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Complex topographies exhibit universal properties when fluvial erosion dominates
landscape evolution over other geomorphological processes. Similarly, we show that
the solutions of a minimalist landscape evolution model display invariant behavior as
the impact of soil diffusion diminishes compared to fluvial erosion at the landscape scale,
yielding complete self-similarity with respect to a dimensionless channelization index.
Approaching its zero limit, soil diffusion becomes confined to a region of vanishing
area and large concavity or convexity, corresponding to the locus of the ridge and valley
network. We demonstrate these results using one dimensional analytical solutions
and two dimensional numerical simulations, supported by real-world topographic
observations. Our findings on the landscape self-similarity and the localized diffusion
resemble the self-similarity of turbulent flows and the role of viscous dissipation.
Topographic singularities in the vanishing diffusion limit are suggestive of shock waves
and singularities observed in nonlinear complex systems.

landscape evolution | dimensional analysis | vanishing diffusion | self-similarity |
ridge and valley patterns

The dominance of fluvial erosion leads to the emergence of self-similarity in natural
landscapes, as the interlocked network of ridges and valleys grows in complexity.
Statistical self-similarity in such landscapes reveals invariant statistical structures across
different observation scales (1–6), giving rise to scaling laws for several key properties like
contributing area, stream length, and drainage density, as the drainage networks become
fractal (4, 7, 8). Such universal scaling laws suggest that landscape dynamics eventually
become independent of the precise fluvial erosion intensity, attaining complete self-
similarity with respect to the fluvial erosion process (9, 10).

Several modeling studies have used dimensional analysis to identify the fundamental
groups that control the emergence of similarity solutions of landscape evolution models
(LEMs) (11–15). In cases where a single length scale characterizes the domain geometry,
the landscape dynamics is controlled by a dimensionless channelization index (CI ) (16).
The channelization index quantifies the relative balance between fluvial erosion and
soil diffusion in transporting the sediment influx through uplift, thereby describing the
tendency to form complex ridge/valley networks.

The first goal of this study is to explore the self-similarity in the solutions of a simple
landscape evolutionmodel at large channelization indices (ln CI � 1). At such CI values,
the influence of soil diffusion on landscape evolution diminishes compared to fluvial
erosion globally (i.e., across the entire landscape domain). Previous investigations have
shown that local landscape properties, like the mean elevation profile and power spectra,
show self-similarity at large CI (17, 18). Recently, it has been suggested that global
landscape properties could also reach complete self-similarity for large channelization
index values (10). The emergence of self-similarity is not uncommon in complex systems
(19–21) and here presents intriguing parallels with fully developed turbulence (22–24).

The second question pertains to the role of diffusion, i.e., soil creep (25) in fluvial
landscapes. Although the impact of diffusion diminishes globally over a landscape for
asymptotically large CI values, we show that in reality, it persists localized to regions with
sharp curvatures. Batchelor (26) articulated a similar localized stabilization by viscous
dissipation in high Reynolds number flows: “viscous forces act on the fluid as small
everywhere, except perhaps in the neighborhood of certain surfaces in the fluid.” Since
then, the question of the role of vanishing diffusion in Navier–Stokes equations (or
equivalently, the existence of viscosity solutions in the fluid dynamic Euler equations)
has remained essential (27–30).

From a formal point of view, the vanishing diffusion solutions of LEMs correspond to
viscosity solutions of the stream power equation, i.e., LEM formally with no soil diffusion
(12, 14, 31) in the sense of the “viscosity approach” introduced by Crandall and Lions
(32, 33) to get unique weak solutions of Hamilton–Jacobi equations for the control
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problem. The sharp fronts of the landscape slope are thus
analogous to discontinuity formation in surface growth models
(34, 35) and generation of shock waves (36–38).

Governing Equations and Role of
Channelization Index

We consider a minimalist landscape evolution model (LEM) for
the evolution of surface elevation z and specific contributing
area a (15). The elevation dynamics is controlled by tectonic
uplift, soil creep (i.e., diffusion), and fluvial erosion (14, 15, 39).
Tectonic uplift (U ) is the forcing acting beneath the surface
and is usually modeled as a constant source term. Soil diffusion
(D∇2z, D is the diffusion coefficient) represents the effect of
various biophysical processes to smooth the topography (25).
Detachment-limited fluvial erosion is proportional to the shear
stress by the flowing runoff over the surface and is modeled as a
sink term (Kam|∇z|n, where K is the erosion coefficient, and m
and n are model exponents) such that the eroded sediments do
not get redeposited inside the domain (12, 40).

