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Abstract: This paper considers a two-player game where each player chooses a resource from a finite

collection of options. Each resource brings a random reward. Both players have statistical information

regarding the rewards of each resource. Additionally, there exists an information asymmetry where

each player has knowledge of the reward realizations of different subsets of the resources. If both

players choose the same resource, the reward is divided equally between them, whereas if they

choose different resources, each player gains the full reward of the resource. We first implement the

iterative best response algorithm to find an ε-approximate Nash equilibrium for this game. This

method of finding a Nash equilibrium may not be desirable when players do not trust each other and

place no assumptions on the incentives of the opponent. To handle this case, we solve the problem of

maximizing the worst-case expected utility of the first player. The solution leads to counter-intuitive

insights in certain special cases. To solve the general version of the problem, we develop an efficient

algorithmic solution that combines online convex optimization and the drift-plus penalty technique.

Keywords: resource-sharing games; congestion games; potential games; worst-case utility maximization;

drift-plus penalty method

1. Introduction

We consider the following game with two players, A and B. There are n resources, each
denoted by an integer between 1 and n. Each player selects a resource without knowledge
about the other player’s selection. The state of the game is described by the random
vector W = (W1, W2, . . . , Wn)>, where Wk is the reward random variable of resource k. We
assume Wk to be independent random variables for each 1 ≤ k ≤ n, taking non-negative
real values. If both players choose the same resource k, each gets a utility of Wk/2. If
they choose different resources k, l, they receive utilities of Wk and Wl , respectively. It is
assumed that the mean and the variance of Wk exist and are finite for each 1 ≤ k ≤ n.
Both players know the distribution of W . Our formulation allows for an information
asymmetry between the players. In particular, {1, 2, . . . , n} can be partitioned into four sets
{A,B, C,AB} where only player A observes the realizations of Wk for k ∈ A, only player
B observes the realizations of Wk for k ∈ B, no player observes the realizations of Wk for
k ∈ C, and both players observe the realizations of Wk for k ∈ AB.

This game can be used to model different real-world scenarios where the agents
have asymmetric information regarding the involved information structure. One classic
example is the problem of Multiple-Access Control (MAC) in communication systems.
Here, communication channels are accessed by multiple users, and the data rate of a
channel is shared amongst the users who select it [1]. A channel can be shared using Time
Division Multiple Access (TDMA) or Frequency Division Multiple Access (FDMA), where
in TDMA, the channel is time-shared among the users [2,3], whereas in FDMA, the channel
is frequency-shared among the users [4]. In both cases, the total data rate supported by
the channel can be considered the utility of the channel. The problem of information
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asymmetry arises since a user might have precise information regarding the total data
rate offered by some channels but not others, and the known channels can be different for
different users. On the other hand, the users in such a system cannot be trusted since the
system may have malicious users (for instance, jammers) who focus on reducing the data
rate available to genuine users.

Modified versions of this game apply to problems in economics. For instance, consider
a firm that chooses a market to enter from a pool of market options. The chosen market may
also be chosen by another firm. The reward of a market is the revenue it brings. Assume a
simplified model where there exists a total revenue for each market, and the total revenue
is divided equally among the firms entering the market. A reward known to all firms
can be considered public information, while a reward known only to one firm is private
information of that firm.

The game defined above can be viewed as a stochastic version of the class of games
defined in [5], which are resource-sharing games, also known as congestion games. In
resource-sharing games, players compete for a finite collection of resources. In a single turn
of the game, each player is allowed to select a subset of the collection of resources, where
the allowed subsets make up the action space of the player. Each resource offers a reward
to each player who selected the particular resource, where the reward offered depends
on the number of players who selected it. The relationship between the reward offered
to a player by a resource and the number of users selecting it is captured by the reward
function of the resource. A player’s utility is equal to the sum of the rewards offered by the
resources in the subset selected by the player. In [5], it is established that the above game
has a pure-strategy (deterministic) Nash equilibrium.

Although in the classical setting, these games ignore the stochastic nature of the
rewards offered by the resources, the idea of resource-sharing games has been extended
to different stochastic versions [6,7]. Versions of the game with information asymmetry
have been considered through the work of [8] in the context of Bayesian games, which
considers the information design problem for resource-sharing with uncertainty. Similar
Bayesian games have also been considered in [9,10]. It should be noted that in general
resource-sharing games, no conditions are placed on the reward functions of the resources.
The special case where the reward functions are non-decreasing in the number of players
selecting the resource is called a cost-sharing game [11]. These games are typically treated
as games where a cost is minimized rather than a utility being maximized. In fair cost-
sharing games, the cost of a resource is divided equally among the players selecting the
resource. We consider a fair reward allocation model, where the reward of a resource is
equally shared among the players selecting the resource. It should be noted that in this
model, the players have opposite incentives compared to a fair-cost sharing model.

The work on resource-sharing games assumes that the players either cooperate or
have the incentive to maximize a private or a social utility. It is interesting to consider
a stochastic version of the game with asymmetric information between players who do
not necessarily trust each other and who place no assumptions on the incentives of the
opponents. In this context, the players have no signaling or external feedback and take
actions based only on their personal knowledge of the reward realizations for a subset of
the resource options. In this paper, we consider the above problem and limit our attention
to the two-player singleton case, where each player can choose only one resource.

In the first part of the paper, we provide an iterative best response algorithm to find an
ε-approximate Nash equilibrium of the system. In the second part, we solve the problem of
maximizing the worst-case expected utility of the first player. We solve the problem in two
cases. The first case is when both players do not know the realizations of the reward random
variables of any of the resources, in which case an explicit solution can be constructed.
This case yields a counter-intuitive solution that provides insight into the problem. One
such insight is that, while it is always optimal to choose from a subset of resources with
the highest average rewards, within that subset, one chooses the higher-valued rewards
with lower probability. For the second case, we solve the general version of the problem
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by developing an algorithm that leverages the online optimization technique [12,13] and
the drift-plus penalty method [14]. This algorithm generates a mixture of O(1/ε2) pure
strategies, which, when used in an equiprobable mixture, provides a utility within ε of
optimality on average. Below, we summarize our major contributions.

• We consider the problem of a two-player singleton stochastic resource-sharing game
with asymmetric information. We first provide an iterative best response algorithm to
find an ε-approximate Nash equilibrium of the system. This equilibrium analysis uses
potential game concepts.

• When the players do not trust each other and place no assumptions on the incentives
of the opponent, we solve the problem of maximizing the worst-case expected utility
of the first player using a novel algorithm that leverages techniques from online
optimization and the drift-plus penalty methods. The algorithm developed can be
used to solve the general unconstrained problem of finding the randomized decision
α ∈ {1, 2, . . . , n}, which maximizes E{h(x; Θ)}, where x ∈ Rn with xk = E{Γk1{α=k}},
Θ ∈ Rm and Γ ∈ Rn are non-negative random vectors with finite second moments,
and h is a concave function such that h̃(x) = E{h(x; Θ)} is Lipschitz continuous,
entry-wise non-decreasing and has bounded subgradients.

• We show our algorithm uses a mixture of only O(1/ε2) pure strategies using a detailed
analysis of the sample path of the related virtual queues (our preliminary work on this
algorithm used a mixture of O(1/ε3) pure strategies). Virtual queues are also used for
constrained online convex optimization in [13], but our problem structure is different
and requires a different and more involved treatment.

1.1. Background on Resource-Sharing Games

The classical resource-sharing game defined in [5] is a tuple (M,N , T , r), where M is
a set of m players, N is a set of n resources, T = T1 × T2 × . . . × Tm where Tj is the set of

possible actions of player j (which is a subset of 2N ), and r = (r1, r2, . . . , rn), where ri : N0 →
R is the reward function of resource i. Here, we use the notation N0 = N∪ {0}. Each player
has complete knowledge about the tuple (M,N , T , r), but they do not have knowledge
of the actions chosen by other players. For an action profile a = (a1, a2, . . . , am) ∈ T , the
count function # is a function from N × T to N0 where #(i, a) = ∑

m
k=1 1{i∈ak}. In other

words, #(i, a) is the number of players choosing resource i under action profile a. We
call the quantity ri(#(i, a)) the per-player reward of resource i under action profile a. The
utility uj of player j is a function from T to R, where uj(a) = ∑

n
i=1 1{i∈ak}ri(#(i, a)). In

other words, uj(a) is the sum of the per-player rewards of the resources chosen by player j
under action profile a. Resource-sharing games fall under the general category of potential
games [15]. Potential games are the class of games for which the change in reward of any
player as a result of changing their strategy can be captured by the change in a global
potential function.

Many game variations of the resource-sharing game have been studied [16]. Weighted
resource-sharing games [17], games with player-dependent reward functions [18], and
games with resources having preferences over players [19] are some of the extensions.
Singleton games, where each player is allowed to choose only one resource, have also been
explored explicitly in the literature [20,21]. Some of the extensions of the classical resource-
sharing game possess a pure Nash equilibrium in the singleton case. Two examples would
be the games with player-specific reward functions for a resource [18] and the games with
priorities where the resources have preferences over the players [19].

