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Abstract. We study a class of ordinary differential equations with a non-Lipschitz point

singularity that admits non-unique solutions through this point. As a selection criterion, we

introduce stochastic regularizations depending on a parameter ν: the regularized dynamics

is globally defined for each ν > 0, and the original singular system is recovered in the limit

of vanishing ν. We prove that this limit yields a unique statistical solution independent

of regularization when the deterministic system possesses a chaotic attractor having a

physical measure with the convergence to equilibrium property. In this case, solutions

become spontaneously stochastic after passing through the singularity: they are selected

randomly with an intrinsic probability distribution.
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‘It is proposed that certain formally deterministic fluid systems which possess many scales

of motion are observationally indistinguishable from indeterministic systems; specifically,

that two states of the system differing initially by a small “observational error” will evolve

into two states differing as greatly as randomly chosen states of the system within a finite

time interval, which cannot be lengthened by reducing the amplitude of the initial error’.

— Edward N. Lorenz (1969)

1. Introduction

Consider a nonlinear ordinary differential equation

dx

dt
= f(x), x ∈ R

d (1.1)
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for arbitrary dimension d. Local existence of solutions x(t) is guaranteed if the function

f : Rd �→ R
d is continuous, while the Lipschitz continuity is required for its uniqueness by

standard theorems. Breaking of the Lipschitz condition, and even the continuity condition,

is remarkably abundant in dynamical systems modeling natural phenomena; for example,

in the n-body problem [17] or the Kirchhoff–Helmholtz system of point vortices [41],

where the forces diverge at vanishing distances. Other important examples arise in fluid

dynamics, where particles are transported by shocks in compressible flows [25] or rough

velocities in incompressible turbulence [27]. Many infinite-dimensional systems form

singularities from smooth data in finite time; these often take the form of Hölderian

cusps [21].

The problem of fundamental importance is: how to select a ‘meaningful’ solution after

the singularity? A natural way to answer this question is to employ a regularization by

which the system is modified (smoothed) very close to the singularity and the solution

becomes well defined at longer times. However, this procedure is not robust in general;

examples show it can be highly sensitive to the regularization details [13, 14, 18, 20]

although unique selection is possible in some notable situations [40]. In this work, we

show that continuation as a stochastic process can accommodate such non-uniqueness in

a natural and robust manner if the deterministic system has a chaotic attractor having a

physical measure with the convergence to equilibrium property.

1.1. Model. We consider systems in equation (1.1) with the right-hand side of the form

f(x) = |x|αF

(

x

|x|

)

, F(y) = Fs(y) + Fr(y)y, (1.2)

where α < 1 and F : Sd−1 �→ R
d is a C1-function on the unit sphere S

d−1 = {y ∈ R
d :

|y| = 1} decomposed into the tangential spherical component Fs : Sd−1 �→ T S
d−1 and

the radial component Fr : Sd−1 �→ R. The field f : Rd �→ R
d defined by equation (1.2)

is continuously differentiable away from the origin. At the origin, it is only α-Hölder

continuous for α ∈ (0, 1), discontinuous for α = 0, or divergent if α < 0. Solutions of

the system in equation (1.2) with non-zero initial condition x(0) = x0 may reach the

non-Lipschitz singularity in a finite time:

lim
t↗tb

x(t) = 0, 0 < tb < +∞, (1.3)

after which the solution is generally non-unique.

The system in equation (1.2) is invariant under the space-time scaling

x �→
x

ν
, t �→

t

ν1−α
(1.4)

for any constant ν > 0, e.g. if x(t) is a solution to equation (1.2), then so is x(ν1−αt)/ν.

This symmetry reflects, in a simplified form, the fundamental property of scale invariance

in multi-scale systems [21], which feature finite-time singularities (often called blowup).

Thus, models in equation (1.2) represent a rather large class of singular dynamical systems

that can be seen as a toy model for blowup phenomena. Following this analogy, we refer
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to equation (1.3) as blowup, interpreting |x| as the ‘scale’ of solution, and y = x/|x| as its

scale-invariant (angular) part.

For the dynamical system approach to models in equation (1.2), we define the auxiliary

system for the variables y ∈ S
d−1 and w ∈ R

+ as

dy

dτ
= wFs(y),

dw

dτ
= w + (α − 1)Fr(y)w2. (1.5)

Systems in equations (1.1)–(1.2) and (1.5) are related by the transformation

x = Rt (y, w) :=

(

t

w

)1/(1−α)

y, t = eτ , (1.6)

where Rt : Sd−1 × R
+ �→ R

d is the time-dependent map defined for t > 0. Relations in

equation (1.6) are motivated by the scaling symmetry in equation (1.4), which becomes the

time-translation symmetry τ �→ τ + τ0 in the autonomous system in equation (1.5) with

the relation τ0 = (α − 1) log ν. By changing the time as ds = wdτ , we reduce the first

equation in equation (1.5) to the form

dy

ds
= Fs(y). (1.7)

It was shown in [20] that fixed-point and limit-cycle attractors of the system in

equation (1.7) impose fundamental restrictions on solutions x(t) selected by generic

regularization schemes. We now extend these results for chaotic attractors leading to a

conceptually different mechanism: the long-time behavior of the system in equation (1.7)

expressed in terms of its physical measure will define solutions selected randomly near the

non-Lipschitz singularity in the systems in equations (1.1) and (1.2).

1.2. Assumptions

1.2.1. On physical measures. For each attractor A ⊂ S
d−1 of the system in equation

(1.7), we denote its topological basin of attraction by B(A) ⊂ S
d−1 and by Xs : Sd−1 �→

S
d−1 the flow of the system in equation (1.7). (A compact set A is an attractor with respect

to the flow Xs if there exists a compact (trapping) region U such that A is contained in

the interior of U and so that Xs(U) ⊂ (U) for all s ≥ S0 (S0 fixed) and A =
⋂

s≥0 Xs(U)

[42]. The topological basin B(A) is the set of points that converge to A under the forward

flow.) We now recall the definition of a physical measure μphys. Define the basin Bμphys
(A)

with respect to the measure μphys as being the set of points y0 ∈ B(A) such that

lim
s→+∞

1

s

∫ s

0

ϕ(Xs1(y0)) ds1 =

∫

ϕ(y) dμphys(y) (1.8)

holds for all continuous functions ϕ : B(A) �→ R. Then the measure μphys is physical if

the basin Bμphys
(A) has positive Lebesgue measure. We will say that the physical measure

has a full basin if the Lebesgue measure of Bμphys
(A) coincides with the Lebesgue measure

of B(A). In particular, having a full basin by the definition in equation (1.8) implies

the uniqueness of the physical measure with respect to the attractor A. Let us observe

that ergodic Sinai–Bowen–Ruelle (SRB) measures without zero Lyapunov exponents are
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FIGURE 1. (a) Schematic representation of the stochastic regularization procedure in the phase space x ∈ R
d .

The solution x(t) (the black curve) starts at x0 = x(0) and reaches the singularity at x(tb) = 0 in finite time.

Regularized solutions (thin green curves) are given by dynamical systems smoothed in a small ball Bν centered

at the singularity. These regularizations are chosen randomly, therefore, the regularized solution is described by

a time-dependent probability measure xν(t) ∼ μν
t . (b) Numerical results for the example from §3. Solid lines are

random realizations of component x1(t) in the regularized system with ν = 10−5. Color shows the probability

distribution in equation (1.15). Solutions become spontaneously stochastic passing through the non-Lipschitz

singularity (red dot).

also physical measures [48]. Hyperbolic attractors [11] and the Lorenz attractor [3] give

examples of systems having a unique physical (SRB) measure with a full basin. In our

formulation, we assume the existence of:

(a) a fixed-point attractor A− = {y−} with the focusing property Fr(y−) < 0;

(b) a transitive attractor A+ having an ergodic physical measure μphys and the defocus-

ing property, Fr(y) > 0 for any y ∈ A+.

We also suppose that:

(c) the physical measure μphys has a full basin.

We note that the chaotic form of A+ is crucial for our study, while the fixed-point form

of A− is taken for simplicity. The system in equation (1.7) may have other attractors in

addition to A− and A+, but they will not affect our results.

The central part of our formulation refers to a class of regularized systems, which

are defined by modifying equations (1.1) and (1.2) in a small ball |x| < ν as shown

schematically in Figure 1(a). Unlike usual deterministic regularizations, we assume that

our regularization contains a random uncertainty, which is characterized by an absolutely

continuous probability measure. We assume certain geometrical properties of this measure

related to the attractors A− and A+. The exact definition of such regularizations is given

in §2 under the name of stochastic regularization of type A− → A+. The regularized

system provides a unique measure-valued (stochastic) solution, xν(t) ∼ μν
t , where μν

t is a

probability measure depending on time t and small regularization parameter ν.

