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Abstract. We study a class of ordinary differential equations with a non-Lipschitz point
singularity that admits non-unique solutions through this point. As a selection criterion, we
introduce stochastic regularizations depending on a parameter v: the regularized dynamics
is globally defined for each v > 0, and the original singular system is recovered in the limit
of vanishing v. We prove that this limit yields a unique statistical solution independent
of regularization when the deterministic system possesses a chaotic attractor having a
physical measure with the convergence to equilibrium property. In this case, solutions
become spontaneously stochastic after passing through the singularity: they are selected
randomly with an intrinsic probability distribution.
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‘It is proposed that certain formally deterministic fluid systems which possess many scales
of motion are observationally indistinguishable from indeterministic systems, specifically,
that two states of the system differing initially by a small “observational error” will evolve
into two states differing as greatly as randomly chosen states of the system within a finite
time interval, which cannot be lengthened by reducing the amplitude of the initial error’.
— Edward N. Lorenz (1969)

1. Introduction
Consider a nonlinear ordinary differential equation
dx

= d
o =f®. xeR (1.1)

Check f
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2 T. D. Drivas et al

for arbitrary dimension d. Local existence of solutions x(¢) is guaranteed if the function
f: RY — R? is continuous, while the Lipschitz continuity is required for its uniqueness by
standard theorems. Breaking of the Lipschitz condition, and even the continuity condition,
is remarkably abundant in dynamical systems modeling natural phenomena; for example,
in the n-body problem [17] or the Kirchhoff-Helmholtz system of point vortices [41],
where the forces diverge at vanishing distances. Other important examples arise in fluid
dynamics, where particles are transported by shocks in compressible flows [25] or rough
velocities in incompressible turbulence [27]. Many infinite-dimensional systems form
singularities from smooth data in finite time; these often take the form of Holderian
cusps [21].

The problem of fundamental importance is: how to select a ‘meaningful” solution after
the singularity? A natural way to answer this question is to employ a regularization by
which the system is modified (smoothed) very close to the singularity and the solution
becomes well defined at longer times. However, this procedure is not robust in general;
examples show it can be highly sensitive to the regularization details [13, 14, 18, 20]
although unique selection is possible in some notable situations [40]. In this work, we
show that continuation as a stochastic process can accommodate such non-uniqueness in
a natural and robust manner if the deterministic system has a chaotic attractor having a
physical measure with the convergence to equilibrium property.

1.1. Model. We consider systems in equation (1.1) with the right-hand side of the form

f(x) = IXIO‘F(%), F(y) = Fs(y) + Fr(y)y, (1.2)
where @ < 1 and F : S9~! — R? is a C'-function on the unit sphere S?~! = {y e R¢ :
ly| = 1} decomposed into the tangential spherical component Fs : S¢~! > TS¢~! and
the radial component F, : S~! = R. The field f : R? > R? defined by equation (1.2)
is continuously differentiable away from the origin. At the origin, it is only «-Holder
continuous for o € (0, 1), discontinuous for = 0, or divergent if ¢ < 0. Solutions of
the system in equation (1.2) with non-zero initial condition x(0) = xo may reach the
non-Lipschitz singularity in a finite time:

lim x(1) =0, 0 <1t < +o0, (1.3)
t 'ty
after which the solution is generally non-unique.
The system in equation (1.2) is invariant under the space-time scaling
X (1.4)
X —, > — .
v pl-e
for any constant v > 0, e.g. if x(¢) is a solution to equation (1.2), then so is x(W=r)/v.
This symmetry reflects, in a simplified form, the fundamental property of scale invariance
in multi-scale systems [21], which feature finite-time singularities (often called blowup).
Thus, models in equation (1.2) represent a rather large class of singular dynamical systems
that can be seen as a toy model for blowup phenomena. Following this analogy, we refer
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Statistical determinism in non-Lipschitz dynamical systems 3

to equation (1.3) as blowup, interpreting |x| as the ‘scale’ of solution, and y = x/|x| as its
scale-invariant (angular) part.

For the dynamical system approach to models in equation (1.2), we define the auxiliary
system for the variables y € SY~! and w € R* as

d dw
YRy, 2 =w+(@— DFEyw. (15)
dr dr

Systems in equations (1.1)—(1.2) and (1.5) are related by the transformation

1/(1-a)
X = R/(y, w) := <E> y, t=¢€", (1.6)

where R; : S?7! x Rt > R? is the time-dependent map defined for # > 0. Relations in
equation (1.6) are motivated by the scaling symmetry in equation (1.4), which becomes the
time-translation symmetry T — T + 7o in the autonomous system in equation (1.5) with
the relation g = (o — 1) log v. By changing the time as ds = wdr, we reduce the first
equation in equation (1.5) to the form

dy _
Frle Fs(y). (L.7)

It was shown in [20] that fixed-point and limit-cycle attractors of the system in
equation (1.7) impose fundamental restrictions on solutions x(#) selected by generic
regularization schemes. We now extend these results for chaotic attractors leading to a
conceptually different mechanism: the long-time behavior of the system in equation (1.7)
expressed in terms of its physical measure will define solutions selected randomly near the
non-Lipschitz singularity in the systems in equations (1.1) and (1.2).

1.2. Assumptions

1.2.1. On physical measures. For each attractor A C S¢~! of the system in equation
(1.7), we denote its topological basin of attraction by B(A) € SY~! and by X* : S~ >
S=1 the flow of the system in equation (1.7). (A compact set A is an attractor with respect
to the flow X* if there exists a compact (frapping) region U such that A is contained in
the interior of U and so that X*(U) C (U) forall s > Sy (Sp fixed) and A = (-, X* (V)
[42]. The topological basin B(A) is the set of points that converge to A under the forward
flow.) We now recall the definition of a physical measure j4ppys. Define the basin Buphys (A)
with respect to the measure [phys as being the set of points yo € B(A) such that

N
Siirfoo % /0 (X" (yo)) ds1 = / @(y) diephys(y) (1.8)
holds for all continuous functions ¢ : B(A) +— R. Then the measure phys is physical if
the basin B [ phys (A) has positive Lebesgue measure. We will say that the physical measure
has a full basin if the Lebesgue measure of Bﬂphys (A) coincides with the Lebesgue measure
of B(A). In particular, having a full basin by the definition in equation (1.8) implies
the uniqueness of the physical measure with respect to the attractor 4. Let us observe
that ergodic Sinai-Bowen—Ruelle (SRB) measures without zero Lyapunov exponents are
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FIGURE 1. (a) Schematic representation of the stochastic regularization procedure in the phase space x € R?.
The solution x(¢) (the black curve) starts at xo = x(0) and reaches the singularity at x(f,) = 0 in finite time.
Regularized solutions (thin green curves) are given by dynamical systems smoothed in a small ball B, centered
at the singularity. These regularizations are chosen randomly, therefore, the regularized solution is described by
a time-dependent probability measure x”(¢) ~ p;. (b) Numerical results for the example from §3. Solid lines are
random realizations of component x| (r) in the regularized system with v = 10=3. Color shows the probability
distribution in equation (1.15). Solutions become spontaneously stochastic passing through the non-Lipschitz
singularity (red dot).

also physical measures [48]. Hyperbolic attractors [11] and the Lorenz attractor [3] give

examples of systems having a unique physical (SRB) measure with a full basin. In our

formulation, we assume the existence of:

(a) afixed-point attractor A_ = {y_} with the focusing property F,(y_) < 0;

(b) a transitive attractor A having an ergodic physical measure jippys and the defocus-
ing property, F,(y) > Oforanyy € A,.

We also suppose that:

(c) the physical measure f1phys has a full basin.

We note that the chaotic form of A is crucial for our study, while the fixed-point form
of A_ is taken for simplicity. The system in equation (1.7) may have other attractors in
addition to A_ and A, but they will not affect our results.

The central part of our formulation refers to a class of regularized systems, which
are defined by modifying equations (1.1) and (1.2) in a small ball |x| < v as shown
schematically in Figure 1(a). Unlike usual deterministic regularizations, we assume that
our regularization contains a random uncertainty, which is characterized by an absolutely
continuous probability measure. We assume certain geometrical properties of this measure
related to the attractors .A_ and A . The exact definition of such regularizations is given
in §2 under the name of stochastic regularization of type A_ — A.. The regularized
system provides a unique measure-valued (stochastic) solution, X" (t) ~ u;, where u; is a
probability measure depending on time ¢ and small regularization parameter v.