Resource-sharing games have been extended to several stochastic versions. For in-
stance, ref. [6] considers the selfish routing problem with risk-averse players in a network
with stochastic delays. The work of [7] considers two scenarios where, in the first sce-
nario, each player participates in the game with a certain probability, and in the second
scenario, the reward functions are stochastic. The problem of information asymmetry in
resource-sharing games has been addressed through the work of [8–10,22]. The work of [22]
considers a network congestion game where the players have different information sets
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regarding the edges of the network. Further, ref. [8] considers a scenario with a single
random state θ, which determines the reward functions. The realization of θ is known to a
game manager who strategically provides recommendations (signaling) to the players to
minimize the social cost. An information asymmetry arises among the players in this case
due to the actions of the game manager during private signaling, where the game manager
provides player-specific recommendations.

Resource-sharing games appear in a variety of applications such as service chain com-
position [23], congestion control [24], network design [25], load balancing networks [26,27],
resource sharing in wireless networks [28], spectrum sharing [29], radio access selec-
tion [30], non-orthogonal multiple access [31,32], network selection [33,34], and migration
of species [35].

Our formulation differs from the literature on resource-sharing games since we con-
sider a scenario that is difficult to be analyzed using the standard equilibrium-based
approaches. This is due to the fact that the players do not trust each other and place no
assumptions on the incentives of the opponents, and they take action in the absence of a
signaling mechanism or external feedback by just using their knowledge of the reward
random variables. This motivates our formulation as a one-shot problem tackled using
worst-case expected utility maximization.

1.2. Notation

We use calligraphic letters to denote sets. Vectors and matrices are denoted by boldface
characters. For integers n and m, we denote by [n : m] the inclusive set of integers between
n and m. Given a vector w ∈ Rm, wk is used to denote the k-th element of w; wk:l for l ≥ k
represents the l − k + 1 dimensional sub-vector (wk, wk+1, . . . , wl)

> of w; for a subset S
of integers from 1 to n {wk; k ∈ S} represents the sub-vector of w with index in S . For
z ∈ Rm, we use ‖z‖2 to denote the standard Euclidean norm (L2 norm) of z. For a function
f : Rm → R, and z ∈ Rm, we use f

′
(z) = ( f

′
1(z), f

′
2(z), . . . , f

′
m(z)) to denote a subgradient

of f at z.

2. Materials and Methods

The code used for the simulations is implemented using Python programming lan-
guage in the notebook https://rb.gy/wvt33, accessed on 10 August 2023.

3. Formulation

Denote X = {Wk; k ∈ A}, Y = {Wk; k ∈ B}, Z = {Wk; k ∈ AB}, and V = {Wk; k ∈ C}.
Recall that X is known only to player A, Y is known only to player B, Z is known to both
players, and V is known to neither. Let us define Ac = [1 : n] \ A, and Bc = [1 : n] \ B.
Let |A| = a, |B| = b, |C| = c and |AB| = d. Therefore, a + b + c + d = n. Without loss
of generality, we assume A = [1 : a], B = [a + 1 : a + b], C = [a + b + 1 : a + b + c], and
AB = [a + b + c + 1 : n].

Let RC(gA, gB) be the random variable representing the utility of player C ∈ {A, B},
given that player A uses strategy gA, and player B uses strategy gB. General strategies for
players A and B can be represented by the Borel-measurable functions,

gA : [0, 1)×R
a+d
≥0 → [1 : n], (1)

gB : [0, 1)×R
b+d
≥0 → [1 : n], (2)

where

αA = gA(UA, X, Z), (3)

αB = gB(UB, Y , Z), (4)

are the resources chosen by players A and B, respectively. Here, UA and UB are independent
randomization variables uniformly distributed in [0, 1) and independent of W . A pure
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strategy for player A is a function gA that does not depend on UA, whereas a mixed
strategy is a function gA that depends on UA. Hence, we drop the randomization variable
when depicting a pure strategy. Pure strategies and mixed strategies for player B are
defined similarly. Let SA and SB denote the sets of all possible strategies for players A and
B, respectively.

It turns out that our analysis is simplified when Z is fixed. Fixing Z does not affect the
symmetry between players A and B since Z is observed by both players A and B. Hereafter,
we conduct the analysis by considering all quantities conditioned on Z.

Define

pA
k = E{1{αA=k}|Z} for 1 ≤ k ≤ n,

qA
k = E{Wk1{αA=k}|Z} for k ∈ A, (5)

and,

pB
k = E{1{αB=k}|Z} for 1 ≤ k ≤ n,

qB
k = E{Wk1{αB=k}|Z} for k ∈ B. (6)

Note that pA
k and pB

k are the conditional probabilities of players A and B choosing k given
Z. Define vectors pA = {pA

k ; 1 ≤ k ≤ n}, qA = {qA
k ; k ∈ A}, pB = {pB

k ; 1 ≤ k ≤ n}, and
qB = {qB

k ; k ∈ B}. For 1 ≤ k ≤ n, define Ek = E{Wk|Z}. Hence, we have

Ek =

{
Wk if k ∈ AB,

E{Wk} otherwise,
(7)

which uses the independence of Wk and Z when k 6∈ AB.
Note that the utility achieved by player A given the strategies gA and gB can be

written as

RA(gA, gB) =
n

∑
k=1

Wk

(
1{αA=k} −

1

2
1{αA=k}1{αB=k}

)
. (8)

Given the strategies gA and gB, we provide an expression for the expected utility of
player A given Z, where the expectation is over the random variables X, Y , V , and the
possibly random actions αA and αB. Taking expectations of (8) gives,

E{RA(gA, gB)|Z} =
n

∑
k=1

E{Wk1{αA=k}|Z} −
1

2

n

∑
k=1

E{Wk1{αA=k}1{αB=k}|Z}

= ∑
k∈A

E{Wk1{αA=k}|Z}+ ∑
k∈Ac

E{Wk|Z}E{1{αA=k}|Z} −
1

2

n

∑
k=1

E{Wk1{αA=k}1{αB=k}|Z}

= ∑
k∈A

qA
k + ∑

k∈Ac

Ek pA
k − 1

2

n

∑
k=1

E{Wk1{αA=k}1{αB=k}|Z}. (9)

Note that given Z, the random variables αA and αB are independent. Hence, we can
split the last term (9) as follows,

n

∑
k=1

E{Wk1{αA=k}1{αB=k}|Z} = ∑
k∈A

E{Wk1{αA=k}1{αB=k}|Z}+ ∑
k∈B

E{Wk1{αA=k}1{αB=k}|Z}

+ ∑
k∈C∪AB

E{Wk1{αA=k}1{αB=k}|Z} = ∑
k∈A

E{Wk1{αA=k}|Z}E{1{αB=k}|Z}

+ ∑
k∈B

E{1{αA=k}|Z}E{Wk1{αB=k}|Z}+ ∑
k∈C∪AB

EkE{1{αA=k}|Z}E{1{αB=k}|Z}
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= ∑
k∈A

qA
k pB

k + ∑
k∈B

pA
k qB

k + ∑
k∈C∪AB

Ek pA
k pB

k . (10)

4. Computing the ε-Approximate Nash Equilibrium

This section focuses on finding an ε-approximate Nash equilibrium of the game. Fix
ε > 0. A strategy pair (gA, gB) is defined as an ε-approximate Nash equilibrium if neither
player can improve its expected reward by more than ε if it changes its strategy (while
holding the strategy of the other player fixed).

Combining (10) with (9), we have that

E{RA(gA, gB)|Z} = ∑
k∈A

qA
k + ∑

k∈Ac

Ek pA
k − 1

2

(
∑

k∈A
qA

k pB
k + ∑

k∈B
pA

k qB
k + ∑

k∈C∪AB
Ek pA

k pB
k

)
. (11)

Similarly, for player B, we have

E{RB(gA, gB)|Z} = ∑
k∈B

qB
k + ∑

k∈Bc

Ek pB
k − 1

2

(
∑

k∈A
qA

k pB
k + ∑

k∈B
pA

k qB
k + ∑

k∈C∪AB
Ek pA

k pB
k

)
. (12)

First, we focus on finding the best response for players A and B, given the other
player’s strategy is fixed.

Lemma 1. The best response for players A and B are given by αA = arg max1≤k≤n Ak, and
αB = arg max1≤k≤n Bk, where Ak and Bk are given by,

Ak =





Wk

(
1 − pB

k
2

)
if k ∈ A,

Ek −
qB

k
2 if k ∈ B,

Ek

(
1 − pB

k
2

)
if k ∈ C ∪AB,

Bk =





Ek −
qA

k
2 if k ∈ A,

Wk

(
1 − pA

k
2

)
if k ∈ B,

Ek

(
1 − pA

k
2

)
if k ∈ C ∪AB.

