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Adaptive Hierarchical Cyber Attack Detection and
Localization in Active Distribution Systems

Qi Li

and Fangyu Li

Abstract—Development of a cyber security strategy for the
active distribution systems is challenging due to the inclusion of
distributed renewable energy generations. This paper proposes
an adaptive hierarchical cyber attack detection and localization
framework for distributed active distribution systems via ana-
lyzing electrical waveforms. Cyber attack detection is based on
a sequential deep learning model, via which even minor cyber
attacks can be identified. The two-stage cyber attack localiza-
tion algorithm first estimates the cyber attack sub-region, and
then localize the specified cyber attack within the estimated sub-
region. We propose a modified spectral clustering-based network
partitioning method for the hierarchical cyber attack ‘coarse’
localization. Next, to further narrow down the cyber attack
location, a normalized impact score based on waveform statisti-
cal metrics is proposed to obtain a ‘fine’ cyber attack location
by characterizing different waveform properties. Finally, com-
pared with classical and state-of-art methods, a comprehensive
quantitative evaluation with two case studies shows promising
estimation results of the proposed framework.

Index Terms—Cyber attack localization, adaptive, hierarchical,
online, distribution networks.

I. INTRODUCTION

YBER attack localization is important to protect smart
distribution grids, but also a challenging task because of
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the inherent distributed energy resources (DER) and topology
complexities [1], [2]. Raw electrical waveforms, signals of
electrical networks, together with those in cyber networks pro-
vide great potentials in cyber attack detection [3]. For example,
devices in power networks must leave clues of their operational
status and health (including faults or attacks) information in
the raw electrical waveform signals: a cyber-device in fault or
under attack will cause unusual energy consumption pattern in
power networks [4]; a power electronics or electric machine in
fault or under attack may cause unusual harmonics or energy
profile in electrical networks [5].

By analyzing the electrical waveform signals and their root
cause, waveform analytics can present utilities with a com-
plete picture of the health and status of their system, both
during outages and normal operating conditions. It could also
provide a variety of operational benefits to system opera-
tors, asset management personnel, and repair crew. Electronic
sensors placed on power grids and distribution systems can
either measure the electricity properties, such as phasor mea-
surement unit (PMU) sensors [6], [7] or directly record the
raw electrical waveform using waveform measurement unit
(WMU) [8]-[12], depending on the needed fidelity of moni-
toring applications. Thanks to developed network connectivity,
the streaming monitoring data flow can be obtained and
analyzed online and in real-time [13].

The network of the waveform sensors form an Internet of
Things (IoT) system [4], [14], where the waveform sensors are
viewed as networked IoT sensing devices. Therefore, we can
potentially use the information embedded in electrical signals
to enable security monitoring, diagnosis, and prognosis in the
power networks. The possibility may be well beyond what we
can imagine now. It broadly applies to many cyber-physical
systems (CPS) and applications, such as power distribution
networks, multi-stage manufacturing systems, electric vehi-
cles, and so on [15]-[17]. Cyber attacks towards connected
IoT devices trigger anomalies in system statistics, energy con-
sumption, as well as electrical waveforms [4], [14], [18], [19].
Thus, recorded waveform which carries high fidelity cur-
rent and voltage information should be adequate for cyber
attack characterization. Furthermore, the transmission of the
high-frequency waveform data is feasible in practice [20]-[22].

Data-driven methods have been widely adopted for event
localization in power electronics networks and active distri-
bution systems. Rule-based data-driven analytics [23], signal
property-based approach [24], and neural networks (NN) based
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Fig. 1.
workflow. The details are discussed in Section III.

The proposed adaptive hierarchical online cyber attack localization

algorithms, such as autoencoders [25], convolutional neu-
ral network (CNN) [26], have been developed. However,
NN-based algorithms typically require a large amount of
training data to capture the sophisticated features, which can-
not be fully simulated or acquired from real applications.
Thus, combining the rule-based signal processing methods and
machine learning methods could lead to a solution tackling the
challenging problem using an affordable data size.

There have been numerous works targeting the event and
cyber attack localization problem [1], [2], [27]. Dynamic
data analytics based localization is always a major branch
for the distribution networks [1], DC microgrid [2], islanded
microgrid [27]. This paper proposes a new adaptive hierarchi-
cal framework for efficient and accurate cyber attack detection
and localization by taking advantage of the electrical wave-
forms (Fig. 1). The proposed approach has a hierarchical
architecture that divides the whole network into sub-groups
and then locates the cyber attack within one local cluster.
Based on a modified unsupervised clustering and an deep
learning based anomaly detection method, cyber attacks in
the active distribution systems can be adaptively detected and
located. The performance of the proposed approach has been
tested by multiple cyber attack scenarios in two representative
case studies.