We will prove that the auxiliary system in equation (1.5) has the property of gen-
eralized synchronization: in the limit s — 400, a time-independent asymptotic relation
exists between the variables as w = G(y). Generalized synchronization originates from
applications in nonlinear physics and communication [29], where the variables y and w
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Statistical determinism in non-Lipschitz dynamical systems 5

are referred to as a drive and response. In our case, it yields an expression for the physical
measure in the system in equation (1.5).

PROPOSITION 1.1. (Generalized synchronization) The system in equation (1.5) has an

attractor
L=y w) : w=G(y), ye A}, (1.9)
where G : A, — RY is a continuous function given by
+o0 S1
Gy = / exp |:(a —-1) f F (X2(y)) dsz]dsl. (1.10)
0 0
This attractor has the basin
B(A,) == {(y, w) : (¥, w) € B(A}) x RT}, (1.11)
and a Borel physical measure given by
s(w—G(y) ditphys(¥)
/ _ —
duphys(y, w) = e GO duphys(y) dw, ¢ = / Gy (1.12)

where § is the Dirac delta and c is the normalization factor.

1.2.2. On convergence to equilibrium. Consider an attractor A for a flow X* with a
physical measure pppys having a full basin. We will say that the attractor A has the
convergence 1o equilibrium property with respect to the measure pphys When

lim [ ¢oX"du(y) = / @ diephys(y) (1.13)

§—>+00

for all absolutely continuous probability measures p supported in the basin B(A) and
all bounded continuous functions ¢ : B(A) — R. Notice that the condition in equation
(1.13) refers to statistical averages for an ensemble of solutions at long times, unlike the
condition in equation (1.8) on the physical measure, which is applied to temporal averages
along specific solutions. The convergence to equilibrium property is guaranteed, e.g. for
hyperbolic flows [11, Theorem 5.3]. Now let Y7 : B(A' ) — B(A/,) be the flow of the
system in equation (1.5) in the basin B (.A/+) given by equation (1.11). We will assume that:
(d) the physical measure M;)hys of the attractor A/ given by equation (1.12) in
Proposition 1.1 has the property of convergence to equilibrium.
It is then natural to ask what are the conditions on the vector field on the sphere in equation
(1.7), having the attractor A and the physical measure phys, 0 that the above assumption
is satisfied. Certain sufficient conditions are established in §4, which are now summarized.
Let us suppose that the attractor 44 of the system in equation (1.7) with the physical
measure fiphys satisfies the convergence to equilibrium property. Consider a closed subset
VY ¢ S ! such that its complement SY~! \ V contains .A_ and is contained in the interior
of B(A_). For example, in the case when the basin 5(A_) is open, then one can take
Y = 5§91\ B(A_). We will further assume that:
(i) there exists a constant Fy > 0 such that F,(y) = Fy forany y € V;
(1) ||VFs| < (1 — @) Fyp for the operator norm of the Jacobian matrix and any y € V.
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6 T. D. Drivas et al

The hypotheses (i) and (ii) guarantee the existence of a center manifold in the auxil-
iary system using classical results from dynamical systems. In particular, under these
hypotheses, the results of §4 and Proposition 4.1 state that the physical measure of the
attractor A’, in the system in equation (1.5) also has convergence to equilibrium. As
is discussed in §4, this permits to conclude the existence of examples satisfying the
assumptions (a)—(d). It would be interesting to relax these assumptions, since spontaneous
stochasticity appears to generically occur in this class of examples.

1.3. Formulation of the main result. 'We continue to suppose the assumptions of the
previous section. With respect to an attractor A C S?~! of the system in equation (1.7), we
introduce the corresponding domain of attraction in the full phase space as the cone

D(A) = {ry:y € B(A), r >0} c R’ (1.14)

As shown in §2, all solutions of equations (1.1) and (1.2) with initial condition xg € D(A_)
reach the non-Lipschitz singularity at the origin in finite time. In contrast, solutions in
D(A) remain non-zero for arbitrarily long times.

Define the measure u; by the relation

He = (Ri—t,) M phys: (L15)

with the measure M/p hys from equation (1.12) and the map R; introduced for ¢ > 0 in
equation (1.6). The measures u, are supported in D(A) and satisfy the dynamic relation

e, = (@27, forany tp >t > tp, (L16)

where the asterisk denotes the pushforward and @' is the flow of the system in equations
(1.1) and (1.2). Moreover, as the measure ,ul’D hys has compact support, it follows from the
expression of the map R; in equation (1.6) that
lim p, = 8¢ 117
A Mt (1.17)
converges to the Dirac mass at 0. This convergence corresponds to the limit at the blowup
time being the deterministic singular state x(#;) = 0.

THEOREM 1.1. (Spontaneous stochasticity) Given an arbitrary initial condition Xo €
D(A-), there exists a finite time t, > 0 such that the solution x(t) of the system in
equations (1.1) and (1.2) is non-zero in the interval t € [0, tp) and reaches the singularity
x(tp) = 0. For any t > tp,, the measure-valued solution |, satisfies

=1 v, 1.18
Mt \)1{‘1}) My ( )

In other words, ; is a weak limit of the regularization procedure and this limit is
independent of the regularization.

There are two fundamental implications of Theorem 1.1. First, it shows that the
limit v N\ O of a stochastically regularized solution exists. This limit yields a stochastic
solution for the original singular system in equations (1.1) and (1.2): even though the
random perturbation formally vanishes in the limit v \( 0, a random path is selected
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at t > tp; see Figure 1(b) demonstrating numerical results from the example presented
in §3. Such behavior substantiates the fundamental role of infinitesimal randomness in
the regularization procedure of non-Lipschitz systems, and this phenomenon is termed
spontaneous stochasticity.

The second implication is that the spontaneously stochastic solution is insensitive to a
specific choice of the stochastic regularization, within the class of regularizations under
consideration. The reason, which is also an underlying idea of the proof, is the following:
we show that an interval between 7, and any finite time ¢ > 7, in the system in equations
(1.1) and (1.2) can be represented by an infinitely large time interval for the system in
equation (1.5) as v \{ 0. As a result, a random uncertainty introduced by the infinitesimal
regularization develops into the unique physical measure. This relates the spontaneous
stochasticity in our system with chaos or, more specifically, with the convergence to
equilibrium property for a chaotic attractor.

We remark that, in the case when A, is a fixed point, the analogous theory was
developed previously in [20]. In this case, a unique deterministic solution is selected at
times t > f,, independently of regularization. In the present work, we only focus on a
chaotic attractor for .4 leading to spontaneously stochastic solutions.

1.4. Spontaneous stochasticity in models of fluid dynamics. Our work provides a class
of relatively simple mathematical models, where one can access sophisticated aspects
of spontaneous stochasticity: its detailed mechanism, dependence on regularization, and
robustness. We regard these models as toy descriptions of the spontaneous stochasticity
phenomenon in hydrodynamic turbulence, where singularities and small noise are known
to play important roles [23, 33, 43]. Below we provide a short survey guiding an interested
reader through more sophisticated models from this field.

First, we would like to mention the prediction of Lorenz [34] (see the epigraph above),
in which he envisioned that the role of uncertainty in multi-scale fluid models may be
fundamentally different from usual chaos. Spontaneous stochasticity can be encountered in
the Kraichnan model for a passive scalar advected by a Holder continuous (non-Lipschitz)
Gaussian velocity [8]. Here, the statistical solution emerges in a suitable zero-noise limit
and describes non-unique particle trajectories [19, 22, 30-32]; see also related studies
for one-dimensional vector fields with Holder-type singularities [6, 7, 26, 46]. Similar
behavior is encountered for particle trajectories in Burgers solutions at points of shock
singularities [25] and quantum systems with singular potentials [24]. The uniqueness of
statistical solutions has been tested numerically for shell models of turbulence [9, 35-37]
and in the dynamics of singular vortex layers [45]. We note that the prior work on shell
models together with recent numerical studies [12, 16] demonstrate chaotic behavior near
non-Lipschitz singularities, when solutions are represented in renormalized variables and
time. This is similar to our model, in which the spontaneous stochasticity is related to
chaos in a smooth renormalized dynamical system in equation (1.7). For recent advances
in discrete but infinite dimensional models, see [38, 39].