(13)

Proof of Lemma 1. We find the best response for A, and the best response for B follows
similarly. Notice that we can rearrange (11) as,

E{RA(gA, gB)|Z} = ∑
k∈A

qA
k

(
1 − pB

k

2

)
+ ∑

k∈B
pA

k

(
Ek −

qB
k

2

)
+ ∑
k∈C∪AB

pA
k Ek

(
1 − pB

k

2

)

= ∑
k∈A

E{Wk1{αA=k}|Z}
(

1 − pB
k

2

)
+ ∑

k∈B
E{1{αA=k}|Z}

(
Ek −

qB
k

2

)

+ ∑
k∈C∪AB

EkE{1{αA=k}|Z}
(

1 − pB
k

2

)
(14)

= E

{
∑

k∈A
Wk

(
1 − pB

k

2

)
1{αA=k} + ∑

k∈B

(
Ek −

qB
k

2

)
1{αA=k} + ∑

k∈C∪AB
Ek

(
1 − pB

k

2

)
1{αA=k}

∣∣∣∣∣Z
}

.

The above expectation is maximized when A chooses according to the given policy.

Next, we find a potential function for the game. A potential function is a function of
the strategies of the players such that the change in the utility of a player when he changes
his strategy (while the strategies of other players are held fixed) is equal to the change in
the potential function [15].

Theorem 1. The function H(gA, gB) given by,

H(gA, gB) = ∑
k∈A

(qA
k + Ek pB

k ) + ∑
k∈B

(qB
k + Ek pA

k ) + ∑
k∈C∪AB

Ek(pA
k + pB

k )
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− 1

2

(
∑

k∈A
qA

k pB
k + ∑

k∈B
pA

k qB
k + ∑

k∈C∪AB
Ek pA

k pB
k

)
, (15)

is a potential function for the game, where pA
k , pB

k for 1 ≤ k ≤ n, qA
k for k ∈ A and qB

k for k ∈ B are
defined in (5) and (6). Moreover, we have that for all gA, gB ∈ SA × SB, H(gA, gB) ≤ 2 ∑

n
k=1 Ek.

Proof of Theorem 1. The key to the proof is separating (15) (using (11) and (12)) as,

H(gA, gB) = E{RA(gA, gB)}+ ∑
k∈Bc

Ek pB
k + ∑

k∈B
qB

k (16)

= E{RB(gA, gB)}+ ∑
k∈A

qA
k + ∑

k∈Ac

pA
k Ek. (17)

Consider updating the strategy of player A while holding the strategy of player B fixed.
Notice that since ∑k∈Bc Ek pB

k + ∑k∈B qB
k is not affected in this process, from (16), we have

that the change in the expected utility of player A is equal to the change in the H function.
Similarly, this holds when player B updates the strategy while holding player A’s strategy
fixed. Hence, this is indeed a potential function. The proof that H(gA, gB) ≤ 2 ∑

n
k=1 Ek is

omitted for brevity (See technical report [36] for details).

Using Theorem 1 with standard potential game theory (see, for example, [37]), we
have that the iterative best response algorithm with the best response found in Lemma 1
converges to an ε-approximate Nash equilibrium in at most (2 ∑

n
k=1 Ek)/ε iterations.

5. Worst-Case Expected Utility

Finding a Nash equilibrium using the above algorithm may not be desirable when the
players do not trust each other and place no assumptions on the incentives of the opponent.
To mitigate this issue, we consider maximizing the worst-case expected utility of player
A. Similar to the case of finding the Nash equilibrium, the analysis is simplified when Z

is fixed.
Notice that we can simplify (10) to yield,

n

∑
k=1

E{Wk1{αA=k}1{αB=k}|Z} (18)

= ∑
k∈A

qA
k E{1{αB=k}|Z}+ ∑

k∈B
pA

k E{Wk1{αB=k}|Z}+ ∑
k∈C∪AB

Ek pA
k E{1{αB=k}|Z}

= ∑
k∈A

E{ΩkqA
k 1{αB=k}|Z}+ ∑

k∈Ac

E{Ωk pA
k 1{αB=k}|Z}, (19)

where

Ωk =





1 if k ∈ A,

Wk if k ∈ B,

Ek if k ∈ C ∪AB.

(20)

Plugging the above into (9), we find that

E{RA(gA, gB)|Z} = ∑
k∈A

qA
k +∑

k∈Ac

Ek pA
k − 1

2
E

{
∑

k∈A
ΩkqA

k 1{αB=k} + ∑
k∈Ac

Ωk pA
k 1{αB=k}

∣∣∣∣∣Z
}

. (21)

The difficulty in dealing with E{RA(gA, gB)|Z} is that it depends on the strategy gB of
player B, which is not known to player A. Hence, given a strategy gA of player A, we first

focus on obtaining the worst-case strategy ĝA of player B. Then we focus on finding the

strategy gA of player A, which maximizes E{RA(gA, ĝA)|Z}. This way, we can guarantee
a minimum expected utility for player A irrespective of player B’s strategy.
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Lemma 2. For given gA ∈ SA, the strategy gB ∈ SB that minimizes E{RA(gA, gB)|Z} chooses
αB = arg max1≤k≤n Λk, where

Λk =

{
ΩkqA

k if k ∈ A,

Ωk pA
k if k ∈ Ac,

(22)

and Ωk are defined in (20).

Proof of Lemma 2. Notice that the only term of E{RA(gA, gB)|Z} in (21) that depends on
the strategy of player B is the last expectation. This expectation is maximized when player

B chooses k, for which Λk is maximized.1

Hence, we have

E{RA(gA, ĝA)|Z} = ∑
k∈A

qA
k + ∑

k∈Ac

Ek pA
k − 1

2
E{max{Λk; 1 ≤ k ≤ n}|Z}, (23)

where Λk is defined in (22). We formulate a strategy for player A using the following
optimization problem

(P1): maximize
g ∈ SA

f (q, pa+1:n)

subject to q ∈ R
a,

p ∈ R
n,

qk = EW ,UA{Wk1{g(UA ,X,Z)=k}|Z} ∀ 1 ≤ k ≤ a,

pl = EW ,UA{1{g(UA ,X,Z)=l}|Z} ∀ 1 ≤ l ≤ n,

(24)

where f : Rn → R is defined by,

f (x) = ∑
k∈A

xk + ∑
k∈Ac

Ekxk −
1

2
E{max{Ωjxj; 1 ≤ j ≤ n}|Z}. (25)

Although not used immediately, we derive certain properties of f in the following
theorem, which are useful later.

Theorem 2. The function f

1. is concave.
2. is entry-wise non-decreasing.
3. satisfies,

| f (x)− f (y)| ≤ 3

2 ∑
j∈A

|xj − yj|+
3

2 ∑
j∈Ac

Ej|xj − yj|, (26)

for any x, y ∈ Rn.

Proof of Theorem 2. See Appendix A.

It turns out that when a = b = d = 0, an explicit solution can be obtained to (P1),
which we describe in Section 5.1. In Section 5.2, we describe the solution to the general case.
In the technical report [36], we provide simpler alternative solutions to the special cases
a = 0 (with no restriction on b) and a = 1 (with the additional assumption that W1 has a
continuous CDF).
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5.1. Explicit Solution for a = b = d = 0

When neither player knows any of the reward realizations, we have a = b = d = 0,
and the problem reduces to the following.

(P2): maximize
n

∑
k=1

pkEk −
1

2
max{pkEk; 1 ≤ k ≤ n}

subject to p ∈ I ,

(27)

where

I = {p ∈ R
n :

n

∑
i=1

pi = 1, pi ≥ 0 ∀i} (28)

is the n-dimensional probability simplex. For this section, we assume without loss of
generality that Ek > 0 for all k. If at least one of the Ek’s is zero, we could transform (P2)
into a lower dimensional problem with non-zero Ek’s. The following lemma constructs an

explicit solution for a = b = d = 0.2

Lemma 3. Assume without loss of generality that Ek ≥ Ek+1 for 1 ≤ k ≤ n − 1. Further, let,

r = arg max
1≤k≤n

k − 1
2

∑
k
j=1

1
Ej

, (29)

where the lowest index is chosen in the case of ties. The optimal solution for (P2) is given by
p∗ where

p∗k =





1

Ek

(
∑

r
j=1

1
Ej

) if k ≤ r,

0 otherwise.

(30)

Proof of Lemma 3. See Appendix B.

It should be noted that this solution is not unique. For instance, consider the case
when n = 2, E1 = 2, and E2 = 1. In this case, the lemma finds the solution (p1, p2) = (1, 0),
but it should be noted that (p1, p2) = (1/3, 2/3) is also a solution. It is also interesting
that the solution assigns positive probabilities to the r resources with the highest average
reward, although within these r resources, higher probabilities are assigned to the resources
with lower rewards.

It should also be noted that the worst-case strategy can be arbitrarily worse than the
Nash equilibrium strategy. For instance, consider the simple scenario with two resources
such that E1 = E2, where none of the players observe any of the reward realizations. In
this case, a Nash equilibrium would be player A always choosing resource 1 and player B
always choosing resource 2. Another Nash equilibrium would be player B always choosing
resource 1 and player A always choosing resource 2. In either case, player A’s expected
utility is E1. However, notice that, from Lemma 3, the maximum worst-case expected utility
of player A is 3E1E2/(2E1 + 2E2) = 3E1/4. Hence, E1 can be scaled to obtain arbitrarily
large deviation between the worst-case and the Nash equilibrium solutions.