Our contributions are summarized as follows:

« We propose an adaptive hierarchical cyber attack detec-
tion and localization framework for active distribution
systems with DERs using the electrical waveform;

« High fidelity models of DER and cyber attacks are built
to analyze the impacts of cyber attacks towards the
distribution networks;

« Extensive experiments are utilized to evaluate the
proposed approach performances with quantitative ana-
Iytics;

The remainder of this paper is organized as follows. In
Section II, the cyber attack model of active distribution
systems is discussed. In Section III, we describe the proposed
approaches with the details of each key component, which
are cyber attack detection, network partition and cyber attack
localization. Experiments and evaluations can be found in
Section IV. In the end, a conclusion is drawn in Section V.

II. CYBER ATTACK MODEL

Cyber attacks on power systems and smart grids have
become more common, especially with the increasing number
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Fig. 2. The adopted cyber attack model of the studied active distribution
systems. The vulnerability of the smart inverter due to FDI attacks is shown.

of power electronics converters. Specifically, PV embedded
active distribution system is one of the most representative
examples. For smart inverters in the distribution systems, false
data integrity (FDI) attack is one of the common cyber-attacks
when an enormous amount of DERs are connected to the
power system [28], [29]. Besides the high order abnormal
harmonics caused by the cyber attacks towards the power
electronics devices in the power system, FDI attack could
also manipulate the critical threshold in relays [30] and trans-
formers [31] to induce the short circuit faults. In addition,
the research on FDI attacks against distribution system SE
(DSSE) is an interesting open area. In [32], the vulnerability
of distribution system SE (DSSE) to FDI attack was investi-
gated. The work in [33] provides a basis to study the attack
behaviors in distribution systems and a theoretical guide to
develop protective countermeasures. Authors in [34] attempt
to optimize the effectiveness and hiddenness of Moving Target
Defense (MTD) while considering voltage stability. MTD is a
new technology to defend against the FDI attack on DSSE.

In this paper, to simulate cyber attacks that occurred in the
active distribution grid, FDI attack is modeled here, which
is assumed to falsify the sensor measurements and degrade
controller performance. FDI attack is defined as

Y=a Y+ B Yo, (1)

where Y is the falsified data vector that is eventually used by
the controller, Y is the original measurement, Yy is a fake data
vector which can be independent or determined by Yy, « is a
coefficient that determines the weight of the attack vector, 8
is a coefficient that defines the weight of the measurement.

In the PV (photovotaic) converter controller in the Fig. 2,
Yo is shown as

T
Yo = [Upw Iva Uge, Ifs U., [g] . (2)

where U,,, I, are the PV array voltage and current, respec-
tively. Uge is DC link voltage, Iy is the inverter-side current
in LCL filter, Uy is the capacitor voltage in LCL filter, I, is
the grid-side current in LCL filter. As for the phase voltage
source inverter (VSI), Yo only includes Iy, U. and I,. Both
Fig. 2 and Fig. A.1 show the vulnerability of the inverter due
to FDI attacks. More detailed model of DERs in this paper is
illustrated in the Appendix.

III. PROPOSED APPROACH

The workflow of the proposed adaptive hierarchical cyber
attack localization approach is shown in Fig. 1. It includes
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online processing procedures, such as cyber attack detec-
tion, network partitioning, sub-region determination, and cyber
attack localization. In this section, we introduce the method-
ologies in detail with thorough discussions. Note that we
assume the optimal sensor placement (OSP) has been done
offline. The purpose of OSP to achieve the observability of
the whole distribution system with the minimum number of
waveform sensors [35].

A. Cyber Attack Detection

Distribution power systems typically operate under
steady-state. Therefore, the cyber attack can be detected
based on the deviation of the monitoring metrics from
steady-state, which, in our study, is an anomaly detection
problem. For time-series sensor streaming data, statistical
analysis is typically used for cyber attack detection [13], [14].
Our previous studies [13], [15] utilizing the data-driven meth-
ods have shown remarkable performance regarding the
electrical waveform data. By applying the cyber attack
detection algorithm on streaming waveform measurement
unit (WMU) data, we can determine if there is a cyber attack
in real time. In this case, cyber attack detection is treated
as a one-class classification problem. A Multi-layer Long
Short-Term Memory Network (MLSTM) from our previous
work has been applied, which not only remembers sequential
information but also carries out a more rigorous screening
of time information. So, we can generalize the behavior
complexity of the active distribution systems without a huge
dataset. Besides, detectors such as CUSUM, DBSCAN, and
our MLSTM, are compared.

