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Local markers for crystalline topology
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Over the last few years, crystalline topology has been used in photonic crystals to realize edge-
and corner-localized states that enhance light-matter interactions for potential device applications.
However, the band-theoretic approaches currently used to classify bulk topological crystalline phases
cannot predict the existence, localization, or spectral isolation of any resulting boundary-localized
modes. While interfaces between materials in different crystalline phases must have topological
states at some energy, these states need not appear within the band gap, and thus may not be
useful for applications. Here, we derive a class of local markers for identifying material topology
due to crystalline symmetries, as well as a corresponding measure of topological protection. As our
real-space-based approach is inherently local, it immediately reveals the existence and robustness
of topological boundary-localized states, yielding a predictive framework for designing topological
crystalline heterostructures. Beyond enabling the optimization of device geometries, we anticipate
that our framework will also provide a route forward to deriving local markers for other classes of
topology that are reliant upon spatial symmetries.

The discovery of crystalline-symmetry protected topo-
logical phases, such as obstructed atomic limits [1], fra-
gile topology [2–5], and higher-order topology [6–9], has
played a prominent role in the development of artificial
topological materials. Indeed, one of the primary features
of such materials is that their geometry can be carefully
tailored during fabrication, allowing for exquisite control
over a system’s spatial symmetries [10–12]. In photonic
crystals, the edge- and corner-localized modes that can
appear at the interfaces between structures in different
topological crystalline phases have been used to realize a
wide variety of useful phenomena, such as lasers [13–18],
single photon routing [19–23], and structures for enhanc-
ing harmonic generation [24–27]. Crystalline topology
can also be observed in acoustic systems [28–37], where
it can protect Fano resonances [38] and enable robust
analog signal processing [39].

However, the existing theoretical framework for iden-
tifying crystalline topology poses a substantial challenge
for the design of many types of artificial materials seeking
to leverage these phases’ boundary-localized phenomena.
At present, this classification framework is rooted in band
theory, and diagnoses a system’s topology through the
calculation of elementary band representations [1, 4, 40]
and symmetry indicators [41–49], or Wilson loops over
a system’s Brillouin zone [50–52]. Yet, the interface be-
tween gapped materials that are in different crystalline-
symmetry protected topological phases is not guaran-
teed to exhibit a localized state at the center of their
common band gap, or even within this gap at all [53].
Instead, after designing such a topological heterostruc-
ture, the existence, localization, and spectral isolation of
any boundary states must be confirmed through addi-
tional analysis, such as large-volume simulations of the
interface. Although it is possible to combine crystalline

symmetries with chiral or particle-hole symmetry to pro-
tect the boundary-localized states’ frequencies to be at
mid-gap [53, 54], many artificial materials, including pho-
tonic crystals, cannot realize these additional symme-
tries. Thus, the most salient properties of many artificial
crystalline topological materials for enhancing interac-
tions cannot, in general, be predicted or protected by
known band-theoretic approaches.

Here, we introduce a class of local markers for iden-
tifying the topology of materials due to their crystalline
symmetries. These markers are applicable to both first-
order and higher-order topology, and changes in them
directly reveal a system’s topological boundary-localized
states. Moreover, associated with every such marker is a
local measure of topological protection, providing a quan-
titative assessment for the robustness of each boundary-
localized state. We show how this framework can be
applied to realistic photonic crystals to identify topo-
logical corner-localized states that are nearly degenerate
with surrounding edge modes. Furthermore, by calcu-
lating the local measure of protection for disordered ver-
sions of this system, we demonstrate that a topological
state’s robustness can be independent of its spectral sep-
aration from the bulk bands, in contrast to the standard
assumption that such a state’s robustness is determined
by this spectral separation. Looking forward, our frame-
work may both enable the prediction of devices predi-
cated on this class of topology while inherently account-
ing for finite system size effects, and yield insights for
deriving local markers for other classes of topology that
are reliant upon spatial symmetries, such as those found
in moiré systems.

To provide a specific system that exemplifies the dif-
ficulties faced in developing artificial topological het-
erostructures based on crystalline symmetries, we con-



FIG. 1. (a) Diagram of a 2D photonic structure with a 120◦ corner between crystals formed from expanded (purple) and
contracted (blue) hexagonal clusters, bounded by a perfect electric conductor. The high dielectric rods ε = 11.7 embedded in
air have radius r = a/9 and are offset from being a honeycomb lattice by ±0.06a, where a is the lattice constant. (b) Bulk TM
band structure for the expanded (purple) and contracted (blue) photonic crystals. (c) Density of states for the finite system in

(a). (d) Local gap (µ(0,ω2))
1/2 in units of 2πc/a and local index ζ

Ry

ω2 calculated using κ = 0.01(2πc)2/a3. Note, (µ(0,ω2))
1/2 has

units of frequency, enabling direct comparison against the system’s band structure. In (b)-(d) the shaded regions demarcate
those frequencies where bulk states exist. (e) Local density of states (LDOS) at the frequency of the local gap closing and real
part of the Ez field for the nearest mode of the system. Orange corresponds to ω = 0.515(2πc/a), and red to ω = 0.480(2πc/a).

sider a 2D photonic structure consisting of a triangular
lattice whose unit cells are decorated with expanded or
contracted hexagons of high-dielectric rods [55] that are
arranged to form an interface with a 120◦ corner between
the two decoration choices [Fig. 1(a)]. The transverse
magnetic (TM) modes of these two different decoration
choices have been previously shown to be in different
topological crystalline phases [24, 27, 55–57], and can ex-
hibit topological corner-localized states within their com-
mon band gap [Fig. 1]. However, as photonic crystals do
not generally possess chiral or particle-hole symmetry,
these corner-localized states do not appear at the center
of the shared gap (without fine tuning). Thus, even if the
topological distinction between the two domains is pro-
tected by the bulk band gap, this gap does not protect
the localization of the corner states, which could become
degenerate with the bulk bands for weaker perturbation
strengths than are necessary for a bulk topological phase
transition (usually resulting in the delocalization of the
corner states [58–60]).

A framework designed to identify the topological
interface-localized states stemming from the system’s
crystalline symmetries requires two components: an in-
variant that distinguishes topological phases, and an ar-
gument showing that shifts in the invariant guarantee the
appearance of boundary-localized states. Here, we build
such a framework by starting with the spectral local-
izer [61–68], which is known to be connected to topology
arising from local discrete symmetries (i.e., the Altland-
Zirnbauer classes [69–71]). The spectral localizer is a
composite operator that combines the eigenvalue prob-
lems of a finite system’s Hamiltonian (H − E1)φ = 0
and position operators (X − x1)φ = 0 using a Clifford

representation. For a system with a single relevant posi-
tion operator, the spectral localizer can be written as

L(x,E)(X,H) = (H − E1)⊗ σx + κ(X − x1)⊗ σy (1)

=

(

0 (H − E1)− iκ(X − x1)
(H − E1) + iκ(X − x1) 0

)

,

where the Pauli matrices σx and σy are used as the Clif-
ford representation. Here, κ > 0 is a tuning coefficient
to ensure consistent units and comparable contributions
of all summands, and 1 is the identity. The approximate
scale of κ is set by the bulk band gap g and the length of
the finite system l in the relevant dimension, κ ≈ 2g/l,
see Supplemental Material Sec. SIII [72]. In cases where
the matrix arguments are implied by their context, they
will be omitted, e.g., L(x,E) = L(x,E)(X,H).
Unlike standard eigenvalue equations, where the eigen-

values are determined by their respective operators, the
position x and energy E are inputs in the spectral lo-
calizer, and its spectrum quantifies whether the system
exhibits a state approximately localized at (x,E) [73], or
how large of a system perturbation δH is needed to ob-
tain such a state. In particular, if the minimum distance
over all of the eigenvalues of L(x,E) to 0,

µ(x,E)(X,H) = min(|spec[L(x,E)(X,H)]|), (2)

is small relative to ‖[H,κX ]‖, such an approximately lo-
calized state exists [73]. Here, spec[L] denotes the spec-
trum of L. Conversely, if µ(x,E) is large, a perturbation
with norm ‖δH‖ ' µ(x,E)(X,H) is required for such a
state to be found, i.e., for µ(x,E)(X,H + δH) = 0. As
such, µ(x,E) can be heuristically understood as a “local
band gap”.



