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Classifying topology in photonic heterostructures with gapless environments
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Photonic topological insulators exhibit bulk-boundary correspondence, which requires that
boundary-localized states appear at the interface formed between topologically distinct insulat-
ing materials. However, many topological photonic devices share a boundary with free space, which
raises a subtle but critical problem as free space is gapless for photons above the light-line. Here, we
use a local theory of topological materials to resolve bulk-boundary correspondence in heterostruc-
tures containing gapless materials and in radiative environments. In particular, we construct the
heterostructure’s spectral localizer, a composite operator based on the system’s real-space descrip-
tion that provides a local marker for the system’s topology and a corresponding local measure of
its topological protection; both quantities are independent of the material’s bulk band gap (or lack
thereof). Moreover, we show that approximating radiative outcoupling as material absorption over-
estimates a heterostructure’s topological protection. As the spectral localizer is applicable to systems
in any physical dimension and in any discrete symmetry class, our results show how to calculate
topological invariants, quantify topological protection, and locate topological boundary-localized
resonances in topological materials that interface with gapless media in general.

Recent advances in topological photonics [1–3] have
led to the development of novel technologies including
topological lasers [4–12] and devices that create and
route quantum light [13–20]. However, the utility of
many of these devices is predicated on the presence
of, and potential coupling to, scattering channels in
the surrounding environment that are degenerate with
the boundary-localized topological states that underpin
these devices’ functionality. Thus, even though these de-
vices can feature photonic crystals or other lattices with
complete topological band gaps in their interior, their
boundary-localized states are generally resonances, not
bound modes, which radiate into the surrounding envi-
ronment as free space is gapless above the light line.

Unfortunately, the fact that the typical environment
for topological photonic structures is gapless, rather than
gapped (i.e., insulating), presents a fundamental chal-
lenge to our understanding of these devices. Heuristi-
cally, topological boundary-localized modes form at the
interface between two gapped materials with different
bulk invariants as a resolution to the need for band con-
tinuity across the heterostructure’s interface; the band
gap must close in the vicinity of the interface so that
the different bulk invariants can be reconciled, yielding
interface-localized states [1], see Fig. 1a. Indeed, tradi-
tional approaches to material topology have been highly
successful at predicting the interface phenomena in het-
erostructures featuring topologically non-trivial insula-
tors [3, 21–24] and semimetals [25–37]. But, if at least
one of the materials in a heterostructure is gapless, this
explanation fails, as the band gap must close in the vicin-
ity of the interface regardless (so as to satisfy bulk band
continuity between the two materials); any need to recon-
cile different bulk material topologies could occur as part
of this standard band closing process without resulting

FIG. 1. (a) Schematic of the local density of states as the
probed position is varied across the interface of a heterostruc-
ture formed by a trivial insulator and topological insulator
with a common bulk band gap. (b) A similar schematic, ex-
cept in which the trivial material is gapless.

in topological interface-localized states or resonances, see
Fig. 1b. Note, in this context “gapless” specifically refers
to a d-dimensional material with (d − 1)-dimensional
isofrequency contours over a given range of wavelengths
(i.e., those wavelengths in the other material’s bulk band
gap). Thus, the plethora of photonic experiments that
have observed topological boundary-localized resonances
in devices that abut and radiate to free space suggests
that material topology must be definable in heterostruc-
tures containing a gapless material, even if the lack of
a global bulk band gap prohibits the use of traditional
theories of physical topology.
Here, we identify topological boundary-localized res-

onances and quantify their protection in gapless het-
erostructures with radiative environments using a the-
ory of topological materials based on their real-space de-
scription. To do so, we construct the heterostructure’s
spectral localizer, a composite operator that combines a
system’s Hamiltonian and position operators with a Clif-
ford representation, and which provides local topologi-
cal markers and a spatially resolved measure of protec-
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tion even for non-Hermitian systems. We demonstrate
this topological classification approach on a 2D pho-
tonic Chern crystal embedded in free space with radia-
tive boundary conditions. Using this model, we also show
that radiative losses and material absorption have quali-
tatively different consequences for a system’s topological
protection, and approximating radiative outcoupling as
absorption will substantially overestimate the protection
of the boundary-localized resonances. Finally, we pro-
vide an example of how topological robustness against
system disorder manifests in this real-space classification
approach. Our results prove that bulk-boundary corre-
spondence is still required in gapless heterostructures,
providing a rigorous framework for understanding many
types of topological photonic devices.
We begin by considering a prototypical topological

photonic system consisting of a photonic Chern insulator
embedded in free space. In particular, we use a finite por-
tion of the 2D magneto-optic photonic crystal proposed
by Haldane and Raghu [38, 39] surrounded on all sides
by vacuum, with the radiative boundary condition im-
plemented using stretched-coordinate perfectly matched
layers (PML) [40], see Fig. 2a. When an external mag-
netic field is applied, a topologically non-trivial band gap
opens in the photonic crystal’s transverse electric (TE)
sector that supports chiral edge modes within this gap,
see Fig. 2b. As the photonic crystal in our model system
is finite, all of its states, including its chiral edge modes,
are resonances as they decay due to radiative outcou-
pling. These chiral edge resonances can be seen in the
system’s local density of states (LDOS) within the bulk
band gap of the photonic Chern insulator, Fig. 2c. Al-
together, this model system preserves all of the salient
features of many topological photonic systems that have
been previously experimentally observed [41, 42], but
whose topological protection cannot be quantified using
topological band theory because the materials that form
the heterostructure lack a common bulk band gap.
Instead, to prove that the gapless heterostructure in