The governing equation for the specific contributing area is
derived from the water continuity equation, describing quasi-
steady flow down the surface slope resulting from unitary runoff-
producing precipitation (40, 41).We focus on a simple geometry,
consisting of a long strip of width l and fixed elevation (z =
0) at the boundaries (except in the analogy with the Burgers
vortex, where the length scale is given by

√
D/K ). The initial

condition for elevation consists of small random spatial noise,
where any local minimum inside the domain is filled due to the
singular character of a (41). The equation for a is a free boundary
problem, where the boundary is the set of critical points (i.e.,
local maxima and saddles of z in the domain interior). The latter
is not determined a priori but rather dynamically found while
solving the equation for z.

Using K , U , and l as scaling variables, the dimensionless
governing equations are:

∂ ẑ

∂ t̂
=

1

CI
∇̂2ẑ − âm|∇̂ ẑ|n + 1, [1]

− ∇̂ ·
(

â
∇̂ ẑ

|∇̂ ẑ|

)

= 1, [2]

where (·̂) denotes the dimensionless form of the involved physical
quantities. CI is the channelization index

CI =
K

1
n l

m
n +1

DU
1
n−1

, [3]

which presents the relative balance between fluvial erosion and
diffusion in transporting the sediment influx by uplift and
quantifies the landscape tendency to form channels. Similar
dimensionless quantities have been derived in previous studies
(14, 15, 39, 42, 43), which vary in their formulation based on the
scaling variables used for the dimensional analysis. CI provides
a measure of dynamic similitude for given m and n, namely two
distinct model configurations are dynamically equivalent if they
have the same CI value (16). The role of the channelization
index is reminiscent of the global Reynolds number Re in fluid
dynamics, which represents the ratio of advective to viscous forces
and describes the flow tendency to become turbulent (Materials
and Methods for details).

Complete Self-Similarity in the Fluvial Erosion
Regime

To assess the existence of a self-similar regime for the global
landscape properties at large CI , we focus on the sediment
flux transported out of the domain by fluvial erosion and soil
diffusion. For a steady topography, the balance between fluvial
erosion and diffusion sediment outflux can be calculated by
integrating Eq. 1 over the domain (Materials and Methods) as

2

CI
Ŝb

︸ ︷︷ ︸

Outflux by Diffusion

+ 〈ÊDL〉
︸ ︷︷ ︸

Outflux by Fluvial Erosion

= 1,

︸︷︷︸

Influx by Uplift

[4]

where Ŝb is the average boundary slope (SI Appendix, Fig. S1)

and 〈ÊDL〉 is the average fluvial outflux.
Eq. 4 shows that at a given CI value, the amount of sediment

transported out of the domain by soil diffusion in comparison

to fluvial erosion is characterized by the dimensionless Ŝb. As a

result, one can write a relationship for Ŝb as a function of the
channelization index and the fluvial exponents, namely

Ŝb = '1 (CI , m, n) , [5]

where the functional form is obtained by analyzing the solutions
of Eqs. 1 and 2.
Detailed numerical simulations reveal that the global sediment

budget (Fig. 1A) is characterized by three distinct regimes as a
function of the channelization index (please refer to SI Appendix,
Figs. S2 and S3 for details on the numerical verification tests). In
the diffusion regime at low CI values, the topography remains
smooth (e.g., Fig. 1B) as any surface instability is smeared out

by soil diffusion and Ŝb increases with CI . As the channelization
index grows beyond a critical threshold (dashed curve in Fig.
1A), fluvial erosion becomes strong enough to form valleys (40),

initiating the transition regime, where Ŝb remains a function of
CI . A typical landscape from this regime is shown in Fig. 1C. As
CI further increases and the ridge/valley network becomes more

intricate, Ŝb reaches a plateau (invariantwith respect toCI ), defin-
ing the fluvial erosion regime. The curve separating the fluvial
erosion regime from the transition regime can be approximated

as an exponential function, e(m+0.89)/0.17, for m ∈ (0.1, 1).
In the classification of self-similar problems (9, 10), the self-

similarity in the fluvial erosion regime

Ŝb = '2 (m, n) , [6]

is said to be complete because the function in Eq. 6 reaches a finite
value for ln CI � 1. Numerical results for a range of m and n
values are given in the SI Appendix, Figs. S4 and S5, where the
connection of these results to the optimality principle for fluvial
landscapes is also discussed (44).
From the physical point of view, the complete self-similarity

of the sediment-flux partitioning with CI reveals that, even
though fluvial erosion dominates over soil diffusion globally