5.2. Solving the General Case

In this section, we focus on solving the most general version of (P1) (with no restrictions
on the sets A,B,AB, C). In particular, we focus on finding a mixed strategy to optimize the
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worst-case expected utility for player A. It turns out that our optimal solution chooses from
a mixture of pure strategies parameterized by Q ∈ Rn, of the following form

gA
Q(X) = arg max

1≤j≤n
{{QjWj; j ∈ A} ∪ {Qj; j ∈ Ac}}. (31)

We name this special class of pure strategies as threshold strategies. We develop a
novel algorithm to solve this problem. Our algorithm leverages techniques from drift-
plus penalty theory [14] and online convex optimization [12,13]. It should be noted that
our algorithm runs offline and is used to construct an appropriate strategy for player A
that approximately solves (P1) conditioned on the observed realization of Z. We show
that we can obtain values arbitrarily close to the optimal value of (P1) by using a finite
equiprobable mixture of pure strategies of the above form. It should be noted that the
algorithm developed in this section can be used to solve the general unconstrained problem
of finding the randomized decision α ∈ {1, 2, . . . , n} which maximizes E{h(x; Θ)}, where
x ∈ Rn with xk = E{Γk1{α=k}}, Θ ∈ Rm and Γ ∈ Rn are non-negative random vectors

with finite second moments, and h is a concave function such that h̃(x) = E{h(x; Θ)} is
Lipschitz continuous, entry-wise non-decreasing, and has bounded subgradients.

We first provide an algorithm that generates a mixture of T pure strategies, after which
we establish the closeness to the optimality of the mixture. We generate a mixture of T
pure strategies {gA

Q(t)}T
t=1 by iteratively updating vector Q for T iterations, where Q(t)

and gQ(t)(X) denote the state of Q and the pure strategy generated in the t-th iteration,
respectively. In addition to Q(t), we require another state vector γ(t) ∈ Rn, which we also
update in each iteration, and parameter V, which decides the convergence properties of the
algorithm. We provide the specific details on setting V later in our analysis. We begin with
Q(1) = γ(0) = 0. In the t-th iteration (t ≥ 1), we independently sample X(t) and Ω(t)
from the distributions of X and Ω, respectively, where Ω is defined in (20) while keeping Z

fixed to its observed value. Then, we update γ(t) and Q(t + 1) as follows. First, we solve,

(P3): minimize
γ(t)

− V f
′
t (γ(t − 1))>γ(t) + α‖γ(t)− γ(t − 1)‖2

2 +
n

∑
j=1

Qj(t)γj(t) (32a)

subject to γ(t) ∈ K, (32b)

to find γ(t), where

ft(x) = ∑
k∈A

xk + ∑
k∈Ac

xkEk −
1

2
max{xkΩk(t); 1 ≤ k ≤ n}, (33)

α > 0 and K =
(×j∈A[0, Ej]

)
× [0, 1]n−a. Notice that f

′
t (x) is given by,

f
′
t,j(x) =

{
1 − 1

21{arg max1≤k≤n{xkΩk(t)}=j} if j ∈ A,

Ej − 1
21{arg max1≤k≤n{xkΩk(t)}=j}Ωj(t) if j ∈ Ac,

(34)

where arg max returns the lowest index in the case of ties. Notice that ft is a concave func-
tion, which can be established by repeating the same argument used to establish the concav-
ity of f in Theorem 2. Then, we choose the action for the t-th iteration αA(t) = gA

Q(t)(X(t))

(See (31)). Then, to update Q(t + 1), we use,

Qj(t + 1) = max
{

Qj(t) + γj(t)− Xj(t)1{αA(t)=j}, 0
}

, ∀j ∈ A,

Qj(t + 1) = max
{

Qj(t) + γj(t)− 1{αA(t)=j}, 0
}

, ∀j ∈ Ac. (35)
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The algorithm is summarized as Algorithm 1 for clarity.

Algorithm 1: Algorithm for the generation of the optimal mixture of T pure
strategies.

1 Initialize Q(1) = γ(0) = 0
2 for each iteration t ∈ [1 : T] do
3 Sample X(t), and Ω(t)
4 Choose γ(t) by solving (P3)

5 Choose the action αA(t) = gA
Q(t)(X(t))

6 Obtain Q(t + 1) using (35)

7 end

After creating the mixture {gA
Q(t)}T

t=1 of pure strategies, we choose one of them ran-

domly with probability 1/T to take the decision. In the following two sections, we focus
on solving (P3) and evaluating the performance of Algorithm 1.

5.2.1. Solving (P3)

Notice that the objective of (P3) can be written as

− V f
′
t (γ(t − 1))>γ(t) + α‖γ(t)− γ(t − 1)‖2

2 +
n

∑
j=1

Qj(t)γj(t)

=
n

∑
j=1

{
−V f

′
t,j(γ(t − 1))γj(t) + α(γj(t)− γj(t − 1))2 + Qj(t)γj(t)

}
. (36)

Hence (P3) seeks to minimize a separable convex function over the box constraint
γ(t) ∈ K. The solution vector γ(t) is found by separately minimizing each component
γj(t) over [0, uj], where

uj =

{
Ej if j ∈ A,

1 if j ∈ Ac.
(37)

The resulting solution is,

γj(t) = Π[0,uj ]


γj(t − 1)−

−V f
′
t,j(γ(t − 1)) + Qj(t)

2α


, (38)

where Π[0,uj ]
denotes the projection onto [0, uj]. Notice that the above solution is obtained

by projecting the global minimizer of the function to be minimized onto [0, uj].

5.2.2. How Good Is the Mixed Strategy Generated by Algorithm 1

Without loss of generality, we assume that Ek > 0 for all 1 ≤ k ≤ n. The following
theorem establishes the closeness of the expected utility generated by Algorithm 1 to the
optimal value f opt of (P1).

Theorem 3. Assume α is set such that α ≥ V2, and we use the mixed strategy gA generated by
Algorithm 1 to make the decision. Then,

E{RA(gA, ĝA)|Z} ≥ f opt − D1

V
− VD2

16α
− αD3

VT
− 3

2T ∑
k∈A

{√
α + Ek

(
2
√

2α + 1
)}

− 3

2T ∑
k∈Ac

{
E2

k

√
α + Ek

(
2
√

2α + 1
)}

, (39)
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where

D1 = n − a +
1

2 ∑
j∈A

(E2
j +E{W2

k }),

D2 = 4a +E{‖Ω‖2
2|Z}+ ∑

j∈Ac

4E2
j ,

D3 = n − a + ∑
j∈A

E2
j , (40)

Ω is defined in (20), and f opt is the optimal value of (P1). Hence, by fixing ε > 0, and using
V = 1/ε, α = 1/ε2, and T ≥ 1/ε2, the average error is O(ε).

Proof of Theorem 3. The key to the proof is noticing that Q(t) can be treated as n queues.
Before proceeding with the proof, we define some quantities. Define the history up to
time t by H(t) = {X(τ); 1 ≤ τ < t} ∪ {Ω(τ); 1 ≤ τ ≤ t}. Notice that we include Ω(t) in
H(t) since this will allow us to treat γ(t) and Q(t) as deterministic functions of H(t) and
Z. Let us define the Lyapunov function L(t) = 1

2 ||Q(t)||2 = 1
2 ∑

n
j=1 Qj(t)

2, and the drift

∆(t) = E{L(t + 1)− L(t)|H(t), Z}. Now, notice that

E{RA(gA, ĝA)|Z} = f

(
1

T

T

∑
t=1

E{x(t)|Z}
)

, (41)

where

xk(t) =





Xk(t)1{gA
Q(t)

(X(t))=k} if k ∈ A,

1{gA
Q(t)

(X(t))=k} if k ∈ Ac.
(42)

We begin with the following two lemmas, which will be useful in the proof.

Lemma 4. The drift is bounded above as

∆(t) ≤ D1 +
n

∑
j=1

Qj(t)
(
γj(t)−E{xj(t)|H(t), Z}

)
, (43)

where D1 is defined in (40).

Proof of Lemma 4. See Appendix C.

The following is a well-known result regarding the minimization of strongly convex
functions (see, for example, a more general pushback result in [38]).