Fig. 2a must possess protected boundary-localized res-
onances due to the non-trivial topology of the central
lattice, we employ the spectral localizer [43–45]. For a d-
dimensional system, the spectral localizer is a composite
operator that combines the system’s Hamiltonian H and
position operators X1, X2, ..., Xd using a non-trivial Clif-
ford representation, and yields both a local topological
marker and local measure of protection. For the non-
Hermitian 2D system that we consider here, we can use
the Pauli matrices as the Clifford representation (as they
generate a representation of Cℓ3(C)) to write the spectral
localizer as [46]

L(x,y,ω)(X,Y,H) = (1)
(

H − ωI κ(X − xI) − iκ(Y − yI)
κ(X − xI) + iκ(Y − yI) −(H − ωI)†

)

.

Here, x, y, ω are the choices of position and frequency
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FIG. 2. (a) Schematic of a 2D photonic Chern insulator em-
bedded in free space εfs = 1 with radiative boundary con-
ditions. The topological photonic insulator is comprised of
dielectric rods εrod = 14 with spacing a in a magneto-optic
background εmo =

(

1 −iν
iν 1

)

. (b) Bulk band structure for the
photonic Chern insulator for the TE modes with ν = 0 (light
red) and ν = 0.4 (dark red), and the transverse magnetic
(TM) modes that are independent of ν. (c) Local density of
states for the finite system at ω = 0.37(2πc/a). (d) Local gap
µC with overlaid local index (CL = 1 is shown as magenta)
for the finite system at ω = 0.37(2πc/a). Both (c) and (d) are
shown on the same spatial scale as (a). (e) Spectral flow of
the real parts of the 20 eigenvalues of L closest to 0 for y fixed
to the center of the finite system (shown as the green line in
(d)), and at ω = 0.37(2πc/a). (d) and (e) are calculated using
κ = 0.04(2πc/a2).

where the spectral localizer is evaluated, X and Y are
the 2D position operators, I is the identity matrix, and
κ is a positive scaling coefficient with units of frequency
times inverse distance.

Intuitively, the spectral localizer can be viewed as a
composition of the eigenvalue equations (such as (H −
ωI)|ψ〉 = 0) of the (generally) non-commuting operators
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X,Y,H using the Pauli matrices. Despite the lack of a
joint spectrum for X,Y,H , the spectral localizer can be
used to determine whether a given choice of x, y, ω yields
an approximate joint eigenvector of X,Y,H , i.e. is there
some vector |φ〉 for which H |φ〉 ≈ ω|φ〉, X |φ〉 ≈ x|φ〉,
and Y |φ〉 ≈ y|φ〉 [47]. A measure of how good these
approximations are is given by

µC
(x,y,ω)(X,Y,H) = min(|Re[σ(L(x,y,ω)(X,Y,H))]|), (2)

i.e., minimum distance over all of the eigenvalues of L
from the imaginary axis, where σ(L) is the spectrum of
L. Here, smaller values of µC

(x,y,ω) indicate that x, y, ω
are closer to yielding a joint eigenvector of X,Y,H , and
those x, y, ω where µC

(x,y,ω) ≤ ǫ define the system’s Clif-

ford ǫ-pseudospectrum [43, 47] (the superscript C denotes
Clifford). Note that even if µC

(x,y,ω)(X,Y,H) = 0, these
approximations do not become exact.
A physical picture of the spectral localizer’s connec-

tion to material topology can be built from the behavior

of atomic limits. In an atomic limit, [H(AL), X
(AL)
j ] = 0,

which stems from the system’s Wannier functions being
localized to a single lattice site [48]. This commuta-
tion relation, coupled with the fact that position oper-
ators commute [Xj , Xl] = 0, requires the eigenvalues of
L(x,y,ω) to be equally partitioned between having posi-
tive and negative real parts for any choice of x, y, ω (i.e.,
for atomic limits sig(L(x,y,ω)) = 0, where sig denotes a
matrix’s signature, its number of eigenvalues with posi-
tive real parts minus its number with negative real parts)
[49]. However, just as 0D systems can be topologically
classified based on the number of eigenvalues they possess
above and below a specified band gap [50], 2D systems
can be locally classified based on the partitioning of the
spectrum of L(x,y,ω), assuming that µC

(x,y,ω) > 0 [43].