(2/CI)Ŝb → 0 and 〈ÊDL〉 → 1 in Eq. 4, the effect of soil
diffusion does not fully disappear from the landscape dynamics.
The resemblance of Fig. 1A with the well-known Moody
diagram for the turbulent friction coefficient, i.e., the proportion
of kinetic energy loss due to viscous dissipation (45, 46), presents
an intriguing parallel with the self-similarity in wall-bounded
turbulence in the complete turbulence regime with respect to
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Fig. 1. Emergent self-similarity at asymptotically large channelization-index values. (A) Ŝb as a function of CI for m values from 0.1 to 1.5, keeping n = 1. The

dashed curves separate the diffusion, transition, and fluvial erosion regimes. Ŝb reaches a self-similar plateau as a function of m in the fluvial erosion regime.
This landscape transition is reminiscent of the transition from laminar flow to fully developed turbulence in a pipe for asymptotically large Reynolds number

values. (B–E) Steady-state landscapes for m = 0.5; also marked in A. (B and C) Landscapes at CI = 10 (diffusion regime) and CI = 102 (transition regime),

with different dimensional (z) and dimensionless (ẑ) elevation fields. Self-similar landscapes from fluvial erosion regime at (D) CI = 105 and (E) CI = 107 have
different dimensional elevation fields (z in green), but similar dimensionless elevation fields (ẑ in black). (F ) Plots of the specific contributing area â show the
flow accumulation in landscapes from D and E. The dashed rectangles denote the regions shown in D and E. (G) Exceedance probability distributions of â for
the landscapes in F exhibit a remarkable collapse with a power-law scaling exponent ≈ −0.45.

the global Reynolds number. In both charts, the self-similar
behavior arises for asymptotically large values of the control
parameter (ln CI � 1 and lnRe � 1) as diffusion becomes

globally negligible compared to fluvial erosion (for landscapes)
or advection (for fluid flows). Moreover, the vertical shift of the
asymptotic Ŝb with the power-law exponent m is reminiscent
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of shift due to the power-law exponent that defines the fluid
rheology (47, 48) (SI Appendix, Discussion).

Average landscape properties become invariant in the fluvial
erosion regime. Fig. 1 D and E presents two landscapes from
this self-similar regime, with CI values differing by two orders
of magnitude. Despite having different dimensional range of
elevation fields (z in green), these landscapes exhibit the same
dimensionless range of elevation fields (ẑ in black).Moreover, the
normalized specific contributing area fields for these asymptotic
solutions appear similar (Fig. 1F ), as do the exceedance-
probability distributions with their power-law scaling (Fig.
1G), highlighting the statistical self-similarity across different
observation scales of each landscape geometry (4). Incidentally,
the obtained scaling exponent of −0.45 is close to the one
observed in fluvial landscapes (3, 8).

Diffusion Localization at Large CI

The self-similar regime begins at relatively low values of CI
and proceeds for several orders of magnitude. Away from the
ridgetops smoothed by diffusion, the valleys are mostly shaped
by fluvial erosion.With increasing CI , the ridges become sharper,
foreshadowing the development of singularities in the vanishing
diffusion limit. While fluvial erosion dominates over diffusion
globally at high CI , with (2/CI)Ŝb → 0 and 〈ÊDL〉 → 1 in
Eq. 4, the impact of diffusion persists, localized around these
developing singularities.

The vanishing diffusion (viscosity) limit has been studied in
different problems of mathematical physics. In hydrodynamic
turbulence, the convergence of vanishing viscosity solutions of the
Navier–Stokes equation toweak solutions of (Euler) inviscid fluid
equations has been shown for an unbounded domain (27, 49).
This convergence remains an open question for domains with
boundary conditions, although it has been established for specific
cases (28, 29, 50). Zero viscosity limit in wave propagation
problems leads to a sudden jump or shock discontinuity (36–
38). The theoretical emergence of singularities lies at the heart
of admissibility issues; as noted by Earnshaw (51), singularity is
obviously a physical impossibility, as “it is certain Nature has a
way of avoiding its actual occurrence.”

In mathematical analysis, the vanishing diffusion limit selects
unique nondifferentiable solutions of first-order fully nonlinear
equations (52). Introduced by Crandall and Lions (32, 52)
for Hamilton–Jacobi equations, the viscosity solution of the
primary nonlinear equation is obtained through the convergence
of the solution to a parabolic/elliptic formulation (achieved by
introducing a Laplacian term) as the diffusivity/viscosity rep-
resenting diffusion coefficient, heat conduction, fluid viscosity,
etc., approaches zero. The convergent solution is a unique weak
solution of the underlying nonlinear equation.