As crystalline symmetries are independent of a sys-
tem’s local discrete symmetries, a crystalline invariant
should be applicable to any system regardless of the pres-
ence or absence of such discrete symmetries. Thus, a
local crystalline topological marker should be given by
the signature of an invertible Hermitian matrix, i.e. its
number of positive eigenvalues minus its number of neg-
ative ones. This is analogous to how, for example, the
0th Chern number of a 0D system is given by the par-
titioning of its Hamiltonian’s eigenvalues about a chosen
band gap; the relevant invertible Hermitian matrix here
is H − Eg1, where Eg is the band gap’s central energy
[74]. (In contrast, topology originating from phenomena
like parity switches are not related to a matrix’s signa-
ture, but can only manifest in the presence of specific
local discrete symmetries.) However, even though L(x,E)

is Hermitian, its block off-diagonal structure guarantees
that its eigenvalues are always symmetric about 0 for any
choice of x and E.
Instead, we seek to remove the duplication in

spec[L(x,E)] using the system’s crystalline symmetry, and
then define an invariant based on this reduced spectrum.
In particular, a local crystalline topological marker can
be constructed from L(x,E) if the system has a unitary
crystalline symmetry S that satisfies S2 = 1, HS = SH ,
and XS = −SX . Multiplying the off-diagonal blocks
in Eq. (1) by S at x = 0 yields the symmetry-reduced

spectral localizer

L̃S
E(X,H) = (H − E1+ iκX)S, (3)

(A related operator can be constructed for 1D chiral sym-
metric systems [60, 75].) Remarkably, L̃S

E = (L̃S
E)

† is
Hermitian due to the above symmetry relations. Even
though L̃S

E is only built from a single block of L(0,E), it
contains all of the essential spectral information in L(0,E),
as

λ ∈ spec[L̃S
E(X,H)] =⇒ ±λ ∈ spec[L(0,E)(X,H)], (4)

see Supplemental Material Sec. SI [72]. Hence, L̃S
E has

only “half of the eigenvalues” of L(0,E), and these eigen-
values need not lie symmetrically around 0. Thus, a local
crystalline topological marker can be constructed as

ζSE(X,H) = 1
2 sig[L̃

S
E(X,H)], (5)

where sig[L̃S
E ] is the matrix’s signature. For a system

with an even/odd number of states, ζSE is integer/half-
integer, but the changes in ζSE are always integer-valued
(and define the spectral flow, which provides a rigorous
generalization to the thermodynamic limit, see Supple-
mental Material Sec. SI [72]). Note that ζSE is only de-
fined when L̃S

E possesses a spectral gap about 0, that is,
µ(0,E) 6= 0. Moreover, one can prove that pairs (X,H)
describing finite systems with the same ζSE can be path-
connected to each other while preserving S and maintain-
ing µ(0,E) > 0, while this is impossible for systems with
different ζSE , see Supplemental Material Sec. SII [72].

The local marker ζSE is an indicator for topological
boundary states. Specifically, ζSE can only change its
value at some energy Ec if 0 ∈ spec[L̃S

Ec
] so that one of

the eigenvalues can switch its sign. But, due to Eq. (4),
this requires that µ(0,Ec) = 0. In turn, a vanishing local
gap guarantees the existence of an eigenvalue of H near
Ec whose corresponding eigenstate is centered at x = 0
[72, 73]. If the local gap closing occurs within a bulk
band gap, it must correspond to a boundary-localized
state. Furthermore, µ(0,E) 6= 0 provides a measure of
topological protection, as a perturbation must close the
local gap for the topology to change. Thus, altogether,
ζSE both distinguishes crystalline topological phases with
respect to S and changes in its value guarantee that the
system possesses a topological state.
To demonstrate that ζSE is a useful invariant for pre-

dicting the behavior of artificial topological materials,
we apply the spectral localizer framework to the het-
erostructure considered in Fig. 1(a). We start with
the second-order differential equation form of Maxwell’s
time-harmonic equations for TM modes

∇2Ez(x) = −ω2ε(x)Ez(x), (6)

in which Ez(x) is the z-component of the electromag-
netic field, ω is the frequency, ε(x) > 0 is the spatially
dependent dielectric distribution, and the magnetic per-
meability is assumed to be the identity. Using standard
finite-difference methods to approximate the Laplacian,
we obtain the pair of finite matrices ∇2 → W and M ,
such that M can be diagonal with [M ]j,j = ε(xj), where
xj = (xj , yj) is the jth vertex in the discretization. Thus,
Eq. (6) can be written as the Hermitian eigenvalue prob-
lem

(−M−1/2WM−1/2 − ω2
1)ψ = 0, (7)

where ψ = M1/2Ez. Note that if [M,S] = 0, then
[M−1/2,S] = 0. The discretization of the system also
defines its position operators, which can also be chosen
to be diagonal; for the 2D system considered in Fig. 1,
[X ]j,j = xj and [Y ]j,j = yj. Overall, this formulation
of Maxwell’s equations and the subsequent choice of dis-
cretization are chosen to preserve a dielectric distribu-
tion’s crystalline symmetries.
The heterostructure with a 120◦ corner in its interface

that is considered in Fig. 1 possesses a reflection symme-
try Ry about the y = 0 axis. Thus, as HRy = RyH ,
YRy = −RyY , and R2

y = 1, this symmetry can be used
to define a Ry-symmetrized spectral localizer and asso-
ciated local marker as

L̃
Ry

ω2 = (H − ω2
1+ iκY )Ry , ζ

Ry

ω2 = 1
2 sig[L̃

Ry

ω2 ], (8)

where H = −M−1/2WM−1/2, and the local gap at y = 0

is given by µ(0,ω2) = min(|spec[L̃
Ry

ω2 ]|). Although the sys-

tem in Fig. 1(a) is 2D, L̃
Ry

ω2 and the associated local index



and gap only use one of its two position operators (sim-
ilar to real-space formulations of other weak invariants

[66, 67]). This effectively forces ζ
Ry

ω2 and µ(0,ω2) to focus
on the system’s reflection center.