1.5. Structure of the paper. Section | contains the introduction and formulation of the
main result. Section 2 describes the basic properties of solutions and defines the stochastic
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8 T. D. Drivas et al

regularization. Section 3 contains a numerical example inspired by the Lorenz system.
Section 4 provides further developments with the focus on the construction of theoretical
examples having robust spontaneous stochasticity. All proofs are collected in §5.

2. Definition of regularized solutions
First let us show how non-vanishing solutions x(#) of the singular system in equations (1.1)
and (1.2) are described in terms of solutions y(s) for the system in equation (1.7).

PROPOSITION 2.1. Let y(s) solve equation (1.7) for s > 0 with initial condition y(0) = yq
and let

tp = liﬂr_l t(s), t(s)= /S rl_“(s1) dsy, r(s) =rpexp /S Fr(y(sp))ds; (2.1
§—>+00 0 0

for any given ro > 0. Then, the solution X(t) of equations (1.1) and (1.2) for t € [0, t)
with initial data x(0) = royo is given by x(t) = r(s(¢))y(s(¢)), where s : [0, tp) — RT is
the inverse of the function t (s) defined in equation (2.1). If t, is finite, the solution has the
blowup property in equation (1.3).

This statement can be checked by the direct substitution into equations (1.1) and (1.2);
see [20] for details. The next statement, also proved in [20], refers to the focusing and
defocusing attractors of the system in equation (1.7), A_ and A, which were introduced
in §1.2.

PROPOSITION 2.2. Solutions x(t) of the system in equations (1.1) and (1.2) with
initial conditions X0 € D(A_) have the blowup property in equation (1.3) with
dist(x/|x|, A_) — 0 as t /' t,. Solutions with xo € D(A+) remain in D(A4) at all
times t > 0 with increasing |x| and dist(x/|x|, Ay) — 0 ast — +oo.

Let us illustrate these properties with the two-dimensional example [20] for « = 1/3
and

2 2
+y1y2 + )1
F(y)=<y1 yiy2 + 31y

5 o ) Fs(y) = 013, —yiv), F(y) =y +y2 (22)
Yiy2 +y5 = yiy2

where y = (y1, y2) € S' belongs to the unit circle on the plane. Dynamics on a circle of
the scale-invariant system in equation (1.7) is shown in Figure 2(a) and the corresponding
solutions of the singular system in equations (1.1) and (1.2) in Fig. 2(b). The focusing
fixed-point attractor at (—1, 0) features blowup solutions, which occupy the corresponding
domain D(A_) = {(x1, x2) € R? : x; < 0}. There is also a defocusing fixed-point attrac-
tor at (1, 0). Its domain D(A4) = {(x1, x2) € R?: x; > 0} comprises solutions growing
indefinitely in time. This example demonstrates the strong non-uniqueness for all solutions
starting in the left half-plane: they can be extended beyond the singularity in uncountably
many ways.

2.1. Regularized sytem. Let us consider a class of v-regularized systems

UlF ’ Blh
dx Poo. P = IxI"F(x/|x]), x¢ 2.3)
dr vVH(x/v), X € By,
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(a) (b)

Y2 i

h

/]

FIGURE 2. (a) Dynamics of the scale-invariant system in equation (1.7) on the unit circle for the example in
equation (2.2). There are two attractors (black dots): focusing on the left and defocusing on the right. (b) Solutions
of the system in equations (1.1) and (1.2). Colored curves correspond to solutions of the same color in panel (a).

-1 0 1
T

where v > 0 is the regularization parameter and B, = {x € R : |x| < v} is the ball of
radius v; recall that « < 1. Here, H: B — RY is a C!-function in the unit ball such
that H(x) = F(x) for |x| = 1. Then f* is C!(R?) for all v > 0. Note that the described
choice of regularization leaves large freedom due to its dependence on the function H. The
regularized field fV recovers the original singular system in equation (1.2) by taking the
limit v \{ 0. Motivated by the conceptual similarity with the viscous regularization acting
at small scales in fluid dynamics [27], we call v the viscous parameter and the limit v \ O
the inviscid limit.

The scaling symmetry in equation (1.4) extends to the system in equation (2.3) as
follows. Let us denote the flow of the regularized system in equation (2.3) by @/, : R? >
R?; it is defined forr > 0,v > O and @ < 1. The regularized flows for arbitrary v > 0 and
v = 1 are related by

U1701 X
@ (x) = v @/ <;) (2.4)

Using this map for a deterministically or randomly chosen function H, we now introduce
the two types of regularizations: deterministic and stochastic.

2.2. Deterministic regularization of type A_ — A;. Consider any initial condition
Xo € D(A_) in the domain of the focusing attractor. The corresponding solution x(z) of
the system in equation (1.2) reaches the origin in finite time #;; see Proposition 2.2. Let
us consider the solution x"(¢) of the regularized system in equation (2.3) with the same
initial condition for a given viscous parameter v > 0, provided v is small enough so that
the initial data are outside B, (0). This solution exists and is unique globally in time. The
two solutions x(#) and x"(¢) coincide up until the first time when the solution enters the

ball B,; see Figure 3(a). We denote this entry time by t..., which has the properties

tl.o<ty, limtl.=t. 2.5
ent ) ent ( )
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v
X
entl gu®

N
8

X

FIGURE 3. Schematic representation of the regularization procedure in the phase space x € R?. (a) The blowup
solution x(r) (black curve) starts at Xo = x(0) and reaches the singularity at x(#,) = 0 in finite time. The
regularized solution x"(¢) (thick green curve) is given by the dynamical system modified in a small ball B,
centered at the singularity. The solutions x(7) and x”(¢) coincide until and differ after the point x{,,,. (b) This
regularization procedure is formalized by considering the two segments: the original solution x(7) until the entry

point X/, and the regularized solution X" (¢) after the escape point x... The two points X}, and x/.. are related

via the regularization map Wp represented by the bold dashed arrow. For the regularization of type A_ — A,
the first segment belongs to the cone D(A-_), while the second segment belongs to the cone D(A.).

. Ly v
We introduce an escape time tgg. > tg,. as

tese i= sup {t : X" (t) € By} (2.6)

1>t

Observe that the entering orbit need not necessarily escape the regularized region, e.g. it
may be that 72, = 4+00. However, we will give conditions under which finite #y,. exist.

The corresponding entry and escape points are denoted by
Xent = X(fent),  Xesc = X(Tesc), 2.7

and have |x{, | =v and |x!,| > v; see Figure 3(a). The following definition of a
deterministic regularization ensures the existence of escape times.

Definition I. (Deterministic regularization) LetZ{_ be a neighborhood around A_ in S?~!
so that the following holds. Suppose that there exists a constant 7 > 0 so that, with respect
to the map ®7, we have (i) |d>1T(y)| > 1 forall y € U_ and (ii) CDIT(L{_) C D(A4). Then
the continuous map

o U - DAY (2.8)
will be called a regularization of type A— — Ay.

We remark that it is simple to construct families of vector fields H such that determinis-
tic regularizations of the form in equation (2.3) are of type A_ — A, in particular, when
the vector field F satisfies our hypotheses (a) and (b). Assume now we have a regularization
of type A_ — A given by ®] . Consider the initial condition Xy € D(A_), afixed v > 0
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(small enough) and an entry time tl,, into the ball B,. Observe that by Proposition 2.2,
[x¢ne/V —y—| = 0 as v\ O for the fixed-point attractor A_ = {y_}. Then for v small
enough, X!, /v € U_. We will argue that an upper bound for the the escape time fesc is

given by tvent + v!~¢T. Using equation (2.4), we have
vy XU
Xv(t(:s’i) _ q)itesc lent) (int) = UCD{ <eTnt> 2.9

Since x,; /v € U-, then by the definition of the deterministic regularization ®¥ (x, . /v) €
D(A4) with norm bigger than one. By Proposition 2.2, &/ (xg,,/v) will stay in D(A)
for all #+ > T and still will have norm bigger than one. Therefore, going back to equation

(2.9), we may conclude that

tooe < tone + V17T, (2.10)

bounding above the escape time thereby ensuring it is finite. Having the escape point and
time, one defines the regularized solution

v
X'(t) = @' Tlese(xl ), 1>t

@2.11)

v

esc’
where @' is the flow of the original singular system in equations (1.1) and (1.2). In
the limit v \( 0, we will not be interested in the solution inside the vanishing interval
t € (th tesc), see Figure 3(b). Therefore, for our purposes, the regularization process is
conveniently represented by the single map d>1T in the Definition 1 and hence we do not

need to explicitly specify the regularizing field H which generated this map.