In this Section, we show that soil diffusion provides the
essential mechanism to obtain well-behaved topographies at large
CI values, remaining important where the landscape exhibits
large concavity or convexity, i.e., in valleys and ridges.

Unchannelized 1D Landscapes. Although 1D solutions are less
representative of natural landscapes due to the absence of
channelization, they provide invaluable analytical insights. Two
cases, m = 0, n = 2, and m = n = 1, can be solved analytically
(Materials and Methods).

For m = 0, n = 2, the elevation equation corresponds to
the well-known Kardar–Parisi–Zhang (KPZ) model for growing
interfaces (34), with a constant uplift term, instead of the typical

stochastic growth term. More generally, for m = 0 and any
real value of n, the elevation equation is the well-known eikonal
equation, employed in different branches of physics, engineering
and landscape modeling (53–55). Form = n = 1, fluvial erosion
scales linearly with the specific contributing area and local slope,
with the surface elevation acting as an active scalar that mutually
interacts with the specific contributing area (discussed later). The
elevation slope for m = 0, n = 2 corresponds to the 1D Burgers’
equation through the substitution v̂ = −dẑ/dx̂ (36).
Effects of diffusion in the self-similar regime. Fig. 2A shows that
the unchannelized 1D landscapes also exhibit complete self-
similarity in the global sediment partitioning for large CI values;
this is akin to the self-similarity observed in channelized 2D
landscapes (fluvial erosion regime in Fig. 1A). Interestingly,
this result highlights that the self-similar behavior of landscapes
at asymptotically large CI values is not contingent upon the
presence of fractal drainage networks.
Fig. 2B andC display the changes in the elevation profiles with

increasing CI . At low CI , the landscapes exhibit near-parabolic
elevation profiles for the two cases of erosion exponents. As CI
increases, a sharper ridgeline emerges in both scenarios, consistent
with previous findings (12, 56, 57). The elevation profile is linear
for a major portion of the domain at large CI values for m = 0,
with a sharp curvature near the ridgeline. While for m = 1, the
hillslopes are concave up moving from the boundary toward the
ridge, resulting in the rapid growth of the slope and the sharpened
(convex up) curvature confined to small scales near the central
ridge.
Fig. 2 D and E displays the diffusion sediment flux term

(−CI
−1d2ẑ/dx̂2) as a function of x̂ for different CI values.

The uplift is represented by the horizontal line at unity, and
therefore, the complementary height from unity to the diffusion
curve represents the fluvial erosion at that point. Shaded regions
below the colored curves show the local flux by soil diffusion,
with positive/negative values indicating erosion/deposition. An
increase in CI corresponds to a reduction in the global sediment
flux by diffusion, expressed by the integral of the shaded areas
in Fig. 2 D and E. Nonetheless, diffusion remains vital, even
at very large CI values. In the case of m = 0, diffusion does
not contribute to the transport of sediments over most of the
domain, but it consistently erodes around the ridge due to its
sharp convexity. Form = 1, diffusion erodes the area around the
sharp convex ridgeline and deposits sediments close to the start of
the sharp symmetric concave valleys. This localized mechanism
plays a key role in stabilizing the topography as channelization
index values become large. As the valley is predominantly
shaped by fluvial erosion, the deposition of sediments by
diffusion is negligible downstream where the contributing area
increases.
Singular ridges as shock waves for vanishing diffusion.We now
examine the 1D solutions as D → 0 with boundary conditions
ẑ(x̂ ± 0.5) = 0 (dashed curves in Fig. 2 B and C ). In the case
of m = 0, n = 2, the solution is the signed distance function
(0.5 − |x̂|) featuring a nondifferentiable ridge at x̂ = 0, while
with m = n = 1, the solution consists of logarithmic hillslopes
(ln 0.5 − ln |x̂|) with a discontinuity at x̂ = 0. We can connect
the ridge singularity in the zero diffusion case to the formation
of shock waves. Since for m = 0, n = 2 we have a 1D Burgers’
equation for the slope, nondifferentiability at ridgeline symbolizes
an abrupt, yet finite change in v̂ at x̂ = 0 (SI Appendix, Fig. S6A).
This result relates the singular ridge of 1D landscapes to a jump
discontinuity in v̂ and the generation of shock waves in the
inviscid Burgers’ equation (36, 37). For m = n = 1, the slope
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Fig. 2. Unchannelized 1D landscapes. (A) Global sediment budget chart (Ŝb vs. CI ) form = 0, n = 2, andm = n = 1 shows that the unchannelized landscapes
also reach a self-similar plateau. (B and C) Steady-state landscapes for different values of CI . Sharp ridges develop as CI increases for both cases. The dashed
curves represent vanishing diffusion solutions. (D and E) Local sediment budget for the landscapes of B and C. The colored curves represent the local diffusion
term. Unity on the y-axis represents the unit influx by uplift. At large CI , soil diffusion plays a crucial role in removing the sediment influx on the landscape
ridges.