As can be seen in Fig. 1(d),(e), the corner het-
erostructure exhibits two topological corner-localized
states within its bulk band gap. Although these states
are difficult to uniquely identify in the system’s density of
states (DOS) due to the surrounding, nearly degenerate
edge-localized modes [Fig. 1(c) and Fig. S2], the corner
states can be immediately identified using the system’s
local gap, as they are energetically close to the local gap
closing within the heterostructure’s bulk band gap and
do not come in reflection symmetric pairs (see Supple-
mental Material Sec. SVII [72]). Moreover, at both of
these closings the local topological index changes, prov-
ing that both corner states are topological with respect
to Ry. Finally, the large local gaps on either side of
these corner states indicate that they are both robust
against fabrication imperfections. Quantitatively similar
results appear for a range of κ, see Supplemental Ma-
terial Sec. SIII [72]. Note that although there are many
local index changes within the spectral extent of the bulk
bands, the tiny local gaps within these regions indicate
that these topological phases have vanishing protection.
In contrast to the assumption that crystalline topo-

logical states closer to the center of the common bulk
band gap are better protected against disorder, the local
gap [Fig. 1(d)] reveals that the higher-frequency corner-
localized state in this system has more topological pro-
tection than the lower-frequency corner state despite be-
ing closer-in-frequency to the bulk bands. In general, a
perturbation δH with strength ‖δH‖ ' µ(0,ω2) is nec-
essary to change the system’s local topology, but this
criterion is not sufficient for photonic systems—an ar-
bitrary H + δH cannot generally be decomposed into a
physically meaningful combination of a local permittiv-
ity and Laplacian, per Eq. (7). Instead, the increased
protection of the higher-frequency state can be seen by
finding the dielectric defect strength necessary to anni-
hilate each of the corner states. In Fig. 2 we consider
two different perturbations that respect Ry, each tai-
lored to affect one corner mode by changing the permit-
tivity of the rod(s) the state has its maximum support
on [Fig. 1(e)]. For the lower-frequency corner state’s per-
turbation [Fig. 2(a),(c)], a change in the permittivity of
δε = 1.17 is needed to annihilate the topological state by
combining it with a state from the lower-frequency bulk
bands. In comparison, the necessary perturbation to an-
nihilate the higher-frequency corner state is δε = −4.28
[Fig. 2(b),(d)], despite a similar overlap of the corner-
localized state and the perturbation (see Supplemental
Material Sec. SIV [72]). These results provide evidence
that the local gap yields an experimentally relevant hi-
erarchy of protection for a photonic system’s topological
states.
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FIG. 2. (a),(b) Zoomed in diagram of the perturbed rods
(red) in the photonic crystal corner heterostructure from Fig.
1(a) tailored to the lower-frequency (a) and higher-frequency

(b) corner states. (c) Local gap (µ(0,ω2))
(1/2) in units of 2πc/a

and local index ζ
Ry

ω2 calculated using κ = 0.01(2πc)2/a3 for
the lower-frequency perturbation with δε = εred − ε = 1.17.
(d) Similar to (c), except using the higher-frequency pertur-
bation with δε = −4.28. The shaded regions in (c),(d) de-
marcate those frequencies within the bulk bands.

The local crystalline topological marker ζSE is also ap-
plicable to first-order topology. Section SV in the Supple-
mental Material provides an example of classifying edge
states using this framework [72].
Having proved that ζSE is a useful local marker indicat-

ing the existence of topological boundary states and that
µ(0,E) is its associated measure of protection, we now
provide a physical interpretation for changes in its value.
Consider the eigenvalue lE of L̃S

E closest to zero and its
corresponding eigenvector φE , and note the square of
the symmetry-reduced spectral localizer,

(L̃S
E)

2 = (H − E1)2 − iκ[H,X ] + κ2X2. (9)

For systems with only local couplings, ‖[H,X ]‖ is propor-
tional to the lattice constant times the system’s energy
scale, and as such is of order 1 in the system’s natural
units. Thus, as generally κ is small (which guarantees the
robustness of the spectral localizer to different choices of
κ [63]), to leading order one finds that

l2EφE ≈ (H − E1)2φE . (10)

Now, let Ec be an energy where the local gap closes
µ(0,Ec) = 0, such that lEc

= 0. If the spectrum of
H is non-degenerate (possibly through the addition of
a small amount of symmetry-preserving disorder), one
finds φEc

≈ ψb and Ec ≈ Eb, where Hψb = Ebψb.
Thus, in the vicinity of the local gap closing where there
is only a single relevant eigenstate of the Hamiltonian,
one finds that

lE ≈ sb((Eb − E) + iκψ†
bXψb), (11)



where Sψb = sbψb with sb = ±1. But, as X anti-

commutes with S, ψ†
bXψb = 0. Altogether, for E ≈ Ec,

lE ≈ −sb(E − Ec), (12)

i.e., the eigenvalue of L̃S
E closest to zero is linear near

a local gap closing, and the change ±1 of ζSE across Ec

is opposite to the symmetry eigenvalue of the Hamilto-
nian’s corresponding topological state. (See Supplemen-
tal Material Sec. SI [72] for a more detailed derivation
of Eq. (12).) The prediction of Eq. (12) is realized in
the system from Fig. 1; simulations show that for the
corner-localized state near ω = 0.480(2πc/a), the index

ζ
Ry

ω2 increases by +1 (for increasing ω) when the local
gap closes, and the corresponding eigenstate of the sys-
tem is odd (sb = −1) with respect to Ry. The opposite
behavior is observed for the corner-localized state near
ω = 0.515(2πc/a), with ζ

Ry

ω2 decreasing as the corner-
localized eigenstate is even with respect to Ry. Thus,
ζSE is identifying atomic limits with different numbers of
states that are either even or odd with respect to S.

In conclusion, we have introduced a class of local crys-
talline topological markers ζSE and their associated mea-
sure of topological protection rooted in the spectral lo-
calizer. Unlike traditional theories of crystalline topology
that only yield ZN invariants [43, 53, 76–78], the local
markers derived here are Z invariants that can identify
multiple topological states per band gap beyond those
predicted by a system’s fractional filling anomaly (see
Supplemental Material Sec. SVIII [72]). Thus, further
work is required to connect these two frameworks by ac-
counting for the different phenomena each is sensitive to.
More immediately, our operator-based framework should
be useful for the design of materials seeking to leverage
crystalline topology to enhance interactions by optimiz-
ing over the predicted measure of a state’s topological
robustness. Furthermore, by providing a physically mo-
tivated derivation of our local markers, our work may
aid future theoretical studies in finding local markers for
other classes of topology, and in particular the topology
seen in moiré systems.
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SI. Properties of the symmetry-reduced spectral localizer

At the heart of the local topological invariant framework for crystalline symmetries developed in the main text are
the spectral properties of the spectral localizer (Eq. (1) in the main text) which in the present situation is built from
two Hermitian operators X and H on a Hilbert space H (called the position operator and Hamiltonian, respectively):

L(x,E)(X,H) = (H − E1)⊗ σx + κ(X − x1)⊗ σy

=

(

0 (H − E1)− iκ(X − x1)
(H − E1) + iκ(X − x1) 0

)

.

