2023 32nd International Conference on Parallel Architectures and Compilation Techniques (PACT) | 979-8-3503-4254-3/23/$31.00 ©2023 IEEE | DOI: 10.1109/PACT58117.2023.00028

2023 32nd International Conference on Parallel Architectures and Compilation Techniques (PACT)

A Silicon Photonic Multi-DNN Accelerator

Yuan Li*, Ahmed Louri*, Avinash Karanth!
*Department of Electrical and Computer Engineering, George Washington University, Washington, DC, USA
tSchool of Electrical Engineering and Computer Science, Ohio University, Athens, Ohio, USA
Emails: *{liyuan5859, louri} @gwu.edu, ‘karanth@ohio.edu

Abstract—In shared environments like cloud-based datacenters,
hardware accelerators are deployed to meet the scale-out compu-
tation demands of deep neural network (DNN) inference tasks.
As conventional hardware accelerators optimized for single-DNN
execution cannot effectively resolve the dynamic interaction of
these inference-as-a-service (INFaaS) tasks, several multi-DNN
hardware accelerators have been developed to improve the overall
system performance while adhering to the constraints of individual
tasks. Some of such multi-DNN hardware accelerators temporally
schedule tasks by incorporating the preemption or load-balancing-
based algorithm but suffer from resource underutilization because
of unmanaged mismatch between resource demand and provision.
Other multi-DNN hardware accelerators enable spatial colocation
of tasks to improve resource utilization and system flexibility, but
the irregular communication patterns between the fragmented
resource partitions cannot be adequately supported by the
metallic-based interconnects due to their rigidity and other
inherent scaling limitations. We introduce a photonic multi-DNN
accelerator named ASPIRE in this paper. The fundamental novelty
of ASPIRE lies in the ability to adaptively create sub-accelerators
for different tasks by assembling fine-grained resource partitions
in the same architecture. Seamless communications between those
fragmented resource partitions from a sub-accelerator are realized
by exploiting photonic interconnects. Specifically, ASPIRE includes
three novel designs: (1) a photonic network that can be adaptively
partitioned into several sub-networks, each seamlessly connecting
the fragmented resource partitions to construct sub-accelerators;
(2) a dataflow that simultaneously leverages temporal and spatial
data reuse opportunities within each resource partition and across
several resource partitions, respectively; (3) an algorithm that
allocates resource partitions at task granularity and derives
optimal tile size and execution order at DNN layer granularity.
Simulation studies show that ASPIRE outperforms other state-of-
the-art multi-DNN accelerators, delivering 64% execution time
reduction, 69% energy saving, 51% improvement in service-level
agreement satisfaction rate, and 7.9 x improvement in fairness.

Index Terms—Deep neural network, Accelerator, Silicon pho-
tonics

I. INTRODUCTION

Large-scale accelerators are increasingly being deployed
in shared multi-DNN environments (such as in cloud data
centers [1]-[4]) in order to meet the demands of large-scale
compute-intensive deep neural network (DNN) workloads.
Typically, these inference-as-a-service (INFaaS) requests from
different DNN applications are satisfied by partitioning the large
accelerator into multiple smaller accelerators by distributing the
workloads and allocating resources to each inference request
[5]-[8]. As INFaaS demands increase with stringent quality
of service (QoS) guarantees for DNN applications, DNN
accelerators will be required to allocate resources incrementally
while allowing seamless communication for data movement.

Most prior single-task execution-based DNN accelerators [1],
[9]-[19] cannot be directly utilized for multi-DNN workload
since the underlying hardware was not designed for guarantee-
ing fairness or other service-level agreements (SLA). Further,
naively applying single-task DNN accelerators to multi-DNN
workloads can also lead to underutilized hardware resources
which can impact throughput and increase latency.

Several temporal multi-DNN accelerators [5], [6] have been
proposed in the literature to address the QoS and fairness
problems by incorporating preemption [5] and load-balancing
[6] into task scheduling. This allows resources such as PE
arrays to be allocated while load-balancing the workload
with QoS guarantees. Due to temporal variations in INFaaS
requests, there is a mismatch between computation demand and
resources allocated which leads to underutilized resources. For
example, systolic-array-based temporal multi-DNN accelerators
such as PREMA [5] and AI-MT [6] allocate all processing
elements (PEs) to a single task at any time regardless of
computation demand which can lead to underutilized PE arrays.
On the other hand, recent spatial multi-DNN accelerators such
as [7], [8] address the resource underutilization problem by
partitioning and allocating only the right amount of hardware
resources to each ongoing task, but are often curtailed by the
amount of communication between partitioned regions due
to the high-latency and power consumption of metallic-based
interconnects. For example, systolic-array-based spatial multi-
DNN accelerators such as Dataflow Mirroring [8] and Planaria
[7] partition the systolic array into several partitions and
allocate one or several partitions to each ongoing task. Dataflow
Mirroring prohibits communications between partitions and,
as a result, lacks flexibility and does not fully exploit spatial
parallelism. By contrast, Planaria adopts metallic-based ring-
buses for communications between partitions. Although the
proposed design is flexible, the communication latency can be
significantly affected by the physical location of the partitions.

While temporal and spatial multi-DNN accelerators im-
prove the design, traditional metallic interconnects impose
fundamental limits on scale-out performance due to high
performance/Watt, complex data movement between distant
partitions, and rigidity in allocating compute resources. Tra-
ditional metallic interconnects will be required to carry the
additional burden of connecting together distant islands of
accelerators (PE arrays) for INFaaS requests which can result
in higher power consumption than single-task accelerators due
to excessive data movement. The data movement problem will
exacerbate in the future scale-out accelerators that need to

979-8-3503-4254-3/23/$31.00 ©2023 IEEE 238
DOI 10.1109/PACT58117.2023.00028
Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 21:20:33 UTC from IEEE Xplore. Restrictions apply.

accommodate several INFaaS requests simultaneously.

Silicon photonics is a disruptive technology that has the
potential to alleviate the communication issues that limit the
performance of traditional electronic interconnects [17], [20]—
[30]. Photonic interconnects have several desirable properties
such as the (1) ability to design flexible topologies by
implementing broadcast, multicast, and unicast, (2) reducing
energy consumption by consuming power only at the endpoints
of the communication channels, and (3) providing very high
bandwidth-density for tighter integration of photonic compo-
nents. Silicon photonics offers distance-independent latency for
connecting distant PE arrays, thereby providing opportunities
to seamlessly interconnect PE arrays without any rigidity.

In this paper, we propose a multi-DNN accelerator named
ASPIRE which exploits both temporal and spatial techniques
along with the high flexibility and distance-independent latency
properties of silicon photonics. In ASPIRE, we exploit the
distance-independent latency feature of silicon photonics to
construct sub-accelerators by providing the required compu-
tational resources to each of the concurrent inference tasks
for the simultaneous transmission of inputs and kernels, even
when the arbitrarily partitioned sub-arrays could be physically
distant from each other. By interconnecting the sub-array
of PEs with photonic waveguides and multiple wavelengths,
we can seamlessly interconnect distant PEs, thereby building
islands of PEs for different inference tasks. ASPIRE leverages
the complete broadcast and multicast capabilities of silicon
photonics to design flexible dataflow, thereby improving the
performance/Watt. Finally, we propose an algorithm that
generates balanced resource allocation decisions, taking both
computation demand and task priority into consideration. The
algorithm ensures that we can alleviate the resource underuti-
lization problem associated with multi-DNN accelerators. The
combined effects of a reconfigurable photonic interconnect that
provides broadcast and multicast capabilities along with a task
allocation algorithm that ensures fairness and provides QoS
guarantees makes ASPIRE a novel multi-DNN accelerator for
future DNN workloads. Simulation studies using a collection of
diverse DNN models [31]-[37] show that ASPIRE architecture
outperforms other state-of-the-art temporal and spatial multi-
DNN accelerators [5]-[8] by delivering 61% execution time
reduction, 69% energy saving, 51% improvement in service-
level agreement satisfaction rate, and 7.9 improvement in
fairness. The major contributions of this work are as follows:
Technology-Specific Dataflow: We develop a dataflow that
converts a sufficient fraction of data reuse opportunities into
data multicast opportunities through spatial parallelism to
leverage the energy-efficient multicast property of silicon
photonics while not undermining the rest of data reuse oppor-
tunities, which can still be leveraged through conventional
dataflow optimizations.

Reconfigurable Photonic Network: We design a photonic
network that can be adaptively divided into several sub-
networks, each seamlessly connecting some fragmented
PE partitions to construct a sub-accelerator for a task.
Silicon photonic interconnects facilitate flexible network

239

Transmitter (TX) Receiver (RX) Receiver (RX) Receiver (RX)
Serlallzer ‘Comparator ‘Comparatorl ‘Comparator
Dnver
TIA, ...
Thermal Thermal Thermal
Tuning Tunlng

H Off-Chip Laser

Fig. 1.