has a vertical asymptote on both sides of x̂ = 0, representing an
infinite discontinuity in v̂ at x̂ = 0 (SI Appendix, Fig. S6B).
These solutions can be seen as weak solutions when excluding

soil diffusion from the surface evolution, a nonlinear first-order
partial differential equation referred to as the stream-power
equation in geomorphology (12, 14, 31). The stream-power
equation parallels the inviscid Euler equations in fluid dynamics
(58). According to the viscosity solution approach of Crandall
and Lions (32, 52), 1D vanishing diffusion solutions are unique
viscosity solutions of the stream-power equation. The dashed
curves in Fig. 2 B and C depict the vanishing diffusion solutions
for both sets of exponents, along with the continuous curves
for ln CI � 1. While these solutions closely match over the
majority of the domain, the contrast is apparent around the
central ridgeline.
The different nature of singularity as a function of the

fluvial law exponents in LEM bears resemblance to the distinct
singularity types in wave turbulence (59), where first-order
(60, 61) and second-order (59, 62) wave discontinuities are
observed for different geometries and degrees of anisotropy.

Analogy with Burgers vortex sheet. 1D solutions have also been
used to provide insight into self-similarity and localized diffusion
effects in turbulent flows (63, 64). Remarkably, with uplift
varying linearly with elevation for m = n = 1, the LEM
equations correspond exactly to the well-known Burgers vortex
sheet (Materials andMethods), the Cartesian analog of the Burgers
vortex tube (65), a well-known paradigm for fine-scale structures
in incompressible turbulence (66, 67). It depicts a 1D localized
vortex layer that attains equilibrium through the hyperbolic
stretching of a plain stagnation point flow, which is counteracted
by the outward diffusion of vorticity (64, 68).

Analogously, the 1D steady elevation becomes a self-similar
Gaussian profile for U/K = 1, with no CI dependence under
the action of uplift, fluvial erosion, and diffusion, which matches
exactly the steady self-similar Gaussian vortex sheet balancing
advection, strain, and diffusion. As in the vortex sheet, which is
characterized by a width scale formed by the kinematic viscosity
and the imposed strain rate, here the landscape width is set by the
scale

√
D/K , D/K being the diffusion/fluvial coefficient, while

the elevation gets more confined as D/K → 0.
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Channelized 2D Landscapes. The localized diffusion effect at
asymptotically large CI is illustrated in 2D fluvial land-
scapes by analyzing numerical, natural, and experimental topo-
graphies.

We begin with 2D numerical simulations, shown in Fig. 3A.
The simulations depict two landscapes with varying degrees of
surface elevation complexity. The first landscape exhibits a nearly
periodic pattern of ridges and valleys (CI = 65), while the
second showcases a highly intricate network of ridges and valleys
spanning multiple spatial scales (CI = 105). The topographic
complexity is apparent in the largest drainage basin of each
landscape (Fig. 3B) as well as in the elevation profiles along a
1D transect (Fig. 3C ). The elevation transects transition from
a small number of smooth, nearly parabolic ridges separated by

first-order valleys to a multitude of sharp convex ridges, primarily
eroded by soil diffusion.
Similar to the numerical simulations, the natural and exper-

imental landscapes of Fig. 3D show varying levels of branching
complexity, ranging from first-order valleys (CA) to heavily
dissected topographies (SC, EXP). The Gabilan Mesa landscape
in California (CA), covering an area of ∼1.06 km2, features
valleys spaced at roughly 163 m intervals along a long ridge,
with m ≈ 0.35 (14, 40). The heavily dissected basin of the area
around 23 km2 draining to Tyger River in South Carolina (SC)
has a much more complex topography and m ≈ 0.31 (18). The
channelized surface (EXP) comes from an experiment conducted
on a 50 cm × 50 cm sediment box (details in ref. 69), with m
around 0.28.

Fig. 3. Channelized 2D landscapes. (A–C) Numerical landscapes at increasing CI values for m = n = 1. (D–G) Natural (CA, SC) and experimental (EXP)
topographies, ranging from equally spaced first-order valleys of CA (∼1.1 km2) to complex branching patterns in SC (∼23 km2) and EXP (∼0.25 m2). The
estimated value of exponent m is around 0.3 in these cases. (A and D) Surface elevation fields. (B and F ) The largest drainage basins, highlighted by the black
curves in A and D. (C and G) 1D longitudinal transects along the colored lines of A and D show an increase in the number and curvature of convex ridges.
(E) Exceedance probability distributions of â for SC and EXP show a remarkable collapse with a power-law exponent ≈ −0.52.