2.3. Stochastic regularization. 1t is known that, in general, solutions x"(z) with deter-
ministic regularization do not converge in the inviscid limit v N\ O [20]. The limits may
exist along some subsequences v, Y\ 0 but need not be unique. We now introduce a
different type of regularization by assuming that escape points are known up to some
random uncertainty; see Figure 4.
For this purpose, one may consider a family of regularized systems in equation (2.3)
with the field H, depending on a vector of parameters a € RY . Specifically, we consider
o
Do pixg), Flxa) = XPRG/IXD. - x ¢ B (2.12)
dr ve¥Ha(x/v), X € By.
We initialize this system at some deterministic initial condition xg € D(A_). For v > 0
and a fixed time ¢ > 0, we call the corresponding flowmap @/, (xo; a) : RY x RV — R9,
which now also depends on the parameter a. Let us impose a probability distribution u
on values of these parameters a € RY for N > d + 1. Then the measure W can be used to
define a measure “E)t,xo) on R? via a pushforward by @ (xo; -) with fixed ¢, v, and x¢ as

s xg) = [P (X03 )]st (2.13)

To define the stochastic regularization we assume the following.
(1) For each aeRM, H, is a regularization of type A_ — A, in the sense of
Definition 1. The neighborhood ¢/_ and the time T > 0 do not depend on a.
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D(A-) D(A+)

:;nt an an '
\} Xesc
PN

Xp

FIGURE 4. Schematic representation of the stochastic regularization procedure in the phase space x € R¥. The
solution contains two segments: the original deterministic solution x(¢) until the entry point x¢,,, and the

regularized solution x"(¢) emanating from the random escape point x}... The probability distribution of x} .

is related to the entry point x_,,, via the regularization map Wg. For the regularization of type A_ — A, the
first segment belongs to the domain D(A_) and the second to D(A4).

(2) Forv =1 and any point xg € {/_, the measure “%T X0) has an absolutely continuous
(with respect to Lebesgue) density f (1, T, xo; y) depending on the variable y and
supported in D(A) N BY.

The above hypotheses allow to define the function
UR: U- — L' (D(AY)), (2.14)

where a point X¢ is mapped to the function f(1, T, Xp; y). Then adding a continuity
condition, we propose the following definition.

Definition 2. (Stochastic regularization) A stochastic regularization of type A— — Ay is
given by a continuous map WR in equation (2.14), constructed as above.

Now for xg € D(A_), consider a sufficiently small v > 0 so that the entry point
Xnt/V € U—. The entry point is independent of the parameter a by assumptions and we
have, by our assumptions, a uniform bound on the escape time t%. < t2, + v!7*T. We
shall denote

1o =gl vl TOT, (2.15)

esc

which serves as a time by which all orbits have left the regularized region. The measure
u‘(’[’XO) also has an absolutely continuous density, which we call f(v, ¢, Xo; y). Using
equation (2.4) and also equation (2.9), but having in mind the dependence on the parameter
a, we obtain

€sc

vk Ly Xv
Xv,a — CID‘()lesc fent) (int; a) — I)CD{( ent : a>‘ (216)
Y
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Statistical determinism in non-Lipschitz dynamical systems 13

With respect to the density, f (v, t, Xo; y), we can identify the variable y with xo2, and
then equation (2.16) implies that
X Xeo
S0, (168 = tent)> Xents Xese) = f(l, T, = T) @17
For simplicity, we will denote the measure iy, ) as the escape measure fig.. The

stochastic regularization map WR defines a probability density function we call the escape
density fa.,

X

fbe = \PR<%> = f(l, T, i”t; y) € L'(D(AL). (2.18)

Using equation (2.17) and a change of variables y = x/v in R, we can conclude that the
density of pg. is given by

ditesc(x) = fevsc<§> d_)d( (2.19)
v/)v

Remark. (Construction of stochastic regularizations) A simple and explicit numerical
example arising from a specific choice of H with random parameters is given in §3.
More generally, we sketch here a construction of such a regularization. We work with
the v = 1 rescaled system and let A_ = {x.} be the attracting fixed point. For 0 < #; < 1,
let E C B(A4) x [t1, 2] be an open connected subset. The set E represents the collection
of exit points for trajectories that have traversed the regularized region. Let fy € C°(E)
be absolutely continuous with respect to Lebesgue. For each a = (xq, 79) € supp(fo), let
H(x,,:) be an autonomous vector field with the property that z(r) = Hx, ) (z(¢)) with
z(0) = x, and z(fy) = X¢. This field can be built, for example, by taking it tangent to
any simple curve connecting X, and Xg, properly rescaled to traverse in time 7y, and
subsequently extending it to Bj(0) smoothly. Such an extension is obviously highly
non-unique. The parameterized collection {Hx, )} (xo.50)esupp(fo) can be viewed as a
random family of regularization vector fields with law inherited by their parameterization
(X0, 20) ~ fo. Now, since A, is expelling and supp(fy) C B(A;), trajectories starting
their support leave the regularized region and the distribution fj is pushed forward by the
dynamics in equation (2.12) to define the distribution f2,. appearing in equation (2.18).
Note finally that, in rescaled variables, the entry point X¢./IX0,¢| = X« as v — 0. As
such, by continuity of the above construction, for v sufficiently small, the behavior is a
slight perturbation of the scenario discussed.

We define the measure-valued stochastically regularized solution X" (t) ~ u} as
TN C U W s (2.20)

where the asterisk denotes the push-forward of measure . by the flow @’ of the original
singular system in equations (1.1) and (1.2). Similarly to equation (2.11), the solution is now
defined at all times except for a short interval (2, 1025 vanishing as v \{ 0.

Definition 2 completes the formulation of our main result in Theorem 1.1. This theorem

states that when the randomness of regularization is removed in the limit v \ O, the
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limiting solution exists. This limit is independent of regularization and intrinsically random
(spontaneously stochastic): different solutions are selected randomly at times ¢ > #;, with
the uniquely defined probability distribution.

3. Spontaneous stochasticity with Lorenz attractor: numerical example

In this section, we design an explicit example of the singular system in equation (1.2) with
the exponent chosen as @ = 1/3, and observe numerically the spontaneously stochastic
behavior. We consider this example for the dimension d = 4, which is the lowest dimension
allowing chaotic dynamics in equation (1.7) on the unit sphere, y = (yo, y1, y2, y3) € S°.
The radial field is chosen as F,(y) = —yo. The tangent vector field Fs is defined as the
interpolation between two specific fields F_ and F in the form

Fs(y) = S1OF-(y) + (1 = SiE)NF(y), &§=2y0—1/2, (€RY

where S the is the smoothstep (the cubic Hermite) interpolation function

0’ %‘ S 09
Si(§) = 1362 —-283, 0<&<I, (3.2)
1, 1 <é&.