Thus, if a generic system with [H,Xj ] 6= 0 has
sig(L(x,y,ω)) = 0, then it is continuable to an atomic
limit via a path of invertible matrices for that choice
of x, y, ω, i.e., the system is locally topologically trivial.
Conversely, if sig(L(x,y,ω)) 6= 0, there is an obstruction to
finding such a path, and the system is topologically non-
trivial at that x, y, ω. As this classification approach is
not restricting the matrix continuation path to preserve
any system symmetries, the signature of L defines a local
Chern marker,

CL
(x,y,ω)(X,Y,H) = 1

2 sig[L(x,y,ω)(X,Y,H)] ∈ Z. (3)

Moreover, as the partitioning of the spectrum of L(x,y,ω)

cannot change without µC
(x,y,ω) = 0, µC

(x,y,ω) is a mea-
sure of the topological protection in a system and can be
thought of as a “local band gap.”
Altogether, the spectral localizer can be understood

as a method for performing dimensional reduction con-
sistent with Bott periodicity [43]. After dimensional re-
duction, the local invariants for all ten discrete symme-
try classes become essentially one of the three invariants

introduced by Kitaev [50], i.e., matrix signatures for Z

invariants, or signs of determinants or signs of Pfaffians
for Z2 invariants.
To apply the spectral localizer to the photonic crystal

heterostructure considered in Fig. 2a, we first reformulate
Maxwell’s equations into a Hamiltonian, with

H(x) =M−1/2(x)WM−1/2(x), (4)

W =

(

0 −i∇×
i∇× 0

)

, and M(x) =

(

µ(x) 0
0 ε(x)

)

.

In doing so, we are assuming that the frequency depen-
dence of the permittivity ε and permeability µ tensors
can be neglected over the frequency range of interest,
and that both are semi-positive definite [51]. To use this
Hamiltonian in Eq. (1), it must be discretized so that it
becomes a bounded, finite matrix. Here, we use a stan-
dard 2D Yee grid [52]. The discretization scheme also
defines the position operators X,Y , which in the basis
of Eq. (4) are diagonal matrices whose elements [X ]jj
and [Y ]jj correspond to the spatial coordinates of the
jth vertex in the discretization. Note that the stretched-
coordinate PML makes W non-Hermitian.
Overall, the spectral localizer numerical approach

is similar to frequency-domain methods for solving
Maxwell’s equations because only a single frequency is
considered within a given simulation. However, as Eq.
(1) also requires specifying x, y for each simulation and
L(x,y,ω) is connected to the approximate joint eigen-
vectors of X,Y,H , the spectral localizer approach is
better classified as a “pseudospectral-domain” method.
Thus, our implementation of Eq. (1) is a finite-difference
pseudospectral-domain (FDPD) method and is publicly
available [53, 54].
Applying the spectral localizer to the topological pho-

tonic system considered in Fig. 2a shows that for fre-
quencies within the topological band gap of the photonic
Chern crystal, the local gap µC closes around the bound-
ary of the crystal, inside which the local Chern number
becomes non-trivial CL

(x,y,ω) = 1, see Fig. 2d. Moreover,
monitoring the spectrum of L near zero as one of the
coordinates is varied across the system (fixing the other
coordinate and ω) directly shows the lone eigenvalue of
L responsible for the change in the system’s local Chern
marker, see Fig. 2e. As locations where µC

(x,y,ω) ≈ 0 in-
dicate the presence of an approximate eigenstate of H
with eigenvalue near ω that is simultaneously approxi-
mately localized near x, y, the local gap closing around
the topological photonic crystal can be understood as the
manifestation of bulk-boundary correspondence in the
spectral localizer framework. Thus, the spectral localizer
proves that the boundary-localized resonances observed
in topological photonic systems embedded in free space
stem from the non-trivial topological material, and the
fact that µC

(x,y,ω) > 0 in free space away from the in-

terface (despite free space’s gaplessness) is a measure of
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FIG. 3. Local gap and overlaid topological marker (CL = 1
shown in magenta) for the system shown in Fig. 2a with
added disorder with strengths ‖Ψ†δHΨ‖/µC

0 = 1.40 (left) and
‖Ψ†δHΨ‖/µC

0 = 41.73 (right) relative to the local gap at the
center of the ordered system µC

0 = 0.0185(2πc/a2). Disor-
der has been added to the high dielectric rod positions and
dimensions and the disorder strength is calculated using the
m = 370 eigenvectors of H closest to ω, see Supplemental
Materials [54]. Both figures are shown using the same spatial
scale as Fig. 2d, with ω = 0.37(2πc/a) and κ = 0.04(2πc/a2).

topological protection for this state.