A single-write-multiple-read (SWMR) silicon photonic channel using
wavelength A0 with one transmitter and n receivers, each equipped with a
microring resonator (MRR).

reconfiguration and low-overhead communication between
distant partitions.

Allocation Algorithm: We propose an allocation algorithm
that produces a balanced allocation of PE partitions based
on computing demand and task priority, and allocation of
on-chip memory capacity based on DNN topology and data
reuse pattern, while conventional allocation algorithms focus
on dividing computing resource only.

II. BACKGROUND AND MOTIVATION
A. Photonic Interconnects

Figure 1 shows a photonic interconnect with one transmitter
and n receivers connected by a waveguide. The light including
wavelength A0 is generated by the off-chip laser source and
coupled to the waveguide through an optical coupler [38].
Within the transmitter, a microring resonator (MRR) [39]
labeled M RR 0 works as an optical modulator to modulate
on A0 with input data as modulation signals. Within the n
receivers, MRRs labeled M RR 1-n work as optical filters to
forward a fraction of light in A0 to the local photodetectors
[20] and the rest of light in A0 to downstream receivers. The
electrical signals generated by the local photodetectors are
amplified by the transimpedance amplifiers (TIAs) and sent
to comparators to retrieve the original data. Each MRR works
as either an optical modulator or optical filter and is tuned
by a resistive heater controlled by a thermal tuning unit to
mitigate thermal and process variations [20]. Please note that
the MRR in each receiver is tuned to have a specific split ratio
based on the number of downstream receivers. For example,
the MRR in the first receiver is tuned to have a split ratio of
1/(n-1) as there are n — 1 downstream receivers. The MRR in
the last receiver is tuned to have a split ratio of 1/0, which is
equivalent to the on-resonant state. Since all receivers as shown
in Figure 1 receive the same photonic signals which are then
retrieved to the same data, the photonic interconnect in Figure
1 acts as a single-write-multiple-read (SWMR) channel, which
is especially energy-efficient for multicast communication. An
SWMR channel achieves 0.1 p.J/bit /receiver communication
(using parameters listed in Section 6.1), which is 17x lower
than the metallic-based wires with the state-of-the-art ground-
referenced signaling (GRS) technique [9]. This work leverages
the energy-efficient multicast property of silicon photonics and

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 21:20:33 UTC from IEEE Xplore. Restrictions apply.

Erfrr h[0:W) f[0:F)
== ~. —
1] ~ K B E'xF
i P ane e
i /' T _E’-I i K
b c[0:C) TR ko:K) ~
P
Wlkrsc] I[h wc] O[kef] Parallel Output Feature

Weight Kernels Input Feature Maps Output Feature Maps Computation Array

Fig. 2. Computations in a convolutional layer (K E F'C' R S).

Algorithm 1: Computation of a Convolutional Layer

for(k=0;k<K;k+=1)
for(e=0;e< E;e+=1)
for (f=0,f<F;,f+=1)
for(¢c=0;¢c<C;c+=1)
for (r=0;r<Ryr+=1)
for(s=0;s<S;s+=1)

1
2
3
4
5
6
7 Olkefl4+=Ir+e—1s+f—1cxWkr s

investigates the optimization opportunities of promoting data
multicast opportunities through spatial parallelism.

B. DNN Communication

The computations involved in a typical convolutional layer in
DNN inference tasks shown in Figure 2 can be represented by
a nested loop over weight kernels, input feature maps (ifmaps),
and output feature maps (ofmaps) as shown in Algorithm 1.
The nested loop includes iterations on six dimensions: the
number of ofmaps (k), the height (e) and width (f) of ofmaps,
the number of ifmaps {(c), and the height (r) and width (s) of
weight kernels. Please note that the height (h) and width (w) of
ifmaps are not independent dimensions and can be represented
by the above dimensions. Figure 2 shows the computations of
an iteration in the (f) loop (Line 3 of Algorithm 1) to generate
a specific output O[k e f]. Since DNN hardware accelerators
often leverage parallelism among a large amount of PEs, we

can generate /X " x (E/ X F/) outputs in parallel using a PE

array with height and width equal K "and E' x F', respectively

(processing all or part of Line 1-3 of Algorithm 1 in parallel).

This PE array is considered the sub-accelerator for a given
inference task and can be constructed by combining several
PE partitions in the system.

Data communication when processing a convolutional layer
includes transmitting weight kernels and ifmaps to PEs and
collecting the generated ofmaps or partial sums (psums)
from PEs. Unlike generic applications, data communication
for DNN inference tasks is regular and can be derived
from parameters in the nested loop and underlying hardware
accelerator. From Figure 2, we can observe four types of
data reuse opportunities: (1) weight data reuse opportunities
due to convolutional operations in (e f) dimensions; (2) input
data reuse opportunities due to convolutional operations in
(e f r s) dimensions; (3) input data reuse opportunities due to
multiple weight filter channels in (k) dimension; (4) psum reuse

240

e Gipkh (il
e %%@E ot [
S5 o [

Task 2 Task 3

()

Fig. 3. (a) Systolic array based accelerator with metallic-based interconnects
between adjacent PEs [1]. (b) Spatial multi-DNN accelerator with 4 partitions.
(c) Spatial multi-DNN accelerator with 4 sub-accelerators constructed by
smaller partitions and ring bus network.

opportunities due to local accumulation in (¢ r s) dimensions.
Please note that data reuse opportunities in categories (1)
and (2) cannot be simultaneously exploited due to the pair-
wise multiplication nature of convolutional operations. Spatial
parallelism can convert data reuse opportunities into data
multicast opportunities. For example, spatial parallelism in the
(k) dimension completely converts data reuse opportunities in
category (3) into data multicast opportunities while data reuse
opportunities in categories (1), (3), and (4) are not undermined.
By contrast, spatial parallelism in the (¢) dimension does
not generate any data multicast opportunities while partially
undermining data reuse opportunities in category (4). The
target of this work is to convert a sufficient amount of data
reuse opportunities into data multicast opportunities to leverage
the energy-efficient multicast property of silicon photonics
while not undermining the rest of the data reuse opportunities,
which can still be leveraged through conventional dataflow
optimizations.

C. Inter-Partition Communication Bottleneck

Spatial multi-DNN accelerators require partitioning the
uniform PE array into smaller partitions so that a single partition
or a collection of partitions can be allocated to a particular
inference task [7], [8]. The inter-partition communication is
often considered the system bottleneck. Consider, for example,
the systolic-array-based accelerator [1], which is the baseline
architecture, of many prior multi-DNN accelerators [5]—[8]
as shown in Figure 3 (a). PEs are organized in a planar
array and augmented with distributed buffers for weights
and inputs. Metallic-based interconnects are implemented
between adjacent PEs to facilitate inter-PE data reuse. When
partitioning the uniform PE array into smaller partitions for
concurrent inference tasks, the metallic-based interconnects
on partition boundaries are removed. In this case, the inter-
partition communication fabric determines how partitions can
be combined and allocated to concurrent inference tasks.

As shown in Figure 3(b), Dataflow Mirroring [8] partitions
the uniform 6x6 PE array into four partitions of different
sizes and allocates each partition to a given inference task.
The intra-partition communication is supported by the metallic-
based interconnects in the original systolic array while the
inter-partition communication is not supported. Since Dataflow
Mirroring enforces the constraint that each inference task must
be allocated with a physical PE array, it can only accommodate

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 21:20:33 UTC from IEEE Xplore. Restrictions apply.

up to four concurrent inference tasks, which does not fully ex-
ploit the spatial task parallelism on the accelerator. By contrast,
as shown in Figure 3(c), Planaria [7] partitions the uniform
6x6 PE array into identical 2x2 partitions and allocates a
partition or a collection of partitions to a given inference task.
Several fragmented partitions may act as a sub-accelerator and
communicate through ring buses [7]. For inference Task 1
shown in Figure 3(c), the communication between the partitions
takes one to four hops. The number of communication hops
can be even higher when partition size decreases, system scales,
or when communicating partitions are distant from each other,
which negatively affects the performance and energy efficiency
of the multi-DNN accelerator.

In addition to the common advantages over metallic-based
interconnects such as high communication bandwidth density
and high energy efficiency [20]-[22], [26], the distance-
independent latency feature [20] of silicon photonics can
potentially tackle the inter-partition communication challenge
and enable the construction of the sub-accelerator for a
particular inference task by combining fragmented partitions via
seamless inter-partition communication support. For example,
by adopting photonic interconnects instead of the metallic-
based ring buses shown in Figure 3(c), one-hop communication
can be achieved between any partitions allocated to inference
Task 1. We implement only photonic interconnects in the
ASPIRE architecture so that one-hop communication is achieved
between fragmented partitions and a global buffer (GLB) [40].