We will prove that the auxiliary system in equation (1.5) has the property of gen-

eralized synchronization: in the limit s → +∞, a time-independent asymptotic relation

exists between the variables as w = G(y). Generalized synchronization originates from

applications in nonlinear physics and communication [29], where the variables y and w
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are referred to as a drive and response. In our case, it yields an expression for the physical

measure in the system in equation (1.5).

PROPOSITION 1.1. (Generalized synchronization) The system in equation (1.5) has an

attractor

A′
+ = {(y, w) : w = G(y), y ∈ A+}, (1.9)

where G : A+ → R
+ is a continuous function given by

G(y) =

∫ +∞

0

exp

[

(α − 1)

∫ s1

0

Fr(X
−s2(y)) ds2

]

ds1. (1.10)

This attractor has the basin

B(A′
+) := {(y, w) : (y, w) ∈ B(A+) × R

+}, (1.11)

and a Borel physical measure given by

dμ′
phys(y, w) =

δ(w − G(y))

c G(y)
dμphys(y) dw, c =

∫

dμphys(y)

G(y)
, (1.12)

where δ is the Dirac delta and c is the normalization factor.

1.2.2. On convergence to equilibrium. Consider an attractor A for a flow Xs with a

physical measure μphys having a full basin. We will say that the attractor A has the

convergence to equilibrium property with respect to the measure μphys when

lim
s→+∞

∫

ϕ ◦ Xs dμ(y) =

∫

ϕ dμphys(y) (1.13)

for all absolutely continuous probability measures μ supported in the basin B(A) and

all bounded continuous functions ϕ : B(A) → R. Notice that the condition in equation

(1.13) refers to statistical averages for an ensemble of solutions at long times, unlike the

condition in equation (1.8) on the physical measure, which is applied to temporal averages

along specific solutions. The convergence to equilibrium property is guaranteed, e.g. for

hyperbolic flows [11, Theorem 5.3]. Now let Y τ : B(A′
+) �→ B(A′

+) be the flow of the

system in equation (1.5) in the basin B(A′
+) given by equation (1.11). We will assume that:

(d) the physical measure μ′
phys

of the attractor A′
+ given by equation (1.12) in

Proposition 1.1 has the property of convergence to equilibrium.

It is then natural to ask what are the conditions on the vector field on the sphere in equation

(1.7), having the attractor A+ and the physical measure μphys, so that the above assumption

is satisfied. Certain sufficient conditions are established in §4, which are now summarized.

Let us suppose that the attractor A+ of the system in equation (1.7) with the physical

measure μphys satisfies the convergence to equilibrium property. Consider a closed subset

V ⊂ S
d−1 such that its complement Sd−1 \ V contains A− and is contained in the interior

of B(A−). For example, in the case when the basin B(A−) is open, then one can take

V := Sd−1 \ B(A−). We will further assume that:

(i) there exists a constant F0 > 0 such that Fr(y) = F0 for any y ∈ V;

(ii) ‖∇Fs‖ < (1 − α)F0 for the operator norm of the Jacobian matrix and any y ∈ V .
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The hypotheses (i) and (ii) guarantee the existence of a center manifold in the auxil-

iary system using classical results from dynamical systems. In particular, under these

hypotheses, the results of §4 and Proposition 4.1 state that the physical measure of the

attractor A′
+ in the system in equation (1.5) also has convergence to equilibrium. As

is discussed in §4, this permits to conclude the existence of examples satisfying the

assumptions (a)–(d). It would be interesting to relax these assumptions, since spontaneous

stochasticity appears to generically occur in this class of examples.

1.3. Formulation of the main result. We continue to suppose the assumptions of the

previous section. With respect to an attractor A ⊂ S
d−1 of the system in equation (1.7), we

introduce the corresponding domain of attraction in the full phase space as the cone

D(A) = {ry : y ∈ B(A), r > 0} ⊂ R
d . (1.14)

As shown in §2, all solutions of equations (1.1) and (1.2) with initial condition x0 ∈ D(A−)

reach the non-Lipschitz singularity at the origin in finite time. In contrast, solutions in

D(A+) remain non-zero for arbitrarily long times.

Define the measure μt by the relation

μt = (Rt−tb)∗μ
′
phys, (1.15)

with the measure μ′
phys

from equation (1.12) and the map Rt introduced for t > 0 in

equation (1.6). The measures μt are supported in D(A+) and satisfy the dynamic relation

μt2 = (�t2−t1)∗μt1 for any t2 > t1 > tb, (1.16)

where the asterisk denotes the pushforward and �t is the flow of the system in equations

(1.1) and (1.2). Moreover, as the measure μ′
phys

has compact support, it follows from the

expression of the map Rt in equation (1.6) that

lim
t↘tb

μt = δd (1.17)

converges to the Dirac mass at 0. This convergence corresponds to the limit at the blowup

time being the deterministic singular state x(tb) = 0.

THEOREM 1.1. (Spontaneous stochasticity) Given an arbitrary initial condition x0 ∈

D(A−), there exists a finite time tb > 0 such that the solution x(t) of the system in

equations (1.1) and (1.2) is non-zero in the interval t ∈ [0, tb) and reaches the singularity

x(tb) = 0. For any t > tb, the measure-valued solution μt satisfies

μt = lim
ν↘0

μν
t . (1.18)

In other words, μt is a weak limit of the regularization procedure and this limit is

independent of the regularization.

There are two fundamental implications of Theorem 1.1. First, it shows that the

limit ν ↘ 0 of a stochastically regularized solution exists. This limit yields a stochastic

solution for the original singular system in equations (1.1) and (1.2): even though the

random perturbation formally vanishes in the limit ν ↘ 0, a random path is selected
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at t > tb; see Figure 1(b) demonstrating numerical results from the example presented

in §3. Such behavior substantiates the fundamental role of infinitesimal randomness in

the regularization procedure of non-Lipschitz systems, and this phenomenon is termed

spontaneous stochasticity.

The second implication is that the spontaneously stochastic solution is insensitive to a

specific choice of the stochastic regularization, within the class of regularizations under

consideration. The reason, which is also an underlying idea of the proof, is the following:

we show that an interval between tb and any finite time t > tb in the system in equations

(1.1) and (1.2) can be represented by an infinitely large time interval for the system in

equation (1.5) as ν ↘ 0. As a result, a random uncertainty introduced by the infinitesimal

regularization develops into the unique physical measure. This relates the spontaneous

stochasticity in our system with chaos or, more specifically, with the convergence to

equilibrium property for a chaotic attractor.

We remark that, in the case when A+ is a fixed point, the analogous theory was

developed previously in [20]. In this case, a unique deterministic solution is selected at

times t > tb independently of regularization. In the present work, we only focus on a

chaotic attractor for A+ leading to spontaneously stochastic solutions.

1.4. Spontaneous stochasticity in models of fluid dynamics. Our work provides a class

of relatively simple mathematical models, where one can access sophisticated aspects

of spontaneous stochasticity: its detailed mechanism, dependence on regularization, and

robustness. We regard these models as toy descriptions of the spontaneous stochasticity

phenomenon in hydrodynamic turbulence, where singularities and small noise are known

to play important roles [23, 33, 43]. Below we provide a short survey guiding an interested

reader through more sophisticated models from this field.

First, we would like to mention the prediction of Lorenz [34] (see the epigraph above),

in which he envisioned that the role of uncertainty in multi-scale fluid models may be

fundamentally different from usual chaos. Spontaneous stochasticity can be encountered in

the Kraichnan model for a passive scalar advected by a Hölder continuous (non-Lipschitz)

Gaussian velocity [8]. Here, the statistical solution emerges in a suitable zero-noise limit

and describes non-unique particle trajectories [19, 22, 30–32]; see also related studies

for one-dimensional vector fields with Hölder-type singularities [6, 7, 26, 46]. Similar

behavior is encountered for particle trajectories in Burgers solutions at points of shock

singularities [25] and quantum systems with singular potentials [24]. The uniqueness of

statistical solutions has been tested numerically for shell models of turbulence [9, 35–37]

and in the dynamics of singular vortex layers [45]. We note that the prior work on shell

models together with recent numerical studies [12, 16] demonstrate chaotic behavior near

non-Lipschitz singularities, when solutions are represented in renormalized variables and

time. This is similar to our model, in which the spontaneous stochasticity is related to

chaos in a smooth renormalized dynamical system in equation (1.7). For recent advances

in discrete but infinite dimensional models, see [38, 39].

1.5. Structure of the paper. Section 1 contains the introduction and formulation of the

main result. Section 2 describes the basic properties of solutions and defines the stochastic
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regularization. Section 3 contains a numerical example inspired by the Lorenz system.

Section 4 provides further developments with the focus on the construction of theoretical

examples having robust spontaneous stochasticity. All proofs are collected in §5.