The spectral localizer’s dependence on the choice of κ
in Eq. (1) can initially appear problematic. Indeed, for
κ = 0, L is block-diagonal, and its spectrum is always
evenly partitioned such that CL = 0. Conversely, for
κ ≫ 1, L simply reveals the (exact) joint spectrum of
X and Y . However, in between these two limits there
is a broad range of κ over which a material’s topological
properties can be correctly predicted and remain effec-
tively constant. In insulators, such a range always exists
[44]. Moreover, in practice we find for our model system
that κ can be varied over more than two orders of magni-
tude while CL

(x,y,ω) remains unaffected and µC
(x,y,ω) only

varies over a factor of two, see Supplemental Materials
[54].

Having proven that the chiral edge resonances seen in
Fig. 2 are of topological origin, we now demonstrate their
topological protection. In general, a system’s topology
at x, y, ω cannot change without µC

(x,y,ω) → 0, as the

local gap must close for one (or more) of the spectral
localizer’s eigenvalues to cross the imaginary axis. For
Hermitian systems (which are Lipschitz continuous), one
can prove that for a system perturbation δH to close
the local gap µC

(x,y,ω)(X,Y,H + δH) = 0, this pertur-
bation must be at least as strong as the local gap is
wide ‖δH‖ ≥ µC

(x,y,ω)(X,Y,H) [43]. For non-Hermitian
line-gapped systems such as the one we consider here,
this same criteria approximately holds [46]. However,
this known limit is not useful for evaluating the topolog-
ical protection of photonic systems. The problem is that
Maxwell’s equations (prior to discretization) represent an
unbounded operator, for which the ℓ2 norm is undefined.
Thus, after discretization, even relatively modest pertur-
bations will generally still yield substantial changes in
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FIG. 4. (a) Local gap for the system shown in Fig. 2a for
increasing values of the free space environment’s dielectric
εfs. (b) Similar to (a), except for increasing values of material
absorption in the high-dielectric rods of the photonic Chern
insulator, εrod = 14 + iγ, and with εfs = 1. Both figures are
plotted along the green path in Fig. 2d, with ω = 0.37(2πc/a)
and κ = 0.04(2πc/a2).

the eigen-frequency of at least one high frequency state,
yielding a large ‖δH‖. Intuitively, the challenge is that
µC
(x,y,ω) is a local measure of protection in both position

and frequency, yet ‖δH‖ is a global measure of the per-
turbation.

Here, we conjecture that the correct measure of a per-
turbation’s local strength is to project it into a subspace
near x, y, ω. For our model system, let Ψ be an n-by-m
matrix whosem columns are the eigenvectors ofH (which
is n-by-n) with eigenvalues that are closest to ω where
µC
(x,y,ω) is calculated. Then, the local marker at x, y, ω

cannot change so long as ‖Ψ†δHΨ‖ . µC
(x,y,ω)(X,Y,H).

In Fig. 3 we provide numerical evidence for this conjec-
ture by adding disorder to the positions and shapes of
the photonic Chern insulator’s high-dielectric rods in Fig.
2a and calculating the disordered system’s local topol-
ogy. As can be seen, the predicted lower bound of topo-
logical protection holds; in fact, the local gap substan-
tially underestimates the system’s topological protection
against this form of disorder. To instead demonstrate
that our predicted bound can be saturated, one can re-
move the external magnetic field, ν = 0, which both
makes the system topologically trivial and corresponds
to ‖Ψ†δHΨ‖/µC

0 = 1.81.

Beyond predicting a system’s topological protection
against crystal imperfections, the spectral localizer can
also be used to approximate a system’s robustness to
surface roughness. In particular, while crystal imper-
fections serve to decrease the system’s bulk band gap,
and thus the effects of such perturbations can be cap-
tured using topological band theory, the dominant effect
of surface roughness is to increase a system’s radiative
outcoupling. Thus, surface roughness cannot be consid-
ered without having a measure of topological protection
for heterostructures lacking a global band gap. Here,
we artificially increase our model system’s radiative out-
coupling by increasing the dielectric constant of the sur-
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rounding free space environment εfs. As can be seen in
Fig. 4a, even for values of εfs greater than any material in
the photonic Chern insulator, the spectral localizer is still
able to predict the topology of the crystal, as well as the
decreasing robustness of the chiral edge state. Given the
connection between µC and the approximate joint spec-
trum of the system’s operators, the decreasing local gap
outside of the system for increasing εfs is a manifestation
of the increasing support (i.e., decreasing localization) of
the chiral edge resonances outside of the photonic crystal.
In contrast, if one instead approximates radiative outcou-
pling as material absorption, the topological protection
of the chiral edge resonances is overestimated, see Fig.
4b, as this approximation does not properly capture the
salient physics that the system’s chiral edge resonances
are leaking out of the system’s boundaries.