B. Network Partition Based on Modified Spectral Clustering

To efficiently locate the cyber attacks, we propose to first
partition the active distribution systems into several sub-
regions. It is similar to divide a centralized problem into
smaller problems and solving them in a distributed manner.
Spectral clustering is a classic unsupervised learning method
based on the graph theory to partition a graph into several
sub-graphs [36], [37], which is easy to implement and per-
forms well. Therefore it is suitable for the active distribution
system partition in our study. We propose a modified spectral
clustering to search for the optimal partition results.

Let A € RV*N be the adjacency matrix of our WMU sensor
topology and its entry is defined as

L if node i and j are connected.

Z’ 3)

A =
Y 0, otherwise.

where Z;; is the impedance between vertex i and vertex j.
In this case, A; = ZL,] if vertex i and vertex j are con-
nected in the original active distribution system topology and
Ajj = 0 if vertex i and vertex j are not connected directly. Let
D = diag(A1l,) be the diagonal matrix where D;; is the degree
d; of node i, i.e., di = Y_), Ayj. In addition, let S € RV*N be
the affinity matrix calculated based on the measurement cor-
relations. This measurement correlation could be customized
as long as it could represent the electrical distance among
nodes. Since we have considered three-phase unbalance in our
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Algorithm 1 Modified Spectral Clustering
1: Input: Adjacency matrix A, data matrix X and cluster
number K.
2: Compute the Affinity matrix S based on the data matrix.
3: Compute the modified Laplacian matrix £ = (D — S) +

u(D —A).

4: For K clusters, compute the first K eigenvectors
[vi,va, ..., vkl

5: Stack the vectors to form a matrix with the vectors as
columns.

6: Represent every node by the corresponding row of the
stacked matrix, which forms the feature matrix.

7: Use K-means clustering to cluster data samples into K
clusters {Cy, Cy, ..., Ck}.

models, it should be pointed out that we use the average of
three-phase current and voltage to calculate the measurement
correlation.

The modified Laplacian matrix £ can be defined as

L=(D—-29)+ uD—A), “4)

where w is a penalty term, without losing generality, to bal-
ance the influences on grid partition result from static topology
and dynamic data structure. Then, the eigenstructure of the
Laplacian matrix £ is analyzed to decide which cluster the
nodes belong to. The details of the modified spectral clustering
can be found in Algorithm 1.

C. Cyber Attack Localization Within Sub-Regions

Combining our proposed cyber attack detection and modi-
fied spectral clustering, the cyber attack can be located into a
sub-region of the large-scale networks. Furthermore, we need
to locate the cyber attack within the sub-regions. Following
the assumption that the affected waveform signals show dif-
ferent influences according to the distances between the sensor
locations and the cyber attack location, we propose a signal
anomaly strength-based approach to detect the exact loca-
tion of the cyber attack. The location of WMU'’s placement
plays a vital role in better observability and localization of
cyber attacks. Note that, in our study, we assume the topol-
ogy is known beforehand. Comparing the abnormal scales, the
relative distances can be determined. Therefore, the relative
locations in the topology can be inferred. However, some-
times, this approach may provide a range instead of a node
point, which is already an improvement using limited sensors.

The disturbance at the point of impact of stone is stronger,
but it fades out soon, and at the other end of the lake, no
such disturbance can be visibly detected. Similarly, the WMU
can detect the cyber attacks if they are near the cyber attack
location, and in some cases, multiple WMU can detect the
cyber attacks. Cyber attacks which have a more significant
impact will generate obvious signatures and can be detected in
multiple WMU. However, some minor cyber attacks or cyber
attacks are local, and their signatures are not strong enough
to be picked up by WMUs far in the electrical distance in the
network. Therefore, we compute statistical parameters and get
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a normalized score to determine the WMU with the strongest
signal for a particular. This method helps extract information
based on WMU data.