Here σx, σy and σz are the three Pauli matrices, x,E are real numbers and κ > 0 is a tuning parameter that also
guarantees consistent units. In general, one can build a spectral localizer from more Hermitian operators by using
a larger-dimensional non-trivial Clifford representation. In order to compactify notations, we will simply drop the
arguments X and H and write L(x,E) = L(x,E)(X,H). In the present situation with two Hermitian operators X and
H (or more generally an even number of them), the spectral localizer is odd with respect to the symmetry 1⊗ σz :

(1⊗ σz)L(x,E)(1⊗ σz) = −L(x,E) ,

so that it is off-diagonal in the grading of the Pauli matrices. Moreover, by construction the spectral localizer L(x,E)

is Hermitian. These two properties imply that its spectrum is real and symmetric around 0. Note also that L(x,E)

is invertible if and only if the off-diagonal entries are invertible. If invertibility is given, the signature sig[L(x,E)] is
well-defined. While sig[L(x,E)] is useful for identifying material topology in the case of an odd number of Hermitian
operators (corresponding to a physical system with even dimensionality) [1, 2], in the present situation it vanishes
due to the symmetry of the spectrum.

It is possible, however, to extract important information from the spectral localizer if one has given another (unitary
selfadjoint) symmetry operator S on H satisfying, just as in the main text,

S2 = 1, S = S†, SH = HS, SX = −XS. (S1)

In the application in the main text, S is a crystalline symmetry, more precisely a reflection symmetry, but here we
first consider general structural properties of the set-up given by (S1). The main point is the following conjugation
with the unitary ( S 0

0 1
) that can readily be checked:

(

S 0
0 1

)†

L(x,E)

(

S 0
0 1

)

=

(

0 [((H − E1) + iκ(X − x1))S]†
((H − E1) + iκ(X − x1))S 0

)

. (S2)

This unitary equivalence shows that the operator on the r.h.s. has the same spectrum as L(x,E). In general, the
off-diagonal blocks on the r.h.s. of Eq. (S2) are non-Hermitian, but the commutation relations (S1) imply that they

are Hermitian at x = 0. Hence let us introduce the symmetry-reduced or S-reduced spectral localizer L̃S
E = L̃S

E(X,H)
by

L̃S
E = ((H − E1) + iκX)S .

The terminology reflects that L̃S
E depends on the symmetry S and consists only of one block entry of the spectral

localizer, and is hence reduced. However, as stated above, the relations (S1) imply that it is nevertheless Hermitian

∗ awcerja@sandia.gov
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and clearly one has

(

S 0
0 1

)†

L(0,E)

(

S 0
0 1

)

=

(

0 L̃S
E

L̃S
E 0

)

. (S3)

It is possible to rewrite the S-reduced spectral localizer in a form that looks more like in other works. For that
purpose, let us split the Hilbert space H into even and odd elements w.r.t. S:

H = H+ ⊕H−, H± =
{

ψ ∈ H : Sψ = ±ψ
}

.

Now H : H± → H± leaves subspaces invariant and can thus be decomposed as H = H+ ⊕H−. On the other hand,

X : H± → H∓ is off-diagonal in the grading of S and thus let us use the notation X̃ = X |H+
: H+ → H− for the

restriction of X . Then in the grading of S:

L̃S
E =

(

(H+ − E1+) −iκX̃†

iκX̃ −(H− − E1−)

)

, (S4)

where 1± is the identity on H±. This resembles the even spectral localizer in [2], in particular in the general form
of [3] where also not necessarily all components of the position operator enter into the construction. Another crucial
property is that its square

(L̃S
E)

2 = (H − E1)2 + iκ[X,H ]S + κ2X2 (S5)

only involves the commutator [X,H ] and not a term like XH + HX . In applications to local operators, [X,H ] is
uniformly bounded, but XH +HX grows with the volume. Also note that iκ[X,H ]S is a Hermitian operator which
is odd w.r.t. S, namely S†

(

iκ[X,H ]S
)

S = −
(

iκ[X,H ]S
)

.

For any Hermitian A, the spectrum of ( 0 A
A 0 ) consists of the union of the spectrum of A with its negative because,

if Aψ = λψ, the two eigenvectors of ( 0 A
A 0 ) are simply

(

±ψ
ψ

)

. Thus

λ or − λ is an eigenvalue of L̃S
E ⇐⇒ ±λ are both eigenvalues of L(0,E). (S6)

Another piece of spectral information of an arbitrary linear operator A is its invertibility gap µ(A) ≥ 0 defined by

µ(A) = min
{
√

|λ| : λ ∈ spec(A†A)
}

=
√

µ(A†A).

For matrices, µ(A) is also called the smallest singular value. If A† = A is a Hermitian matrix (or more generally A is
normal, namely AA† = A†A), then µ(A) is the smallest of all absolute values of the eigenvalues of A. For the spectral
localizer, let us introduce the notation

µ(x,E) = µ(x,E)(X,H) = µ(L(x,E)(X,H)).

Then (S6) implies

µ(0,E) = µ(L(0,E)) = µ(L̃S
E) = µ

(

(H − E1) + iκX
)

. (S7)

In the following, let us suppose that the Hilbert space H is finite dimensional which is relevant for the numerical
treatment in the main text. Whenever µ(0,E) > 0, one can define

ζSE = 1
2 sig[L̃

S
E],

which is an integer/half-integer if the dimension of the Hilbert space is even/odd. Changes of the half-signature are
always integer and actually define the spectral flow through 0, see Section 1 in [4]:

Sf
(

E ∈ [E0, E1] 7→ L̃S
E

)

= 1
2

(

sig[L̃S
E1

]− sig[L̃S
E0

]
)

= ζSE1
− ζSE0

, (S8)

provided that L̃S
E1

and L̃S
E0

are invertible. Hence it is natural to consider the jump (or discontinuity or critical) points

Ec of the function E 7→ ζSE which are precisely the points at which there is spectral flow. These points Ec can also
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be characterized as those points Ec for which Ker(L̃S
Ec

) is non-trivial. The following proposition shows that in the
vicinity of such jump points Ec there must be an element in the spectrum of H .

Proposition 1. Suppose Ec ∈ R is such that the dimension mc = dim(Ker(L̃S
Ec

)) is positive. Then H has at least

mc eigenvalues in [Ec −
√

κ ‖[X,H ]‖, Ec +
√

κ ‖[X,H ]‖], counted with their multiplicity.

Proof. By Courant’s minmax principle it is sufficient to show that there is an mc-dimensional subspace Ec of the
Hilbert space such that κ‖[X,H ]‖ − (H − Ec1)

2 ≥ 0 in the sense of positive operators. This will be verified for

Ec = Ker(L̃S
Ec

). Indeed, for the restrictions on this subspace one has

0 = (L̃S
Ec

)2
∣

∣

Ec
=

(

(H − Ec1)
2 + iκ[X,H ]S + κ2X2

)∣

∣

Ec
≥

(

(H − Ec1)
2 − κ‖[X,H ]‖

)∣

∣

Ec
,

just as required.

Proposition 1 does not exclude that there are further eigenvalues of H in [Ec −
√

κ ‖[X,H ]‖, Ec +
√

κ ‖[X,H ]‖].
For example, in Fig. 1 in the main there is a kernel of dimension mc at ω = 0.5152(2πc/a), but besides an eigenvalue
of H at precisely this energy, there are certainly two further eigenvalues of H in a small interval around it (at
ω = 0.5121(2πc/a) and ω = 0.5125(2πc/a)) that correspond to edge-localized states, see Sec. SVII. Nevertheless, only
the state at ω = 0.5152(2πc/a) is a corner state, as can readily be seen by looking at the plots in Fig. S5 of the field
intensity |Ez |2 of the two other eigenfunctions.