The function Fs coincides with F_ in the upper region yp > 0.75 and with F; in the
lower region yg < 0.25; see Figure 5. We take F_(y) = P;(0, —y1, —2y2, —3y3), where
P; is the operator projecting on a tangent space of the unit sphere. This field has the
fixed-point attractor A_ = {y_} at the ‘North Pole’ y_ = (1, 0, 0, 0), which is the node
with eigenvalues —1, —2, and —3. This attractor is focusing because Fy(y—) = —1. We
choose the field F (y) such that its flow is diffeomorphic to the flow of the Lorenz system

x=10y —x), y=x28—-2)—y, z=xy—8z/3 (3.3)

by the scaled stereographic projection

_ A 0 g A0 (3.4)
1—=Yyo 1 =0 1 —yo
This projection is designed such that the lower hemisphere, yg < 0, contains the Lorenz
attractor A ; see Figure 5. It is defocusing, because Fy(y) = —yp > 0.
In the system in equation (2.3), we use the regularized field
H(x) = Si(MHo + (1 = Sim)f(x), n=2[x]—1/2, 3.5)

which interpolates smoothly between the original singular field f(x) for |x| > 3/4 and
the constant field Hy for |x| < 1/4. The latter is chosen as Hy = (Xo, X1, X2, X3 — 1),
where X; are time-independent random numbers uniformly distributed in the interval
[—1/2, 1/2]. We confirmed numerically that such a field induces the stochastic regular-
ization of type A_ — A according to Definition 2.

It is expected but not known whether the flow of the Lorenz system has the property
of convergence to equilibrium, as required in Theorem 1.1. Therefore, with the present
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Lorenz ystem

FIGURE 5. Schematic structure of the spherical field Fs(y) in our example. It is composed of the field F_ in the
blue region, which has the fixed-point attractor at the ‘North Pole’, and the field F in the red region, which is
diffeomorphic to the Lorenz system. The fields are patched together using a smooth interpolation.

o o 5 3
0.3

0.4 0.1 0.2

0 0 0 0

-0.1
-0.4 -0.2 ;
t t t| 08 t
0 1 2 0 1 2 0 1 2 0 1 2

FIGURE 6. Components (xg, X1, X2, x3) of regularized solutions x" (¢) for v = 10~ for three random choices of
vector Hy in the regularized field in equation (3.5). These solutions are different after the blowup time 7, &~ 1.046;
the blowup point is indicated by the red dot.

example, we verify numerically that the concept of spontaneous stochasticity extends
to such systems. We perform high-accuracy numerical simulations of the systems in
equations (1.1), (1.2), and (2.3) with the Runge—Kutta fourth-order method. The initial
condition is chosen as xp = (0.4, 0.1, 0.2, 0.3). The solution x(¢) of the singular system
in equations (1.1) and (1.2) reaches the origin at 7, ~ 1.046 (blowup). Figure 6 shows
regularized solutions for three random realizations of the regularized system with the tiny
v = 107>, One can see that these solutions are distinct at post-blowup times.

To observe the spontaneous stochasticity, we compute numerically the probability
density for the regularized solution projected on the plane (xi, x2) at two post-blowup
times: = 1.6 and 2.0. This is done by considering an ensemble of 103 random realizations
of the regularized field, and the results are shown in Figure 7. Here the magnitude
of the probability density is shown by the color: darker regions correspond to larger
probabilities. For a better visual effect, the color intensity was taken proportional to the
logarithm of the probability density. The presented results demonstrate the spontaneously
stochastic behavior, because the probability density is almost identical for two very
small values of the regularization parameter: v = 1073 (first row) and v = 10~7 (second
row). This provides convincing numerical evidence that the inviscid limit exists and it is
spontaneously stochastic. The probability distributions have similar form at different times
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0.2 0.2
v=10"° v=10"°

t=1.6 t=2.0
0.1 0.1

o o
< 0 ) 0
-0.1 -0.1
-
-0.2 -0.2
-0.2 -0.1 0 0.1 0.2 -0.2 -0.1 0 0.1 0.2
| A
0.2 0.2
v=10"7
t=1.6
0.1 0.1
g o g o
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0.2 0.2
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Ty Al

FIGURE 7. Probability density computed numerically at times ¢t = 1.6 (left) and r = 2.0 (right) using the statistical
ensemble of 10° regularized solutions. The darker color indicates the higher density. The first row corresponds to
v = 107> and the second row to v = 1077, confirming the spontaneous stochasticity in the inviscid limit.

up to a proper scaling, in agreement with the self-similar limit in equation (1.15) from
Theorem 1.1; see also Figure 1(b). The Supplementary Video shows the evolution of the
probability density with time.

4. Robust spontaneous stochasticity

The major difficulty in applications of Theorem 1.1 to specific systems is how to verify
the assumption of convergence to equilibrium in equation (1.13), which is formulated for
the attractor A’, from Proposition 1.1. In this section, we discuss how specific and robust
examples of systems satisfying this assumption can be constructed.

Recall that the system in equation (1.7) must have a fixed point attractor A_. Let us
choose a closed subset V C S9!, such that its complement Sd-1 \ V contains A_ and is
contained in the interior of B(A_). The subset V contains basins of all the other attractors,
in particular, B(A1) C V. It is convenient to use a diffeomorphism 4 : V V., which
maps to a closed subset V c RY~! and defines the new variable y = h(y). One can verify
that the systems in equations (1.5) and (1.7) keep the same form in terms of ¥ if we
substitute Fs and F; by the conjugated vector field ﬁ‘s V> RI-! and 13} =Foh!:
V > R. For simplicity, we will omit the hats in the notation below, therefore, assuming in
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all the relations that y € V ¢ R?~!. Although V is not forward invariant by the flow, this
will not be necessary in what follows.

Consider now the attractor A4 of the system in equation (1.7) with the physical measure
Mphys- Let us assume that it satisfies the convergence fo equilibrium property in equation
(1.13).

Definition 3. We say that the convergence to equilibrium property is CX-robust if there
exists £ > 0 and a closed neighborhood U/ of the attractor, Ay C U C B(A,), such that
the following holds: for any e-perturbation of Fs in the C*-topology, the corresponding
system in equation (1.7) has an attractor contained in I/ having a physical measure and the
convergence to equilibrium property.

This definition extends naturally from the angular dynamics in equation (1.7) to the full
auxiliary system in equation (1.5) by considering perturbations of both Fs and F,. The
following proposition provides a criterion that can be used for satisfying the condition in
equation (1.13) in specific examples.

PROPOSITION 4.1. Let us assume that the attractor Ay in the system in equation (1.7) has
convergence to equilibrium and there exists a constant Fo > 0 such that F,(y) = Fy for
anyy € V.

G) [If, foranyy eV,
IVFs|l < (1 — ) Fo, 4.1)

where |VFs|| is the operator norm of the Jacobian matrix VFg at the point 'y, then
the attractor A, in the system in equation (1.5) has convergence to equilibrium.
(ii)  If the convergence to equilibrium of A, is C*-robust and, for anyy € V,

1 —a)F
IVFs| < (kﬂ 4.2)

then the attractor A has C k_robust convergence to equilibrium.

Notice that the conditions in equations (4.1) and (4.2) of Proposition 4.1 can always
be satisfied by a proper choice of the function F,. This suggests a constructive way
for designing the specific systems in equations (I.1) and (1.2) having spontaneous
stochasticity. For a system to have C*-robust spontaneous stochasticity, one should also
impose that the fixed-point attractor .A_ is hyperbolic, that is, it persists under small
perturbations of the system.

Since the crucial hypothesis in this construction is that the attractor A, has (C*-robust)
convergence to equilibrium, let us discuss examples of attractors having this property.
The classical results on the ergodic theory of hyperbolic flows show that a C2-hyperbolic
attractor satisfying the C-dense condition of Bowen—Ruelle (density of the stable manifold
of some orbit) has C 2_robust convergence to equilibrium, see [11, Theorem 5.3]. In the
last decades, many statistical properties have been studied for the larger class of singular
hyperbolic attractors, which includes the hyperbolic and the Lorenz attractors; see for
example [3] as a basic reference and [1, 2, 4, 5] for more recent advances. Robust
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convergence to equilibrium was naturally conjectured for such attractors [10, Problem E.4].
Although the general proof is not available yet, recently in [5, Corollary B and §4] were
given examples of singular hyperbolic attractors having robust convergence to equilibrium,
which include perturbations of the Lorenz attractor. In particular, it was shown there exists
an arbitrary small C2-perturbation of the Lorenz attractor so that the resulting system has
C?-robust convergence to equilibrium with respect to C!-observables.