1) Impact Scores of WMUs: To characterize the pattern
of the waveform data, we proposed the following four (4)
statistical measures:

o Standard Deviation o: o is suitable for measuring the

data distribution and in our case the disturbance caused
by the attack in waveform data. o can be calculated as:

1 N
5 2 Xi—w?, (5)
i=1

where ‘X’ is the stream data, ‘i’ is the index of the
stream data window length ‘N’, and u is the mean of
data window.

e Range: Range measures the pattern variation of WMU
data during the cyber attack. It can be expressed as:

Range = |max(X;) — min(X;)|, (6)

where the data ranges from ‘=1’ to i = N’ and N is
the window length.

e Mean Difference (MD): MD is calculated using data
points in previous and current windows. MD captures the
information on the magnitude shift, and is defined as:

; (7

where fprevious and current are the mean value of the
previous and current data windows, respectively.

o Peak Factor (PF): PF measures the severity of the crest of
the data during cyber attacks. A WMU close to the cyber
attack would have a larger PF than a WMU which is far
away from the cyber attack. PF is calculated following:

PF= 00 ma;(X,) - (8)
N Zi:l Xi)

The nearest WMU from the cyber attack location regard-
ing electrical distance will see more prominent cyber attack
signatures. The respective values of the above discussed sta-
tistical measures would be higher. However, it is unfeasible to
compare the scores of each measure computed above across
WMUs. Normalization helps in the identification of promi-
nent WMUs for a particular cyber attack by comparing the
single-point scores. In our case, the normalized impact score
is calculated as:

MD = ‘Mprevious -

Mcurrent

IS = PF x (0 + Range + MD). ©)]

2) Forming Subgraph and Subgraph Scanning: After cal-
culating the normalized impact score, the next step is to select
the top WMUs based on the scores. Several WMUs detect
specific cyber attacks as their system-level impact is higher. A
cyber attack would be seen by multiple WMUs, and a trans-
former tap change or a load change would be sensed locally
by WMUs at those buses, at adjacent buses, or WMUs placed
close to the cyber attack bus in terms of electrical distance.

The process of the subgraph scanning and cyber attack
localization are explained in Algorithm 2. It takes the cluster-
ing result matrix and cyber attack detection result as the inputs.

IEEE TRANSACTIONS ON SMART GRID, VOL. 13, NO. 3, MAY 2022

Algorithm 2 Subgraph Scanning and Localization

Input clustering result matrix, cyber attack detection result.
Output Subgraph, Cyber Attack location

1: From the proposed spectral clustering result, select the
cluster which comprises the cyber attack nodes based on
the detection result.

2: Subgraph = selected cluster

3: Compute the Normalized Impact Score [Eq. (9)] for each
element in subgraph.
4. CyberAttackLocation = WMU with highest IS
5. if Cyber attack location is not on the WMU bus then
6: Pick the WMU with 2nd highest IS
7 CyberAttackLocation is in between the 1st highest IS
WMU and 2nd highest IS WMU
return SubGraph, CyberAttackLocation
TABLE I
DETAILS ABOUT FDI ATTACKS TOWARDS THE POWER GRID
Attack « B | Yy | Target
Casel diag[0 00 —0.9 —0.9 —0.900 0 0 0 0] 1 Yo PVI
Case2 diag[0.7 0.7 0.7 0.5 0.5 0.5 0.1 0.1 0.1] 0| Yo DER
Case3 diag[0 00.700000000 0] 1 Yo PV 1I

From the cyber attack detection result, the cluster including the
cyber attack nodes will be selected. Then, the normalized IS
score of each element in the selected cluster will be calculated.
Depending on if the cyber attack location is on the WMU bus
or not, the output cyber attack location will be the node with
the highest IS score or between the first highest IS score node
and the second highest IS score node.

IV. EXPERIMENT

Our design is designed for the cyber attacks towards active
distribution systems, while the experiment is evaluated and
demonstrated with DERs in the study cases.

A. Simulation Setup

First, an IEEE 37-node distributed grid is built in OPAL-
RT. Based on the power grid topology, two PV farms and a
VSI based DER are connected to the grid shown in Fig. 3.
The smart grid system is connected to the main power grid
via node 799, so node 799 can be viewed as a voltage source.
The PV farm I (node 727) has a power generation of 390kW;
PV farm II (node 710) has a power generation of 120kW; The
DER (node 744) has a power generation of 130kW.

The FDI attacks modeled in Section II are implemented in
PV farms and DER. Three FDI attacks, which are shown in
Table I, are designed for compromising the converter controller
of different DERs. In addition, an FDI induced three-phase
short circuit fault is also simulated to verify the algorithm
feasibility.