Let us outline a numerical procedure for how to isolate the topological boundary state corresponding to a jump of
E 7→ ζSE at Ec by +1 and with mc = 1 which is the generic case (as higher degeneracies of the kernel are lifted by a
generic symmetry-preserving perturbation). This may be of help in simulations at large volume when there are many
eigenstates of H close to Ec.

1. First choose an interval [Ec − δ, Ec + δ] for a small δ > 0 such that the interval contains an odd number of
eigenvalues with normalized eigenstates ψ1, . . . ,ψ2n+1 of H , but no other E with µ(0,E) = 0. Order them such
that the states with positive S-parity are listed first. There should be n+1 states with positive S-parity and n
with negative S-parity (if this is not the case, one may have “just missed” one state and should slightly enlarge
δ; of course, δ should chosen sufficiently small so that n is not too large).

2. Then introduce the frame Ψ = (ψ1, . . . ,ψ2n+1), which decomposes to Ψ = (Ψ+,Ψ−) with SΨ± = ±Ψ±. Hence
Ψ+ and Ψ− are of dimension n+1 and n respectively. One of the n+1 states in Ψ+ is the topological boundary
state. Introduce two diagonal matrices E± (of dimension n+ 1 and n) such that HΨ± = Ψ±E±.

3. Then taking matrix element of (S4) leads to

Ψ†L̃S
EΨ =

(

E+ − E1+ −iκ(Ψ+)
†XΨ−

iκ(Ψ−)
†XΨ+ −(E− − E1−)

)

, (S9)

where the identities 1± are of dimension n + 1 and n. Now compute the (n + 1) × n matrix (Ψ+)
†XΨ−

numerically.

4. There should be one line which is considerably smaller than all others. Shift the corresponding eigenvector
into the first row of Ψ, then ψ1 = ψb is the desired topological boundary state with eigenvalue Eb, namely
Hψb = Ebψb. Supposing that (ψb)

†XΨ− even vanishes (as it is really negligible compared to the rest), then

the first row and first column of Ψ†L̃S
EΨ vanishes, except for the entry (1, 1) which is Eb − E, and hence this

eigenvalue is effectively decoupled from all other states. Of the remaining entries of (Ψ+)
†XΨ− there may be

many of order 1, and these then move the eigenvalues of L̃S
E out of the kernel, provided that κ is larger than the

diagonal entries. This also explains why it is not advantageous to choose κ too small, see Sec. SIII for further
discussion.

5. Once the topological boundary state ψb is determined, one now has

(ψb)
†L̃S

Eψb ≈ Eb − E +O(κ),

where the order κ correction term results from the coupling with other states (also those not included in Ψ). In

particular, the energy Ec with non-trivial kernel of L̃S
E satisfies

Eb − Ec = O(κ),
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which is considerably better than the estimate of Proposition 1 which only provides Eb − Ec = O(
√
κ).

6. If the jump of ζSE at Ec would be −1 (namely the spectral flow would be −1), the same argument as above can
be applied, except that ψb would be of negative S-parity sb = −1. As the sign in the lower right entry in (S9)
is different, this leads to a sign change. In both cases, one therefore has (see eq. (10) in the main text)

(ψb)
†L̃S

Eψb ≈ sb(Ec − E) +O(κ). (S10)

It is possible to add some mathematical rigor to the argument leading to (S10), even in the case of Proposition 1

where mc is larger than 1, but only for κ very small. The reasoning will analyze the dependence of L̃S
E on both

E and κ, and therefore it will rather be denoted by L̃S
κ,E, and similarly ζSκ,E . The most important property of the

matrix-valued function (κ,E) ∈ R
2 7→ L̃S

κ,E is that it is real analytic in both variables with values in the Hermitian

matrices. Therefore Kato’s analytic perturbation theory applies [5], both to L̃S
κ,E as well as (L̃S

κ,E)
2 given in (S5). In

particular, for a given δ (that will be chosen to be smaller or of the order of κ), one can look at the spectral projection

P δκ,E = χ(L̃S
κ,E ∈ (−δ, δ)) of L̃S

κ,E onto the interval (−δ, δ). As long as its dimension is constant, is then known to
depend analytically on κ and E.

Proposition 2. Suppose that for given (κ,Ec) one has mc = dim(Ker(L̃S
κ,Ec

)) > 0. Moreover, suppose that there is

a δ > 0 such the κ′ ∈ [0, κ] 7→ P δκ′,Ec
has constant dimension equal to mc. Then the ζ-jump at Ec (or equivalently the

spectral flow of the S-reduced spectral localizer at Ec) is given by the sum of the S-parities sj ∈ {−1, 1}, j = 1, . . . ,mc,
of the mc eigenstates of H with energies in the spectral interval [Ec − δ, Ec + δ]:

lim
ǫ→0

ζSκ,Ec+ǫ − ζSκ,Ec−ǫ = −sig
[

S|Ran(P δ
0,Ec

)

]

= −
mc
∑

j=1

sj ,

where S|Ran(P δ
0,Ec

) denotes the restriction of the quadratic form S to the range of the projection P δ0,Ec
.

Proof. Due to (S8), the desired ζ-jump is given given by the spectral flow of the S-reduced spectral localizer at Ec.
Moreover, it is well-known that this spectral flow can be computed via the signature of the so-called crossing form
[4]. Together, one gets for ǫ sufficiently small:

ζSκ,Ec+ǫ − ζSκ,Ec−ǫ = Sf
(

E ∈ [Ec − ǫ, Ec + ǫ] 7→ L̃S
κ,E

)

= sig
[

∂EL̃
S
κ,E

∣

∣

Ker(L̃S

κ,Ec
)

]

.

The derivative can readily be read off from the definition of L̃S
κ,E :

ζSκ,Ec+ǫ − ζSκ,Ec−ǫ = sig
[

− S
∣

∣

Ker(L̃S

κ,Ec
)

]

= − sig
[

S
∣

∣

Ker(L̃S

κ,Ec
)

]

.

Now one has Ker(L̃S
κ,Ec

) = Ran(P δκ,Ec
). By assumption and analytic perturbation theory, there is a constant such

that ‖P δκ,Ec
− P δ0,Ec

‖ ≤ Cκ. As the spectrum of S restricted to Ran(P δ0,Ec
) is contained in {−1, 1}, this implies that

also S restricted to Ran(P δκ′,Ec
) is invertible for all κ′ ∈ [0, κ]. Consequently, the signature of these restrictions does

not change and one concludes

ζSκ,Ec+ǫ − ζSκ,Ec−ǫ = − sig
[

S
∣

∣

Ran(P δ
κ,Ec

)

]

= − sig
[

S
∣

∣

Ran(P δ
0,Ec

)

]

.

Finally, L̃S
0,Ec

= (H −Ec1)S and therefore Ran(P δ0,Ec
) is spanned by the eigenstates ψ1, . . . ,ψmc

of H with energies

lying in [Ec − δ, Ec + δ]. These states have S-parties sj ∈ {−1, 1} given by Sψj = sjψj for j = 1, . . . ,mc. Replacing
this implies the claim.