2. Definition of regularized solutions

First let us show how non-vanishing solutions x(t) of the singular system in equations (1.1)

and (1.2) are described in terms of solutions y(s) for the system in equation (1.7).

PROPOSITION 2.1. Let y(s) solve equation (1.7) for s ≥ 0 with initial condition y(0) = y0

and let

tb = lim
s→+∞

t (s), t (s) =

∫ s

0

r1−α(s1) ds1, r(s) = r0 exp

∫ s

0

Fr(y(s1)) ds1 (2.1)

for any given r0 > 0. Then, the solution x(t) of equations (1.1) and (1.2) for t ∈ [0, tb)

with initial data x(0) = r0y0 is given by x(t) = r(s(t))y(s(t)), where s : [0, tb) �→ R
+ is

the inverse of the function t (s) defined in equation (2.1). If tb is finite, the solution has the

blowup property in equation (1.3).

This statement can be checked by the direct substitution into equations (1.1) and (1.2);

see [20] for details. The next statement, also proved in [20], refers to the focusing and

defocusing attractors of the system in equation (1.7), A− and A+, which were introduced

in §1.2.

PROPOSITION 2.2. Solutions x(t) of the system in equations (1.1) and (1.2) with

initial conditions x0 ∈ D(A−) have the blowup property in equation (1.3) with

dist(x/|x|, A−) → 0 as t ↗ tb. Solutions with x0 ∈ D(A+) remain in D(A+) at all

times t > 0 with increasing |x| and dist(x/|x|, A+) → 0 as t → +∞.

Let us illustrate these properties with the two-dimensional example [20] for α = 1/3

and

F(y) =

(

y2
1 + y1y2 + y1y

2
2

y1y2 + y2
2 − y2

1y2

)

, Fs(y) = (y1y
2
2 , −y2

1y2), Fr(y) = y1 + y2, (2.2)

where y = (y1, y2) ∈ S
1 belongs to the unit circle on the plane. Dynamics on a circle of

the scale-invariant system in equation (1.7) is shown in Figure 2(a) and the corresponding

solutions of the singular system in equations (1.1) and (1.2) in Fig. 2(b). The focusing

fixed-point attractor at (−1, 0) features blowup solutions, which occupy the corresponding

domain D(A−) = {(x1, x2) ∈ R
2 : x1 < 0}. There is also a defocusing fixed-point attrac-

tor at (1, 0). Its domain D(A+) = {(x1, x2) ∈ R
2 : x1 > 0} comprises solutions growing

indefinitely in time. This example demonstrates the strong non-uniqueness for all solutions

starting in the left half-plane: they can be extended beyond the singularity in uncountably

many ways.

2.1. Regularized sytem. Let us consider a class of ν-regularized systems

dx

dt
= fν(x), fν(x) :=

§

¨

©

|x|αF(x/|x|), x /∈ Bν ,

ναH(x/ν), x ∈ Bν ,
(2.3)
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Statistical determinism in non-Lipschitz dynamical systems 9

FIGURE 2. (a) Dynamics of the scale-invariant system in equation (1.7) on the unit circle for the example in

equation (2.2). There are two attractors (black dots): focusing on the left and defocusing on the right. (b) Solutions

of the system in equations (1.1) and (1.2). Colored curves correspond to solutions of the same color in panel (a).

where ν > 0 is the regularization parameter and Bν = {x ∈ R
d : |x| ≤ ν} is the ball of

radius ν; recall that α < 1. Here, H : B1 �→ R
d is a C1-function in the unit ball such

that H(x) = F(x) for |x| = 1. Then fν is C1(Rd) for all ν > 0. Note that the described

choice of regularization leaves large freedom due to its dependence on the function H. The

regularized field fν recovers the original singular system in equation (1.2) by taking the

limit ν ↘ 0. Motivated by the conceptual similarity with the viscous regularization acting

at small scales in fluid dynamics [27], we call ν the viscous parameter and the limit ν ↘ 0

the inviscid limit.

The scaling symmetry in equation (1.4) extends to the system in equation (2.3) as

follows. Let us denote the flow of the regularized system in equation (2.3) by �t
ν : Rd �→

R
d ; it is defined for t ≥ 0, ν > 0 and α < 1. The regularized flows for arbitrary ν > 0 and

ν = 1 are related by

�t
ν(x) = ν �

t/ν1−α

1

(

x

ν

)

. (2.4)

Using this map for a deterministically or randomly chosen function H, we now introduce

the two types of regularizations: deterministic and stochastic.

2.2. Deterministic regularization of type A− → A+. Consider any initial condition

x0 ∈ D(A−) in the domain of the focusing attractor. The corresponding solution x(t) of

the system in equation (1.2) reaches the origin in finite time tb; see Proposition 2.2. Let

us consider the solution xν(t) of the regularized system in equation (2.3) with the same

initial condition for a given viscous parameter ν > 0, provided ν is small enough so that

the initial data are outside Bν(0). This solution exists and is unique globally in time. The

two solutions x(t) and xν(t) coincide up until the first time when the solution enters the

ball Bν ; see Figure 3(a). We denote this entry time by tνent, which has the properties

tνent < tb, lim
ν↘0

tνent = tb. (2.5)
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10 T. D. Drivas et al

FIGURE 3. Schematic representation of the regularization procedure in the phase space x ∈ R
d . (a) The blowup

solution x(t) (black curve) starts at x0 = x(0) and reaches the singularity at x(tb) = 0 in finite time. The

regularized solution xν(t) (thick green curve) is given by the dynamical system modified in a small ball Bν

centered at the singularity. The solutions x(t) and xν(t) coincide until and differ after the point xν
ent. (b) This

regularization procedure is formalized by considering the two segments: the original solution x(t) until the entry

point xν
ent, and the regularized solution xν(t) after the escape point xν

esc. The two points xν
ent and xν

esc are related

via the regularization map �D represented by the bold dashed arrow. For the regularization of type A− → A+,

the first segment belongs to the cone D(A−), while the second segment belongs to the cone D(A+).

We introduce an escape time tνesc > tνent as

tνesc := sup
t>tνent

{t : xν(t) ∈ Bν}. (2.6)

Observe that the entering orbit need not necessarily escape the regularized region, e.g. it

may be that tνesc = +∞. However, we will give conditions under which finite tνesc exist.

The corresponding entry and escape points are denoted by

xν
ent = x(tνent), xν

esc = x(tνesc), (2.7)

and have |xν
ent| = ν and |xν

esc| > ν; see Figure 3(a). The following definition of a

deterministic regularization ensures the existence of escape times.

Definition 1. (Deterministic regularization) Let U− be a neighborhood around A− in S
d−1

so that the following holds. Suppose that there exists a constant T > 0 so that, with respect

to the map �T
1 , we have (i) |�T

1 (y)| > 1 for all y ∈ U− and (ii) �T
1 (U−) ⊂ D(A+). Then

the continuous map

�T
1 : U− �→ D(A+) (2.8)

will be called a regularization of type A− → A+.

We remark that it is simple to construct families of vector fields H such that determinis-

tic regularizations of the form in equation (2.3) are of type A− → A+, in particular, when

the vector field F satisfies our hypotheses (a) and (b). Assume now we have a regularization

of type A− → A+ given by �T
1 . Consider the initial condition x0 ∈ D(A−), a fixed ν > 0
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Statistical determinism in non-Lipschitz dynamical systems 11

(small enough) and an entry time tνent into the ball Bν . Observe that by Proposition 2.2,

|xν
ent/ν − y−| → 0 as ν ↘ 0 for the fixed-point attractor A− = {y−}. Then for ν small

enough, xν
ent/ν ∈ U−. We will argue that an upper bound for the the escape time t

ν,∗
esc is

given by tνent + ν1−αT . Using equation (2.4), we have

xν(tν,∗
esc) = �

(t
ν,∗
esc−tνent)

ν (xν
ent) = ν�T

1

(

xν
ent

ν

)

. (2.9)

Since xν
ent/ν ∈ U−, then by the definition of the deterministic regularization �T

1 (xν
ent/ν) ∈

D(A+) with norm bigger than one. By Proposition 2.2, �t
1(x

ν
ent/ν) will stay in D(A+)

for all t ≥ T and still will have norm bigger than one. Therefore, going back to equation

(2.9), we may conclude that

tνesc < tνent + ν1−αT , (2.10)

bounding above the escape time thereby ensuring it is finite. Having the escape point and

time, one defines the regularized solution

xν(t) = �t−tνesc(xν
esc), t ≥ tνesc, (2.11)

where �t is the flow of the original singular system in equations (1.1) and (1.2). In

the limit ν ↘ 0, we will not be interested in the solution inside the vanishing interval

t ∈ (tνent, tνesc), see Figure 3(b). Therefore, for our purposes, the regularization process is

conveniently represented by the single map �T
1 in the Definition 1 and hence we do not

need to explicitly specify the regularizing field H which generated this map.