In conclusion, we have proven that gapless topological
heterostructures still exhibit bulk-boundary correspon-
dence despite the absence of a global band gap and have
shown how to determine the protection of the resulting
interface-localized resonances even in radiative environ-
ments. As such, we have resolved a subtle outstanding
challenge in our understanding of topological photonics,
where previous approaches to classifying devices embed-
ded in air and operating above the light line required ap-
proximating free space to be trivially gapped. Through
the spectral localizer, we show that treating radiative
outcoupling as material absorption overestimates a sys-
tem’s topological protection. As the study of topological
photonics turns towards developing devices for specific
applications, the spectral localizer’s ability to accurately
predict topological robustness in radiative environments
may enable new photonic device designs that are better
protected against radiative outcoupling. Although we
have presented this classification approach in a photonic
systems, it is broadly applicable to topological materials
in general, and in the Supplemental Materials we pro-
vide examples of using the spectral localizer to classify
topology in gapless heterostructures formed from tight-
binding models [54].

A.C., T.L., and K.Y.D. acknowledge support from the
Laboratory Directed Research and Development program
at Sandia National Laboratories. T.L. acknowledges sup-
port from the National Science Foundation, grant DMS-
2110398. K.Y.D. acknowledges support from the U.S.
Department of Energy, Office of Basic Energy Sciences,
Division of Materials Sciences and Engineering (BES 20-
017574). This work was performed, in part, at the Cen-
ter for Integrated Nanotechnologies, an Office of Science
User Facility operated for the U.S. Department of Energy
(DOE) Office of Science. Sandia National Laboratories
is a multimission laboratory managed and operated by
National Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell Interna-
tional, Inc., for the U.S. DOE’s National Nuclear Se-
curity Administration under contract DE-NA-0003525.

The views expressed in the article do not necessarily rep-
resent the views of the U.S. DOE or the United States
Government.

∗ kydixon@sandia.gov
† awcerja@sandia.gov

[1] L. Lu, J. D. Joannopoulos, and M. Soljačić, Topological
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SI. The role of the scaling coefficient κ

In the spectral localizer, Eq. (1) of the main text, κ serves two roles: it ensures that the whole matrix has consistent
units, and it serves to tune the spectral localizer. This tuning is necessary because the two simple limits of κ are not
useful. When κ = 0, the spectrum of the spectral localizer is always equally partitioned about the imaginary axis as in
this limit L is block diagonal, with blocks (H−ωI) and −(H−ωI)†. In the opposite limit, when κ → ∞, the spectrum
of L simply identifies the joint spectrum of X and Y , which commute. This spectrum of L is also always symmetric
about the imaginary axis, for similar reasons as before. From this perspective, it is somewhat remarkable that there is
any regime of validity where the spectral localizer approach works at all, given that the two easily computable limits
do not contain any new information about the system in question.

However, even though these two limits are boring, for choices of κ in between these two limits the spectrum of L
can be highly non-trivial, i.e., when the spectral localizer sees information from both the system’s Hamiltonian and
position operators with relatively equal strength. Moreover, this range of κ where L is useful is relatively broad. In
Supp. Fig. 1a, we show the local gap µC over the same range of positions as is shown in Fig. 2e in the main text, except
calculated for values of κ that span a factor of 20. As can be seen, while different values of κ yield modestly different
values for µC, the variation in the values of the local gap is significantly reduced to being just a factor of 2. Moreover,
in Supp. Fig. 1b we show values of κ chosen on a logarithmic scale, and we can confirm that the system’s topological
index is preserved against different choices of κ over a range of at least κ = 0.0005(2πc/a2) to κ = 0.077(2πc/a2), i.e.
a range in excess of two orders of magnitude.
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Supplementary Figure 1. (a) Local gap µC calculated for the system from Fig. 2 in the main text along the same positions as
is shown in Fig. 2e (i.e., the green line in Fig. 2d). Here, we are using ω = 0.37(2πc/a). The different colored lines are showing
linearly spaced values of κ. (b) Similar to (a), except for logarithmicly spaced choices of κ = [1 · 10−5, 3.6 · 10−5, 1.3 · 10−4, 4.6 ·
10−4, 0.0017, 0.0060, 0.022, 0.077, 0.28, 1](2πc/a2).

But, if small values of the local gap µC are related to the appearance of localized states in the system, would not
the changes in the local gap due to different choices of κ render this theory useless? No. The reason is that bounds on
the approximations discussed after Eq. (1) in the main text also depend on κ. In particular, the quantities [H,κX ]
and [H,κY ] feature prominently in predicting the localization of states when µC = 0 [1, Prop. II.4]. Thus, while
different values of κ change µC, they also change the bounds in a similar way, yielding a consistent picture.
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SII. An efficient method for calculating the local index in non-Hermitian systems

Numerically, it is important to approach the determination of the local topological index CL
(x,y,ω) with some care,

especially in photonic systems. For example, the matrices X,Y,H in the system shown in Fig. 2a each have size
∼ 1.2 · 106 × 1.2 · 106 in our discretization. Attempting to calculate all of the eigenvalues of L(x,y,ω)(X,Y,H) will
cause most computers to run out of memory.
In Hermitian systems, one can make use of Sylvester’s law of inertia along with a standard L(x,y,ω)(X,Y,H) =

NDN † decomposition (called the LDLT decomposition) to substantially speed up this process [2, 3]. In particular,
sig(L(x,y,ω)) = sig(D), i.e., the signature of the spectral localizer is preserved under this form of factorization. Thus,
as there are fast sparse methods available to perform LDLT decompositions, it is relatively easy to find a system’s
local index.
However, this presents a challenge in non-Hermitian systems where Sylvester’s law of inertia no longer applies.