SII. Homotopy characterization for finite systems

This section proves the claim from the main text (see the discussion after Eq. (4)) that ζSE classifies pairs (X,H)
of selfadjoint matrices satisfying SH = HS and SX = −XS. The same argument applies to chiral Hamiltonians
JHJ = −H for some selfadjoint involution J commuting with another selfadjoint matrix X if one uses the chiral
spectral localizer L̃J(X,H) = (κX + iH)J as in [6]. Hence let us take a more general set-up. Suppose given a
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finite-dimensional Hilbert space equipped with a fixed selfadjoint unitary Π. For two Hermitian matrices A and B on
this Hilbert space satisfying with AΠ = ΠA and BΠ = −ΠB, let us use the Π-reduced spectral localizer

L̃Π(A,B) = (A+ iB)Π.

Lemma 3. Suppose given two matrices Aj and Bj, j = 0, 1, satisfying

AjΠ = ΠAj and BjΠ = −ΠBj ,

and further suppose that both associated reduced spectral localizers are gapped:

min
(

L̃Π(Aj , Bj)
)

≥ δ > 0.

There exists a continuous path of matrices t ∈ [0, 1] 7→ (At, Bt) connecting (A0, B0) to (A1, B1) and satisfying

AtΠ = ΠAt and BtΠ = −ΠBt and µ
(

L̃Π (At, Bt)
)

≥ δ,

if, and only if,

sig
[

L̃Π(A0, B0)
]

= sig
[

L̃Π(A1, B1)
]

.

Proof. If such a path exists, then the path L̃Π(At, Bt) is a continuous path of invertible Hermitian matrices, along

which the signature cannot change. The key to proving the converse is to use the formulas that take us from L̃Π(A,B)
back to A and B. These are

A =
1

2

(

(

L̃Π(A,B)Π
)†

+ L̃Π(A,B)Π

)

, B =
i

2

(

(

L̃Π(A,B)Π
)†

− L̃Π(A,B)Π

)

.

The matrices L̃Π(A0, B0) and L̃Π(A1, B1) are by assumption Hermitian, gapped and have the same signature. By
a straightforward argument based on the spectral theorem (diagonalize with diagonal entries ordered to their size,
linearly interpolate between the diagonal matrices, finally deform the unitaries using their matrix logarithm), there

exists a continuous path t ∈ [0, 1] 7→ Lt of invertible selfadjoints connecting L0 = L̃Π(A0, B0) to L1 = L̃Π(A1, B1).
Then set

At =
1

2

(

(LtΠ)
†
+ LtΠ

)

, Bt =
i

2

(

(LtΠ)
† − LtΠ

)

.

These are clearly continuous paths of Hermitian matrices. Also, as required

2ΠAt = Lt +ΠLtΠ = 2AtΠ, −2iΠBt = Lt −ΠLtΠ = 2iBtΠ.

Finally

L̃Π(At, Bt) =
1

2
((ΠLt + LtΠ)Π− (ΠLt − LtΠ)Π) = Lt

so the path is in the invertibles as required.

While the previous lemma provides the desired classification, the result can probably be strengthened. It should
be possible that along the constructed path t 7→ (At, Bt) the locality of the operators can be preserved as physical
intuition suggests. One way to approach the problem is to realize that the commutator [A,B] of the two Hermitian
matrices can be made arbitrarily small by choosing the tuning parameter κ small (recall that A = H , B = κX and
Π = S in the situation of the main text). Then Lin’s theorem [7] states that there are nearby Hermitian operators
A′ and B′ which commute. This allows to construct a short part connecting them which hence conserves locality,
as pointed out in [8]. It is an interesting open question whether one can generalize Lin’s theorem by guaranteeing
that A′ and B′ satisfy the same symmetry relations A′Π = ΠA′ and B′Π = −ΠB′. We conjecture that this is true,
given that similar statements have been proven for matrix symmetries corresponding to Altland-Zirnbauer symmetry
classes AI and AII [9] as well as classes C and D [10].
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SIII. The scaling coefficient κ

The scaling coefficient κ serves two roles in the spectral localizer: it guarantees consistent units between the two
constituent operators, the position operators on one side and the Hamiltonian on the other, and it adjusts the effective
weighting between these operators in the spectral localizer’s spectrum. The tuning of κ is crucial because the two
limiting cases κ ↓ 0 and κ ↑ ∞ both yield objects of no interest. For κ = 0, the spectrum of L(x,E) is simply related
to the spectrum of the underlying Hamiltonian, and thus the spectral localizer provides no additional information.
Similarly, for κ ↑ ∞, L(x,E) only reveals the distribution of the system’s sites. Instead, for the spectral localizer to
provide new and useful information about a system, κ needs to be chosen to neither be too large nor too small. These
comments directly transpose the symmetry-reduced spectral localizer L̃S

E due to Eqs. (S3) and (S6).

The spectral localizer in several prior works [1, 2, 11] is used to compute the bulk topological invariants for bulk
tight-binding Hamiltonians Hbulk that fall within one of the ten Altland-Zirnbauer classes [12–14]. In this context,
there are proven bounds on κ that guarantee that the spectral localizer is gapped (i.e. µ 6= 0) so that its signature is a
well-defined and stable quantity. More precisely, let E be the energy where the system’s topology is being evaluated,
let g be the size of the band gap of Hbulk around that E, and l the length from the center of the sample to the
boundary of the finite system. Then the bounds

κ ≤ g3

12‖Hbulk − E1‖
(

∑d
j=1 ‖[Xj, Hbulk]‖

) , (S11)

κ ≥ 2g

l
, (S12)

guarantee that the gap of the spectral localizer L(0,E) around 0 is at least g2 (see Theorem 2 of Ref. [2] and Chapter 10
in [4]). Due to Eq. (S3) this again transposes directly to the symmetry-reduced spectral localizer. Let us stress that
the result makes no other assumption on the Hamiltonian Hbulk than the existence of a spectral gap. The Hamiltonian
need not be periodic or otherwise be homogeneous in space (such as in a quasicrystal). In particular, the result also
holds for Hamiltonians describing defects. However, if a Hamiltonian describing a defect has a boundary state at
energy E, then the spectral gap g vanishes at that energy and necessarily the gap of spectral localizer also vanishes.
Hence, in this work, there is a shift of perspective on the spectral localizer (or rather its symmetry-reduced cousin)
relative to these prior studies [1, 2, 11]: it is not only used to detect (bulk) topological invariants, but also to localize
topological bound states. In the following, we argue that for the purpose of detecting these boundary-localized states,
an adequate choice for the size of κ is nevertheless given by Eq. (S12) if g is chosen to be the bulk gap.

Before going on though, let us stress that the bounds on the gap of the spectral localizer are not available for
unbounded Hamiltonians, such as for photonic systems where Maxwell’s equation leads to an unbounded Hamiltonian.
In particular, the hypothesis (S11) is meaningless for unbounded Hamiltonians where ‖Hbulk‖ → ∞. To recover a
useful bound this quantity needs to be made finite in some way. One possibility is to use the resolvent ‖Hbulk‖ →
‖(Hbulk − E1)−1Hbulk‖ (which would still need to have its units corrected in some appropriate manner). Another
possibility is to project into the local-in-energy subspace ‖Hbulk‖ → ‖Ψ†HbulkΨ‖ where Ψ is rectangular matrix whose
m columns are the eigenvectors of the m eigenvalues of Hbulk closest to the chosen E [15]. However, at present, it is
not known how either of these changes will alter the bounds, or if there is an entirely different, better approach.