2.3. Stochastic regularization. It is known that, in general, solutions xν(t) with deter-

ministic regularization do not converge in the inviscid limit ν ↘ 0 [20]. The limits may

exist along some subsequences νn ↘ 0 but need not be unique. We now introduce a

different type of regularization by assuming that escape points are known up to some

random uncertainty; see Figure 4.

For this purpose, one may consider a family of regularized systems in equation (2.3)

with the field Ha depending on a vector of parameters a ∈ R
N . Specifically, we consider

dxa

dt
= fν(xa), fν(xa) :=

§

¨

©

|x|αF(x/|x|), x /∈ Bν ,

ναHa(x/ν), x ∈ Bν .
(2.12)

We initialize this system at some deterministic initial condition x0 ∈ D(A−). For ν > 0

and a fixed time t > 0, we call the corresponding flowmap �t
ν(x0; a) : Rd × R

N → R
d ,

which now also depends on the parameter a. Let us impose a probability distribution μ

on values of these parameters a ∈ R
N for N ≥ d + 1. Then the measure μ can be used to

define a measure μν
(t ,x0)

on R
d via a pushforward by �t

ν(x0; ·) with fixed t, ν, and x0 as

μν
(t ,x0)

= [�t
ν(x0; ·)]∗μ. (2.13)

To define the stochastic regularization we assume the following.

(1) For each a ∈ R
N , Ha is a regularization of type A− → A+ in the sense of

Definition 1. The neighborhood U− and the time T > 0 do not depend on a.
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12 T. D. Drivas et al

FIGURE 4. Schematic representation of the stochastic regularization procedure in the phase space x ∈ R
d . The

solution contains two segments: the original deterministic solution x(t) until the entry point xν
ent, and the

regularized solution xν(t) emanating from the random escape point xν
esc. The probability distribution of xν

esc

is related to the entry point xν
ent via the regularization map �R. For the regularization of type A− → A+, the

first segment belongs to the domain D(A−) and the second to D(A+).

(2) For ν = 1 and any point x0 ∈ U−, the measure μ1
(T ,x0)

has an absolutely continuous

(with respect to Lebesgue) density f (1, T , x0; y) depending on the variable y and

supported in D(A+) ∩ Bc
1 .

The above hypotheses allow to define the function

�R : U− −→ L1(D(A+)), (2.14)

where a point x0 is mapped to the function f (1, T , x0; y). Then adding a continuity

condition, we propose the following definition.

Definition 2. (Stochastic regularization) A stochastic regularization of type A− → A+ is

given by a continuous map �R in equation (2.14), constructed as above.

Now for x0 ∈ D(A−), consider a sufficiently small ν > 0 so that the entry point

xν
ent/ν ∈ U−. The entry point is independent of the parameter a by assumptions and we

have, by our assumptions, a uniform bound on the escape time tνesc < tνent + ν1−αT . We

shall denote

tν,∗
esc := tνent + ν1−αT , (2.15)

which serves as a time by which all orbits have left the regularized region. The measure

μν
(t ,x0)

also has an absolutely continuous density, which we call f (ν, t , x0; y). Using

equation (2.4) and also equation (2.9), but having in mind the dependence on the parameter

a, we obtain

xν,a
esc = �

(t
ν,∗
esc−tνent)

ν (xν
ent; a) = ν�T

1

(

xν
ent

ν
; a

)

. (2.16)
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Statistical determinism in non-Lipschitz dynamical systems 13

With respect to the density, f (ν, t , x0; y), we can identify the variable y with x
ν,a
esc, and

then equation (2.16) implies that

f (ν, (tν,∗
esc − tνent), xν

ent; xν,a
esc) = f

(

1, T ,
xν
ent

ν
;

x
ν,a
esc

ν

)

. (2.17)

For simplicity, we will denote the measure μν
(tνesc,x0)

as the escape measure μν
esc. The

stochastic regularization map �R defines a probability density function we call the escape

density f ν
esc,

f ν
esc := �R

(

xν
ent

ν

)

= f

(

1, T ,
xν
ent

ν
; y

)

∈ L1(D(A+)). (2.18)

Using equation (2.17) and a change of variables y = x/ν in R
d , we can conclude that the

density of μν
esc is given by

dμν
esc(x) = f ν

esc

(

x

ν

)

dx

νd
. (2.19)

Remark. (Construction of stochastic regularizations) A simple and explicit numerical

example arising from a specific choice of H with random parameters is given in §3.

More generally, we sketch here a construction of such a regularization. We work with

the ν = 1 rescaled system and let A− = {x∗} be the attracting fixed point. For 0 < t1 < t2,

let E ⊂ B(A+) × [t1, t2] be an open connected subset. The set E represents the collection

of exit points for trajectories that have traversed the regularized region. Let f0 ∈ C∞
0 (E)

be absolutely continuous with respect to Lebesgue. For each a = (x0, t0) ∈ supp(f0), let

H(x0,t0) be an autonomous vector field with the property that ż(t) = H(x0,t0)(z(t)) with

z(0) = x∗ and z(t0) = x0. This field can be built, for example, by taking it tangent to

any simple curve connecting x∗ and x0, properly rescaled to traverse in time t0, and

subsequently extending it to B1(0) smoothly. Such an extension is obviously highly

non-unique. The parameterized collection {H(x0,t0)}(x0,t0)∈supp(f0) can be viewed as a

random family of regularization vector fields with law inherited by their parameterization

(x0, t0) ∼ f0. Now, since A+ is expelling and supp(f0) ⊂ B(A+), trajectories starting

their support leave the regularized region and the distribution f0 is pushed forward by the

dynamics in equation (2.12) to define the distribution f ν
esc appearing in equation (2.18).

Note finally that, in rescaled variables, the entry point xν
ent/|x

ν
ent| → x∗ as ν → 0. As

such, by continuity of the above construction, for ν sufficiently small, the behavior is a

slight perturbation of the scenario discussed.

We define the measure-valued stochastically regularized solution xν(t) ∼ μν
t as

μν
t = (�t−t

ν,∗
esc)∗μ

ν
esc, t ≥ tν,∗

esc, (2.20)

where the asterisk denotes the push-forward of measure μν
esc by the flow �t of the original

singular system in equations (1.1) and (1.2). Similarly to equation (2.11), the solution is now

defined at all times except for a short interval (tνent, t
ν,∗
esc) vanishing as ν ↘ 0.

Definition 2 completes the formulation of our main result in Theorem 1.1. This theorem

states that when the randomness of regularization is removed in the limit ν ↘ 0, the
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14 T. D. Drivas et al

limiting solution exists. This limit is independent of regularization and intrinsically random

(spontaneously stochastic): different solutions are selected randomly at times t > tb with

the uniquely defined probability distribution.

3. Spontaneous stochasticity with Lorenz attractor: numerical example

In this section, we design an explicit example of the singular system in equation (1.2) with

the exponent chosen as α = 1/3, and observe numerically the spontaneously stochastic

behavior. We consider this example for the dimension d = 4, which is the lowest dimension

allowing chaotic dynamics in equation (1.7) on the unit sphere, y = (y0, y1, y2, y3) ∈ S3.

The radial field is chosen as Fr(y) = −y0. The tangent vector field Fs is defined as the

interpolation between two specific fields F− and F+ in the form

Fs(y) = S1(ξ)F−(y) + (1 − S1(ξ))F+(y), ξ = 2y0 − 1/2, (3.1)

where S1 the is the smoothstep (the cubic Hermite) interpolation function

S1(ξ) =

§

ª

ª

¨

ª

ª

©

0, ξ ≤ 0,

3ξ2 − 2ξ3, 0 ≤ ξ ≤ 1,

1, 1 ≤ ξ .

(3.2)

The function Fs coincides with F− in the upper region y0 ≥ 0.75 and with F+ in the

lower region y0 ≤ 0.25; see Figure 5. We take F−(y) = Ps(0, −y1, −2y2, −3y3), where

Ps is the operator projecting on a tangent space of the unit sphere. This field has the

fixed-point attractor A− = {y−} at the ‘North Pole’ y− = (1, 0, 0, 0), which is the node

with eigenvalues −1, −2, and −3. This attractor is focusing because Fr(y−) = −1. We

choose the field F+(y) such that its flow is diffeomorphic to the flow of the Lorenz system

ẋ = 10(y − x), ẏ = x(28 − z) − y, ż = xy − 8z/3 (3.3)

by the scaled stereographic projection

x =
40y1

1 − y0
, y =

40y2

1 − y0
, z = 38 +

40y3

1 − y0
. (3.4)

This projection is designed such that the lower hemisphere, y0 < 0, contains the Lorenz

attractor A+; see Figure 5. It is defocusing, because Fr(y) = −y0 > 0.