Lemma 5. For a convex function h : Rn → R, a convex subset C of Rn, y ∈ Rn and α > 0, let,

x∗ ∈ arg min
x∈C

[
h(x) + α‖x − y‖2

2

]
. (44)

Then,

h(x∗) + α‖x∗ − y‖2
2 ≤ h(z) + α‖z − y‖2

2 − α‖z − x∗‖2
2, (45)

for all z ∈ C.
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Now, we move on to the main proof. Notice that the objective of (P3) can be written as

g
′
t(γ(t − 1))>γ(t) + α‖γ(t)− γ(t − 1)‖2

2, (46)

where

gt(x) = −V ft(x) +
n

∑
j=1

Qj(t)xj. (47)

Let gA,∗ be the strategy that is optimal for (P1). Let us define x∗(t) ∈ Rn, where

x∗k (t) =

{
Xk(t)1{gA,∗(UA(t),X(t),Z)=k} if k ∈ A, (48a)

1{gA,∗(UA(t),X(t),Z)=k} if k ∈ Ac, (48b)

where UA(t) for 1 ≤ t ≤ T is a collection of independent and identically distributed
uniform [0, 1) random variables. Notice that y∗ = E{x∗(t)|Z} is independent of t and
belongs to K. Hence, y∗ is feasible for (P3). Notice that

− V f
′
t (γ(t − 1))>γ(t) +

n

∑
j=1

Qj(t)γj(t) + α‖γ(t)− γ(t − 1)‖2
2

= g
′
t(γ(t − 1))>γ(t) + α‖γ(t)− γ(t − 1)‖2

2

≤(a) g
′
t(γ(t − 1))>y∗ + α‖y∗ − γ(t − 1)‖2

2 − α‖y∗ − γ(t)‖2
2

= −V f
′
t (γ(t − 1))>y∗ +

n

∑
j=1

Qj(t)y
∗
j + α‖y∗ − γ(t − 1)‖2

2 − α‖y∗ − γ(t)‖2
2, (49)

where (a) follows from Lemma 5 for the convex function h given by h(x) = g
′
t(γ(t − 1))>x,

and C = K, since γ(t) is the solution to (P3) and y∗ is feasible for (P3). Further, step 5 in
each iteration of Algorithm 1 of finding the action can be represented as the maximization of

∑
j∈A

Qj(t)E{Xj(t)1{αA=j}|H(t), Z}+ ∑
j∈Ac

Qj(t)E{1{αA=j}|H(t), Z} (50)

over all possible actions αA ∈ {1, 2, . . . , n} at time-slot t. Hence, comparing the scenario
where gA

Q(t) is used in the t-th iteration with the scenario where gA,∗ is used with the

randomization variable UA(t) in the t-th iteration, we have the inequality,

−
n

∑
j=1

Qj(t)E{xj(t)|H(t), Z} ≤ −
n

∑
j=1

Qj(t)E{x∗j (t)|H(t), Z} = −
n

∑
j=1

Qj(t)y
∗
j , (51)

where the last equality follows since x∗(t) is independent of H(t). Summing (49) and (51),

− V f
′
t (γ(t − 1))>γ(t) + α‖γ(t)− γ(t − 1)‖2

2 +
n

∑
j=1

Qj(t)
(
γj(t)−E{xj(t)|H(t), Z}

)
(52)

≤ −V f
′
t (γ(t − 1))>y∗ + α‖y∗ − γ(t − 1)‖2

2 − α‖y∗ − γ(t)‖2
2.

Adding D1 + V f
′
t (γ(t − 1))>γ(t − 1) to both sides and using Lemma 4 yields,

∆(t)− V f
′
t (γ(t − 1))>{γ(t)− γ(t − 1)}+ α‖γ(t)− γ(t − 1)‖2

2

≤ D1 − V f
′
t (γ(t − 1))>

(
y∗ − γ(t − 1)

)
+ α‖y∗ − γ(t − 1)‖2

2 − α‖y∗ − γ(t)‖2
2

≤ D1 − V{ ft(y
∗)− ft(γ(t − 1))}+ α‖y∗ − γ(t − 1)‖2

2 − α‖y∗ − γ(t)‖2
2, (53)
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where the last inequality follows from the sub-gradient inequality for the concave function
ft. Now, we introduce the following lemma.

Lemma 6. We have

−V f
′
t (γ(t − 1))>{γ(t)− γ(t − 1)}+ α‖γ(t)− γ(t − 1)‖2

2 ≥− V2

4α

(
a + ∑

j∈Ac

E2
j

)

− V2

16α
‖Ω(t)‖2

2, (54)

Proof of Lemma 6. See Appendix D.

Substituting the bound from Lemma 6 in (53) we have that

∆(t)− V2

4α

(
a + ∑

j∈Ac

E2
j

)
− V2

16α
‖Ω(t)‖2

2

≤ D1 − V{ ft(y
∗)− ft(γ(t − 1))}+ α‖y∗ − γ(t − 1)‖2

2 − α‖y∗ − γ(t)‖2
2, (55)

The above holds for each t ∈ {1, 2, . . . , T}. Hence, we first take the expectation
conditioned on Z of both sides of the above expression, after which we sum from 1 to T,
which results in,

E{L(T + 1)|Z} −E{L(1)|Z} − TV2

4α

(
a + ∑

j∈Ac

E2
j

)
− TV2

16α
E{‖Ω‖2

2|Z}

≤ D1T − V
T

∑
t=1

E{ ft(y
∗)|Z}+ V

T

∑
t=1

E{ ft(γ(t − 1))|Z}+ αE{‖y∗ − γ(0)‖2
2|Z}

− αE{‖y∗ − γ(T)‖2
2|Z}. (56)

Notice that

E{ ft(y
∗)|Z} = f (y∗) = f opt, (57)

where functions f and ft are defined in (25) and (33), respectively. Further, we have that

E{ ft(γ(t − 1))|Z} = E{EΩ(t){ ft(γ(t − 1))|H(t − 1), Z}|Z} =(a) E{ f (γ(t − 1))|Z}, (58)

where (a) follows from the definition of ft in (33), since γ(t − 1) is a function of H(t − 1)
and Ω(t) is independent of H(t − 1). Substituting (57) and (58) into (56), we have that

E{L(T + 1)|Z} −E{L(1)|Z} − TV2

4α

(
a + ∑

j∈Ac

E2
j

)
− TV2

16α
E{‖Ω‖2

2|Z}

≤ D1T − VT f opt + V
T

∑
t=1

E{ f (γ(t − 1))|Z}+ αE{‖y∗ − γ(0)‖2
2|Z} − αE{‖y∗− γ(T)‖2

2|Z}

≤(a) D1T − VT f opt + V
T

∑
t=1

E{ f (γ(t − 1))|Z}+ α

(
n − a + ∑

k∈A
E2

k

)

≤ D1T − VT f opt + VT f

(
1

T

T

∑
t=1

E{γ(t − 1)|Z}
)
+ αD3, (59)
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where (a) follows since y∗, γ(T), γ(0) ∈ K and the last inequality follows from Jensen’s
inequality on the concave function f . (See the definition of D3 and D2 in (40)). Since
Q(1) = 0 and E{L(T + 1)|Z} ≥ 0, after some rearrangements above translates to,

f opt − D1

V
− VD2

16α
− αD3

VT
≤ f

(
1

T

T−1

∑
t=0

E{γ(t)|Z}
)

, (60)

where D2 is defined in (40). Now, we prove the following lemma.

Lemma 7. We have

f

(
1

T

T−1

∑
t=0

E{γ(t)|Z}
)

≤ f

(
1

T

T

∑
t=1

E{x(t)|Z}
)
+

3

2T ∑
k∈A

{√
α + Ek

(
2
√

2α + 1
)}

+
3

2T ∑
k∈Ac

{
E2

k

√
α + Ek

(
2
√

2α + 1
)}

. (61)

Proof of Lemma 7. We first introduce the following two lemmas.

Lemma 8. The queues Qj(t) for 1 ≤ j ≤ n updated according to Algorithm 1 satisfy,

max

{
1

T

T−1

∑
t=1

E{γj(t)− xj(t)|Z}, 0

}
≤ E{Qj(T) |Z}

T
. (62)

Proof of Lemma 8. See Appendix E.

The following lemma is vital in constructing the O(
√

α) bound on the queue sizes,
which leads to the O(1/ε2) solution. It should be noted that an easier bound can be
obtained on the queue sizes, which leads to a O(1/ε3) solution.

Lemma 9. Given that α ≥ V2, Q(t) satisfy the bound

Qj(t) ≤
{
(1 + 2

√
2Ej)

√
α + Ej if j ∈ A

(Ej + 2
√

2)
√

α + 1 if j ∈ Ac,
(63)

for each t ∈ [1 : T].

Proof of Lemma 9. See Appendix F.

Now, we move on to the main proof. Notice that

f

(
1

T

T−1

∑
t=0

E{γ(t)|Z}
)

= f

(
γ(0)

T
+

1

T

T−1

∑
t=1

E{γ(t)|Z}
)

≤ f

(
1

T

T

∑
t=1

E{x(t)|Z}+ 1

T

T−1

∑
t=1

E{γ(t)|Z} − 1

T

T−1

∑
t=1

E{x(t)|Z} − E{x(T)|Z}
T

)

≤(a) f

(
1

T

T

∑
t=1

E{x(t)|Z}+ max

{
1

T

T−1

∑
t=1

E{γ(t)|Z} − 1

T

T−1

∑
t=1

E{x(t)|Z}, 0

})
(64)

≤(b) f

(
1

T

T

∑
t=1

E{x(t)|Z}
)
+

3

2 ∑
k∈A

(
max

{
1

T

T−1

∑
t=1

E{γk(t)− xk(t)|Z}, 0

})

+
3

2 ∑
k∈Ac

Ek

(
max

{
1

T

T−1

∑
t=1

E{γk(t)− xk(t)|Z}, 0

})
,
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where (a) follows from the entry-wise non-decreasing property of f (Theorem 2-2) and (b)
follows from Theorem 2-3. Combining (64) and Lemma 8 with the bound on Q(T) given
by Lemma 9, we are finished with the proof of the lemma.