III. ASPIRE DATAFLOW

Section 2.2 suggests that data reuse opportunities can be
turned into data multicast opportunities when performing oper-
ations in certain dimensions in parallel. Here we examine the
impact of parallelism in different dimensions. Parallelism in the
(k) dimension completely turns input data reuse opportunities
due to multiple weight filters into multicast opportunities while
maintaining all other data reuse opportunities. Parallelism in
the (e f) dimensions turns either weight or input data reuse
opportunities due to convolutional operations into multicast op-
portunities while maintaining all other data reuse opportunities.
Parallelism in the (¢) dimension does not create any multicast
opportunities while partially undermining psum data reuse
opportunities. Parallelism in the (r s) dimensions turns input
data reuse opportunities due to convolutional operations into
multicast opportunities while partially undermining psum data
reuse opportunities. Since the optimization target of the ASPIRE
dataflow is to promote data multicast opportunities while
maintaining data reuse opportunities, we decide to perform
operations in (ke f) dimensions in parallel. Algorithm 2 is
one possible configuration of the proposed ASPIRE dataflow
with parallelism in (ke f) dimensions and an emphasis on
psum data reuse. Py, P., and P, represent the number of
PEs working in parallel in the (k), (e), and (f) dimensions,
respectively.

Please note that the proposed ASPIRE dataflow has a variety
of configurations. We can generate a configuration with an
emphasis on weight data reuse by moving the loops in (cr s)

241

Algorithm 2: ASPIRE Dataflow

1 for (py = 0; pr, < K; ppt+ = Pi)
2 for (p = 0; pe < B pet = Pe)
3 for (py =05 py < I pspt = P)
parallel_for (k = pi; k < min (K, pr + Pr); k++)
parallel_for (¢ = p.; e < min (E, p. + P.); e+ +)
parallel_for (f = py; f <min(F, ps+ Pf); [++)
for (c=0; c<C; c++)
for (r=0;r < R;7++)
for (s=0;s<S; s++)
Olkefl+=1Ir+e—1s+f—1cxWlkrsc

4
5
6
7
8
9

10

dimensions before the loop in the (e) dimension, in other words,
moving Line 7-9 before Line 2 in Algorithm 2. We can also
generate a configuration with an emphasis on input data reuse
by moving the loops in {cr s) dimensions after the loop in
the (f) dimension and moving the loop in the (k) dimension
after the loop in the (¢) dimension, in other words, moving
Line 7-9 after Line 3 and moving Line 1 before Line 4 in
Algorithm 2. The other ASPIRE dataflow configurations can
be derived by changing the order of the six loops (Line 1-3
and Line 7-9 in Algorithm 2).

We can also derive the overall data footprint D of each
invocation of operations shown in Algorithm 2, which is the
summation weight data footprint C' X R x S x Py, input data
footprint C' x (R+ P, — 1) x (S + Py — 1), and psum data
footprint P, x Py x Pj,. The value D will be utilized to allocate
the shared GLB on-chip memory resource.

IV. ASPIRE ARCHITECTURE
A. Architecture Overview

Figure 4 describes the ASPIRE architecture with M x M =
16 PEs in the whole system and N x N = 4 PEs in each
partition. ASPIRE includes a uniform GLB [40] with capacity
G as an intermediate memory hierarchy between off-chip
memory and PEs. The auxiliary function unit is responsible
for operations such as pooling, activation, and normalization.
Since these operations are often fast to process [41], [42],
we focus on accelerating convolutional and general matrix
multiply (GEMM) operations here. The GLB is equipped with
M?/N? transmitter sets, each including 2 x N transmitters,
for GLB-to-PE communication. The GLB is also equipped
with M?2 /N 2 receiver sets, each including N receivers, for
PE-to-GLB communication. Each PE is equipped with one
transmitter and two receivers for transmitting and receiving
data, respectively. The multi-DNN controller (MTC) performs
allocation of PE partitions and GLB and correspondingly
tunes the MRRs at runtime, based on the per-task progress
information and system status.

B. Waveguide & Wavelength Allocation

There are 2x M2 /N? waveguides in the ASPIRE architecture.
The first set of M?/N? waveguides (Waveguide 0-3 in
Figure 4) is used for GLB-to-PE communication or forwarding
unmodulated light to corresponding PE partitions for PE-to-
GLB communication. The second set of M?/N? waveguides

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 21:20:33 UTC from IEEE Xplore. Restrictions apply.

Partition
PE Row Column

E Transmitters (1)
9 o 00 Waveguide 0
= § ‘ o 00 Waveguide 1
=R
; 5 ‘ o 00 | Waveguide 2
<
© 2 ‘ o 00 | Waveguide 3,
)
| Partition 0
1 PE go
Global Buffer e e’
LOD® OO
- (GLB) S =
z p 0
é Auxiliary Func. PE?{ 4|
a L]
'_E' OO Ao Waveguide 4
Q
g -
£ (0] Waveguide 5 MRR with Tunabilit
(o] Waveguide 6
MRR Modulator
(0] Waveguide 7
Receivers ASPIRE Architecture

Fig. 4. ASPIRE architecture overview with 4 partitions and 4 PEs per partition. Waveguide 0-3 and 4-7 are implemented for GLB-to-PE and PE-to-GLB
communications, respectively. Wavelengths A0 - A3 are utilized for GLB-to-PE communication while wavelengths A0 - Al are reused for PE-to-GLB

communication.

(Waveguide 4-7 in Figure 4) is solely used for PE-to-GLB
communication. Please note that each PE partition can receive
data from the GLB via any waveguide in the first set while
only sending data to the GLB via a specific waveguide in the
second set. For example, Partition 0 can receive data from
the GLB via Waveguide 0-3 while only sending data to the
GLB via Waveguide 4.

There are 2 x N wavelengths utilized in the ASPIRE
architecture. The first set of N wavelengths (A0 - Al in Figure
4) is used for row-wise GLB-to-PE multicast communication
within each PE partition or across several partitions, as well
as PE-to-GLB unicast communication. The second set of N
wavelengths (A2 - A3 in Figure 4) is solely used for column-
wise GLB-to-PE multicast communication within each PE
partition or across several partitions. Within each PE partition,
one receiver attached to each PE in a row resonates on a
wavelength from the first set (e.g., A0 for PE{), and PEY,)
while the other receiver attached to each PE in a column
resonates on another wavelength from the second set (e.g., A2
for PEJ, and PEY)). We can derive that the GLB bandwidth
scales with M?/N. When maintaining the number of PEs in a
partition N? fixed, the GLB bandwidth increases linearly with
the number of PEs in the whole system M?2.

C. Photonic Network

The ASPIRE photonic network can be dynamically config-
ured to support seamless communication between fragmented
PE partitions allocated to each inference task. We described
how the proposed photonic network is configured in Table I to
support the three working cases shown in Figure 5. In Table I,
”v” and "X” represent the corresponding MRRs are tuned to
on-resonant and off-resonant states, respectively. Split ratios
of 1/0 and 0/1 are equivalent to on-resonant and off-resonant
states, respectively.

CASE I: In the case shown in Figure 5 (a) where each
PE partition works independently as a sub-accelerator, a
PE partition receives data from the GLB via a designated

242

waveguide and transmits data to the GLB via another designated
waveguide. For example, as shown in Figure 4 @, Partition
0 receives data via Waveguide 0. As a result, the 4 MRRs
corresponding to Parittion 0 and Waveguide 0 and working
on wavelengths A0 - A3 are tuned to the on-resonant state to
forward the data. The MRRs corresponding to Partition 0
and other waveguides are tuned to the off-resonant state as
these waveguides carry data for other partitions. The MRRs
corresponding to other partitions and Waveguide 0 are also
tuned to the off-resonant state as these partitions receive data
from Partition 0. Within Partition 0, data is multicast
to different rows using different wavelengths. For example,
PEJ, and PEY, receive the same data using wavelength
A0. Hence, the MRRs working on A0 and corresponding to
PEY, and PE{; are tuned to split ratios of 1/1 and 1/0,
respectively. Similarly, PEY, and PEY, receive the same data
using wavelength A1. Hence, the MRRs working on A1 and
corresponding to PEY, and PEY, are tuned to split ratios of
1/1 and 1/0, respectively. Data is also multicast to different
columns using different wavelengths. For example, PEJ, and
PEY, receive the same data using wavelength \2. Hence, the
MRRs working on A2 and corresponding to PE{, and PEY,
are tuned to split ratios of 1/1 and 1/0, respectively.