6 of 10 https://doi.org/10.1073/pnas.2302401120 pnas.org

D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
w

w
w

.p
n
as

.o
rg

 b
y
 S

U
N

Y
 A

T
 S

T
O

N
Y

 B
R

O
O

K
 M

A
IN

 L
IB

R
A

R
Y

 -
 S

E
R

IA
L

S
 D

E
P

T
 o

n
 D

ec
em

b
er

 1
4
, 
2
0
2
3
 f

ro
m

 I
P

 a
d
d
re

ss
 1

2
9
.4

9
.8

9
.1

1
1
.



Despite orders of magnitude differences in their spatial scales,
a striking similarity can be observed between the complex
natural (SC) and experimental (EXP) topographies. This sim-
ilarity emerges in the elevation transects (Fig. 3G), in the
largest drainage basin (Fig. 3F ), and the remarkable collapse of
exceedance probability distributions of the normalized specific
contributing area fields (Fig. 3E), with a scaling exponent
around −0.52. This indicates that the same underlying physical
mechanisms are at play, also noted previously in the 2D LEM
solutions from the fluvial erosion regime (Fig. 1 D–G).

To highlight the localized effect of diffusion in numerical,
natural, and experimental landscapes, we can focus on their
longitudinal elevation transects (Fig. 3 C and G). At low
CI , elevation fields (numerical—CI = 65 and natural—CA)
are composed of alternate sequences of near-parabolic ridges
separated by first-order valleys with concave curvature (pink
curves). The ridges recall the unchannelized 1D landscapes
dominated by soil diffusion. At increased fluvial erosion intensity,
i.e., large CI , the channelization cascade leads to the emergence
of small-scale fluctuations in the elevation fields (numerical—
CI = 105, natural—SC, and experimental—EXP), which
become an increasingly complicated superimposition of long- and
short-frequency modes (blue curves). A higher number of ridges
develop, with sharp convex curvatures stabilized by diffusion
following the same mechanism as shown in Fig. 2 D and E.

Discussion

Fluvial Landscapes and Turbulent Flows. The numerous analo-
gies between landscapes and turbulence suggest the presence of
a similar nonlinear cascade mechanism, operating at increasingly
smaller scales, giving rise to self-similar asymptotic behavior
in both systems. Following landscapes upstream, one finds a
bifurcation to smaller and smaller channels, which is akin to
the energy cascade of vortices in turbulence (10, 15). In the self-
similar regimes, local properties of the landscape elevation and the
turbulent velocity fields share similar features in the logarithmic
profiles (17, 70) and the power spectra (18, 23).

Our results further strengthen this analogy by showing that
the average sediment-flux partitioning over the entire land-
scape domain exhibits self-similar behavior for large CI values,
analogous to the self-similar energy partitioning of bounded
turbulent flow at large Re values (45, 46). LEM solutions,
supported by real-world observations, reveal that under intense
fluvial erosion, diffusion remains crucial to prevent the formation
of singularities at sharp ridges, where fluvial erosion cannot
occur due to the contributing area tending toward zero. This
localized soil diffusion action in landscapes is comparable to
the viscous dissipation in the turbulent energy cascade, where
kinetic energy is converted into heat energy at small (Kol-
mogorov) scales (23, 58). The analogy with the Burgers vortex
sheet presented earlier provides an exact parallel, illustrating
the balance between localized diffusion and erosion/vortex
stretching (65, 66).

Surface Elevation as Active Scalar. The surface elevation oper-
ates as an active scalar that mutually interacts with the specific
contributing area (71). For m = n = 1, the fluvial erosion

term can be written as Eq(ẑ) · ∇̂ ẑ, where Eq = −â∇̂ ẑ/|∇̂ ẑ|. This
formulation denotes the advective term of an active scalar, namely
Eu(�) · ∇�, � being the active scalar that mutually interacts with
the velocity field Eu. While Eu is usually a divergent-free vector in

fluid dynamics, Eq is the flux based on the rainfall input in LEMs,
and it typically aligns with the topographic gradient (40, 41).
Similar equations appear in geophysical fluid dynamics (72, 73),
and understanding how singularities dissipate and give rise to
sharp solutions in the vanishing diffusion limit is at the forefront
of research in these fields.