Using the OSP method [35], the sensor placement results
in the IEEE 37-node distribution network model are obtained
(Fig. 3), where 14 waveform sensors should be placed at
the corresponding nodes to make the system numerically
observable. Therefore, we collect 98 (7 x 14) dimension
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Fig. 3. A smart grid example with solar farms, which is based on the IEEE
37 node model. And the sensor locations from OSP are indicated by the black
filled circles.
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Fig. 4. Current waveform examples captured by WMU sensors: (a) Node
744 under normal case; (b) Node 744 under cyber attack; (c) Node 744 when
node 706 is under cyber attack; (d) Node 733 when node 710 is under cyber
attack.

streaming data, where 3 phase currents, 3 phase voltages, and
1d time stamp are included. To fully observe the power system
behaviors, including both normal and abnormal activities, we
simulated one (1) minute long data. Because of the 10000 Hz
sampling frequency, the data length is 600001, resulting in a
data measurement matrix 98 x 600001 for each case. Thus, effi-
cient data analysis is required to process the extensive amount
of data. Figs. 4 and 5 show the examples of the WMU current
and voltage data samples in different cases, respectively.

B. Cyber Attack Detection

As described in Section III-A, our previous MLSTM model
is adopted to implement real-time cyber attack detection. We
also compare it with linear regression, CUSUM [38], and
DBSCAN [39]. The comparison results are shown in Table II.
In a quantitative data-driven experiment evaluation, there are
four important metrics: true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN). TP denotes
the rate of actual attack correctly predicted as an attack, TN
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Fig. 5. Corresponding voltage waveforms to the current waveforms shown
in Fig. 4 captured by WMU sensors. Note that the waveform distortions are
more obvious in the current waveforms.

TABLE I
PERFORMANCE OF DIFFERENT DETECTORS

Methods Precision | Recall
Linear Regression 0.8803 0.6425
DBSCAN 0.6213 0.5977
CUSUM 0.7296 0.7401
Proposed 0.9523 0.9662

denotes the rate of actual normal correctly predicted as normal,
FP denotes the rate of actual attack is incorrectly predicted
as normal, FN denotes the rate of actual normal incorrectly
predicted as normal. Precision (Precision = TP/(TP + FP))
and recall (Recall = TP/(TP + FN)) are used to evalu-
ate the model’s performance in a more comprehensive way.
Precision shows what proportion of positive identifications
was actually correct, which quantifies the number of posi-
tive class predictions that actually belong to the positive class.
Recall tells what proportion of actual positives was identi-
fied correctly, which quantifies the number of positive class
predictions made out of all positive examples in the dataset. By
combining both Precision and Recall, we could have a more
accurate understanding of our model’s performance, especially
when dealing with an unbalanced dataset.

C. Active Distribution System Partition Results

To compare, we applied both the traditional spectral clus-
tering algorithm and the modified spectral clustering defined
in Algorithm 1 to implement the grid partitioning. We demon-
strate the power grid partitioning result based on the traditional
spectral clustering method in Fig. 6, and the result based on
the proposed method in Fig. 7. Our proposed method brings
in a more condensed and connected clustering result, making
more sense in the sub-region partitioning.

Two cases are discussed here. The first case is that a cyber
attack towards the PV farm inverter (node 727) happens.
Figs. 8 and 9 show the network partitioning results based on
the traditional spectral clustering and the proposed modified
spectral clustering method, respectively. Although most nodes
have the same clustering results, some nodes are showing
different output labels, such as nodes 702 and 732. The clus-
tering results in Fig. 8 has some problems, such as node 742,
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Fig. 6. Power grid partitioning result based on the traditional spectral cluster-
ing method in the IEEE 37-node model. Clustered grid nodes are in different
colors.
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Fig. 7. Power grid partitioning result based on the modified spectral clustering
method in the IEEE 37-node model. Clustered grid nodes are in different
colors.

which should belong to the same cluster as nodes 705 and 702
because they were clustered together in the normal case shown
in Fig. 7 and the cyber attack does not happen near this sub-
region. The second case is that an FDI induced three-phase
ground fault (short circuit) at node 706.

Fig. 10 demonstrates the dynamic grid partitioning via tradi-
tional spectral clustering, while the proposed modified spectral
clustering result is shown in Fig. 11. Intuitively speaking, the
modified spectral clustering generates a better result, as the
nodes belonging to the same clusters are also geographically
located in the same sub-regions. In contrast, some node
clustering results in Fig. 10 do not entirely make sense.