As shown in Figure 4 @, Partition O transmits data via
Waveguide 4. As a result, the 4 MRRs corresponding to
Partition 0 and Waveguide 0 and working on wavelengths
A0 - A3 are tuned to the on-resonant state to forward the
unmodulated light to Partition O for data transmission. The
MRRs corresponding to other partitions or waveguides are
tuned to the off-resonant state. Within Partition 0, PE,
and PEY, transmit data via Waveguide 4 using wavelengths
A0 and Al, respectively. PEY;, and PEY, transmit data via
Waveguide 4 using wavelengths A0 and A1, respectively, in a
different time slot. The PE-to-GLB unicast communication is
done sequentially in each row of PEs within a partition. Hence,
a one-bit token is propagated circularly between columns to
determine which column has access to the PE-to-GLB unicast

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 21:20:33 UTC from IEEE Xplore. Restrictions apply.

Task 0 Task 1

Partition 0 Partition 1 Task 1 Task 2
ool oo Task 0 Partition 1/3 Tagk o Task 1 Partition 2/3
o0 0og artition oo Partition 0 Partition 1| [J [J

oood a0 oo oo a0

Parkidon2 Partinens |2 0/00] (00O oo D4 [og
oo oo oo]
oo oo

(@) (b) ()

Fig. 5. ASPIRE working cases: (a) Partition 0-3 are allocated for T'ask
0-3; (b) Partition 0 & 2 and Partition 1 & 3 are allocated for T'ask 0
and Task 1, respectively; (c) Partition 0, Partition 1, and Partition 2
& 3 are allocated for T'ask 0, T'ask 1, and T'ask 2, respectively.

communication channel. We do not show the token propagation
network in Figure 4 for simplicity.

Please note that, in this case, all partitions can work

independently without any interference because communication
between each partition and the GLB is done by separate waveg-
uides. It is also unnecessary to synchronize the operations on
different partitions. For example, it is possible that Partition
0 is loading data from the GLB through Waveguide O while
Partition 1 is sending data to the GLB using Waveguide 1
and 5.
CASE II/IIIL: In the case shown in Figure 5 (b) and (c)
where several PE partitions work jointly as a sub-accelerator,
these partitions are likely to receive data from the GLB via
a designated waveguide and transmit data to the GLB via
separate waveguides. For example, as shown in Figure 5 (b),
Partition 0 and Partition 2 are horizontally combined as
a sub-accelerator. They receive row-wise multicast data from
Waveguide O but receive column-wise multicast data from
Waveguide 0 and Waveguide 2, respectively. To receive
row-wise multicast data from Waveguide 0, the 2 MRRs
corresponding to Partition 0 and Waveguide 0 and working
on wavelengths A0 - A1 are tuned to the split ratio of 1/1 to
forward half of the light power to Partition 0. Meanwhile, the
2 MRRs corresponding to Partition 2 and Waveguide 0 and
working on wavelengths A0 - Al are tuned to the on-resonant
state to forward the rest of light power to Partition 2, as
shown in Figure 4 @. The states of other MRRs outside each
partition can be similarly derived. We summarize the state of
each MRR in all three working cases in Table L.

V. ASPIRE ALLOCATION ALGORITHM

Allocation of the PE partitions and GLB capacity is invoked
in either the presence of a new inference task or the completion
of an existing inference task. The MTC shown in Figure 4 keeps
track of the concurrent inference tasks. An entry is created
upon arrival of a new inference task using CREATEENTRY ()
(Line 17-20 in Algorithm 3). The arrival time is recorded as
well as the overall number of MAC operations and the isolate
execution time, which can be obtained offline. An entry is
deleted upon completion of an existing inference task using
DELETEENTRY () (Line 8-15 in Algorithm 3). The MTC
constantly monitors and updates the progress of the concurrent
inference tasks using UPDATEENTRY () (Line 6 in Algorithm
3). An allocation is invoked after request signal is set while

243

TABLE 1
MRR WORKING STATE IN ASPIRE ARCHITECTURE

Partition 3
AO/AL A2/)A3

Partition 2
A2/A3

Partition 1
A2/A3 \0/AL

Partition 0

AO/AL A2/A3 A0/AL
Case shown in Figure 5 (a)
v
X
X
X
Case shown in Figure 5 (b)
1/1
X
4
X

Case shown in Figure 5 (c)

Waveguide 0
Waveguide 1
Waveguide 2
Waveguide 3

X X X R
x x < %
X X S %
XU X%
x XX
U X X X
UX XX

Waveguide 0
Waveguide 1
Waveguide 2
Waveguide 3

X X X R
x x <%
xxgx
x X X
x X%
UX X X
xX X | %X

Waveguide
Waveguide
Waveguide
Waveguide

X X X
xX X X R
x x | %
x X | X%
XU X%
x5 % x
UX X X
x X X

0
1
2
3

the implementation of the previous allocation is complete
(allocation signal is cleared). The necessary operations
(e.g., MRR tuning) to implement the current allocation are
pushed in the Ctrl queue to be performed asynchronously.
Inference tasks losing one or several partitions in the allocation
can release the partition(s) at the end of the current invocation
and continue the next updated one without interruptions. By
contrast, inference tasks gaining one or more partitions in the
allocation have to wait until all added partition(s) are released.
In this way, we minimize the timing overhead of updating the
allocation of the PE partitions and GLB capacity.

ALLOCATIONALGORITHM () is the key function of the
proposed allocation algorithm. It includes the allocation of
PE partitions S;, allocation of parallelism in three dimensions
(P{ P} P}), and allocation of GLB capacity G; for Task i.
The MTC keeps track of the following parameters and feeds
them to the allocation algorithm:

T} 1ate: The execution time of Task i when it is processed on
ASPIRE alone without interruptions. This value can be obtained
offline.
T} o nain: An implication of computing resource demand which
is defined by Equation (1).

T eqaiine: The difference between the expected comple-
tion time and current time. It is within the range of

(_007 SLA % Tiisolate} :

i _ No.of remained M AC's
remain T N of total MAC's

Eisolate (])

The allocation of PE partitions S; is derived from Equation
(2) which holistically considers the computing resource demand
represented by 77, .. and task priority represented by
e Tacaatine, Compared to the linear expression of task priority
in prior work [7], [8], the proposed exponential expression can
assign proper priorities to tasks that have passed their deadlines
(T%watine < 0) and significantly favor tasks with tight
deadlines, facilitating equal progress of tasks and adherence to
SLA.

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 21:20:33 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3: ASPIRE Allocation Algorithm

1 function ALLOCATIONSCHEME (count, LIST, TASK)
2 request = false
3 allocation = false
4 for cycle < [0 : c0) do
5 /I update information of existing DNN inference tasks
6 UPDATEENTRY (count, LIST)
7 /I check completion of any existing DNN inference task
8 if count # -1 then
9 for i < [0 : count] do
10 if L1ST[i] . remain = O then
11 DELETEENTRY (i, count, LIST)
12 request = true
13 end if
14 end for
15 end if
16 /I looking for newly arrived tasks
17 while TASK # NULL do
18 CREATEENTRY (Deq(TASK), count, LIST)
19 request = true
20 end while
21 /I initiate allocation algorithm
22 if request = true then
23 if allocation = false then
24 Enq(CTRL, ALLOCATIONALGORITHM (count, LIST))
25 allocation = true
26 request = false
27 end if
28 end if
29 /I test completion of allocation
30 if CTRL = NULL then
31 allocation = false
32 end if
33 cycle ++
34 end for

35 end function

x e~ Ticadtine
Ti

deadline

Ti

ZTﬁemain xe-

The parallelism in three dimensions (P} P! P}) is deter-
mined through heuristic search with the target of minimizing
GLB accesses and the constraint of [Py /N|x [P, x Py/N| <
S;. The allocation of GLB capacity G; is derived from equation
G; = D; x G/ > D;, where D; is defined in Section 3 and
G is the overall GLB capacity. In the case of G; < D;, tiling
along (c) dimension is performed.