Combining Lemma 7 with (60), we are finished with the proof of the theorem.

6. Simulations

For the simulations, we use Wj as exponential random variables. Notice that since
we are conditioning on Z to solve the problem, the objective of (P1) defined in (25) has the
same structure for the two scenarios (a, b, c, d) and (a, b, c + d, 0). Hence, we use d = 0 for
all the simulations. Notice that the sets A and B denote the private information of players
A and B, respectively. We consider the three scenarios given below.

1. a = 0, b = 0, c = 3, d = 0: Both players do not have private information.
2. a = 0, b = 1, c = 2, d = 0: Only player B has private information.
3. a = 1, b = 1, c = 1, d = 0: Both players have private information.

Figures 1–3 show pictorial representations of these cases.

1 2 3

C

Figure 1. a, b, c, d = 0, 0, 3, 0.

1 2 3

B C

Figure 2. a, b, c, d = 0, 1, 2, 0.

1 2 3

A B C

Figure 3. a, b, c, d = 1, 1, 1, 0.

We first consider scenario 1. For Figure 4 (top-left), we fix E2 = E3 = 1 and plot the
expected utilities of players A and B at the ε-approximate Nash equilibrium as functions
of E1, where ε = 10−3 is used. For Figure 4 (top-middle and top-right), we use the same
configuration and plot a solution for the probabilities of choosing different resources as
a function of E1 at the ε-approximate Nash equilibrium for players A and B, respectively.
For scenarios 2 and 3, Figure 4 (middle) and Figure 4 (bottom), have similar descriptions to
scenario 1.
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Figure 4. Top: Case a = 0, b = 0, c = 3, d = 0. Middle: Case a = 0, b = 1, c = 2, d = 0. Bottom: Case

a = b = c = 1, d = 0. Left: The expected utility of the players at the ε-approximate Nash equilibrium

vs. E1. Middle: One possible solution for the probabilities of choosing different resources at the ε-

approximate Nash equilibrium for player A vs. E1. Right: One possible solution for the probabilities

of choosing different resources at the ε-approximate Nash equilibrium for player B vs. E1.

We consider the same three scenarios for the simulations on maximizing the worst-
case expected utility. In each scenario, for the top figure, we fix E2 = E3 = 1 and plot the
maximum expected worst-case utility of player A as a function of E1. For the bottom figure,
we use the same configuration and plot a solution for the probabilities of choosing different
resources for player A as a function of E1. Notice that the solutions may not be unique,
as discussed in Section 5.1. Additionally, for Figure 5 (top-middle and top-right), we also
indicate the maximum possible error of the solution calculated using the error bound
derived in Theorem 3. For scenarios 2 and 3, we have obtained the solutions by averaging
over 102 independent simulations. Further, we have used T = 105, α = 4 × 104, and
V = 2 × 102.
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Figure 5. Left: Case a = 0, b = 0, c = 3, d = 0. Middle: Case a = 0, b = 1, c = 2, d = 0. Right: Case

a = b = c = 1, d = 0. Top: The maximum expected worst-case utility of player A and the error

margin (shaded in blue) vs. E1. Bottom: One possible solution for the probabilities of choosing

different resources for player A vs. E1.

Notice that it is difficult to compare the worst-case strategy and the ε-approximate
Nash equilibrium strategy in general since the first can be computed without any coop-
eration between the players, whereas computing the second requires cooperation among
players. Further, as described in Section 5.1, the worst-case strategy can be arbitrarily worse
than the Nash equilibrium strategy. Nevertheless, comparing Figure 4 (left) and Figure 5
(top), it can be seen that the worst-case strategy and the strategy at ε-approximate Nash
equilibrium yield comparable expected utilities for player A when E1 ≥ 2. For instance,
in scenario 1, for E1 ≥ 2, the approximate Nash equilibrium strategy coincides with the
worst-case strategy of choosing resource 1 with probability 1. However, it should be noted
that our algorithm for finding the ε-approximate Nash equilibrium does not necessarily
converge to a socially optimal solution. For instance, in scenario 1, when E1 = 2, player A
chooses resource 1 with probability 1 and player B chooses resource 2 with probability 1
gives a higher utility for player A without changing the utility of player B.

In Figure 5, it is interesting to notice the variation in choice probabilities of different
resources with E1. Notice that in scenario 1, the choice probability of resource 1 is non-
decreasing for E1 ∈ [0.1, 0.8], non-increasing for E1 ∈ [0.8, 1.9], and non-decreasing for
E1 ≥ 1.9. Similar behavior can also be observed for scenario 3. This is surprising since
intuition suggests that the probability of choosing a resource should increase with the
increasing mean of the reward random variable. However, notice that in scenarios 1 and 3,
player B does not observe the reward realization of resource 1. This might force player A,
playing for the worst case, to believe that player B increases the probability of choosing
resource 1 with increasing E1, as a result of which player A chooses resource 1 with a lower
probability. Notice that the probability of choosing resource 1 in scenario 3 does not grow
as fast as the other two. This is because player A observes W1 and hence can refrain from
choosing it when W1 takes low values.
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7. Conclusions

We have implemented the iterative best response algorithm to find the ε-approximate
Nash equilibrium of a two-player stochastic resource-sharing game with asymmetric
information. To handle situations where the players do not trust each other and place no
assumptions on the incentives of the opponent, we solved the problem of maximizing
the worst-case expected utility of the first player using a novel algorithm that combines
drift-plus penalty theory and online optimization techniques. An explicit solution can be
constructed when both players do not observe the realizations of any of the reward random
variables. This special case leads to counter-intuitive insights.

In our approach, we have assumed that the reward random variables of different
resources are independent. It should be noted that this assumption can be relaxed without
affecting the analysis for the special case when both players do not observe the realizations
of any of the reward random variables. An interesting question would be what happens in
the general case when the reward random variables are not independent. While it is still
possible to implement our algorithm in this setting, it is not guaranteed that the algorithm
will converge to the optimal solution. Hence, finding an algorithm for this case that exploits
the correlations between the reward random variables could be potential future work.

Several other extensions can be considered as well. One would be considering a
scenario with multiple players. The general multiplayer case yields a complex information
structure since the set of resources has to be split into 2m subsets, where m is the number of
players. Additionally, the idea of conditioning on the common information is difficult to be
adapted for this case. Nevertheless, various simplified schemes could be considered. One
example would be a case with no common information. In this case, the set of resources is
split into m + 1 disjoint subsets where the i-th (1 ≤ i ≤ m) subset is the subset of resources
of which the i-th player observes the rewards, and the m + 1-th subset is the subset of
resources of which the rewards are observed by none of the players. Another interesting
scenario is when no player observes any of the reward realizations. In both these cases,
the expected utility can be calculated following a similar procedure to the two-player
case, but finding the worst-case expected utility is difficult. Hence, we believe both cases
could be potential future work. Another extension would be extending the algorithm to be
implemented with a repeated game structure and in an online scenario.
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Appendix A. Proof of Theorem 2

Notice that the term E{max{Ωjxj; 1 ≤ j ≤ n}|Z} of f is convex since the max function
is convex and expectation preserves convexity. Hence, f is concave.

For 2 and 3, we use the two inequalities,

f (x)− f (y) ≥ ∑
j∈A

(xj− yj) + ∑
j∈Ac

Ej(xj − yj)−
1

2
E{max{Ωj(xj − yj); j ∈ [1 : n]}|Z}, (A1)

and

f (x)− f (y) ≤ ∑
j∈A

(xj− yj) + ∑
j∈Ac

Ej(xj − yj) +
1

2
E{max{Ωj(yj − xj); j ∈ [1 : n]}|Z}, (A2)
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both of which follow from the fact that for real numbers γ1, γ2, γ3, γ4, max{γ1 + γ2, γ3 +
γ4} ≤ max{γ1, γ3}+ max{γ2, γ4}.

For 2, we consider x ≥ y where the inequality is entry-wise. Notice that

f (x)− f (y) ≥ ∑
j∈A

(xj − yj) + ∑
j∈Ac

Ej(xj − yj)−
1

2
E

{
n

∑
j=1

Ωj(xj − yj)

∣∣∣∣∣Z
}

= ∑
j∈A

1

2
(xj − yj) + ∑

j∈Ac

Ej

2
(xj − yj),

where the inequality follows from (A1) and the fact that for γ1, γ2 ≥ 0, max{γ1, γ2} ≤
γ1 + γ2.