Nevertheless, Eq. (S12) is expressed in terms of quantities that can still be calculated for a system with an unbounded
Hamiltonian. This connection (S12) is used as a guiding principle for the choice of κ with g being the bulk gap (and
not the energetic distance from E to the boundary-localized state). For the system shown in Fig. 1 of the main text,
the bulk gap is g ≈ 0.068(2πc)2/a2 and the length of the system in y is l = 8.65a, yielding κ ≈ 0.016(2πc)2/a3. As
can be seen, this is very similar to the value of κ = 0.010(2πc)2/a3 used in those simulations.

By direct calculation, we confirm that κ can be varied by over an order of magnitude while yielding quantitatively
similar results. In Fig. S1, we show the local gap and local index for a range of κ surrounding the value predicted by
Eq. (S12). The three central panels, κ = [0.002, 0.010, 0.030](2πc)2/a3 all show nearly the same quantitative results,
with two topological corner modes within the bulk band gap identified by a closing in the local gap where the local
index also changes. The leftmost (κ = 0.001(2πc)2/a3) and rightmost (κ = 0.040(2πc)2/a3) panels both show how
the theory begins to break down. For too small a κ, too many states are identified as topological in the system; in
this case, two nearly degenerate edge-localized modes are identified as topological. Similarly, when κ is too large,
one of the in-gap topological corner states is effectively combined with an in-band state with the opposite topological
charge.

Heuristically, the behavior seen in Fig. S1 is demonstrating that the effect of κ is to smooth out pairs of nearly
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FIG. S1. Local gap (µ(0,ω2))
(1/2) in units of 2πc/a (left panels) and local index ζ

Ry

ω2 (right panels) calculated using the value
of κ indicated above each pair of panels for the system shown in Fig. 1 of the main text. The middle panel reproduces the
data from Fig. 1(c) and (d). The shaded regions demarcate those spectral regions where states can exist in the crystalline
bulk. For κ = 0.001(2πc)2/a3, the magenta arrow indicates where the local index is changing for a pair of edge states. For
κ = 0.040(2πc)2/a3, the magenta arrow indicates where a corner state is no longer associated with a change in the local index.

degenerate modes with opposite symmetry, removing their presence from the local gap and local index. In this case,
the in-gap nearly degenerate modes are made of edge-localized states that form an even and odd pair with respect to
the reflection symmetry at the corner, whose frequencies are guaranteed to be similar, but distinct. However, if κ is
too large, some of the corner-localized modes are smoothed out with their in-band even/odd partner. This argument
confirms the prediction that κ should be both related to the gap size, which determines how far away such an in-band
even/odd partner state is in energy, as well as the finite system’s size, which sets the energy scale of the even-odd
splitting between the edge-localized states (larger l reduces the edge state splitting).

SIV. Additional details on the perturbed corner heterostructure

In Fig. 1 of the main text, the local gap is seen to indicate that the higher-frequency corner-localized state has
more topological protection than the lower-frequency corner state, despite being closer-in-frequency to one of the bulk
bands. Here, we provide additional simulation results beyond those shown in Fig. 2 of the main text to support the
conclusions discussed in conjunction with that figure.

In Fig. S2 we consider the same two perturbation distributions as considered in the main text, tailored to affect
either the lower-frequency corner state [Fig. S2(a)] or the higher-frequency corner state [Figs. S2(b),(c)], with the
field profiles of these states in the unperturbed system shown in Fig. 1(e) of the main text. The total perturbation is
then the perturbation strength δε ∈ R multiplied by the perturbation distribution u(x), i.e. δεtot(x) = δε u(x). The
two chosen perturbation distributions have similar overlaps with their respective modes, the higher-frequency corner
state modal overlap is

∫

E∗
z,hf(x)uhf(x)Ez,hf(x)dx = 0.07 = ūhf, while the lower-frequency corner state modal overlap

is
∫

E∗
z,lf(x)ulf(x)Ez,lf(x)dx = 0.12 = ūlf. Here, ulf(x) is shown in Fig. S2(a), and uhf(x) in Figs. S2(b) or (c), while

the modal fields Ez(x) of bound states of the unperturbed system are shown in Fig. 1(e) of the main text.

To demonstrate that the topological phase transitions are happening at the perturbation strengths claimed in the
main text, in Fig. S2 we show closely spaced perturbation strengths on either side of the topological transition. In
each case, the relevant topological that disappears as the perturbation strength is slightly increased is marked by
the magenta arrow. In Fig. S2(c), we also show the possibility of attempting to merge the two in-gap corner states,
as opposed to combining them with states from the bulk bands as is considered in Figs. S2(a) and (b). From Fig.
1(d), the local gap reveals that the topological protection of the lower-frequency corner state against merging with
the lower-frequency bulk band is less than that of merging the two in-gap states together, which is again less than
that of merging the higher-frequency corner state with the higher-frequency bulk band. This is because the maximum
local gap attained over frequencies below the lower-frequency corner mode is less than the maximum local gap for
frequencies in between the two corner states, which is again less than the local gap for frequencies greater than the
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FIG. S2. Studies of three different perturbations designed to annihilate one or both of the original in-gap topological corner
states by combining the state with an opposite-symmetry partner. The top row shows zoomed-in diagrams of the perturbation’s
distribution (red) in the overall photonic corner heterostructure from Fig. 1 in the main text. The bottom left panel for each case

shows the local gap (µ(0,ω2))
(1/2) in units of 2πc/a and local index ζ

Ry

ω2 calculated using κ = 0.01(2πc)2/a3 for a perturbation
strength just below the strength at which the topological corner mode is annihilated. The bottom right panel shows the
same quantities for a perturbation strength just above the strength at which the topological corner mode is annihilated. The
magenta arrow indicates the topological feature that disappears as the perturbation strength is increased. The shaded regions
demarcate those spectral regions where states can exist in the crystalline bulk. (a) The perturbation is chosen to combine: (a)
the lower-frequency corner state with a state from the lower-frequency bulk band; (b) the higher-frequency corner state with a
state from the higher-frequency bulk band; (c) the two in-gap corner-localized states.

higher-frequency corner state,

max
ω<ωlf

µ(0,ω2) < max
ωlf<ω<ωuf

µ(0,ω2) < max
ωuf<ω

µ(0,ω2).

This predicted hierarchy is confirmed by these the simulations considered in Fig. S2,

|δεFig.S2(a)|ūlf < |δεFig.S2(c)|ūuf < |δεFig.S2(b)|ūuf,

where the absolute value of each perturbation strength necessary to annihilate a specified corner-localized mode is
scaled by the overlap with that corner-localized mode.

In the numerical results discussed in this section and the main text, the perturbation was chosen to respect the
system’s reflection symmetry so that the symmetry-reduced spectral localizer remained Hermitian and the topological
corner-localized states retained well-defined eigenvalues with respect to Ry. However, it is likely possible to also
consider the system’s topological protection against perturbations that do not respect reflection symmetry. Of course,
in this case, the corner-localized topological state would no longer be either even or odd with respect to the reflection
symmetry, but it may be possible to quantitatively predict a perturbation strength below which the state must still
exist. Such a prediction may be possible using known results for symmetry-destroying perturbations to systems with
strong topology [16], or by considering a non-Hermitian extension of the symmetry-reduced spectral localizer similar
to what has been developed for Class A systems [17].