M2

(@)

VI. EVALUATION METHODOLOGY

We extend the open-source SCALE-Sim simulator [51] to
support temporal and spatial multiplexing of heterogeneous
DNN inference tasks. The execution time includes time for
both computation and communication. The extended simulator
can track the number of MAC operations and the number of
accesses to each memory hierarchy (local register, GLB, and
off-chip memory), from which the time for both computation
and communication is derived. The derivation process has
taken the interference between multiple existing DNN inference
tasks into consideration and enforced the bandwidth limitation
of each metallic-based or photonic interconnects. The delay
for tuning MRRs is set to 500 ps [52], indicating that DNN

244

TABLE I
ASPIRE SIMULATION PARAMETERS

Parameter Value
PE Array Dimension 128128
PE Partition Dimension 8x8 8x16 16x16 16x32 32x32
PE Operating Frequency 700 MHz
Global Buffer (GLB) 12 MB
Data Width 8-bit Weight & Input Feature 16-bit Psum
GLB Read Bandwidth 1280 GB/s
GLB Write Bandwidth 640 GB/s
GLB Access Latency 1 cycle

DDR3 (34 GB/s)

Off-chip Memory Model HBM (128/256/358/512 GB/s)

TABLE III
SIMULATION PHOTONIC PARAMETERS

Component Value Component Value
Laser Source 5 dB [43] Ring Drop 0.7 dB [44]
Coupler 1 dB [43] Ring Through 0.01 dB [45]
Splitter 0.2 dB [46] Photodetector 0.1 dB [43]
Waveguide 1 dB/cm [43] Waveguide-to-receiver 0.5 dB [47]
Waveguide Bend 0.01 dB [48] Receiver Sensitivity -23.4 dBm [49]
Waveguide Crossover 0.05 dB [47] Ring Heating 320 puW [50]

inference tasks with sufficient partitions can progress without
being interrupted by this tuning process. Similarly, the waiting
tasks can immediately start progress upon obtaining sufficient
partitions. Table II lists the key architecture parameters of
ASPIRE for simulation. We utilize similar parameters as in [5],
[7] for a fair comparison. We assume 1 x 10712 bit error rate
(BER) [49] at 10 Gbps bit rate and wavelengths around 1550
nm. We also assume a maximum free spectral range (FSR)
limit of 50 nm [22] which reflects the fabrication limitation
of MRR radius. As the maximum number of wavelengths
assumed in ASPIRE is 64, the power penalty due to crosstalk
is negligible due to prior study [53].

A. Power Model

The power consumption value of MAC operations is obtained
using Synopsys Design Compiler. The power consumption
values of access local buffers and the GLB are obtained
using CACTI 6.0 [54] while the power consumption value of
accessing off-chip memory is obtained using DRAMSim2 [55].
The power consumption value of metallic-based interconnects
is obtained using DSENT [44] and parameters in [56]. The
power consumption value of photonic interconnects is derived
from Equation (3) shown below:

Ptotal = PTX + PRX + P)laser + Pthermal (3)

The total power consumption P, consists of 4 parts:
the power consumption of transmitters Prx, the power con-
sumption of receivers Pry, the power consumption of the
off-chip laser source Pjyser, and the power consumption of
resistive heaters for mitigating thermal and process variations of
MRRS Pipermal- Prx and Prx are derived from parameters

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 21:20:33 UTC from IEEE Xplore. Restrictions apply.

in [50]. The power consumption values for each transmitter and
receiver are 0.9 mW and 0.6 mW, respectively. The power
consumption for thermal heating is assumed to be 0.32 mW
per MRR [50]. The power consumption of the off-chip laser
source is derived from Equation (4) shown below:

plaser = prs + Oloss + Peztinction + Msystem (4)

The power consumption of the off-chip laser source consists
of 4 parts: the photodetector sensitivity P, s, the overall insertion
loss Cl,ss Which can be derived from parameters listed in Table
III, the power penalty caused by extinction ratio P ¢inction
(2 dB [57]), and the system margin My giem (4 dB [58]).
The purpose of the system margin is to allocate an amount of
power to additional power penalty sources developed during
the system’s lifetime.

B. Multi-DNN Accelerators

The proposed ASPIRE (AS) architecture is compared against
two temporal multi-DNN accelerators named PREMA [5] (PR)
and AI-MT [6] (AI), and two spatial multi-DNN accelerators
named Planaria [7] (PL) and Dataflow Mirroring (DM) [8]. For
a fair comparison, these multi-DNN accelerators and ASPIRE
are all scaled to include M x M = 16384 PEs and N x N =
1024 PEs per partition unless otherwise stated. The GLB size
is set to 12 M B [5], [7]. Weights and inputs are assumed to
be 8-bit wide while psums are assumed to be 24-bit wide [9].
The PE clock frequency is set to 700 M H z. We perform cycle-
level memory simulation [55] by assuming a high bandwidth
memory (HBM) module with 358 GB/s bandwidth as in [5],
[7]. We also explore the impact of memory bandwidth on
system performance by implementing a DDR3 memory model
as in [1] and varying HBM bandwidth as shown in Table II.

C. Multi-DNN Benchmark

We generate a multi-DNN benchmark from eleven convo-
lutional neural networks (CNNs), recurrent neural networks
(RNNS), and transformers in four categories: (1) EfficientNet-b0

[36], EfficientNet-b7 [36], MobileNet-v1l [37], DenseNet-201
[33], ResNet=50 [34], and VGG-16 [32] using ImageNet
dataset for image classification; (2) YOLO-v3 [31] and SSD-
MobileNet-vl [37] using COCO dataset for object detection;
(3) GNMT [37] using WMT E-G dataset for translation; (4)
BERT [37] using SQuAD vl1.1 dataset for natural language
processing. A certain sequence of the mixed DNN models
is generated and applied to simulation on both ASPIRE
architecture and other multi-DNN accelerators. Please note that
the sequence is long enough to model diverse task multiplexing
cases. The arrival time of each DNN inference task in the
sequence is randomly assigned from a Poisson distribution as
in [7]. The task arrival rate can be adjusted by tuning the rate
parameter \. We evaluate ASPIRE architecture performance
under different task arrival rates in our simulation. Please
note that only the convolutional and fully-connected layers are
considered in our simulation.

245

®Execution Time = Energy

0.9 0.9 0.9

0.6 0.6 0.6

03 03 03

PR Al PL DM AS PR Al PL DM AS

SLA=3 A=2/Million SLA=6 A=2/Million SLA=10 A=2/Million

= Execution Time = Energy

0.9 0.9

0.6 0.6
03 03

0 0
PR Al PL DM AS

0

PR Al PL DM AS PR Al PL DM AS

SLA=3 A=10/Million SLA=6 A=10/Million SLA=10 A=10/Million

Fig. 6. Execution time and energy consumption comparison between ASPIRE
and other multi-DNN accelerators when varying SLA and task arrival rate A.

D. Evaluation Metrics

We utilize the following four metrics to evaluate ASPIRE
architecture and other multi-DNN accelerators. The first two
metrics are from the perspective of cloud vendors while the
last two metrics are from the perspective of end users.

Execution Time: the time spent to process the above sequence
of mixed DNN inference tasks.

Energy Consumption: the energy consumption of processing
the above sequence of mixed DNN inference tasks.

SLA Satisfaction Rate: the fraction of multiplexed DNN
inference tasks that adhere to the SLA profile. SLA of T'ask
i is defined as Téeadline/Tiisolate'

Fairness: the measurement of the equal progress of the
multiplexed DNN inference tasks [59].

VII. EXPERIMENT RESULTS
A. Execution Time & Energy Consumption

We model three different SLA values SLA=3, SLA=6, and
SLA=10, which represent cases with strict, medium, and
relaxed deadlines, respectively. We also model two different
task arrival rate \ values A = 2/Million and A = 10/M illion,
which represent cases with low and high task arrival rates.
A = 2/Million means on average 2 DNN inference tasks
are expected in a one-million clock cycle interval. Figure 6
shows the execution time and energy consumption comparison
between ASPIRE and other multi-DNN accelerators. All values
are normalized to PR. We make the following observations.
First, in the cases with strict or medium deadlines (SLA=3 or
SLA=6) and low task arrival rate A = 2/Million, spatial multi-
DNN accelerators PL and DM perform worse than temporal
multi-DNN accelerators PR and Al because the chance of
spatially co-executing several inference tasks is low in such
cases. As a result, the spatial task parallelism capability in PL
and DM is not fully leveraged while the control overhead still
exists. Second, in other cases with a high chance of spatially
co-executing several inference tasks, PL and DM perform better

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 21:20:33 UTC from IEEE Xplore. Restrictions apply.