For 3, note that

f (x)− f (y) ≤(a) ∑
j∈A

|xj − yj|+ ∑
j∈Ac

Ej|xj − yj|+
1

2
E

{
n

∑
j=1

Ωj|xj − yj|
∣∣∣∣∣Z
}

=
3

2 ∑
j∈A

|xj − yj|+
3

2 ∑
j∈Ac

Ej|xj − yj|, (A3)

where (a) follows from (A2) and the fact that for γ1, γ2 ≥ 0, max{γ1, γ2} ≤ γ1 + γ2.

Appendix B. Proof of Lemma 3

We begin with several results which are used in the proof.

Lemma A1. If (p∗, γ∗) solves the problem,

(P2-1): maximize
p, γ

n

∑
k=1

pkEk −
1

2
γ

subject to p ∈ I ,

γ ≥ pkEk ∀1 ≤ k ≤ n,

(A4)

where I is the n-dimensional probability simplex defined in (28), then p∗ solves (P2).

Proof of Lemma A1. Define,

f1(p, γ) =
n

∑
k=1

pkEk −
1

2
γ. (A5)

Notice that f (p) = f1(p, max{pkEk; 1 ≤ k ≤ n}). Let (p∗, γ∗) be a solution for (P2-1).
Notice that for (p∗, γ∗) to be feasible for (P2-1), we should have γ∗ ≥ max{p∗k Ek; 1 ≤
k ≤ n}. However, if γ∗

> max{p∗k Ek; 1 ≤ k ≤ n}, we have that f1(p, max{p∗k Ek; 1 ≤
k ≤ n}) > f1(p∗, γ∗), which contradicts the optimality of (p∗, γ∗) for (P2-1). Hence,
γ∗ = max{p∗k Ek; 1 ≤ k ≤ n}. Hence, we have f (p∗) = f1(p∗, γ∗).

Now, consider p̃ ∈ I . Define γ̃ = max{ p̃kEk; 1 ≤ k ≤ n}. Since (p̃, γ̃) is also feasible
for (P2-1), we should have f1(p̃, γ̃) ≤ f1(p∗, γ∗). This implies f (p∗) ≥ f (p̃). Hence, p∗ is
an optimal solution of (P2).

Lemma A2. Consider fixed µ ∈ Rn such that µk ≥ 0 for all 1 ≤ k ≤ n. Now, consider the
unconstrained problem,

(P2-2): maximize f2(p, γ) =
n

∑
k=1

pkEk −
1

2
γ +

n

∑
k=1

µk(γ − pkEk)

subject to p ∈ I , γ ∈ R.

(A6)
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Assume (p∗, γ∗) is a solution (P2-2). Additionally, assume that

Ek p∗k ≤ γ∗ for all 1 ≤ k ≤ n,

Ek p∗k = γ∗ whenever µk > 0. (A7)

Then (p∗, γ∗) is a solution for (P2-1).

Proof of Lemma A2. First, notice that (p∗, γ∗) satisfies the constraints of (P2-1). To show
that it maximizes the objective in (P2-1), consider any (p, γ) that is feasible for (P2-1).
Notice that

f1(p, γ) = f2(p, γ)− ∑
µk>0

µk(γ − pkEk)

≤(a) f2(p∗, γ∗)− ∑
µk>0

µk(γ − pkEk)

= f1(p∗, γ∗) + ∑
µk>0

µk(γ
∗ − p∗k Ek − γ + pkEk)

=(b) f1(p∗, γ∗)− ∑
µk>0

µk(γ − pkEk) ≤(c) f1(p∗, γ∗), (A8)

where f1 is the objective of (P2-1) defined in (A5), f2 is the objective of (P2-2), (a) follows
from the optimality of (p∗, γ∗) for (P2-2), (b) follows due to (A7), and (c) follows since
µk ≥ 0 and (p, γ) is feasible for (P2-1). Hence, we have the result.

Define,

Sk =
k

∑
j=1

1

Ej
, (A9)

for 1 ≤ k ≤ n. We also establish the following lemma, which is useful in our solution.

Lemma A3. Let

r = arg max
1≤k≤n

k − 1
2

Sk
, (A10)

where arg max returns the lowest index in the case of ties. Let us also define µ ∈ Rn as

µk =





1 − 1
Ek

r− 1
2

Sr
if 1 ≤ k ≤ r,

0 otherwise.
(A11)

Then we have

1. µk ≥ 0 for all k such that 1 ≤ k ≤ n.

2. ∑
n
k=1 µk =

1
2 .

3. Ek(1 − µk) =
r− 1

2
Sr

for 1 ≤ k ≤ r.

4. Ek(1 − µk) ≤ r− 1
2

Sr
for r + 1 ≤ k ≤ n.

Proof of Lemma A3.

1. Notice that by the definition of µk, it is enough to prove the result for 1 ≤ k ≤ r.
Notice that we are required to prove that

1

Ek

r − 1
2

Sr
≤ 1, (A12)
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for all 1 ≤ k ≤ r. Since Ek ≥ Ek+1 for 1 ≤ k ≤ n − 1, it suffices to prove that

1

Er

r − 1
2

Sr
≤ 1. (A13)

We consider two cases.
Case 1: r = 1. This case reduces to,

1

2E1
≤ 1

E1
, (A14)

which is trivial.
Case 2: r > 1. Note that from the definition of r in (A10), we have

r − 1
2

Sr
≥ r − 3

2

Sr−1
. (A15)

After substituting Sr−1 = Sr − 1
Er

and rearranging, we have the desired result.

2. Notice that

n

∑
k=1

µk =
r

∑
k=1

µk =
r

∑
k=1

(
1 − 1

Ek

r − 1
2

Sr

)
= r − r − 1

2

Sr

r

∑
k=1

1

Ek
= r − r − 1

2

Sr
Sr =

1

2
. (A16)

3. This follows from the definition of µk for 1 ≤ k ≤ r.
4. There is nothing to prove if r = n. Hence, we can assume r < n. Since µk = 0 for

k ≥ r + 1, it suffices to prove that Ek ≤ r−(1/2)
Sr

. Notice that if we can prove the result
for k = r + 1, we are finished since Ek ≥ Ek+1 for 1 ≤ k ≤ n. Note that from the
definition of r in (A10), we have

r − 1
2

Sr
≥ r + 1

2

Sr+1
. (A17)

After substituting Sr+1 = Sr +
1

Er+1
and rearranging, we have the desired result.

Now, we solve the problem using the above lemmas. Consider the problem defined in
Lemma A2 with µ defined in Lemma A3. Specifically, consider the problem,

(P2-3): maximize f2(p, γ) =
n

∑
k=1

pkEk −
1

2
γ +

n

∑
k=1

µk(γ − pkEk)

subject to p ∈ I , γ ∈ R.

(A18)

where µ and r are defined in (A10) and (A11). For this choice of µk we have

f2(p, γ) =
n

∑
k=1

pkEk(1 − µk) + γ

(
n

∑
k=1

µk −
1

2

)
=

n

∑
k=1

pkEk(1 − µk), (A19)

where the last equality follows from Lemma A3-2. Now, due to Lemma A3-3 and
Lemma A3-4, the optimal solution for (P2-3) is any (p, γ) such that γ ∈ R, and p ∈ I
such that pk = 0 for k > r. In particular, consider the solution (p∗, γ∗) given by,

p∗k =

{
1

EkSr
if k ≤ r,

0 otherwise,
(A20)
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and γ∗ = 1
Sr

. Notice that for 1 ≤ k ≤ r, we have that p∗k Ek = γ∗, and p∗k Ek = 0 ≤ γ∗

for r + 1 ≤ k ≤ n. Hence, from Lemma A2, (p∗, γ∗) is a solution for (P2-1). Hence, from
Lemma A1, p∗ is a solution for (P2) as desired.

Appendix C. Proof of Lemma 4

Notice that

∆(t) = E{L(t + 1)− L(t)|H(t), Z} =
1

2
E

{
n

∑
j=1

Qj(t + 1)2 − Qj(t)
2

∣∣∣∣∣H(t), Z

}

=
1

2

n

∑
j=1

E{Qj(t + 1)2|H(t), Z} − 1

2

n

∑
j=1

Qj(t)
2

=
1

2

n

∑
j=1

E{max
{

Qj(t) + γj(t)− xj(t), 0
}2|H(t), Z} − 1

2

n

∑
j=1

Qj(t)
2

≤ 1

2

n

∑
j=1

E{(Qj(t) + γj(t)− xj(t))
2|H(t), Z} − 1

2

n

∑
j=1

Qj(t)
2

≤
n

∑
j=1

Qj(t)
(
γj(t)−E{xj(t)|H(t), Z}

)
+

1

2

n

∑
j=1

γj(t)
2 +

1

2

n

∑
j=1

E{xj(t)
2|H(t), Z}

≤(a)

n

∑
j=1

Qj(t)
(
γj(t)−E{xj(t)|H(t), Z}

)
+

1

2 ∑
j∈A

E2
j +

n − a

2

+
1

2 ∑
j∈A

E{(Xj(t)1{α(t)=k})
2|H(t), Z}+ 1

2 ∑
j∈Ac

E{(1{α(t)=k})
2|H(t), Z}

≤
n

∑
j=1

Qj(t)
(
γj(t)−E{xj(t)|H(t), Z}

)
+

1

2 ∑
j∈A

E2
j +

n − a

2
+

1

2 ∑
j∈A

E{Xj(t)
2|H(t), Z}

+
1

2 ∑
j∈Ac

E{1|H(t), Z}

=(b)

n

∑
j=1

Qj(t)
(
γj(t)−E{xj(t)|H(t), Z}

)
+

1

2 ∑
j∈A

E2
j +

n − a

2
+

1

2 ∑
j∈A

E{W2
j }+

n − a

2

=
n

∑
j=1

Qj(t)
(
γj(t)−E{xj(t)|H(t), Z}

)
+ D1, (A21)

where inequality (a) follows since γ(t) ∈ K and equality (b) follows from the fact that X(t)
is independent of H(t) and Z.