Instead, to avoid needing to calculate the full spectrum of L, we start by turning off the absorption from the
stretched-coordinate perfectly matched layer (PML), yielding a Hermitian system where the previous method works.
In particular, as our PML is implemented as

∂

∂x
→ 1

1 + iσmax

ω

(

x
LPML

)3

∂

∂x
(S1)

inside the absorbing boundary, where σmax is the maximum absorption achieved and LPML is the length of the
absorbing layer, the system can be made Hermitian by setting σmax = 0 (yielding a system bounded by Dirichlet
boundary conditions). A similar formula is used for the PML in y.
Thus, we can determine a non-Hermitian system’s local index by starting with a related Hermitian system whose

topological markers can be efficiently calculated, slowly turning on the non-Hermiticity, and monitoring the local gap
µC to ensure it remains open. Of course, if µC

(x,y,ω) 6= 0 along this path of different systems, the index at x, y, ω

cannot change as no eigenvalues could have crossed the imaginary axis. For the system we consider in the main text
in Fig. 2, we show this evolution of the local gap as a function of the boundary’s absorption in Supp. Fig. 2. As can
be seen, the introduction of the absorption does not yield any new locations where µC = 0, meaning that the index
of the topological photonic crystal in the center of the system remains the same as its index in a Hermitian version
of the system.
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Supplementary Figure 2. Local gap µC calculated for the system from Fig. 2 in the main text along the same positions as is
shown in Fig. 2e (i.e., the green line in Fig. 2d). Here, we are using ω = 0.37(2πc/a) and κ = 0.04(2πc/a2). The different
colored lines are showing linearly spaced values of σmax between 0 and 4, where σmax = 4 is the value used in all of the other
simulations of the photonic system in this work.

SIII. Additional details on the crystal disorder

In Fig. 3 of the main text, the local gap µC and local invariant CL are shown for two disorder configurations with
different disorder strengths. In Supp. Fig. 3, we show the dielectric distribution for these two disorder configurations.
These configurations are generated by changing the width, length (major and minor ellipse axes), and position of
the dielectric rods (which are circular in the ordered system). In particular, for each rod we generate four uniformly
distributed random numbers ξj ∈ [−0.5, 0.5]. Two of these random numbers are used to shift the x and y coordinates
of the rod’s center, xnew = x0 + wξ1 and ynew = y0 + wξ2, respectively. The other two random numbers treat the
rod as being an ellipse, and change the length of its major and minor axes by wξj/2. Here, w parameterizes the
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geometric strength of the disorder. However, given that the inverse square root of ε is what appears in the system’s
Hamiltonian, see Eq. (4) in the main text, there is no simple relationship between w and ‖Ψ†δHΨ‖.

Supplementary Figure 3. Schematics showing the geometry of the disordered systems discussed in Fig. 3 of the main text, with
geometric disorder strength w = 0.025 and w = 0.45. These schematics are shown on the same scale as Fig. 2a of the main
text.

Additionally, in the calculation of the strength of these disorder configurations, one must make a choice for how many
eigenvectors of the ordered system H to retain in Ψ for calculating ‖Ψ†δHΨ‖ (this number of retained eigenvectors
is m in the relevant discussion surrounding Fig. 3 in the main text, while the total number of possible eigenvectors is
n). Of course, ‖Ψ†δHΨ‖ must be dependent on m — clearly as m → n, ‖Ψ†δHΨ‖ → ‖δH‖ as the ℓ2 matrix norm
is basis independent. However, for a broad range of choices of m ≥ 180 that retain only a few hundred eigenvectors
of H , we find that ‖Ψ†δHΨ‖ is nearly independent of m, see Supp. Fig. 4. This justifies our choice of spectral
truncation for the disorder strength calculation, and the values quoted in the main text use the largest m shown in
Supp. Fig. 4, m = 370. For this value of m, a disorder parameter of w = 0.025 corresponds to a disorder strength
of ‖Ψ†δHΨ‖ = 0.026(2πc/a), and w = 0.45 corresponds to ‖Ψ†δHΨ‖ = 0.77(2πc/a). In the main text, these values
are compared against the local gap at the center of the ordered system, µC

0 = 0.0185(2πc/a), which is calculated at
ω = 0.37(2πc/a) using κ = 0.04(2πc/a2).
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Supplementary Figure 4. Dependence of the disorder strength ‖Ψ†δHΨ‖ on w, the magnitude of the random numbers chosen
to implement the disorder for different choices of m, the number of retained eigenvectors in Ψ. The choices of m are linearly
spaced between 10 and 370 in steps of 10.