—A—SLA Satisfaction Rate

<

=

0.8 0.8 0.8

0.5 0.5 05

03 03 03

0.0

0.0 0.0

PR Al PL DM AS PR Al PL DM AS PR Al PL DM AS

SLA=3 A=2/Million SLA=6 A=2/Million SLA=10 A=2/Million

—A—SLA Satisfaction Rate

® Execution Time = Energy

0.9 0.9 0.9

0.6 0.6 0.6

03 0.3 03

0

PR PL PL/AS AS/PL AS PR PL PL/AS AS/PL AS PR PL PL/AS AS/PL AS

SLA=3 A=10/Million SLA=6 A=10/Million SLA=10 A=10/Million

—A—SLA Satisfaction Rate —©— Fairness
1.0 1.0

0.8 0.8

0.5 05

03 03

0.0

0.0

PR Al PL DM AS PR Al PL DM AS

SLA=3 A=10/Million SLA=6 A=10/Million SLA=10 A=10/Million

Fig. 7. SLA satisfaction rate and fairness comparison between ASPIRE and
other multi-DNN accelerators when varying SLA and task arrival rate \.

than PR and Al in terms of both execution time and energy
consumption. Third, ASPIRE outperforms other multi-DNN
accelerators mainly due to the proposed photonic network
design. In particular, ASPIRE achieves up to 61% and 69%
reduction in execution time and energy consumption.

B. SLA Satisfaction Rate & Fairness

Figure 7 shows the SLA satisfaction rate and fairness
comparison between ASPIRE and other multi-DNN accelerators.
All values are normalized to PR. We make the following
observations. First, in cases with different combinations of SLA
values and task arrival rates \, temporal multi-DNN accelerators
(PR and AI) achieve lower SLA satisfaction rates and fairness
compared to spatial multi-DNN accelerators (PL, DM, and
ASPIRE), as temporal accelerators often have relatively low PE
utilization and cannot delicately allocate hardware resource to
multiple inference tasks. In particular, Al achieves as low as
4% SLA satisfaction rate and 0.08 fairness because it prompts
balancing of communication- and computation-intensive tasks
over the QoS concern. Second, the SLA satisfaction rate of
each accelerator tends to decrease when adopting a more strict
task deadline or high task arrival rate. Third, ASPIRE still
maintains a relatively high SLA satisfaction rate of 71% and
fairness of 0.60 in the case with strict task deadline (SLA=3)
and high task arrival rate (\ = 10/M:illion). This is due to the
combined effects of the photonic network design and partition
allocation strategy.

C. ASPIRE Contribution Breakdown Analysis

We present the contributions of the ASPIRE photonic network
design and allocation strategy to the overall system improve-
ment separately in Figure 8. We only show the case with critical
SLA (SLA=3) and high task arrival rate (A = 10/Million).
ASPIRE is compared against PR, PL, and two additional
baselines PL/AS and AS/PL. PL/AS is a design that combines
PL architecture and ASPIRE allocation algorithm, while AS/PL
is a design that combines ASPIRE architecture and PL allocation

246

0.8 08

05 0.5

03 0.3

\

0.0 0.0

PR PL PL/AS AS/PL AS PR PL PL/AS AS/PL AS PR PL PL/AS AS/PL AS

SLA=3 A=10/Million SLA=6 A=10/Million SLA=10 A=10/Million

Fig. 8. ASPIRE architecture and allocation algorithm benefits breakdown
analysis. All values are normalized to PR.

—8-SLA=3 ——SLA=6 —%—SLA=10 —©—Fairness
1.0 1.0

1.0
0.8 0.8
05 05

03 03

!

0.0 0.0

PR Al PL AS

]
=

AS PR Al PL DM AS PR Al PL DM

A=2/Million A=10/Million A=20/Million

Fig. 9. ASPIRE allocation algorithm compared with other multi-DNN
accelerators when randomly assigning SLA values to incoming inference
tasks.

algorithm. We make the following two observations. First, as
compared to PL, PL/AS achieves a minor reduction in execution
time (1.5%) and energy consumption (1.0%) while AS/PL
achieves a significant reduction in execution time (48.3%) and
energy consumption (43.2%), indicating that the reduction in
execution time and energy consumption of ASPIRE mainly
comes from the proposed photonic network design. Second,
both PL/AS and AS/PL achieve significant improvement in SLA
satisfaction rate and fairness, as compared to PL, indicating
that both the proposed photonic network architecture and the
allocation strategy help the co-executed tasks to achieve equal
progress and fulfill the deadlines.

D. Dynamic Task Deadline

In ASPIRE, the initial value of Tjj.qqiine 1S considered an
implicit priority parameter and will be continuously updated.
To demonstrate the benefits of the implicit priority parameter in
ASPIRE over the explicit priority parameter in PL and DM, we
randomly assign one of the three SLA values (SLA=3, SLA=6,
and SLA=10) to each inference task. Meanwhile, since PL
and DM adopt an explicit priority in the range of 1 to 11
[7], we assign one of the three priority values (8, 5, and
1) to each corresponding inference task. Figure 9 shows the
SLA satisfaction rate of different groups of tasks, each group
corresponds to a specific priority (e.g., implicit priority SLA=3
in ASPIRE and explicit priority 8 in PL and DM). We observe

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 21:20:33 UTC from IEEE Xplore. Restrictions apply.

u computation B memory stall
2

Execution Time
s o
N K-
Execution Time
s o =
& & N

e
w
o
w

0
34

°

128 256 358 512 4 8 12
(a) (b)

Fig. 10. GLB (a) bandwidth and (b) capacity exploration assuming SLA=3
and A\ = 10/M:llion.

16 20

® Execution Time ®Energy —A—SLA Satisfaction Rate —©—Fairness
1.0

T,

1.0

08 08

05 0.5

03 03

0.0
8x8 8x16 16x16 16x32 32x32 8x8 8x16 16x16 16x32 32x32

(@) (b)
Fig. 11. Partition size exploration assuming SLA=3 and A = 10/M illion.

0.0

that in general inference tasks with high priority, either implicit
or explicit, achieve higher SLA satisfaction rates under different
task arrival rate assumptions. Furthermore, the implicit priority
in ASPIRE is more effective in terms of SLA satisfaction rate
and fairness, as compared to the explicit priority in PL and DM
due to the fact that ASPIRE allocation strategy significantly

prompts tasks that are close to or have passed their deadlines.

We show the results of an extreme case with a very high task
arrival rate (A = 20/Million) in which many tasks cannot be
completed in time. ASPIRE still achieves high fairness in this
case compared to other designs.

E. GLB Bandwidth and Capacity Exploration

Figure 10 (a) shows the impact of bandwidth between
main memory and GLB on execution time in ASPIRE, when
assuming SLA=3 and A = 10/Million. We explore several
setups, DDR3 off-chip memory with 34 GB/s bandwidth as
in [1], HBM with 128-512 GB/s bandwidth (PR [5] and PL
[7] assume HBM with 358 G B/s bandwidth). The execution
time is further divided into the time for computation and
memory stall time. We observe that 358 GB/s bandwidth is
sufficient as the memory stall time only accounts for 1.8% of the
overall execution time. As the bandwidth value decreases, the
fraction of memory stall time in overall execution time increases
(83% in DDR3 with 34 GB/s bandwidth). Meanwhile, further
increasing the memory bandwidth over 358 GB/s only leads to
an insignificant reduction in memory stall time. We also explore
the impact of GLB capacity on execution time in ASPIRE as
shown in Figure 10 (b). Implementing a 12 M B GLB would
incur 31% memory stall time, which can be reduced to 21%
when implementing a 20 M B GLB.

E. Partition Size Exploration

We study the execution time and energy consumption, as
well as SLA satisfaction rate and fairness when varying the
partition size in ASPIRE architecture. The study is performed
assuming the critical SLA and high task arrival rate. As shown

247

in Figure 11, we observe increasing execution time as partition
size increases, which indicates that a smaller partition size can
better facilitate the process of allocating the right amount of
hardware resource to a particular inference task. By contrast,
the minimum energy consumption is achieved when assuming
16x16 partition size. Though partition size does not affect
the energy consumption of computation and data access to
different memory hierarchies, it has a profound impact on the
energy consumption of the proposed photonic network. Small
partition sizes (8 x8 and 8 x 16) lead to a large number of MRRs
required in the photonic network and high energy consumption
for thermal tuning. Large partition sizes (16x32 and 32x32)
lead to high insertion loss and high energy consumption for the
off-chip laser source. We observe that the proposed ASPIRE
architecture achieves optimal energy-delay product value when
assuming 16x 16 partition size. We can observe that the SLA
satisfaction rate and fairness decrease as the partition size
increases, which also indicates that a smaller partition size can
fully exploit the spatial task parallelism on the accelerator and
improve QoS and fairness.

G. Area Estimation

We synthesize ASPIRE design using Synopsys Design
Compiler and 28 nm technology. The size of the 12 M B
GLB is 89.55 mm? while the area overhead of the photonic
network (transceivers and MRRs) is 46.06 mm?2. Since ASPIRE
is not equipped with the 1 M B weight FIFO (3.92 mm? and
2 M B Accumulation Buffer (20.43 mm?), we can mitigate
the area overhead of the photonic network by using an 8 M B
GLB in ASPIRE. According to Figure 6 and Figure 10 (b),
such a system setup can still achieve lower execution time as
compared to PL with 12 M B GLB.