In the system in equation (2.3), we use the regularized field

H(x) = S1(η)H0 + (1 − S1(η))f(x), η = 2|x| − 1/2, (3.5)

which interpolates smoothly between the original singular field f(x) for |x| ≥ 3/4 and

the constant field H0 for |x| ≤ 1/4. The latter is chosen as H0 = (X0, X1, X2, X3 − 1),

where Xi are time-independent random numbers uniformly distributed in the interval

[−1/2, 1/2]. We confirmed numerically that such a field induces the stochastic regular-

ization of type A− → A+ according to Definition 2.

It is expected but not known whether the flow of the Lorenz system has the property

of convergence to equilibrium, as required in Theorem 1.1. Therefore, with the present
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FIGURE 5. Schematic structure of the spherical field Fs(y) in our example. It is composed of the field F− in the

blue region, which has the fixed-point attractor at the ‘North Pole’, and the field F+ in the red region, which is

diffeomorphic to the Lorenz system. The fields are patched together using a smooth interpolation.
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FIGURE 6. Components (x0, x1, x2, x3) of regularized solutions xν(t) for ν = 10−5 for three random choices of

vector H0 in the regularized field in equation (3.5). These solutions are different after the blowup time tb ≈ 1.046;

the blowup point is indicated by the red dot.

example, we verify numerically that the concept of spontaneous stochasticity extends

to such systems. We perform high-accuracy numerical simulations of the systems in

equations (1.1), (1.2), and (2.3) with the Runge–Kutta fourth-order method. The initial

condition is chosen as x0 = (0.4, 0.1, 0.2, 0.3). The solution x(t) of the singular system

in equations (1.1) and (1.2) reaches the origin at tb ≈ 1.046 (blowup). Figure 6 shows

regularized solutions for three random realizations of the regularized system with the tiny

ν = 10−5. One can see that these solutions are distinct at post-blowup times.

To observe the spontaneous stochasticity, we compute numerically the probability

density for the regularized solution projected on the plane (x1, x2) at two post-blowup

times: t = 1.6 and 2.0. This is done by considering an ensemble of 105 random realizations

of the regularized field, and the results are shown in Figure 7. Here the magnitude

of the probability density is shown by the color: darker regions correspond to larger

probabilities. For a better visual effect, the color intensity was taken proportional to the

logarithm of the probability density. The presented results demonstrate the spontaneously

stochastic behavior, because the probability density is almost identical for two very

small values of the regularization parameter: ν = 10−5 (first row) and ν = 10−7 (second

row). This provides convincing numerical evidence that the inviscid limit exists and it is

spontaneously stochastic. The probability distributions have similar form at different times
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FIGURE 7. Probability density computed numerically at times t = 1.6 (left) and t = 2.0 (right) using the statistical

ensemble of 105 regularized solutions. The darker color indicates the higher density. The first row corresponds to

ν = 10−5 and the second row to ν = 10−7, confirming the spontaneous stochasticity in the inviscid limit.

up to a proper scaling, in agreement with the self-similar limit in equation (1.15) from

Theorem 1.1; see also Figure 1(b). The Supplementary Video shows the evolution of the

probability density with time.

4. Robust spontaneous stochasticity

The major difficulty in applications of Theorem 1.1 to specific systems is how to verify

the assumption of convergence to equilibrium in equation (1.13), which is formulated for

the attractor A′
+ from Proposition 1.1. In this section, we discuss how specific and robust

examples of systems satisfying this assumption can be constructed.

Recall that the system in equation (1.7) must have a fixed point attractor A−. Let us

choose a closed subset V ⊂ S
d−1, such that its complement Sd−1 \ V contains A− and is

contained in the interior of B(A−). The subset V contains basins of all the other attractors,

in particular, B(A+) ⊂ V . It is convenient to use a diffeomorphism h : V �→ V̂ , which

maps to a closed subset V̂ ⊂ R
d−1 and defines the new variable ŷ = h(y). One can verify

that the systems in equations (1.5) and (1.7) keep the same form in terms of ŷ if we

substitute Fs and Fr by the conjugated vector field F̂s : V̂ �→ R
d−1 and F̂r = Fr ◦ h−1 :

V̂ �→ R. For simplicity, we will omit the hats in the notation below, therefore, assuming in
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all the relations that y ∈ V ⊂ R
d−1. Although V is not forward invariant by the flow, this

will not be necessary in what follows.

Consider now the attractor A+ of the system in equation (1.7) with the physical measure

μphys. Let us assume that it satisfies the convergence to equilibrium property in equation

(1.13).

Definition 3. We say that the convergence to equilibrium property is Ck-robust if there

exists ε > 0 and a closed neighborhood U of the attractor, A+ ⊂ U ⊂ B(A+), such that

the following holds: for any ε-perturbation of Fs in the Ck-topology, the corresponding

system in equation (1.7) has an attractor contained in U having a physical measure and the

convergence to equilibrium property.

This definition extends naturally from the angular dynamics in equation (1.7) to the full

auxiliary system in equation (1.5) by considering perturbations of both Fs and Fr. The

following proposition provides a criterion that can be used for satisfying the condition in

equation (1.13) in specific examples.

PROPOSITION 4.1. Let us assume that the attractor A+ in the system in equation (1.7) has

convergence to equilibrium and there exists a constant F0 > 0 such that Fr(y) = F0 for

any y ∈ V .

(i) If, for any y ∈ V ,

‖∇Fs‖ < (1 − α)F0, (4.1)

where ‖∇Fs‖ is the operator norm of the Jacobian matrix ∇Fs at the point y, then

the attractor A′
+ in the system in equation (1.5) has convergence to equilibrium.

(ii) If the convergence to equilibrium of A+ is Ck-robust and, for any y ∈ V ,

‖∇Fs‖ <
(1 − α)F0

k
, (4.2)

then the attractor A′
+ has Ck-robust convergence to equilibrium.

Notice that the conditions in equations (4.1) and (4.2) of Proposition 4.1 can always

be satisfied by a proper choice of the function Fr. This suggests a constructive way

for designing the specific systems in equations (1.1) and (1.2) having spontaneous

stochasticity. For a system to have Ck-robust spontaneous stochasticity, one should also

impose that the fixed-point attractor A− is hyperbolic, that is, it persists under small

perturbations of the system.

Since the crucial hypothesis in this construction is that the attractor A+ has (Ck-robust)

convergence to equilibrium, let us discuss examples of attractors having this property.

The classical results on the ergodic theory of hyperbolic flows show that a C2-hyperbolic

attractor satisfying the C-dense condition of Bowen–Ruelle (density of the stable manifold

of some orbit) has C2-robust convergence to equilibrium, see [11, Theorem 5.3]. In the

last decades, many statistical properties have been studied for the larger class of singular

hyperbolic attractors, which includes the hyperbolic and the Lorenz attractors; see for

example [3] as a basic reference and [1, 2, 4, 5] for more recent advances. Robust
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convergence to equilibrium was naturally conjectured for such attractors [10, Problem E.4].

Although the general proof is not available yet, recently in [5, Corollary B and §4] were

given examples of singular hyperbolic attractors having robust convergence to equilibrium,

which include perturbations of the Lorenz attractor. In particular, it was shown there exists

an arbitrary small C2-perturbation of the Lorenz attractor so that the resulting system has

C2-robust convergence to equilibrium with respect to C1-observables.

Having in mind the above discussion, assume that the attractor A+ has C2-robust

convergence to equilibrium (for example, a hyperbolic attractor as in [11] or the Lorenz

attractor as in [5]). Supposing moreover the hypothesis of Proposition 4.1, we obtain that

A′
+ has robust convergence to equilibrium. Then as a consequence of Theorem 1.1, we

conclude that these examples are robustly spontaneously stochastic.

COROLLARY 4.1. There exist examples exhibiting C2-robust spontaneous stochasticity.

5. Proofs

The central idea of the proofs is to reduce post-blowup dynamics of the stochastically

regularized equations to the evolution of the system in equation (1.5) over a time interval,

which tends to infinity in the inviscid limit ν ↘ 0. In this way, the inviscid limit is linked

to the attractor and physical measure of the system in equation (1.5).

For the analysis of equation (1.5), we transform them to a unidirectionally coupled

dynamical system, whose decoupled part is the scale-invariant equation (1.7). Let us

introduce the new temporal variable

s(τ ) =

∫ τ

0

w(τ1) dτ1. (5.1)

Then, the system in equation (1.5) reduces to the so-called master-slave configuration

dy

ds
= Fs(y), (5.2)

dw

ds
= 1 + (α − 1)Fr(y)w, (5.3)

where the functions y(s) and w(s) are written in terms of the new temporal variable s.