SIV. Classifying the topology of gapless tight-binding heterostructures

While the main text focuses on applications of the spectral localizer to non-Hermitian photonic systems the spectral
localizer can be applied to any crystalline system. To demonstrate the broader applications of these methods we
consider examples of gapped and gapless topological heterostructures in tight-binding models. Note, unlike the
photonic system discussed in the main text, all of tight-binding models we discuss here are Hermitian with open
boundary conditions.

To begin, we must first assemble the topological heterostructures. A standard choice of topological insulator is the
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Supplementary Figure 5. (a) Schematic and ribbon band structure for a honeycomb lattice (red and blue vertices) with an
interstitial triangular lattice (gray vertices), with honeycomb site couplings t1, triangular site couplings ttri, and honeycomb-
triangle couplings tint. The ribbon band structure is calculated using t1 = t, tC = 0, ttri = 0.2t, tint = 0.3t, M = ±

√
3/2, and

Mtri = 0. (b) Schematic and ribbon band structure of a Haldane topological insulator with direction-dependent next-nearest

neighbor couplings tCe
±iπ/2. The ribbon band structure is calculated using t1 = t, M = 0, tC = 0.5t, φ = π/2. (c) Schematic

and ribbon band structure for a heterostructure formed between the lattices in (a) and (b). (d-f) LDOS (d), localizer gap (e),
and local index (f) at E = 0 for a heterostructure formed by a trivial insulating Haldane lattice described by Eq. (S2) with
t1 = t, tC = 0, and M = ±4

√
3/2, surrounding a Haldane topological insulating lattice with t1 = t, M = 0, tC = 0.5t, φ = π/2.

All three plots are shown on the same spatial scale, with a system surrounded by open boundary conditions. (g) Horizontal
line cut of the localizer gap and index through the system’s center at E = 0. (h-k) Similar to (d-g), except with a gapless outer
lattice described by Eq. (S3) with t1 = t, tC = 0, ttri = 0.2t, tint = 0.3t, M = ±

√
3/2, and Mtri = 0. For all calculations using

the spectral localizer, κ = t/a is used.

Chern insulator realized via Haldane’s model [4]. The Haldane lattice has the following Hamiltonian:

H = M
∑

m,n

(

a†m,nam,n − b†m,nbm,n

)

− t1
∑

〈(m,n),(m′,n′)〉

(

b†m′,n′am,n + a†m,nbm′,n′

)

− tC
∑

〈〈(m,n),(m′,n′)〉〉

(

eiφa†m′,n′am,n + e−iφa†m,nam′,n′ + eiφb†m′,n′bm,n + e−iφb†m,nbm′,n′

)

. (S2)

This model has two sites per unit cell that form a hexagonal lattice, with annihilation (creation) operators of these
sites given in the (m,n)th unit cell by am,n and bm,n (a†m,n and b†m,n) with nearest neighbor coupling t1, onsite energy
M = 0, and next-nearest neighbor coupling tC . Here, 〈〉 denotes a sum over nearest neighbors, while 〈〈〉〉 denotes
the sum is over next-nearest neighbors. To push the Haldane lattice into one of its topological phases, we set t1 = t,
M = 0, tC = t/2, and φ = π/2, see Fig. 5b. For a strip of this material we can calculate the ribbon band structure as
seen in Fig. 5b, where the chiral edge states are clearly visible crossing through the system’s bulk band gap. However,
to form topological heterostructures, we need to create a material to interface with this topological insulator.
To simplify the choice of interface coupling we use a Haldane lattice in its trivial phase as the topologically distinct
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insulator and a trivialized metallized Haldane lattice for the topologically distinct gapless material. To trivialize either
Haldane system we set tC = 0 and set the onsite energy M = ±2

√
3 for the trivial insulator and M = ±

√
3/2 for the

trivial metal. To metallize the Haldane system we couple it to a trivial metallic triangular lattice (so that there are
now 3 sites per unit cell, i.e., the grey, red, and blue sites in Fig. 5), with an inter-lattice coupling strength tint = 0.3t
[5, 6]. We set the coupling strength within the triangular lattice to be ttri = 0.2t. Altogether, the Hamiltonian for a
metallized Haldane lattice is written as

H = M
∑

m,n

(

a†m,nam,n − b†m,nbm,n

)

+Mtri

∑

m,n

(

c†m,ncm,n

)

− t1
∑

〈(m,n),(m′,n′)〉

(

b†m′,n′am,n + a†m,nbm′,n′

)

− ttri
∑

〈(m,n),(m′,n′)〉

(

c†m′,n′cm,n + c†m,ncm′,n′

)

− tC
∑

〈〈(m,n),(m′,n′)〉〉

(

eiφa†m′,n′am,n + e−iφa†m,nam′,n′ + eiφb†m′,n′bm,n + e−iφb†m,nbm′,n′

)

− tint
∑

〈(m,n),(m′,n′)〉

(

a†m′,n′cm,n + c†m,nam′,n′ + b†m′,n′cm,n + c†m,nbm′,n′

)

. (S3)

Here, cm,n (c†m,n) is the annihilation (creation) operator for the triangular lattice site in the (m,n)th unit cell. A
strip of the trivial metallic Haldane lattice is used to calculate the ribbon band structure in Fig. 5a.