Appendix D. Proof of Lemma 6

Notice that

f
′
t (γ(t − 1)) = v − 1

2
Ω̃(t), (A22)

where v is defined by,

vj =

{
1 if j ∈ A,

Ej if j ∈ Ac.
(A23)

Ω̃(t) is given by Ω̃k(t) = Ωk(t)1{arg max1≤j≤n{γj(t−1)Ωj(t)}=k}, and arg max returns the least

index in the case of ties. Notice that

− V f
′
t (γ(t − 1))>{γ(t)− γ(t − 1)}+ α‖γ(t)− γ(t − 1)‖2

2
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≥(a) −V‖ f
′
t (γ(t − 1))‖2‖γ(t)− γ(t − 1)‖2 + α‖γ(t)− γ(t − 1)‖2

2

= α

(
‖γ(t)− γ(t − 1)‖2 −

V

2α
‖ f

′
t (γ(t − 1))‖2

)2

− V2

4α
‖ f

′
t (γ(t − 1))‖2

2

≥ −V2

4α
‖ f

′
t (γ(t − 1))‖2

2 = −V2

4α

∥∥∥∥v − 1

2
Ω̃(t)

∥∥∥∥
2

2

≥(b) −
V2

4α
‖v‖2

2 −
V2

16α
‖Ω̃(t)‖2

2

≥ −V2

4α

(
a + ∑

j∈Ac

E2
j

)
− V2

16α
‖Ω(t)‖2

2, (A24)

where (a) follows from the Cauchy–Schwarz inequality, (b) follows since vk ≥ 0 and
Ω̃k(t) ≥ 0 for all 1 ≤ k ≤ n.

Appendix E. Proof of Lemma 8

Notice that from the definition of Qj(t + 1) in (35) and the definition of xj(t) in (42)
we have that

Qj(t + 1)− Qj(t) ≥ γj(t)− xj(t), (A25)

for all 1 ≤ j ≤ n and 1 ≤ t ≤ T − 1. Summing the above from 1 to T − 1, we have that

Qj(T)− Qj(1) ≥
T−1

∑
t=1

{γj(t)− xj(t)}. (A26)

After using Qj(1) = 0, taking expectations conditioned on Z and some algebraic
manipulations, we have

E{Qj(T)|Z}
T

≥ 1

T

T−1

∑
t=1

E{γj(t)− xj(t)|Z}. (A27)

We have the desired inequality from the above since Qj(T) is non-negative.

Appendix F. Proof of Lemma 9

Define v, u as follows.

vk =

{
1 if k ∈ A,

Ek if k ∈ Ac,
and uk =

{
Ek if k ∈ A,

1 if k ∈ Ac.
(A28)

Hence we are required to prove that Qj(t) ≤ (vj + 2
√

2uj)
√

α + uj for all t ∈ [1 : T].
We begin with several important results.

Lemma A4. We have the following results regarding Qj(t).

1. Qj(t + 1) ≤ Qj(t) + uj for all t ≥ 1.

2. Assume Qj(t) ≥ (vj +
√

2uj)
√

α for some t ≥ 1. Then we have either γj(t) = 0 or

γj(t) ≤ γj(t − 1)− uj√
2α

. (A29)

3. Assume Qj(τ) ≥ (vj +
√

2uj)
√

α for all τ ∈ [t : t + t0], where t ≥ 1 and t0 ≥ 0.
Additionally assume γj(t − 1) = 0. Then γj(τ) = 0 for all τ ∈ [t − 1 : t + t0].

Proof of Lemma A4.

1. Notice that from the definition of Qj(t + 1) in (35), for j ∈ A we have
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Qj(t + 1) = max
{

Qj(t) + γj(t)− Xj(t)1{αA(t)=j}, 0
}
≤ max

{
Qj(t) + uj, 0

}

= Qj(t) + uj, (A30)

where the inequality follows from the definition of uj in (A28). The same argument
can be repeated for j ∈ Ac.

2. Notice that if γj(t) 6= 0 then we have

γj(t) ≤ γj(t − 1)−
−V f

′
t,j(γ(t − 1)) + Qj(t)

2α
, (A31)

which follows since γj(t) is the projection of γj(t − 1)− −V f
′
t,j(γ(t−1))+Qj(t)

2α onto [0, uj]
(See (38)). Hence, we have that

γj(t) ≤ γj(t − 1)−
−V f

′
t,j(γ(t − 1)) + Qj(t)

2α

≤(a) γj(t − 1)− −Vvj + (vj +
√

2uj)
√

α

2α
≤(b) γj(t − 1)− uj√

2α
, (A32)

where (a) follows from the subgradients of ft found in (34) and (b) follows from
α ≥ V2.

3. Notice if we prove γj(t) = 0, we can use the same argument inductively to establish
the result. Assume the contrary that γj(t) 6= 0. Then, from part 2, we should have

γj(t) ≤ γj(t − 1)− uj√
2α

= − uj√
2α

, (A33)

which is a contradiction since γj(t) ≥ 0. Hence, we have the result.

Now, we use an inductive argument to prove the main result. Notice that the result is
true for t = 1, since Qj(1) = 0 ≤ (vj + 2

√
2uj)

√
α + uj. Now, we prove that Qj(t + 1) ≤

(vj + 2
√

2uj)
√

α + uj for t ≥ 1, with the assumption that Qj(t) ≤ (vj + 2
√

2uj)
√

α + uj.
We consider three cases.

Case 1: Qj(t) ≤ (vj + 2
√

2uj)
√

α. This case follows from Lemma A4-1.

Case 2: t ≤
√

2α + 1. Notice that

Qj(t + 1) ≤ Qj(1) + ujt ≤ (
√

2α + 1)uj ≤ (vj + 2
√

2uj)
√

α + uj, (A34)

where the first inequality follows from Lemma A4-1.
Case 3: t >

√
2α + 1 and Qj(t) > (vj + 2

√
2uj)

√
α. For this, we prove that γj(t) = 0, which

establishes the claim from the definition of Qj(t + 1) in (35) and the induction hypothesis.
Notice that for all u ∈ [1 : t] we have

Qj(u) ≥(a) Qj(t)− (t − u)uj ≥ (vj + 2
√

2uj)
√

α − (t − u)uj

= (vj +
√

2uj)
√

α +
√

2αuj − (t − u)uj, (A35)

where (a) follows from Lemma A4-1.
Hence, for all u ∈ Z such that t −

√
2α ≤ u ≤ t, we have that

Qj(u) ≥ (vj +
√

2uj)
√

α. (A36)

Now, we prove that there exists u ∈ Z such that t −
√

2α ≤ u ≤ t and γj(u) = 0,
which will establish that γj(t) = 0 from Lemma A4-3. For the proof, assume the contrary
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γj(u) > 0 for all u ∈ Z such that t −
√

2α ≤ u ≤ t (or u ∈ [t −
⌊√

2α
⌋

: t], where bxc
denotes the largest integer smaller than or equal to x). From Lemma A4-2, we have that

γj(t) ≤ γj

(
t −
⌊√

2α
⌋
− 1
)
−

(⌊√
2α
⌋
+ 1
)

uj
√

2α
≤ 0, (A37)

where the last inequality follows since bxc+ 1 ≥ x and γj

(
t −
⌊√

2α
⌋
− 1
)
≤ uj (since

γj(τ) ∈ [0, uj] for all τ ∈ [1 : T] by the projection definition of γj(τ) in (38), and γj(0) = 0).
Hence, we should have that γj(t) = 0, which contradicts our initial assumption. Hence, we
are finished.

Notes

1 Ideally, player B may not have information about qA
j and pA

j . Hence, player B may not be able to utilize this exact strategy.

Nevertheless, obtaining a better bound is impossible since we do not have any assumptions or information about player B’s

strategy. For instance, if player B assumes that player A is using a particular strategy and if player B’s assumption turns out to be

correct since player B knows the distributions of all Wj for 1 ≤ j ≤ n, player B’s estimates of qA
j and pA

j are exact.

2 The same problem structure arises in the case with symmetric information between the players (case a = b = 0 with d arbitrary).

Hence, we can use the solution obtained in this section for the above case as well.
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