Having in mind the above discussion, assume that the attractor A, has C2-robust
convergence to equilibrium (for example, a hyperbolic attractor as in [11] or the Lorenz
attractor as in [5]). Supposing moreover the hypothesis of Proposition 4.1, we obtain that
A, has robust convergence to equilibrium. Then as a consequence of Theorem 1.1, we
conclude that these examples are robustly spontaneously stochastic.

COROLLARY 4.1. There exist examples exhibiting C>-robust spontaneous stochasticity.

5. Proofs
The central idea of the proofs is to reduce post-blowup dynamics of the stochastically
regularized equations to the evolution of the system in equation (1.5) over a time interval,
which tends to infinity in the inviscid limit v \{ 0. In this way, the inviscid limit is linked
to the attractor and physical measure of the system in equation (1.5).

For the analysis of equation (1.5), we transform them to a unidirectionally coupled
dynamical system, whose decoupled part is the scale-invariant equation (1.7). Let us
introduce the new temporal variable

T
s(T) =f w(ty) dry. 5.1)
0
Then, the system in equation (1.5) reduces to the so-called master-slave configuration
d
d—y = Fy(y). (5.2)
S
dw
Fri 1+ (@ = DF(y)w, (5.3)

where the functions y(s) and w(s) are written in terms of the new temporal variable s.
Note that the right-hand side of equation (5.3) is unity for w = 0, which prevents w(s)
from changing the sign. Hence, s in equation (5.1) is a monotonically increasing function
of 7. Since Fs and F, are bounded functions, solutions of the system in equations (5.2) and
(5.3) are defined globally in time s.

Notice that the new temporal variable in equation (5.1) is solution-dependent. This
is a minor problem for the analysis of physical measures, which are related to temporal
averages in equation (1.8). However, this is a serious obstacle for the property of
convergence to equilibrium, which is associated with the ensemble average in equation
(1.13) at a fixed time.

5.1. Proof of Proposition 1.1. By the assumptions, the system in equation (5.2) has the

attractor A. Therefore, we need to understand the dynamics of the second equation (5.3).
The function F, : SY~! — R is continuous and therefore has an upper bound, F,(y) < Fi.
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Recall that the attractor A is a compact set with the defocusing property, Fr(y) > O for
any y € A;. Hence, we can choose a trapping neighborhood U of A, (recall this is a
neighborhood in the sphere) and a positive constant F,,, such that

O< Fp<F(y)<Fy foryel,. 5.4)
We define the two quantities
! 0 ! (5.5)
=——— >0, = — > Wy, .
T =) Fy M a—wE,

For any y € U, the derivative in equation (5.3) satisfies the inequalities dw/ds > 0 for
0<w < wyanddw/ds < 0 for w > wy. Thus, the region

Uy ={y,w): y elUyp, w e (W, wnm)} (5.6)

is trapping for the system in equations (5.2) and (5.3), and it attracts any solution starting
in B(Ay) x RT.

LEMMA 5.1. The function

+00 S1
Gy = /0 exp [(a - D /0 Fr(X72(y) dsz] dsy (5.7
is continuous on the attractor A.

Proof. Convergence of the integral in equation (5.7) follows from the existence of positive
lower bound F},, in equation (5.4) and the condition @ < 1. For p > 0, we split the integral
in equation (5.7) into two segments for s; € [0, p] and s1 € [p, +00) with an arbitrary
parameter p > 0. This yields

G(y) = Gp(y) + Ry(y), (5.8)
where
P 51
Gp(y) =/0 exp [(Ot - 1)/0 Fr(X2(y)) dSZ] ds, (5.9)
—+00 S1
Ry(y) = / exp [(Ot -1 /0 Fr(X2(y)) dS2] dsy. (5.10)
P

The positive function R, can be bounded using the property Fc(y) > F, > 0 from
equation (5.4) as

exp[(e — 1) Fy p]

T—oF (5.11)

+00
Ry(y) < / expl(a — 1) Fys1] dsp =
p

By choosing p sufficiently large, we have that R, (y) < £/4 and this bound is valid for any
y € A;. Then

IGY) = GW)| < 1G,(¥) — Gp(y)| + g (5.12)

The function G,(y) in equation (5.9) contains integration over finite intervals and,
therefore, it is a continuous function defined for any y € S~!. One can choose § > 0
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such that |G ,(y') — G ,(y)| < &/2forany y and y € S?=1 with |y’ — y| < 8. This yields
the desired property as the consequence of equation (5.12). O

Let X* : S9! > S9! denote the flow of the system in equation (5.2) and the pair
(X*, X5)) with X5 : S9~! x R* > R* denote the flow of the system in equations (5.2)
and (5.3). We will show the following properties, observing that the first expression in
equation (5.13) is that of generalized synchronization whereas w(s) gets synchronized with
the evolution of y(s) [29].

LEMMA 5.2
(i) Foranyy e Ay and wy > 0,

G(y) = lim_ X, (X™*(y), wo). (5.13)
§—+00
(i) Convergence of the above limit is uniform in the region
yeAr, wo€ (W, wy). (5.14)

(iii)  For any solution y(s) of equation (5.2) belonging to the attractor A, the function
w(s) = G(y(s)) solves equation (5.3).

Proof. Let us verify that equation (5.3) has the explicit solution in the form
N o
w(s) = X3, (Yo, wo) = wo exp [(a -1 / Fr(X*7(y0)) dS2]
0
N S1
+ / exp [(Ot -D / Fr(X*™2(y0)) dw} dsy. (5.15)
0 0
It is easy to see that w(0) = wy. The change of integration variable 55 = 5o — s yields

d S
d / Fe(X*72(y0)) ds2 = Fr(X*(y0)), (5.16)
s Jo

d [
e /O Fr(X*7(y0)) ds2 = Fr(X*(yo)) — Fr(X*~*'(y0)). (.17)

Taking the derivative of equation (5.15) and using equations (5.16) and (5.17), we have

d s
=2 — wole — DF(X (vo)) exp [(a -D /0 Fr (X*7(y0)) d52:|

ds
+ exp [(Ot -1 / Fr (X ™%2(yo)) dSz}
0
K S1
+ (@ — DF(X*(y0)) /o exp [(Ot -1 /0 Fr(X*2(y0)) dSz] ds;

K 51
—(@—1 /O Fe(X*7"1(y0)) exp [(Ot -D /0 Fe(X*72(y0)) dSz] dsp. (5.18)
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The term in the last line is integrated explicitly with respect to s1 as
S1=S

—exp [(Ot -D /(; F(X*7(y0)) dn]

=1—exp [((x -1 /S F (X*72(y0)) dS2]~
0
(5.19)

S1=O

Combining the expressions in equations (5.15), (5.18), and (5.19) with y(s) = X*(yp), one
verifies that equation (5.3) is indeed satisfied.

Note that X*(yo) € A+ for any s € R and initial point on the attractor, yo € Ax.
Because of the positive lower bound F;, in equation (5.4) and o < 1, the first term on
the right-hand side of equation (5.15) vanishes in the limit s — 400 uniformly for all
initial points yo € A4+ and wg € (wy,, wyr). For the same reason, the limit s — 400 of
the last term in equation (5.15) converges uniformly in this region. Therefore, taking the
limit s — +o0 in equation (5.15) with yo = X~ (y) yields the equivalence of relations in
equations (5.7) and (5.13), proving items (i) and (ii) of the lemma.