VIII. CONCLUSION

In this paper, we propose a photonic multi-DNN accelerator
named ASPIRE that supports spatial and temporal co-execution
of multiple DNNs. The salient features of ASPIRE architecture
include (1) a novel dataflow that converts a sufficient fraction
of data reuse opportunities into data multicast opportunities
to leverage the energy-efficient multicast property of silicon
photonics; (2) a photonic network that can be adaptively divided
into several sub-networks, each seamlessly connecting some
fragmented PE partitions to construct a sub-accelerator for
one DNN; (3) an algorithm that produces the allocation of
PE partitions based on computing demand and task priority,
and the allocation of on-chip memory capacity based on DNN
topology and data reuse pattern. Simulation studies using a
collection of diverse CNN, RNN, and transformer models have
proven the effectiveness of ASPIRE architecture compared to
other state-of-the-art multi-DNN accelerators.

IX. ACKNOWLEDGEMENTS

This research was partially supported by NSF grants CCF-
1901165, CCF-2311543, CCF-1953980, CCF-1703013, CCF-
1901192, CCF-1936794, and CCF-2311544. We sincerely thank
the anonymous reviewers for their excellent feedback.

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 21:20:33 UTC from IEEE Xplore. Restrictions apply.

[1]

2

—

[8

=

[10]

[11]

[12

[13

[l

[14]

REFERENCES

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. luc Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho,
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,
A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda,
A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn,
G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan,
G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter,
W. Wang, E. Wilcox, and D. H. Yoon, “In-Datacenter Performance
Analysis of a Tensor Processing Unit,” in Proceedings of the ACM/IEEE
International Symposium on Computer Architecture (ISCA), June 2017,
pp. 1-12.

J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo,
S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel,
A. Sapek, G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt, A. M.
Caulfield, E. S. Chung, and D. Burger, “A Configurable Cloud-Scale
DNN Processor for Real-Time AL” in Proceedings of the ACM/IEEE
International Symposium on Computer Architecture (ISCA), June 2018,
pp. 1-14.

U. Gupta, S. Hsia, V. Saraph, X. Wang, B. Reagen, G.-Y. Wei, H.-H. S.
Lee, D. Brooks, and C.-J. Wu, “DeepRecSys: A System for Optimizing
End-to-End At-Scale Neural Recommendation Inference,” in Proceedings
of the ACM/IEEE International Symposium on Computer Architecture
(ISCA), May 2020, pp. 982-995.

F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis, “INFaaS: A
Model-Less and Managed Inference Serving System,” arXiv Preprint,
pp. 1-16, May 2019.

Y. Choi and M. Rhu, “PREMA: A Predictive Multi-Task Scheduling
Algorithm for Preemptible Neural Processing Units,” in Proceedings
of the IEEE International Symposium on High-Performance Computer
Architecture (HPCA), February 2020, pp. 220-233.

E. Baek, D. Kwon, and J. Kim, “A Multi-Neural Network Acceleration
Architecture,” in Proceedings of the ACM/IEEE International Symposium
on Computer Architecture (ISCA), May 2020, pp. 940-953.

S. Ghodrati, B. H. Ahn, J. K. Kim, S. Kinzer, B. R. Yatham, N. Alla,
H. Sharma, M. Alian, E. Ebrahimi, N. S. Kim, C. Young, and
H. Esmaeilzadeh, “Planaria: Dynamic Architecture Fission for Spatial
Multi-Tenant Acceleration of Deep Neural Networks,” in Proceedings of
the IEEE/ACM International Symposium on Microarchitecture (MICRO),
October 2020, pp. 681-697.

J. Lee, J. Choi, J. Kim, J. Lee, and Y. Kim, “Dataflow Mirroring: Archi-
tectural Support for Highly Efficient Fine-Grained Spatial Multitasking
on Systolic-Array NPUs,” in Proceedings of the ACM/IEEE Design
Automation Conference (DAC), December 2021, pp. 247-252.

Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang,
B. Keller, A. Klinefelter, N. Pinckney, P. Raina, S. G. Tell, Y. Zhang,
W. J. Dally, J. Emer, and C. T. Gray, “Simba: Scaling Deep-Learning
Inference with Multi-Chip-Module-based Architecture,” in Proceedings of
the IEEE/ACM International Symposium on Microarchitecture (MICRO),
October 2019, pp. 14-27.

Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture
for Energy-Efficient Dataflow for Convolutional Neural Networks,” in
Proceedings of the ACM/IEEE International Symposium on Computer
Architecture (ISCA), June 2016, pp. 367-379.

Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “ShiDianNao: Shifting Vision Processing Closer to the
Sensor,” in Proceedings of the ACM/IEEE International Symposium on
Computer Architecture (ISCA), June 2015, pp. 92-104.

S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, “A Dynami-
cally Configurable Coprocessor for Convolutional Neural Networks,” in
Proceedings of the ACM/IEEE International Symposium on Computer
Architecture (ISCA), June 2010, pp. 247-257.

L. Cavigelli, D. Gschwend, C. Mayer, S. Willi, B. Muheim, and L. Benini,
“Origami: A Convolutional Network Accelerator,” in Proceedings of the
ACM Great Lakes Symposium on VLSI (GLVLSI), May 2015, pp. 199—
204.

T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “Di-
anNao: A Small-Footprint High-Throughput Accelerator for Ubiquitous

248

[17]

[27]

[28]

[29]

[30]

Machine-Learning,” in Proceedings of the ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), February 2014, pp. 269-284.

J. Albericio, P. Judd, T. Hetherington, T. Adamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network
Computing,” in Proceedings of the ACM/IEEE International Symposium
on Computer Architecture (ISCA), June 2016, pp. 1-13.

A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “SCNN: An
Accelerator for Compressed-Sparse Convolutional Neural Networks,” in
Proceedings of the ACM/IEEE International Symposium on Computer
Architecture (ISCA), June 2017, pp. 27-40.

Y. Li, A. Louri, and A. Karanth, “SPACX: Silicon Photonics-based
Scalable Chiplet Accelerator for DNN Inference,” in Proceedings of
the IEEE International Symposium on High-Performance Computer
Architecture (HPCA), April 2022, pp. 831-845.

Y. Li, K. Wang, H. Zheng, A. Louri, and A. Karanth, “ASCEND: A
Scalable and Energy-Efficient Deep Neural Network Accelerator with
Photonic Interconnects,” IEEE Transactions on Circuits and Systems 1
(TCAS-I), vol. 69, no. 7, pp. 2730-2741, July 2022.

Y. Li, A. Louri, and A. Karanth, “Scaling Deep-Learning Inference with
Chiplet-based Architecture and Photonic Interconnects,” in Proceedings
of the ACM/IEEE Design Automation Conference (DAC), December
2021, pp. 931-936.

D. A. B. Miller, “Device Requirements for Optical Interconnects to
Silicon Chips,” Proceedings of the IEEE, vol. 97, no. 7, pp. 1166-1185,
June 2009.

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE
Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp.
1678-1687, November 2006.

K. Bergman, L. P. Carloni, A. Biberman, J. Chan, and G. Hendry,
Photonic Network-on-Chip Design. Springer, 2014.

Y. Demir, Y. Pan, S. Song, N. Hardavellas, J. Kim, and G. Memik,
“Galaxy: A High-Performance Energy-Efficient Multi-Chip Architecture
Using Photonic Interconnects,” in Proceedings of the ACM International
Conference on Supercomputing (ICS), June 2014, pp. 303-312.

N. Kirman, M. Kirman, R. K. Dokania, J. F. Martinez, A. B. Apsel, M. A.
Watkins, and D. H. Albonesi, “Leveraging Optical Technology in Future
Bus-based Chip Multiprocessors,” in Proceedings of the IEEE/ACM
International Symposium on Microarchitecture (MICRO), December 2006,
pp. 492-503.

P. Grani, R. Proietti, V. Akella, and S. J. B. Yoo, “Design and Evaluation
of AWGR-based Photonic NoC Architectures for 2.5D Integrated
High Performance Computing Systems,” in Proceedings of the IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), February 2017, pp. 289-300.

D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. P. Jouppi,
M. Fiorentino, A. Davis, N. Binkert, R. G. Beausoleil, and J. H. Ahn,
“Corona: System Implications of Emerging Nanophotonic Technology,”
in Proceedings of the ACM/IEEE International Symposium on Computer
Architecture (ISCA), June 2008, pp. 153-164.