Concatenating both systems from Fig. 5a and Fig. 5b into a gapless topological heterostructure forms a system
with a band structure that reproduces the challenge associated with gapless topological heterostructures discussed
in the main text, see Fig. 5c. In the band structure calculations, the bands corresponding to interface-localized
states are obscured by the degenerate bulk bands from the interstitial triangular lattice. Within this energy range,
it is not possible to use topological band theory to identify the existence of interface-localized chiral modes — the
heterostructure does not exhibit a common bulk band gap between the two constituent materials so band theory
cannot be used to predict a measure of protection, and the edge states cannot be uniquely identified at some energy
and wavevector.

The challenges involved in identifying the topology of the gapless heterostructure remain apparent in the system’s
local density of states (LDOS). In Supp. Fig. 5d and h, we show the LDOS within the topological insulator’s bulk
band gap E = 0 for finite gapped and gapless heterostructures, respectively. For both systems, the inner material is
a topological insulator, the outer material is topologically trivial, and the outer-most boundary of the outer material
has open (Dirichlet) boundary conditions. While the chiral edge states at this energy can be clearly identified in the
gapped heterostructure’s LDOS, Supp. Fig. 5d, the states due to the interstitial triangular lattice’s band in Supp.
Fig. 5h prohibit the numerical observation of any chiral edge states.

We can use the spectral localizer [7–9] to prove that the gapless topological heterostructure in Fig. 5h-k still
possesses boundary-localized resonances that are connected to the non-trivial topology of the central lattice. For a
2-dimensional Hermitian tight-binding model, the local marker and protection at position x and energy E are found
by first forming the spectral localizer:

L(x,E)(X, H) = κ(X1 − x1I)⊗ σx + κ(X2 − x2I)⊗ σy + (H − EI)⊗ σz, (S4)

where X = (X1, X2)
T , Xj is the jth position operator,x = (x1, x2)

T , xj is the jth position coordinate, σj are the
Pauli spin matrices, κ is a positive scaling coefficient with units of energy times inverse distance, and I is the identity
matrix.

Using the spectral localizer gap and index, we resolved the local Chern numbers for both topological heterostructures
shown in Fig. 5, and numerically observe that all substructures are comprised of materials with different invariants in
their bulk. Moreover, for the gapless system, applying the spectral localizer and plotting the local gap versus position
shows the closing of µC

(x,E) near the heterostructure’s interface where the local marker changes, which requires the

system to possess topological edge resonances even if they are obscured in the LDOS. Finally, we note that the
small, but non-zero, local gap µC

(x,E) on both sides of the heterostructure’s interface guarantees the edge resonance’s

protection against modest system perturbations. As tight binding models are not unbounded operators, they are
not subject to the considerations discussed in the main text surrounding the difficulty of defining the strength of a
perturbation through its matrix norm. Instead, we are left with the standard topological protection predicted by the
spectral localizer: a perturbation δH that is weaker than the local gap, ‖δH‖ < µC

(x,E), cannot change the system’s

local topology at (x, E) [7].

To further prove that the interface-localized resonance in a gapless heterostructure can be attributed to the change
in the materials’ bulk invariants, i.e., that bulk-boundary correspondence still holds for gapless heterostructures, we
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Supplementary Figure 6. (a-c) Show the LDOS (a), localizer gap (b), and localizer index (c) at E = 0 for a gapless heterostruc-
ture formed with an inner Haldane topological insulator (same as Fig. 5), and a gapless topological outer lattice described by
Eq. (S3) that incorporates direction-dependent next-nearest neighbor couplings with t1 = t, ttri = 0.2t, tint = 0.3t, M = 0,
Mtri = 0, tC = t/2, and φ = π/2. All three plots are shown on the same spatial scale, with open boundary conditions. (d)
Horizontal line cut of the localizer gap and index through the system’s center and at E = 0. For all calculations using the
spectral localizer, κ = t/a is used.

slightly modify the gapless material on the exterior of the heterostructure to possess the same bulk invariant as the
central insulating material, see Fig. 6. This is constructed from the same topological Haldane lattice that is then
coupled to the trivial gapless triangular lattice. The result is a gapless topological structure with degenerate bulk and
a topological edge state protected by a local gap [10].
Now, we see that the system is no longer a topological heterostructure; the local gap µC

(x,E) no longer closes at the

interface between the two materials, indicating the disappearance of the topological interface-localized resonances,
while the local maker is seen to be uniform across the entire crystal. Furthermore, the local gap closes around the
system’s perimeter due to the use of open boundary conditions, indicating a topological phase transition between the
outer lattice material and the surrounding (insulating) vacuum.
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