Note that the right-hand side of equation (5.3) is unity for w = 0, which prevents w(s)

from changing the sign. Hence, s in equation (5.1) is a monotonically increasing function

of τ . Since Fs and Fr are bounded functions, solutions of the system in equations (5.2) and

(5.3) are defined globally in time s.

Notice that the new temporal variable in equation (5.1) is solution-dependent. This

is a minor problem for the analysis of physical measures, which are related to temporal

averages in equation (1.8). However, this is a serious obstacle for the property of

convergence to equilibrium, which is associated with the ensemble average in equation

(1.13) at a fixed time.

5.1. Proof of Proposition 1.1. By the assumptions, the system in equation (5.2) has the

attractor A+. Therefore, we need to understand the dynamics of the second equation (5.3).

The function Fr : Sd−1 → R is continuous and therefore has an upper bound, Fr(y) < FM .
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Recall that the attractor A+ is a compact set with the defocusing property, Fr(y) > 0 for

any y ∈ A+. Hence, we can choose a trapping neighborhood U+ of A+ (recall this is a

neighborhood in the sphere) and a positive constant Fm such that

0 < Fm < Fr(y) < FM for y ∈ U+. (5.4)

We define the two quantities

wm =
1

(1 − α)FM

> 0, wM =
1

(1 − α)Fm

> wm. (5.5)

For any y ∈ U+, the derivative in equation (5.3) satisfies the inequalities dw/ds > 0 for

0 < w ≤ wm and dw/ds < 0 for w ≥ wM . Thus, the region

U ′
+ = {(y, w) : y ∈ U+, w ∈ (wm, wM)} (5.6)

is trapping for the system in equations (5.2) and (5.3), and it attracts any solution starting

in B(A+) × R
+.

LEMMA 5.1. The function

G(y) =

∫ +∞

0

exp

[

(α − 1)

∫ s1

0

Fr(X
−s2(y)) ds2

]

ds1 (5.7)

is continuous on the attractor A+.

Proof. Convergence of the integral in equation (5.7) follows from the existence of positive

lower bound Fm in equation (5.4) and the condition α < 1. For p > 0, we split the integral

in equation (5.7) into two segments for s1 ∈ [0, p] and s1 ∈ [p, +∞) with an arbitrary

parameter p > 0. This yields

G(y) = Gp(y) + Rp(y), (5.8)

where

Gp(y) =

∫ p

0

exp

[

(α − 1)

∫ s1

0

Fr(X
−s2(y)) ds2

]

ds1, (5.9)

Rp(y) =

∫ +∞

p

exp

[

(α − 1)

∫ s1

0

Fr(X
−s2(y)) ds2

]

ds1. (5.10)

The positive function Rp can be bounded using the property Fr(y) > Fm > 0 from

equation (5.4) as

Rp(y) <

∫ +∞

p

exp[(α − 1)Fms1] ds1 =
exp[(α − 1)Fmp]

(1 − α)Fm

. (5.11)

By choosing p sufficiently large, we have that Rp(y) < ε/4 and this bound is valid for any

y ∈ A+. Then

|G(y′) − G(y)| < |Gp(y′) − Gp(y)| +
ε

2
. (5.12)

The function Gp(y) in equation (5.9) contains integration over finite intervals and,

therefore, it is a continuous function defined for any y ∈ S
d−1. One can choose δ > 0
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such that |Gp(y′) − Gp(y)| < ε/2 for any y and y′ ∈ S
d−1 with |y′ − y| < δ. This yields

the desired property as the consequence of equation (5.12).

Let Xs : Sd−1 �→ S
d−1 denote the flow of the system in equation (5.2) and the pair

(Xs , Xs
w) with Xs

w : Sd−1 × R
+ �→ R

+ denote the flow of the system in equations (5.2)

and (5.3). We will show the following properties, observing that the first expression in

equation (5.13) is that of generalized synchronization whereas w(s) gets synchronized with

the evolution of y(s) [29].

LEMMA 5.2

(i) For any y ∈ A+ and w0 > 0,

G(y) = lim
s→+∞

Xs
w(X−s(y), w0). (5.13)

(ii) Convergence of the above limit is uniform in the region

y ∈ A+, w0 ∈ (wm, wM). (5.14)

(iii) For any solution y(s) of equation (5.2) belonging to the attractor A+, the function

w(s) = G(y(s)) solves equation (5.3).

Proof. Let us verify that equation (5.3) has the explicit solution in the form

w(s) = Xs
w(y0, w0) = w0 exp

[

(α − 1)

∫ s

0

Fr(X
s−s2(y0)) ds2

]

+

∫ s

0

exp

[

(α − 1)

∫ s1

0

Fr(X
s−s2(y0)) ds2

]

ds1. (5.15)

It is easy to see that w(0) = w0. The change of integration variable s̃2 = s2 − s yields

d

ds

∫ s

0

Fr(X
s−s2(y0)) ds2 = Fr(X

s(y0)), (5.16)

d

ds

∫ s1

0

Fr(X
s−s2(y0)) ds2 = Fr(X

s(y0)) − Fr(X
s−s1(y0)). (5.17)

Taking the derivative of equation (5.15) and using equations (5.16) and (5.17), we have

dw

ds
= w0(α − 1)Fr(X

s(y0)) exp

[

(α − 1)

∫ s

0

Fr(X
s−s2(y0)) ds2

]

+ exp

[

(α − 1)

∫ s

0

Fr(X
s−s2(y0)) ds2

]

+ (α − 1)Fr(X
s(y0))

∫ s

0

exp

[

(α − 1)

∫ s1

0

Fr(X
s−s2(y0)) ds2

]

ds1

− (α − 1)

∫ s

0

Fr(X
s−s1(y0)) exp

[

(α − 1)

∫ s1

0

Fr(X
s−s2(y0)) ds2

]

ds1. (5.18)
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The term in the last line is integrated explicitly with respect to s1 as

− exp

[

(α − 1)

∫ s1

0

Fr(X
s−s2(y0)) ds2

]∣

∣

∣

∣

s1=s

s1=0

= 1 − exp

[

(α − 1)

∫ s

0

Fr(X
s−s2(y0)) ds2

]

.

(5.19)

Combining the expressions in equations (5.15), (5.18), and (5.19) with y(s) = Xs(y0), one

verifies that equation (5.3) is indeed satisfied.

Note that Xs(y0) ∈ A+ for any s ∈ R and initial point on the attractor, y0 ∈ A+.

Because of the positive lower bound Fm in equation (5.4) and α < 1, the first term on

the right-hand side of equation (5.15) vanishes in the limit s → +∞ uniformly for all

initial points y0 ∈ A+ and w0 ∈ (wm, wM). For the same reason, the limit s → +∞ of

the last term in equation (5.15) converges uniformly in this region. Therefore, taking the

limit s → +∞ in equation (5.15) with y0 = X−s(y) yields the equivalence of relations in

equations (5.7) and (5.13), proving items (i) and (ii) of the lemma.

To prove item (iii), consider the solution in equation (5.15) with w0 = G(y0) given by

equation (5.7). This yields

w(s) =

∫ +∞

0

exp

[

(α − 1)

∫ s1

−s

Fr(X
−s2(y0)) ds2

]

ds1

+

∫ s

0

exp

[

(α − 1)

∫ s1

0

Fr(X
s−s2(y0)) ds2

]

ds1, (5.20)

where we combined the product of two exponents in the first term into the single one. After

changing the integration variables s1 = s′
1 − s and s2 = s′

2 − s in the first integral term of

equation (5.20), the full expression reduces to the simple form

w(s) =

∫ +∞

0

exp

[

(α − 1)

∫ s1

0

Fr(X
s−s2(y0)) ds2

]

ds1 = G(y(s)), (5.21)

where G(y) is given by equation (5.7) and y(s) = Xs(y0).

Lemma 5.2 shows that A′
+ from equation (1.9) is the invariant set for the system in

equations (5.2) and (5.3). This set has the same structure of orbits as the attractor A+ of

the system in equation (5.2). We need to show that A′
+ is an attractor with the trapping

neighborhood in equation (5.6). Since A+ is the attractor of the first equation (5.2), it is

sufficient to prove that

lim
s→+∞

|w(s) − G(y(s))| = 0 (5.22)

uniformly for all initial conditions y0 ∈ A+ and w0 ∈ (wm, wM). Since y(s) = Xs(y0)

and w(s) = Xs
w(y0, w0), we rewrite equation (5.22) as

lim
s→+∞

|Xs
w(X−s(y(s)), w0) − G(y(s))| = 0. (5.23)

The uniform convergence in this expression follows from Lemma 5.2.

It remains to prove the relations

dμ′
phys(y, w) =

δ(w − G(y))

c G(y)
dμphys(y) dw, c =

∫

dμphys(y)

G(y)
. (5.24)
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Because of the synchronization condition in equation (5.13), the physical measure μsyn for

the attractor A′
+ of the system in equations (5.2) and (5.3) is obtained from the physical

measure μphys of attractor A+ as

dμsyn(y, w) = δ(w − G(y)) dμphys(y) dw. (5.25)

This measure corresponds to the dynamics of the system in equations (5.2) and (5.3).