To prove item (iii), consider the solution in equation (5.15) with wy = G(yo) given by
equation (5.7). This yields

+00 K
w(s) = / exp [(a -1 l Fr (X™(y0)) dSz} dsi
0

+ f exp [(a— 1 / R (y0)) dS2:| dsi, (5.20)
0 0

where we combined the product of two exponents in the first term into the single one. After
changing the integration variables s; = s| — s and 52 = 55 — s in the first integral term of
equation (5.20), the full expression reduces to the simple form

+00 S1
w(s) = /0 exp [(06 -1 /0 Fe(X*7%2(y0)) dSz} ds; = G(y(s)), (5.21)
where G (y) is given by equation (5.7) and y(s) = X*(yo). O]

Lemma 5.2 shows that A from equation (1.9) is the invariant set for the system in
equations (5.2) and (5.3). This set has the same structure of orbits as the attractor A, of
the system in equation (5.2). We need to show that A/, is an attractor with the trapping
neighborhood in equation (5.6). Since A is the attractor of the first equation (5.2), it is
sufficient to prove that

Jm Jw(s) = Gly()] =0 (5.22)

uniformly for all initial conditions yg € A4+ and wg € (w,,, wyr). Since y(s) = X*(yo)
and w(s) = X3 (yo, wo), we rewrite equation (5.22) as

m | X5 (X (y(5)), wo) — G(y(s)| = 0. (5.23)

The uniform convergence in this expression follows from Lemma 5.2.
It remains to prove the relations

3w - Gy)

ditphys(¥)
Qitphys (v w) = = —

diphys(y) dw, ¢ = / G(y)

(5.24)
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Because of the synchronization condition in equation (5.13), the physical measure ptsyn for
the attractor A, of the system in equations (5.2) and (5.3) is obtained from the physical
measure jLphys Of attractor A4 as

diasyn (¥, w) = 8(w — G(¥)) diuphys(y) dw. (5.25)

This measure corresponds to the dynamics of the system in equations (5.2) and (5.3).
The time change ds = G(y)dr following from equation (5.1) with w = G(y) transforms
equation (5.25) to the physical measure in equation (5.24) for the system ni equation (1.5);
see [15, Ch. 10].

5.2. Proof of Theorem 1.1. Let us consider the variables

w=(—t")x*",  =log(t—1"), (5.26)

where the temporal shift 1V, specified later in equation (5.33), depends on the regularization
parameter v > 0. Observe that " was not present in the original definition of equation
(1.6), but it does not affect the system in equation (1.5): at times ¢ > ¢V, each non-vanishing
solution x(¢) of equations (1.1) and (1.2) is uniquely related to the solution y(7), w(t) of
the system in equation (1.5) through the relations

X=Ri_p(y,w), t=1t"+e". 5.27)
Consider arbitrary times #, > #; > t"” and denote
x; =x(t), yi=yt;), wi=w(), T =Iloglt—1"), i=12. (5.28)

Recalling that ®’ and Y7 denote the flows of the systems in equations (1.1), (1.2), and (1.5),
one has

xp = P27N(xy), B>t >t (5.29)
and
(Y2, w2) = Y27 (y1, w1), > 711 (5.30)
The first expression in equation (5.27) yields
X| = Ry (Y1, w1), X2 = Ry, _p(y2, wa). (5.31)
Equations (5.29)—(5.31) provide the conjugation relation between the flows as
O =Ry, oY Mo R L, (5.32)

where (y, w) = R, ! (x) is the inverse map.
Let us apply equations (5.28) and (5.32) for the stochastically regularized solution given
by equations (2.19) and (2.20). We take

n=t t=12 =1k = (T -1 (5.33)

for any given time ¢ > t,. Notice that #, > #; for sufficiently small v > 0. Then, we
use equation (5.32) to rewrite equation (2.20) in the form of three successive measure
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pushforwards as

17 () = (P27 sl (%) = Ry ) (VP27 ™)u(Ry L )t (). (5.34)
For the first pushforward, equation (5.33) yields
(R—‘,V)*uesc(x) (R ) thse (%), (5.35)

Notice from equation (1.6) that R (x) Rl_1 (x/v). Thus, applying equation (2.19), we
reduce equation (5.35) to the form

(R [U)*Mesc(x) (Rl_l)*u’}(x)’ dl’L;(X) = fevsc(x)dx’ (536)

where u‘}- denotes the absolutely continuous probability measure with the density fo...
Finally, using equations (5.28), (5.33), and (5.36) in equation (5.34) yields

W) = (Re—) e (Y7 ) (R ts (%) (5.37)
with
V=1 —1 =log fent 1(Ta_ by! oz' (5.38)
In the inviscid limit, from equations (2.5), (5.33), and (5.38), one has
limt’ =1, lim 7" = +4o0. (5.39)

N0 v\0
It remains to take the limit v \( O in equation (5.37). The convergence of entry times
from equation (2.5) and Proposition 2.2 yields

11\1‘1(1) Yont = Y—» (5.40)
where A_ = {y_} denotes the fixed-point attractor and yg,, = Xg;/V correspond to entry
points. Since the map WR in equation (2.14) is continuous, the limit in equation (5.40)
implies

1
fho 5 f asv N0, (5.41)
where
fevsc = lI”R(ygnt)s f— = ‘I‘R(Y—) (542)
Using this limiting function, we rewrite equation (5.37) as
1) () = (Ri— )1 [ (V)R Dt () + (Y7 )Ry DA ()], (5.43)

where we introduced the probability measure du_ (x) = f— (x)dx and the signed measure
for the difference Auf}(x) = ,u}(x) — —(x). Now we can take the inviscid limit v \ 0
for the expression in square parentheses of equation (5.43), where the times of pushfor-
wards behave as equation (5.39). Since the measure (R_l)* n—(x) does not depend on v,
the first term in square parentheses converges to Mph < by the convergence to equilibrium
property. The remaining term vanishes in the limit v N\ 0, because the flow conserves the
L' norm of the density function, and this norm vanishes by the property in equation (5.41).
This yields the limit in equation (1.18) with the measure in equation (1.15).
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5.3. Proof of Proposition 4.1. We will formulate the proof for the first part of the
proposition, such that it can be extended later for C¥-perturbed systems.

The system in equation (1.5) considered for (y, w) € V x RT with F,(y) = Fy takes
the form

dy dw 2
— =wFs(y), — =w+ (¢ —-1)Fw". (5.44)
dr dr

The second equation in equation (5.44) has the fixed point attractor w = Wy :=
[(1 —a)Fy]~' > 0 with the basin w > 0. Recall that B(A,) C V c R¢~!. Equation
(1.10)

with F(y) = Fy defines the function G : B(Ay) — R as

G(y) = Wp. (5.45)
We define the corresponding graph as
G(AY) ={(y,w) 1y € B(A), w =Gy}, (5.46)

which is the invariant manifold for the system in equation (5.44). The attractor A/, C
G(A,) is given by equation (1.9).
Linearization of the system in equation (5.44) at any point of G(A) takes the form

WoVFy Fy
i(éy)z( 0 ()0)(8)’)’ (5.4
dr \ Sw 0 -1 Sw

where (8y, w) € RY~! x R is an infinitesimal perturbation in the tangent space. It is
straightforward to verify that the system in equation (5.47) has a solution

8 F,
( y ) o ( <y> ) | 5.49)
Sw -1

which provides the eigenvalue —1 with the corresponding eigenvector. The eigenvector
defines the linear space E** transversal to the graph G(A.), and it will play the role
of strong stable (contracting) direction. Remaining eigenvalues are determined by the
Jacobian matrix WoVF, with the corresponding linear invariant space E¢ = R4~ x {0}
tangent to the graph G(Ay). Assumptions in equation (4.1) imply that eigenvalues of
WoVF, with Wy = [(1 — a)Fo]’l have absolute values smaller than unity.

We showed that, at each point of the graph in equation (5.46), there exists a splitting
E*®* @ E° of the tangent space, which is invariant for the linearized system in equation
(5.47) and such that E** dominates (contracts stronger than) the so-called central directions
in E€. It follows from the stable manifold theorem that each point of G(A4) has a
one-dimensional strong stable invariant manifold, which is tangent to E**; for background
on the invariant manifold theory, see [44, Ch. 6] for discrete systems and [47, §4.5] for
flows. Such a structure can be described locally by a homeomorphism p : U x (=6, §) —
U’', where U and U’ are respectively some trapping neighborhoods of the attractors A
and A, and § > 0 is some (small) number. Here, the fibers p(y, §) for fixed y are
local C!-parameterizations of the strong stable manifolds starting on the graph p(y, 0) €

G(Ap).
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Let Y7 be the flow of the system in equation (5.44). We denote by Y ; =plo¥Yop
the flow, which is defined in / x (—4§, §) and conjugated to Y'*. By construction, this new
flow Y has the attractor A, = {(y, 0) : y € A4} with the physical measure

diep(y. &) = duphys(y) 8(6)dé, (5.49)

where §(§) is the Dirac delta-function and fiphys is the physical measure of the attractor
A, Straight segments (y, &) with fixed y and & € (-4, §) correspond to strong stable
manifolds for the new flow Y ; . Moreover, since strong stable manifolds have constant
eigenvalue —1, Y has uniform contraction along strong stable manifolds to the plane
& = 0 in a sufficiently small neighborhood U/ x (—$, §).