To quantitatively analyze the grid partitioning results, we
employ the Silhouette score [40] as the index to evalu-
ate the performance of the clustering results. In general, a
higher Silhouette value indicates a closer electrical connection

IEEE TRANSACTIONS ON SMART GRID, VOL. 13, NO. 3, MAY 2022
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Fig. 8. Network partitioning result based on the traditional spectral clustering
when a FDI attack occurs at node 727.
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Fig. 9. Network partitioning result based on the proposed clustering method
when a FDI attack occurs at node 727.

738

inside the sub-region and a looser connection among various
sub-regions. The results of the average Silhouette scores of
three different clustering methods in two cases are shown in
Table III.

We can observe that in both cases, the average Silhouette
scores of the proposed modified spectral clustering results
are generally higher than the other ways. A higher average
Silhouette score indicates that our proposed approach obtains
a superior supervised clustering result in terms of the correla-
tion or inner distance. Thus, in both qualitative and quantitative
analysis, our proposed approach achieves better results.

D. Cyber Attack Location in the Sub-Regions

After clustering nodes into different groups, a more accurate
cyber attack location should be estimated. To confirm the cyber
attack location, our proposed subgraph scanning and local-
ization algorithm is conducted, whose detail is explained in
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Fig. 10. Network partitioning result based on the traditional spectral
clustering when a FDI attack occurs at node 706.

TABLE IIT
SILHOUETTE SCORE TABLE FOR IEEE 37-NODE MODEL

Cases Methods Average Silhouette score
proposed method 0.8176
Cyber attack | spectral clustering 0.7611
Kmeans 0.5707
proposed method 0.8056
Ground fault | spectral clustering 0.7678
Kmeans 0.7822
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Fig. 11. Network partitioning result based on the proposed modified spectral
clustering when a FDI attack occurs at node 706.

Algorithm 2. The statistical IS (impact score) of every poten-
tial cyber attack location would be calculated, and the node
getting highest IS score would be considered as the cyber
attack location or the place nearest to the cyber attack loca-
tion. Taking the FDI attack case at node 727 (Fig. 9) and fault
case at node 706 (Fig. 11) as the examples, we calculate the
IS score to determine the cyber attack location.
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Fig. 12. IS scores for attack on node 727: (a) the whole topology and (b) the
subgraph. In both figures, node 727 obviously has the highest IS.
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Fig. 13. Sub-regions (a) with the cyber attack and (b) without the cyber
attack in Fig. 11.

For the FDI attack case, combined with detection result and
clustering results, we located the target locations to node 709,
744, 727 as shown Fig. 9. There IS results are shown in the
right-side figure in Fig. 12, which shows that node 727’s IS is
the highest when the attack is happening, indicating the cyber
attack should be located in there, and it is actually correct. The
left figure shows the IS scores for all the nodes in our power
network. Among all the nodes, the node 727’s IS is still the
highest. It could capture some global topology information
but not exactly. Moreover, calculating global IS would cost
much more time than just calculating the nodes in the
sub-graph.

For the cyber attack case at node 706, combined with
detection result and clustering results, we located the target
locations to node 707, 714, 725 as shown Fig. 11. Fig. 13
shows two sub-regions with cyber attack (Fig. 13(a)) and
without cyber attack (Fig. 13(b)).
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Fig. 14.  (a) IS score for FDI induced three phase short circuit fault on

node 706. (b) zoom in version of (a). From both figures, node 725 obviously
has the highest IS, which is nearest to the cyber attack location.

Their IS results are shown in Fig. 14. It shows that node
725’s IS is the highest when the fault is happening, but in
this case, it’s not the same node; otherwise, the difference
between each node should be more significant.Therefore, the
cyber attack location should be node 706, which is correct.

We evaluate our localization performance by comparing
with the NS (Normalized Score) in the reference [41], which
is calculated to locate the cyber attack location in the network
using micro-PMU data. Fig. 15 shows the NS results for the
nodes of the subgraph in both FDI attack cases. From the fig-
ure, we can see that the NS score works well in the ground
fault case. However, for the attack on node 727, the result
leads us to the wrong location. The NS scores of Node 744
and 727 are higher than the cyber attack location node 725,
and they are not distinguishable, which means ours IS score
is more robust in terms of the waveform data.