The time change ds = G(y)dτ following from equation (5.1) with w = G(y) transforms

equation (5.25) to the physical measure in equation (5.24) for the system ni equation (1.5);

see [15, Ch. 10].

5.2. Proof of Theorem 1.1. Let us consider the variables

w = (t − tν)|x|α−1, τ = log(t − tν), (5.26)

where the temporal shift tν , specified later in equation (5.33), depends on the regularization

parameter ν > 0. Observe that tν was not present in the original definition of equation

(1.6), but it does not affect the system in equation (1.5): at times t > tν , each non-vanishing

solution x(t) of equations (1.1) and (1.2) is uniquely related to the solution y(τ ), w(τ) of

the system in equation (1.5) through the relations

x = Rt−tν (y, w), t = tν + eτ . (5.27)

Consider arbitrary times t2 > t1 > tν and denote

xi = x(ti), yi = y(ti), wi = w(ti), τi = log(ti − tν), i = 1, 2. (5.28)

Recalling that �t and Y τ denote the flows of the systems in equations (1.1), (1.2), and (1.5),

one has

x2 = �t2−t1(x1), t2 > t1 > tν , (5.29)

and

(y2, w2) = Y τ2−τ1(y1, w1), τ2 > τ1. (5.30)

The first expression in equation (5.27) yields

x1 = Rt1−tν (y1, w1), x2 = Rt2−tν (y2, w2). (5.31)

Equations (5.29)–(5.31) provide the conjugation relation between the flows as

�t2−t1 = Rt2−tν ◦ Y τ2−τ1 ◦ R−1
t1−tν , (5.32)

where (y, w) = R−1
t (x) is the inverse map.

Let us apply equations (5.28) and (5.32) for the stochastically regularized solution given

by equations (2.19) and (2.20). We take

t2 = t , t1 = tν,∗
esc, tν = tν,∗

esc − ν1−α = tνent + (T − 1)ν1−α (5.33)

for any given time t > tb. Notice that t2 > t1 for sufficiently small ν > 0. Then, we

use equation (5.32) to rewrite equation (2.20) in the form of three successive measure
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pushforwards as

μν
t (x) = (�t2−t1)∗μ

ν
esc(x) = (Rt2−tν )∗(Y

τ2−τ1)∗(R
−1
t1−tν )∗μ

ν
esc(x). (5.34)

For the first pushforward, equation (5.33) yields

(R−1
t1−tν )∗μ

ν
esc(x) = (R−1

ν1−α )∗μ
ν
esc(x). (5.35)

Notice from equation (1.6) that R−1

ν1−α (x) = R−1
1 (x/ν). Thus, applying equation (2.19), we

reduce equation (5.35) to the form

(R−1
t1−tν )∗μ

ν
esc(x) = (R−1

1 )∗μ
ν
f (x), dμν

f (x) = f ν
esc(x)dx, (5.36)

where μν
f denotes the absolutely continuous probability measure with the density f ν

esc.

Finally, using equations (5.28), (5.33), and (5.36) in equation (5.34) yields

μν
t (x) = (Rt−tν )∗(Y

τ ν

)∗(R
−1
1 )∗μ

ν
f (x) (5.37)

with

τ ν = τ2 − τ1 = log
t − tνent − (T − 1)ν1−α

ν1−α
. (5.38)

In the inviscid limit, from equations (2.5), (5.33), and (5.38), one has

lim
ν↘0

tν = tb, lim
ν↘0

τ ν = +∞. (5.39)

It remains to take the limit ν ↘ 0 in equation (5.37). The convergence of entry times

from equation (2.5) and Proposition 2.2 yields

lim
ν↘0

yν
ent = y−, (5.40)

where A− = {y−} denotes the fixed-point attractor and yν
ent = xν

ent/ν correspond to entry

points. Since the map �R in equation (2.14) is continuous, the limit in equation (5.40)

implies

f ν
esc

L1

−→ f− as ν ↘ 0, (5.41)

where

f ν
esc = �R(yν

ent), f− = �R(y−). (5.42)

Using this limiting function, we rewrite equation (5.37) as

μν
t (x) = (Rt−tν )∗[(Y τ ν

)∗(R
−1
1 )∗μ−(x) + (Y τ ν

)∗(R
−1
1 )∗�μν

f (x)], (5.43)

where we introduced the probability measure dμ−(x) = f−(x)dx and the signed measure

for the difference �μν
f (x) = μν

f (x) − μ−(x). Now we can take the inviscid limit ν ↘ 0

for the expression in square parentheses of equation (5.43), where the times of pushfor-

wards behave as equation (5.39). Since the measure (R−1
1 )∗μ−(x) does not depend on ν,

the first term in square parentheses converges to μ′
phys

by the convergence to equilibrium

property. The remaining term vanishes in the limit ν ↘ 0, because the flow conserves the

L1 norm of the density function, and this norm vanishes by the property in equation (5.41).

This yields the limit in equation (1.18) with the measure in equation (1.15).
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5.3. Proof of Proposition 4.1. We will formulate the proof for the first part of the

proposition, such that it can be extended later for Ck-perturbed systems.

The system in equation (1.5) considered for (y, w) ∈ V × R
+ with Fr(y) ≡ F0 takes

the form

dy

dτ
= wFs(y),

dw

dτ
= w + (α − 1)F0w

2. (5.44)

The second equation in equation (5.44) has the fixed point attractor w = W0 :=

[(1 − α)F0]−1 > 0 with the basin w > 0. Recall that B(A+) ⊂ V ⊂ R
d−1. Equation

(1.10)

with Fr(y) ≡ F0 defines the function G : B(A+) �→ R
+ as

G(y) ≡ W0. (5.45)

We define the corresponding graph as

G(A+) = {(y, w) : y ∈ B(A+), w = G(y)}, (5.46)

which is the invariant manifold for the system in equation (5.44). The attractor A′
+ ⊂

G(A+) is given by equation (1.9).

Linearization of the system in equation (5.44) at any point of G(A+) takes the form

d

dτ

(

δy

δw

)

=

(

W0∇Fs Fs(y)

0 −1

) (

δy

δw

)

, (5.47)

where (δy, δw) ∈ R
d−1 × R is an infinitesimal perturbation in the tangent space. It is

straightforward to verify that the system in equation (5.47) has a solution
(

δy

δw

)

= e−τ

(

Fs(y)

−1

)

, (5.48)

which provides the eigenvalue −1 with the corresponding eigenvector. The eigenvector

defines the linear space Ess transversal to the graph G(A+), and it will play the role

of strong stable (contracting) direction. Remaining eigenvalues are determined by the

Jacobian matrix W0∇Fs with the corresponding linear invariant space Ec = R
d−1 × {0}

tangent to the graph G(A+). Assumptions in equation (4.1) imply that eigenvalues of

W0∇Fs with W0 = [(1 − α)F0]−1 have absolute values smaller than unity.

We showed that, at each point of the graph in equation (5.46), there exists a splitting

Ess ⊕ Ec of the tangent space, which is invariant for the linearized system in equation

(5.47) and such that Ess dominates (contracts stronger than) the so-called central directions

in Ec. It follows from the stable manifold theorem that each point of G(A+) has a

one-dimensional strong stable invariant manifold, which is tangent to Ess ; for background

on the invariant manifold theory, see [44, Ch. 6] for discrete systems and [47, §4.5] for

flows. Such a structure can be described locally by a homeomorphism ρ : U × (−δ, δ) �→

U ′, where U and U ′ are respectively some trapping neighborhoods of the attractors A+

and A′
+, and δ > 0 is some (small) number. Here, the fibers ρ(y, ξ) for fixed y are

local C1-parameterizations of the strong stable manifolds starting on the graph ρ(y, 0) ∈

G(A+).
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Let Y τ be the flow of the system in equation (5.44). We denote by Y τ
ρ = ρ−1 ◦ Y τ ◦ ρ

the flow, which is defined in U × (−δ, δ) and conjugated to Y τ . By construction, this new

flow Y τ
ρ has the attractor Aρ = {(y, 0) : y ∈ A+} with the physical measure

dμρ(y, ξ) = dμphys(y) δ(ξ)dξ , (5.49)

where δ(ξ) is the Dirac delta-function and μphys is the physical measure of the attractor

A+. Straight segments (y, ξ) with fixed y and ξ ∈ (−δ, δ) correspond to strong stable

manifolds for the new flow Y τ
ρ . Moreover, since strong stable manifolds have constant

eigenvalue −1, Y τ
ρ has uniform contraction along strong stable manifolds to the plane

ξ = 0 in a sufficiently small neighborhood U × (−δ, δ).