Now, the property of convergence to equilibrium for the flow Y7 follows from the same
property for Y7, where the latter is established as follows. The condition of convergence to
equilibrium in equation (1.13) for the new system becomes

lim [ oY) du(y &) = / @ dup(y, §) = / @(¥, 0) ditphys(y), (5.50)

T—>+00

where we used equation (5.49) and integrated the Dirac delta-function. It is enough to
verify this condition for absolutely continuous probability measures . (y, &) supported in
the trapping neighborhood U x (—§, §). Using properties of strong stable manifolds for
the flow Y; , the integral in the left-hand side of equation (5.50) can be written as

/ 9o YT du(y, &) = / (Y7 (y, 0) du(y, &) + / PO duy,6),  (5.51)

where we introduced the function ¢1(y, £) = ¢(y, £) — ¢(y, 0). Since the flow Y /f has
the property of uniform contraction to the plane £ = 0, where ¢; = 0, the last integral in
equation (5.51) vanishes in the limit t — 4-00. For the first integral on the right-hand side
of equation (5.51), we write

/w(Yg(y, 0)) dpu(y. &) =/¢(Y;(y, 0)) dptint(¥), (5.52)

where (int(y) is obtained from the measure u(y, £) by integration with respect to £. The
last integral in equation (5.52) corresponds to the flow Y restricted to the invariant plane
& = 0, and it is conjugate to the original flow Y restricted to the graph in equation (5.46)
with the constant function in equation (5.45). The latter becomes the flow X* of the system
in equation (1.7) after the scaling of time with the constant factor Wy. Therefore, we
reduced equation (5.50) to the analogous condition of convergence to equilibrium for the
system in equation (1.7), which holds by our assumptions. This proves the first part of the
proposition.

For the proof of the CX-robust convergence to equilibrium, we will need the following
lemma.

LEMMA 5.3. Consider an attractor A of the system in equation (1.7) with C*-functions
Fs: V> RV and F, : V +— R satisfying the conditions

IVFs|| < M, F(y)>m>0 (5.53)
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foranyy € B(A.) and positive constants m and M such that M < (1 — a)m/ k. Then, we
have the following.

(i)  Equation (1.10) defines the C*-differentiable function G : B(A;) — RT.

(i1) Let y(t) be the solution of the equation

dy
i G(y)Fs(y) (5.54)
T
for arbitrary initial conditionyy € B(A4). Then w(t) = G(y(t)) satisfies equation

(1.5).
(iii)  Sufficiently small C*-perturbations of Fs and F, yield small C*-perturbations of G.

Proof. The above lemma is related to the general statements of the invariant manifold
theory as stated in [28] for discrete systems and in [47] for flows. Below, for completeness,
we present a direct proof for arbitrary functions F, satisfying equation (5.53). Let us first
consider the case k = 1.

(1) Changing signs of the integration variables s; and s in equation (1.10) yields

0 0
GW = lim G,(y). G.(y) = / exp [(a—l) / Fy o X%(y) dSz} dsi, (5.55)
§——00 s 51

where we introduced the function Gy : V — R*. By construction, Gy is a C I_function
for any s. The second condition in equation (5.53) implies the uniform convergence of the
limit in equation (5.55) for y € B(A4). Hence, the limiting function G is continuous in
B(AL).

Computing the Jacobian matrix VG in equation (5.55) at a given point y yields

0 0 0
VG = (a — 1) / (/ V(F; 0 X%2) dsz> exp [(a -1 / Fy o X%2(y) dsz] dsq,

(5.56)

where
V(F, o X*?) = (VFr)st(y)VXSZ, (5.57)

and (V Fy) x (y) denotes the gradient vector V Fy computed at X*2(y).
Since X* is the flow of the system in equation (1.7), by the classical theory of ordinary
differential equations, the Jacobian matrix VX* satisfies the linear Cauchy problem

d
% VX* = (VFs)xs VXS, VX' =1, (5.58)
\)
where I is the identity matrix and (VFs)xs(y) is the Jacobian matrix VFs at X*(y). Using

equation (5.58) for negative s, the first bound of equation (5.53), and Gronwall’s inequality,
we estimate

VXS <e ™5, s<o. (5.59)
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Let My = maxyey ||V F¢|| > 0. Using equations (5.56), (5.57), and (5.59) with the bounds
in equation (5.53) and recalling that < 1, s < 0 and s, < 0, we obtain

s 0
IVGs — VG| < (1 —a) f < f Mee= M52 d52>e<1—°‘>’"“ dsi (5.60)
K S1

for any s < s’ < 0. Integrating the right-hand side of equation (5.60) and taking into
account that

1—aym>0—-—a)ym—M >0 (5.61)

by the conditions of the lemma, one can show the Cauchy convergence of the gradients
VG in the limit s — —o0. Since the bound in equation (5.60) does not depend on y, the
convergence is uniform in B(.A. ). This proves the continuity of the limiting gradient VG
in equation (5.55).

(ii) Consider the pair of functions y(r) and w(r) = G(y(r)), where y(t) satisfies
equation (5.54). Obviously, these functions satisfy the first equation of equation (1.5). The
second equation in equation (1.5) can be transformed to the form in equation (5.3) with the
time change in equation (5.1). Then, this equation is verified as in Lemma 5.2, taking into
account that the integrals converge uniformly for all y € B(A).

(iii) Using the uniform bound in equation (5.60), one proves that the convergence of
integrals in equation (5.56) as s — —oo is uniform not only with respect to y, but also
with respect to sufficiently small Cl-perturbations of the functions Fs(y) and Fy(y). This
implies that such perturbations lead to C!-perturbations of G (y).

This proof extends to the C¥ case for k > 1 by computing high-order derivatives of
G in the way similar to equations (5.55) and (5.56). Generalizing equation (5.59), one can
show that kth-order derivatives of X*(y) are bounded by ¢ exp(—kMs) for s < 0 and some
coefficient ¢ > 0. We leave details of this rather straightforward derivation to the interested
reader. O

Consider now a perturbed system in equation (1.5) with Fx close to Fs and Fr close
to F, in the C¥-metric; here and below, the tildes denote properties of the perturbed
system. Conditions of Definition 3 ensure that the perturbed system in equation (1.7) has
an attractor A with the physical measure and the convergence to equilibrium property.
In turn, the perturbed system in equation (1.5) has the attractor fl; given by the graph
w = G(y) of y € A;; see Proposition 1.1. Conditions in equation (4.2) remain valid if the
perturbation is sufficiently small. Hence, one can choose m and M satisfying conditions of
Lemma 5.3, establishing that the function G(y) is C*-close to the constant from equation
(5.45), and also the graph w = G(y) with y € B(./ZLL) is invariant under the flow of the
perturbed system in equation (1.5).

Restriction of equation (1.5) to the invariant hyper-surface w = G(y) yields

d ~ -
d—y = G(y)F,(y). (5.62)
T

This system is C*-close to dy/dt = WoFs(y), where the latter is equivalent to dy/ds =
Fs(y) up to the constant time scaling. Since the attractor A of the unperturbed system
in equation (1.7) is assumed to have a physical measure with the C¥-robust convergence
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to equilibrium, the attractor /Lr of the perturbed system in equation (5.62) has a physical
measure with the property of convergence to equilibrium, provided that the perturbation
is sufficiently small. For concluding the proof, one should notice that all arguments in the
first part of the proof (based on the invariant manifold theory) remain valid for small C¥
perturbations of the system and of the graph in equation (5.46).

Supplementary material. ~ The Supplementary Video is available online at https://doi.org/
10.1017/etds.2023.74. The video shows the time evolution, where the green points represent
a few specific solutions and the color indicates the probability density obtained with a
statistical ensemble of 10° solutions regularized with v = 1077,
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