SV. Identifying topological edge-localized states

Re-configuring the corner photonic heterostructure considered in Fig. 1 of the main text so that the mirror symmetry
axis intersects an edge rather than a corner, shows that the same local marker and local gap definitions can be used
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FIG. S3. (a) Diagram of a 2D photonic structure with a straight edge between crystals formed from expanded (purple) and
contracted (blue) hexagonal clusters that have the same properties as in Fig. 1 of the main text, bounded by a perfect electric

conductor. (b) Density of states for the finite system in (a). (c) Local gap (µ(0,ω2))
(1/2) in units of 2πc/a and local index

ζ
Ry

ω2 calculated using κ = 0.01(2πc)2/a3. In (b,c) the shaded regions demarcate those spectral regions where states can exist
in the crystalline bulk. (d) LDOS at the frequency of the local gap closing and real part of the Ez field for the mode at
ω = 0.504(2πc/a).

to identify topological edge-localized states centered at y = 0, see Fig. S3. Indeed, as can be seen, it would be
nearly impossible to uniquely identify the topological edge-localized state in this system from its DOS, due to all
of the surrounding nearly degenerate states, Fig. S3(b). However, only a single state causes the local gap to close
within the heterostructure’s bulk band gap, where the topological marker also changes, Fig. S3(c), and this frequency
corresponds to a state that is edge-localized, Fig. S3(d). Note that due to the system possessing perfect electric
conductor boundaries (open boundaries in the standard language of condensed matter systems), one only expects a
small number of edge states to be topological with respect to the reflection symmetry of the system’s y = 0 axis, as
opposed to a number proportional to the length of the edge. To identify the remainder of the edge-localized states,
one could instead impose periodic boundaries and define a set of reflection symmetries corresponding to the center and
edges of each horizontal ribbon super-cell, similar to what is considered in Ref. [18]. Then, the set of all topological
edge-localized states would be the union of all those states identified by each choice of reflection symmetry. Altogether,
these simulations demonstrate that the local crystalline topological marker ζSE is applicable to both first-order and
higher-order topology.

SVI. Eigenstates of the symmetry-reduced spectral localizer

In the main text after Eq. (10), it is claimed that the eigenstates of the Ry-reduced spectral localizer at gap-closing
are approximately given by eigenstates of the underlying Hamiltonian. In this section, we provide some numerical
justification for this claim (as well as the discussion in Sec. SI), but also note that this is still a relatively crude
approximation that somehow still results in a prediction, Eq. (12), that is numerically observed to be correct in
Fig. 1 in the main text and Fig. S3. As a reminder, we are using φω2 as the eigenvector of the symmetry-reduced

spectral localizer L̃
Ry

ω2 that corresponds to its smallest eigenvalue at ω. Similarly, the eigenvectors of the Hermitian

Hamiltonian generated from Maxwell’s equations are ψ =M−1/2Ez.

As can be seen in Fig. S4(a),(b), φω2 is in reasonable agreement with the corresponding eigenstate of H , ψb for
these corner-localized states. However, note that, as the symmetry-reduced spectral localizer does not commute with
the spatial symmetry S, φω2 is neither even nor odd with respect to this symmetry. For Fig. S4(c), we can see that
even though the system’s eigenstate is localized to the interface, but still extended along it, φω2 is localized to the
reflection operator’s center, i.e., the y-axis. Thus, the spectral localizer can identify topological states even if they are
not perfectly localized.
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FIG. S4. (a) For the system shown in the main text in Fig. 1, from left to right, the eigenstate intensity |ψ|2 of H whose
frequency is ω = 0.480(2πc/a), the corresponding real part of the eigenstate Re[ψ], the squared absolute value |φω2 |2 of the
eigenvector φω2 of the Ry-reduced spectral localizer whose corresponding eigenvalue is the closest to zero, and Re[φω2 ]. (b)
Similar to (a), but for ω = 0.515(2πc/a) from that same system. (c) Similar to (a), but for ω = 0.505(2πc/a) for the system
shown in Fig. S3 in the main text. In all cases, κ = 0.01(2πc)2/a3.

SVII. Examples of edge-localized states in the corner heterostructure that are trivial with respect to the

local index

In the discussion about Fig. 1 in the main text, we claim that the other states seen in the shared bulk band gap of
the photonic crystal heterostructure are edge-localized states and not corner-localized states. In Fig. S5 we provide
evidence for this claim. As can be seen, for frequencies corresponding to choices where the DOS is non-zero within the
bulk band gap, but not frequencies where the local gap closes and the local index changes, the states are edge-localized,
not corner-localized.

SVIII. Application of the symmetry-reduced spectral localizer to a tight-binding model

Here, we provide an example of the symmetry-reduced spectral localizer of a tight-binding model that identifies
its crystalline topological states. In particular, we choose the “breathing” honeycomb lattice with C6v symmetry
shown in Fig. S6(a). This lattice is characterized by two coupling coefficients, the intra–unit cell coupling tin, and the
inter–unit cell coupling tout. Here, we set the on-site energies to be zero, so the system also exhibits chiral symmetry.
This lattice has been previously studied for its zero-energy states protected by chiral symmetry [19].
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FIG. S5. For the system shown in the main text in Fig. 1, |Ez|
2 and Re[Ez] at (a) ω = 0.5121(2πc/a) and at (b) ω =

0.5125(2πc/a).
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FIG. S6. (a) Schematic of the finite breathing honeycomb lattice with C6v symmetry. The intra–unit cell couplings (tin) are
shown in cyan, and the inter–unit cell couplings (tout) are shown in magenta, with lattice constant is a. (b) Density of states,

local gap µ(0,E), and local index ζ
Ry

E for the breathing honeycomb lattice for tin = 0.2t and tout = t. The local density of states
(LDOS) is shown for the three in-gap energies where the topological index is seen to change. (c) Similar to (b), except for
tin = t and tout = 0.2t. For (b),(c), κ = 0.1(t/a).

Instead, here we analyze the breathing honeycomb lattice using the symmetry-reduced spectral localizer. Again,

we choose S = Ry, the reflection symmetry about the system’s y = 0 axis, yielding the local index ζ
Ry

E and local gap
µ(0,E) as defined in the main text. When, tout > tin [Fig. S6(b)], the system exhibits three in-gap index switches,
showing that the system’s topology is changing at these energies. The local density of states (LDOS) reveals that all
three of these switches correspond to corner-localized states. In contrast, when tin > tout [Fig. S6(c)], there are no
in-gap topological index changes, only changes that occur within the spectral extent of the system’s bulk bands.



12

Note that the system’s local index in the topological phase only changes by 2 at the energy of each set of corner
states, not 6, despite there being six corners. This is because only two of the corner states are topological with respect
to Ry — the other four corner states are topological with respect to the two reflection axes that bisect those corners.
Similarly, the index is changing by 2, rather than 1, because each reflection axis is bisecting two corners on opposite
sides of the lattice. In contrast, in Fig. 1 of the main text, the system only has a single corner along the reflection
symmetry’s axis.
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