Now, the property of convergence to equilibrium for the flow Y τ follows from the same

property for Y τ
ρ , where the latter is established as follows. The condition of convergence to

equilibrium in equation (1.13) for the new system becomes

lim
τ→+∞

∫

ϕ ◦ Y τ
ρ dμ(y, ξ) =

∫

ϕ dμρ(y, ξ) =

∫

ϕ(y, 0) dμphys(y), (5.50)

where we used equation (5.49) and integrated the Dirac delta-function. It is enough to

verify this condition for absolutely continuous probability measures μ(y, ξ) supported in

the trapping neighborhood U × (−δ, δ). Using properties of strong stable manifolds for

the flow Y τ
ρ , the integral in the left-hand side of equation (5.50) can be written as

∫

ϕ ◦ Y τ
ρ dμ(y, ξ) =

∫

ϕ(Y τ
ρ (y, 0)) dμ(y, ξ) +

∫

ϕ1 ◦ Y τ
ρ dμ(y, ξ), (5.51)

where we introduced the function ϕ1(y, ξ) = ϕ(y, ξ) − ϕ(y, 0). Since the flow Y τ
ρ has

the property of uniform contraction to the plane ξ = 0, where ϕ1 = 0, the last integral in

equation (5.51) vanishes in the limit τ → +∞. For the first integral on the right-hand side

of equation (5.51), we write
∫

ϕ(Y τ
ρ (y, 0)) dμ(y, ξ) =

∫

ϕ(Y τ
ρ (y, 0)) dμint(y), (5.52)

where μint(y) is obtained from the measure μ(y, ξ) by integration with respect to ξ . The

last integral in equation (5.52) corresponds to the flow Y τ
ρ restricted to the invariant plane

ξ = 0, and it is conjugate to the original flow Y τ restricted to the graph in equation (5.46)

with the constant function in equation (5.45). The latter becomes the flow Xs of the system

in equation (1.7) after the scaling of time with the constant factor W0. Therefore, we

reduced equation (5.50) to the analogous condition of convergence to equilibrium for the

system in equation (1.7), which holds by our assumptions. This proves the first part of the

proposition.

For the proof of the Ck-robust convergence to equilibrium, we will need the following

lemma.

LEMMA 5.3. Consider an attractor A+ of the system in equation (1.7) with Ck-functions

Fs : V �→ R
d−1 and Fr : V �→ R satisfying the conditions

‖∇Fs‖ < M , Fr(y) > m > 0 (5.53)
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for any y ∈ B(A+) and positive constants m and M such that M < (1 − α)m/k. Then, we

have the following.

(i) Equation (1.10) defines the Ck-differentiable function G : B(A+) �→ R
+.

(ii) Let y(τ ) be the solution of the equation

dy

dτ
= G(y)Fs(y) (5.54)

for arbitrary initial condition y0 ∈ B(A+). Then w(τ) = G(y(τ )) satisfies equation

(1.5).

(iii) Sufficiently small Ck-perturbations of Fs and Fr yield small Ck-perturbations of G.

Proof. The above lemma is related to the general statements of the invariant manifold

theory as stated in [28] for discrete systems and in [47] for flows. Below, for completeness,

we present a direct proof for arbitrary functions Fr satisfying equation (5.53). Let us first

consider the case k = 1.

(i) Changing signs of the integration variables s1 and s2 in equation (1.10) yields

G(y) = lim
s→−∞

Gs(y), Gs(y) =

∫ 0

s

exp

[

(α − 1)

∫ 0

s1

Fr ◦ Xs2(y) ds2

]

ds1, (5.55)

where we introduced the function Gs : V �→ R
+. By construction, Gs is a C1-function

for any s. The second condition in equation (5.53) implies the uniform convergence of the

limit in equation (5.55) for y ∈ B(A+). Hence, the limiting function G is continuous in

B(A+).

Computing the Jacobian matrix ∇Gs in equation (5.55) at a given point y yields

∇Gs = (α − 1)

∫ 0

s

( ∫ 0

s1

∇(Fr ◦ Xs2) ds2

)

exp

[

(α − 1)

∫ 0

s1

Fr ◦ Xs2(y) ds2

]

ds1,

(5.56)

where

∇(Fr ◦ Xs2) = (∇Fr)Xs2 (y)∇Xs2 , (5.57)

and (∇Fr)Xs2 (y) denotes the gradient vector ∇Fr computed at Xs2(y).

Since Xs is the flow of the system in equation (1.7), by the classical theory of ordinary

differential equations, the Jacobian matrix ∇Xs satisfies the linear Cauchy problem

d

ds
∇Xs = (∇Fs)Xs (y)∇Xs , ∇X0 = I, (5.58)

where I is the identity matrix and (∇Fs)Xs (y) is the Jacobian matrix ∇Fs at Xs(y). Using

equation (5.58) for negative s, the first bound of equation (5.53), and Grönwall’s inequality,

we estimate

‖∇Xs‖ ≤ e−Ms , s ≤ 0. (5.59)
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Let Mr = maxy∈V ‖∇Fr‖ ≥ 0. Using equations (5.56), (5.57), and (5.59) with the bounds

in equation (5.53) and recalling that α < 1, s1 ≤ 0 and s2 ≤ 0, we obtain

‖∇Gs − ∇Gs′‖ ≤ (1 − α)

∫ s′

s

( ∫ 0

s1

Mre
−Ms2 ds2

)

e(1−α)ms1 ds1 (5.60)

for any s < s′ < 0. Integrating the right-hand side of equation (5.60) and taking into

account that

(1 − α)m > (1 − α)m − M > 0 (5.61)

by the conditions of the lemma, one can show the Cauchy convergence of the gradients

∇Gs in the limit s → −∞. Since the bound in equation (5.60) does not depend on y, the

convergence is uniform in B(A+). This proves the continuity of the limiting gradient ∇G

in equation (5.55).

(ii) Consider the pair of functions y(τ ) and w(τ) = G(y(τ )), where y(τ ) satisfies

equation (5.54). Obviously, these functions satisfy the first equation of equation (1.5). The

second equation in equation (1.5) can be transformed to the form in equation (5.3) with the

time change in equation (5.1). Then, this equation is verified as in Lemma 5.2, taking into

account that the integrals converge uniformly for all y ∈ B(A+).

(iii) Using the uniform bound in equation (5.60), one proves that the convergence of

integrals in equation (5.56) as s → −∞ is uniform not only with respect to y, but also

with respect to sufficiently small C1-perturbations of the functions Fs(y) and Fr(y). This

implies that such perturbations lead to C1-perturbations of G(y).

This proof extends to the Ck case for k > 1 by computing high-order derivatives of

G in the way similar to equations (5.55) and (5.56). Generalizing equation (5.59), one can

show that kth-order derivatives of Xs(y) are bounded by c exp(−kMs) for s ≤ 0 and some

coefficient c > 0. We leave details of this rather straightforward derivation to the interested

reader.

Consider now a perturbed system in equation (1.5) with F̃s close to Fs and F̃r close

to Fr in the Ck-metric; here and below, the tildes denote properties of the perturbed

system. Conditions of Definition 3 ensure that the perturbed system in equation (1.7) has

an attractor Ã+ with the physical measure and the convergence to equilibrium property.

In turn, the perturbed system in equation (1.5) has the attractor Ã′
+ given by the graph

w = G̃(y) of y ∈ Ã+; see Proposition 1.1. Conditions in equation (4.2) remain valid if the

perturbation is sufficiently small. Hence, one can choose m and M satisfying conditions of

Lemma 5.3, establishing that the function G̃(y) is Ck-close to the constant from equation

(5.45), and also the graph w = G̃(y) with y ∈ B(Ã+) is invariant under the flow of the

perturbed system in equation (1.5).

Restriction of equation (1.5) to the invariant hyper-surface w = G̃(y) yields

dy

dτ
= G̃(y)F̃s(y). (5.62)

This system is Ck-close to dy/dτ = W0Fs(y), where the latter is equivalent to dy/ds =

Fs(y) up to the constant time scaling. Since the attractor A+ of the unperturbed system

in equation (1.7) is assumed to have a physical measure with the Ck-robust convergence
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to equilibrium, the attractor Ã+ of the perturbed system in equation (5.62) has a physical

measure with the property of convergence to equilibrium, provided that the perturbation

is sufficiently small. For concluding the proof, one should notice that all arguments in the

first part of the proof (based on the invariant manifold theory) remain valid for small Ck

perturbations of the system and of the graph in equation (5.46).

Supplementary material. The Supplementary Video is available online at https://doi.org/

10.1017/etds.2023.74. The video shows the time evolution, where the green points represent

a few specific solutions and the color indicates the probability density obtained with a

statistical ensemble of 105 solutions regularized with ν = 10−5.
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