Linkage to Optimal Channel Networks. A previous study (44)
emphasized the connection between the optimality principle
of the LEM in the continuous domain under negligible soil
diffusion globally and the optimal channel network (OCN)
theory for discrete drainage network configurations (2, 4, 74).
In OCN simulations, the exceedance probability distribution of
the contributing area exhibits a power-law exponent of around
−0.43 in suboptimal feasible networks (4, 8, 74). These networks
are obtained iteratively byminimizing energy dissipation, starting
from a random configuration. The narrow range of natural
catchments’ power-law exponents between−0.42 and−0.45 (8)
suggests that suboptimal OCNs adequately capture the statistical
character of drainage networks, which approach a feasible state
over long geological timescales.
LEM solutions in the fluvial erosion regime also display the

same statistical behavior. Fig. 1G shows that the power-law
exponent of P (â > â∗) for two landscapes in the self-similar
regime for m = 0.5 is around −0.45, matching the signature of
feasible optimality in OCNs and natural drainage networks. This
result provides compelling evidence that not only do the steady
LEM solutions exhibit self-similar behavior for very large CI , but
they also have the scaling signature associated with suboptimal
landscapes obtained as OCNs in discrete lattice geometries with
no explicit soil diffusion. Presumably, the diffusive scale and the
related channelization index value in OCN are set by the grid
size.

Coexistence of Complete and Incomplete Self-Similarity. The
connection between the fluvial erosion regime of LEM and the
OCN statistics indicates the coexistence of two types of self-
similarity. On one hand, complete self-similarity is observed at
large CI values for quantities related to mean sediment fluxes and
elevation; on the other hand, self-similarity is also observed in
the statistical features of each landscape geometry. The latter is
typically linked to the fractal properties of landscapes (4), which,
due to their irrational scaling exponents, have been associated
with incomplete (or second type) self-similarity (9).
A similar situation is found in fluid turbulence, where the

logarithmic law for the velocity profile, the local spectral structure
of fully developed turbulent flows, and the fully rough regime
in the Moody diagram point to complete self-similarity at
very high Reynolds numbers (9, 70). At the same time, the
statistically self-similar flow features and fractal geometries of
fully developed turbulent flows suggest incomplete self-similarity
(75–77).
The simple example of the Kock triad can shed light on the

spectrum of self-similar behaviors observed in landscapes and tur-
bulent flows.With an increase in the number of sides, the perime-
ter of the Kock curve approaches infinity with a fractal dimension
≈1.26, which is an indicator of incomplete self-similarity (9).
However, the enclosed area converges to 8/5 times the original
area as the number of sides becomes very large, which is indicative
of complete self-similarity. This simple geometric model shows
that complex physical problems can exhibit different types of
self-similar behavior; the specific form of self-similarity that
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emerges in a problem depends on the attributes of the solutions
considered.

Conclusion

Landscape classification into three regimes (Fig. 1A) shows that
just as laminar flow is the exception rather than the rule, so are
smooth landscapes without valleys from the diffusion regime.
The most frequent topographies are completely self-similar with
respect to the channelization index, while also exhibiting fractal
geometries with incomplete self-similarity.

In the limit of infinite channelization indices, in the far right
of the complete self-similarity plateau, as fluvial erosion intensity
becomes dominant over diffusion processes everywhere with the
exception of the network of ridges (and possibly valleys), the
topographic singularities become analogous to discontinuities
in surface growth models and to the shock generation in wave
propagation. In all these systems, diffusion, however small,
remains in place to regularize singularities, much like how
“momentum must ultimately pass from the eddies to the ground
bymeans of the almost infinitesimal viscosity of air”, Taylor (78).

Materials and Methods

Interpreting the Channelization Index. The model has three primary
dimensions: horizontal, vertical, and time. Using K,U, and l as scaling variables,

the following nondimensional quantities are obtained: ẑ = z
(

Klm−n/U
)1/n

,

â = a/l, t̂ = t
(

Klm−n/U1−n
)1/n

, x̂ = x/l, and ŷ = y/l to get

dimensionless Eqs. 1 and 2. The dimensional analysis yields one control
parameter, which we call the channelization index CI (15).

Just as the Reynolds number Re, derived as a ratio of inertial and diffusion
term in the Navier–Stokes equations, can be adapted to describe the ratio of
diffusion to inertial time-scales, turbulent to molecular viscosity (79), CI can
be interpreted in multiple ways. CI describes the relative control of fluvial
erosion to soil diffusion in the uplifted topography. It has also been written
as dimensionless boundary size for the parameterless governing equations
(16, 80). CI can also be interpreted as the ratio of the two time scales as:

CI =
l2/D

U1/n−1/ (Klm−n)1/n
=

Soil diffusion time scale

Fluvial erosion time scale
. [7]

This understanding of CI provides an intriguing linkage of the LEM solutions
with the two-phase evolution theory for fluvial-dominated landscapes (5), where
fluvial erosion acts at a relatively fast time scale (freezing time) at high CI
to practically freeze the 2D planar ridge/valley organization. While diffusion
smooths high-frequency modes of the 3D elevation field over a much longer
duration (relaxation time) until the steady state is reached.