E. Robustness and Sensitivity Analysis

To investigate the robustness and sensitivity of the proposed
method against various measurement noises, we add white
Gaussian noise to the signal with different Signal Noise Ratios
(SNRs). Table IV shows the result of an attack on node 744.
To get the detection accuracy and Silhouette score in the table,
we conduct 20 times experiments with random noise and cal-
culate the average. For the localization accuracy, we only take
account when the subgraph is correctly located. Then calcu-
late the average of 20 times experiments. From the result,
our proposed method has great robustness against noise, even
doing good when SNR is 5 dB. When SNR equals 0 dB,
the signal is submerged by the noise. Since the measurement
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2 x10°

0
2 (@)

-4

—Node 709
—Node 744
Node 727

-6

Normalized Score

9.5 10 10.5 11
Time(second)

x10°

2 —Node 707

(b) —Node 714

Node 725

Normalized Score

-10

-

9.5 10 10.5 11

Time(second)

Fig. 15.
fault case.

NS score results: (a) FDI attack case and (b) FDI attack induced

TABLE IV
PERFORMANCE WITH DIFFERENT LEVELS OF GAUSSIAN WHITE
NOISE (CYBER ATTACK ON THE NODE 744)

SNR level
20dB 15dB 10dB 5dB 0dB
Detection accuracy 100% 100% 90% 70% 55%
Silhouette score 0.7624 | 0.7601 | 0.6912 | 0.6110 | 0.5411
Localization accuracy | 100% 100% 95% 85% 70%
TABLE V

PERFORMANCE WITH DIFFERENT LEVELS OF LAPLACE
NOISE (CYBER ATTACK ON THE NODE 744)

SNR level
20dB 15dB 10dB 5dB 0dB
Detection accuracy 100% 100% 90% 68% 56%
Silhouette score 0.7615 | 0.7603 | 0.6933 | 0.6102 | 0.5451
Localization accuracy | 100% 100% 93% 82% 70%

noise may not follow Gaussian distribution, we also consid-
ered adding Laplace noise (u = 0 and b = 1) to the signal.
Compared with normal distribution, the Laplace distribution
has more flatten or long tails data, which means it has big-
ger variance. The result is shown in Table V. From the result,
we can tell there is no significant difference between Laplace
noise and Gaussian noise. Both of them perform well until
the signal is almost overwhelmed by noise. It shows that our
method captures the characteristics of the sequential data as a
whole, which makes it of good robustness.
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Fig. 16.
in yellow.

IEEE 123-bus distribution system. The WMU sensors are marked

TABLE VI
WMU SENSORS IN IEEE 123-BUS SYSTEM

WMU Sensors Installed Bus Total No. | Percentage
1, 3,5, 8, 14, 15, 19, 21, 23, 27, 29, 31, 36,
38, 40, 42, 45, 47, 50, 53, 55, 58, 60, 62,
65, 67, 70, 72, 74, 78, 82, 84, 87, 89, 91, 51 41.5%
93, 95, 99, 103, 105, 106, 110, 113, 135,
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Fig. 17. Power grid partitioning result based on the proposed spectral cluster-
ing method in the IEEE 123-bus model. Clustered grid nodes are in different
colors.

F. Performance in a Larger-Scale System

To show the scalability of the proposed method, we test
the proposed method on the widely used IEEE 123-bus distri-
bution system (Fig. 16), which contains the distribution lines
and loads in single-phase, two-phase, and three-phase [42]. To
guarantee the observability, WMU sensors are installed on 51
buses which is 41.5% of the total amount (details can be found
in Table VI).

Following the same setup of the previous IEEE 37-node
distributed grid experiment, the IEEE 123-bus system is built
in OPAL-RT as well. Three FDI attacks against DER1 and
DER2 have been modeled. Figs. 17 and 18 illustrate the par-
tition results when an FDI-induced three-phase ground short
circuit fault happens for traditional spectral clustering and our
proposed method, respectively. The quantitative results for all
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Fig. 18. Power grid partitioning result based on the traditional spectral

clustering method in the IEEE 123-bus model. Clustered grid nodes are in
different colors.

TABLE VII
SILHOUETTE SCORE TABLE FOR IEEE 123-Bus MODEL

Cases Methods Average Silhouette score
proposed method 0.7689
FDI attack #1 spectral clustering 0.6529
Kmeans 0.5322
proposed method 0.7815
FDI attack #2 spectral clustering 0.5923
Kmeans 0.5328
proposed method 0.7615
FDI-induced fault | spectral clustering 0.5119
Kmeans 0.5262

cases are shown in Table VII. The proposed approach not only
works in this larger grid, but also generates superior results
compared to other methods.

