Workloads,” IEEE Micro, 2008.

249

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 21:20:33 UTC from IEEE Xplore. Restrictions apply.