A. K. Ziabar, J. L. Abellan, R. Ubal, C. Chen, A. Joshi, and D. Kaeli,
“Leveraging Silicon-Photonic NoC for Designing Scalable GPUs,” in
Proceedings of the ACM International Conference on Supercomputing
(ICS), June 2015, pp. 273-282.

Y. Pan, P. Kumar, J. Kim, G. Memik, Y. Zhang, and A. Choudhary,
“Firefly: Illuminating Future Network-on-Chip with Nanophotonics,” in
Proceedings of the ACM/IEEE International Symposium on Computer
Architecture (ISCA), June 2009, pp. 429-440.

Y. Thonnart, S. Bernabe, J. Charbonnier, C. Bernard, D. Coriat, C. Fuguet,
P. Tissier, B. Charbonnier, S. Malhouitre, D. Saint-Patrice, M. Assous,
A. Narayan, A. Coskun, D. Dutoit, and P. Vivet, “POPSTAR: A Robust
Modular Optical NoC Architecture for Chiplet-based 3D Integrated
Systems,” in Porceedings of the Design, Automation & Test in Europe
Conference & Exhibition (DATE), March 2020, pp. 1456-1461.

Y. Li, A. Louri, and A. Karanth, “SPRINT: A High-Performance,
Energy-Efficient, and Scalable Chiplet-based Accelerator with Photonic
Interconnects for CNN Inference,” IEEE Transactions on Parallel and
Distributed Systems (TPDS), vol. 33, no. 10, pp. 2332-2345, October
2022.

J. Redmon and A. Farhadi, “Yolov3: An Incremental Improvement,”
arXiv Preprint, 2018.

K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” arXiv preprint, 2014.

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 21:20:33 UTC from IEEE Xplore. Restrictions apply.

[33]

[34]

[35

[36

[37]

[38]

[39]

[40

[41]

[42

[43]

[44]

[45

[40]

[47]

[48]

[49]

G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, “Densely
Connected Convolutional Networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going Deeper with Convolutions,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks,” in Proceedings of the International
Conference on Machine Learning (ICML), 2019.

V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J.
Wu, B. Anderson, M. Breughe, M. Charlebois, W. Chou, R. Chukka,
C. Coleman, S. Davis, P. Deng, G. Diamos, J. Duke, D. Fick, J. S.
Gardner, I. Hubara, S. Idgunji, T. B. Jablin, J. Jiao, T. S. John, P. Kanwar,
D. Lee, J. Liao, A. Lokhmotov, F. Massa, P. Meng, P. Micikevicius,
C. Osborne, G. Pekhimenko, A. T. R. Rajan, D. Sequeira, A. Sirasao,
F. Sun, H. Tang, M. Thomson, F. Wei, E. Wu, L. Xu, K. Yamada,
B. Yu, G. Yuan, A. Zhong, P. Zhang, and Y. Zhou, “MLPerf Inference
Benchmark,” in Proceedings of the ACM/IEEE International Symposium
on Computer Architecture (ISCA), May 2020, pp. 446-459.

R. Marchetti, C. Lacava, L. Carroll, K. Gradkowski, and P. Minzioni,
“Coupling Strategies for Silicon Photonics Integrated Chips,” Photonics
Research, vol. 7, no. 2, pp. 201-239, January 2019.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja,
T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon
Microring Resonators,” Laser & Photonics Reviews, vol. 6, no. 1, pp.
47-73, January 2012.

P. Fotouhi, S. Werner, J. Lowe-Power, and S. J. B. Yoo, “Enabling
Scalable Chiplet-based Uniform Memory Architectures with Silicon
Photonics,” in Proceedings of the International Symposium on Memory
Systems (MEMSYS), September 2019, pp. 222-234.

M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “TETRIS:
Scalable and Efficient Neural Network Acceleration with 3D Memory,”
in Proceedings of the ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2017.

X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell, K. Cao, H. Ha,
P. Raina, C. Kozyrakis, and M. Horowitz, “Interstellar: Using Halide’s
Scheduling Language to Analyze DNN Accelerators,” in Proceedings
of the ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2020.

R. Morris, A. Karanth, and A. Louri, “Dynamic Reconfiguration of 3D
Photonic Networks-on-Chip for Maximizing Performance and Improv-
ing Fault Tolerance,” in Proceedings of the IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2012.

C. Sun, C.-H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-
S. Peh, and V. Stojanovic, “DSENT - A Tool Connecting Emerging
Photonics with Electronics for Opto-Electronic Networks-on-Chip Mod-
eling,” in Proceedings of the IEEE/ACM International Symposium on
Networks-on-Chip (NOCS), May 2012, pp. 201-210.

S. Pasricha and S. Bahirat, “OPAL: A Multi-Layer Hybrid Photonic
NoC for 3D ICs,” in Proceedings of the Asia and South Pacific Design
Automation Conference (ASP-DAC), 2011.

S. Werner, J. Navaridas, and M. Lujan, “Designing Low-Power, Low-
Latency Networks-on-Chip by Optimally Combining Electrical and
Optical Links,” in Proceedings of the IEEE International Symposium on
High-Performance Computer Architecture (HPCA), February 2017, pp.
265-276.

R. W. Morris and A. Karanth, “Power-Efficient and High-Performance
Multi-Level Hybrid Nanophotonic Interconnect for Multicores,” in
Proceedings of the IEEE/ACM International Symposium on Networks-
on-Chip (NOCS), 2010.

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan,
J. S. Levy, M. Lipson, and K. Bergman, ‘“Photonic Network-on-
Chip Architectures Using Multilayer Deposited Silicon Materials for
High-Performance Chip Multiprocessors,” ACM Journal on Emerging
Technologies in Computing Systems (JETC), 2011.

H. T. Chen, J. Verbist, P. Verheyen, P. D. Heyn, G. Lepage, J. D.
Coster, P. Absil, X. Yin, J. Bauwelinck, J. V. Campenhout, and
G. Roelkens, “High Sensitivity 10Gb/s Si Photonic Receiver based on a

249

[50]

[51]

[52]

[53]

[54]

[55

[56]

[57]

[58]

[59]

Low-Voltage Waveguide-Coupled Ge Avalanche Photodetector,” Optics
Express, vol. 23, no. 2, 2015.

A. Joshi, C. Batten, Y.-J. Kwon, S. Beamer, I. Shamim, K. Asanovic,
and V. Stojanovic, “Silicon-Photonic Clos Networks for Global On-
Chip Communication,” in Proceedings of the IEEE/ACM International
Symposium on Networks-on-Chip (NOCS), May 2009, pp. 124-133.

A. Samajdar, J. M. Joseph, Y. Zhu, P. Whatmough, M. Mattina, and
T. Krishna, “A Systematic Methodology for Characterizing Scalability
of DNN Accelerators using SCALE-Sim,” in 2020 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS).
IEEE, 2020, pp. 58-68.

E. Peter, A. Thomas, A. Dhawan, and S. R. Sarangi, “Active Microring
Based Tunable Optical Power Splitters,” Optics Communications, vol.
359, pp. 311-315, January 2016.

K. Padmaraju, N. Ophir, A. Biberman, L. Chen, E. Swan, J. Chan,
M. Lipson, and K. Bergman, “Intermodulation crosstalk from silicon
microring modulators in wavelength-parallel photonic networks-on-chip,”
in Annual Meeting of the IEEE Photonics Society, 2010.

N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0:
A Tool to Model Large Caches,” HP Laboratories, pp. 1-24, April 2009.
P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A Cycle
Accurate Memory System Simulator,” IEEE Computer Architecture
Letters (CAL), vol. 10, no. 1, pp. 16-19, January 2011.

J. M. Wilson, W. J. Turner, J. W. Poulton, B. Zimmer, X. Chen, S. S.
Kudva, S. Song, S. G. Tell, N. Nedovic, W. Zhao, S. R. Sudhakaran,
C. T. Gray, and W. J. Dally, “A 1.17 pJ/b 25Gb/s/pin Ground-Referenced
Single-Ended Serial Link for Off- and On-Package Communication
in 16nm CMOS Using a Process- and Temperature-Adaptive Voltage
Regulator,” in Proceedings of the IEEE International Solid-State Circuits
Conference (ISSCC), February 2018, pp. 276-278.

C. DeCusatis, Handbook of Fiber Optic Data Communication: A Practical
Guide to Optical Networking. Academic Press, 2013.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau,
P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer Systems
Based on Silicon Photonic Interconnects,” Proceedings of the IEEE,
vol. 97, no. 7, pp. 1337-1361, July 2009.

S. Eyerman and L. Eeckhout, “System-Level Performance Metrics for
Multiprogram Workloads,” IEEE Micro, 2008.

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on March 09,2024 at 21:20:33 UTC from IEEE Xplore. Restrictions apply.