G. Approach Feasibility Discussion

The voltage and current waveform measurements in our
study are provided by WMUs (Section III-A). Such emerg-
ing sensors are well-suited to study transient events in power
distribution systems [43]. Till now, WMU has been adopted in
a few applications, such as harmonic addition and cancellation
in transformers [8], sub-synchronous resonance analysis [12],
and power quality event localization [44]. Typically, a WMU
can report 256 readings per cycle [45]. To support synchro-
nized measurements at a such high rate, WMUs have a time
accuracy of 1 u second [45]. In our IEEE 123-bus study case,
the sampling rate is 5000 Hz, namely around 83 readings per
cycle, which means the measurement provided by a typical
WMU is more than enough to locate nodes under attack.

V. CONCLUSION

In this paper, we proposed an adaptive hierarchical cyber
attack localization approach for active distribution systems.
Electric waveform signals obtained by WMU sensors are used
to capture the abnormal features, which would be otherwise
ignored. To improve the efficiency, we propose a modified
spectral clustering method to first partition the whole large
network into smaller ‘coarse’ sub-regions. Next, the accurate
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‘fine’ cyber attack location can be determined by calculating
and analyzing Impact Score of each sensor in the potential
sub-region. Furthermore, we compare our method with other
methods in each step in cyber attack detection, sub-graph clus-
tering, and localization, respectively. The results from two
representative distribution grids show that our method shows
promising performances.

APPENDIX
MODELING DISTRIBUTED ENERGY RESOURCES

With more and more DERs integrated into power system,
a growing number of security problems are being exposed
constantly. Also, the cyber-phyiscal security becomes prior-
ity especially considering the evolution of smart inverters in
DERs. Here, FDI attacks on PV converter and voltage source
inverter are modeled.

A. Two-Stage Two-Level PV Converter Model

As shown in the Fig. 2, two-stage PV converters are
constructed. The first stage includes PV array and DC/DC
converter. The PV array voltage Uy, and current I, are the
input of DC/DC controller. The MPPT algorithm is applied in
DC/DC controller so that PV array generates maximum power
to inverter. And the second stage comprises DC/AC inverter
and LCL filter. In the DC/AC controller, voltage control loop
is used to maintain DC link voltage and generate the current
reference I}Z’; for the current control loop. The reactive power
control loop is built in the controller and determines the Iy,.
The current loop can be expressed as,

L )
Uig = kp<1fd - Ifd) + ol
il 1)
Uy = ko (B = 1) + — (A1)
where, Iy , is inverter side current in the LCL filter, and Ly is
the inductance in LCL filter, k,, k; are the PI parameters, U ;kd
is the control signal to PWM. The inverter and LCL filter can

be modeled as follow,

+ wlyly,

. 1
Ity = —(Uig — Ucq) + olyy,
Ly
1

—(Uig = Ucq) — olpa,

Iy = L

, 1
Uca = _f(lfd - Igd) + CUch’

(A2)

B. Model of DER Based on Voltage Source Inverter (VSI)

Besides the PV farm, some DERs do not only offer power
to the grid but also maintain stability of frequency and voltage.
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Voltage source inverter (VSI) DER model.

As shown in Fig. A.1, a DER model based on voltage source
inverter is built. DC capacitor voltage represents the renewable
energy, e.g., wind turbine, battery, etc. The droop control loop
is constructed in the controller, which can be expressed as,

® = w, — myP,

wnt—fmdet,

vy =V —n40, v(’; =0,

(A3)

where w, is the rated frequency, m, is active power droop
coefficient, n, is active power droop coefficient, P and Q are
power reference. Also, the voltage and current control loop is
modeled in the controller. Both of two control loop is achieved
with a standard PI controller. The current control loop in the
VSl is same as in the PV converter. Thus, the model of voltage
control loop is only introduced as follow,

kiy(U*, — U,
I};, = kpv( = Ucd) + w — 0CrUcq,
kiv(U*, — U,
If*q = PV(U:d - Ucd) + M + waUCd’ (A'4)

where, I;;, q is current reference for current control loop, and
Cris the capacitor in LCL filter, kpy, ki, are the PI parameters,

- d.q is voltage reference for voltage control loop, Ucg,4 is the

capacitor voltage in d,q framework.
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