Global Sediment Budget. For a domain covering a total areaA, the steady-
state sediment budget is written as:

∫



1

A

(

1

CI
∇̂2 ẑ − âm|∇̂ ẑ|n + 1

)

d = 0. [8]

We simplify the average diffusion flux flowing out of the boundaries using
the divergence theorem as:

1

A

∫



(

1

CI
∇̂2 ẑ

)

d =
1

ACI

∮

∇̂ ẑ · EndB = − Ŝb
CI

lB
A
, [9]

where En is the normal vector to the boundary (B), Ŝb is the average boundary
slope, and lB is the boundary length. For a semi-infinite domain of unit width,
lB/A limits to 2.

We simply write the fluvial term as 〈ÊDL〉 and the uplift term is unity.
Substituting these in Eq. 8, global sediment budget reads

2

CI
Ŝb + 〈ÊDL〉 = 1. [10]

Analytical Solutions. To obtain analytical expressions for 1D steady-state

solutions as well as the variation of Ŝb as a function of CI , we consider
unchannelized landscapes consisting of a single ridge in the center and a
symmetric elevation profile that decreases monotonically on either side of it.
Without loss of generality, x̂ = 0 is fixed at the ridgeline that results in
â = |x̂|. Eq. 1 at steady-state reads

1

CI

d2 ẑ

dx̂2
− |x̂|m

∣

∣

∣

∣

dẑ

dx̂

∣

∣

∣

∣

n

+ 1 = 0. [11]

With zero elevation boundary conditions ẑ (x̂ = ±1/2) = 0, analytical
solution form = 0 and n = 2 reads

ẑ (x̂) = x̂ − 1

2
− 1

CI
log

(

exp (2 CI x̂) + 1

exp (2 CI) + 1

)

. [12]

Differentiating Eq. 12 and substituting x̂ = −0.5, we get an analytical
expression for the boundary slope as:

Ŝb (CI) =
eCI − 1

eCI + 1
. [13]

Form = n = 1, the elevation field (15) is

ẑ (x̂) =
CI

2

[

1

4
pFq

(

1, 1;
3

2
, 2;−CI

8

)

− x̂2pFq

(

1, 1;
3

2
, 2;−CI x̂

2

2

)]

,

[14]

where pFq(., .; ., .; .) is the generalized hypergeometric function. Further, Ŝb
is derived as a function of CI

Ŝb (CI) =
√

2CID

(
√

CI

8

)

, [15]

whereD (·) is the Dawson function.
In Fig. 2A, Eqs. 13 and 15 display the variation of Ŝb with increasing values

of CI for m = 0, n = 2 and m = n = 1, respectively. Fig. 2 B and C show
the analytical elevation profiles for both cases (Eqs. 12 and 14) at different CI
values.

Burgers Vortex Sheet. We compute the 1D steady-state solution of Eqs. 1 and
2, for which uplift varies linearly with the elevation field (Uz, instead of U in

the original formulation). With the horizontal length scale defined as
√

D/K
(instead of imposing an external length scale) and the time scale as 1/K, the
dimensionless equation reads

d2 ẑ

dx̂2
+ x̂

dẑ

dx̂
+

U

K
ẑ = 0. [16]

The steady profile for ẑ = ẑo at x̂ = 0 and ẑ → 0 as x̂ → ±∞ is

ẑ (x̂) = ẑo1F1

(

U

2K
,
1

2
;− x̂2

2

)

, [17]

where 1F1 (·) is the Kummer confluent hypergeometric function.
For U/K = 1, Eq. 16 is the steady-state vorticity equation for the Burgers

vortex sheet (68), where the horizontal scale is defined as the
√
�/� (� is the

kinematic viscosity and � is strain rate). In this case, Eq. 17 gets simplified as a
self-similar Gaussian profile for the elevation/vorticity as:

ẑ (x̂) = ẑo exp (−x̂2/2). [18]
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Data, Materials, and Software Availability. High-resolution elevation data
for natural topographies can be obtained fromhttps://opentopography.org. The
details of the numerical solver are described in ref. 43, and the Python code is
available on https://github.com/ShashankAnand1996/LEM (81). All other data
are included in the manuscript and/or SI Appendix.
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