

A protocol for custom biomineralization of enzymes in Metal-Organic Frameworks (MOFs)

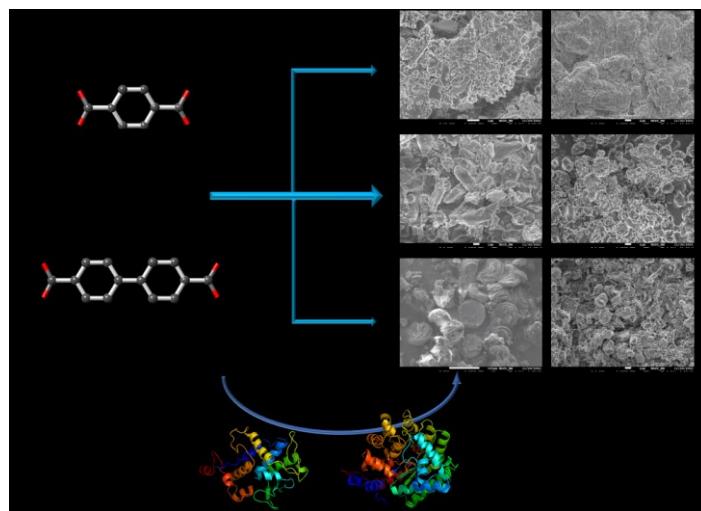
Zoe Armstrong,^{#,1} Drew Jordahl,^{#,1} Austin MacRae,¹ Qiaobin Li,¹ Mary Lenertz, Patrick Shen,² Anastasiia Botserovska,¹ Li Feng,¹ Angel Ugrinov,¹ and Zhongyu Yang^{*,1}

1. Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58102
2. Davis Highschool, Fargo, North Dakota 58104

These authors contribute equally to this work

13 **Abstract:** Enzyme immobilization offers a number of advantages which improve biocatalysis, yet
14 finding a proper way to immobilize enzymes is often a challenging task. Implanting enzymes in
15 Metal-Organic Frameworks (MOFs) via co-crystallization, also known as biominerilization,
16 provides enhanced reusability and stability with minimal perturbation and substrate selectivity to
17 the enzyme. Currently, there are limited options of metal-ligand combinations to choose from with
18 a proper protocol guiding the experimental procedures. We have recently explored 10
19 combinations which allows the custom immobilization of enzymes according to enzyme stability
20 and activity in different metals/ligands. Here, as a follow-up of that work, we are presenting a
21 protocol of how to carry out custom immobilization of enzymes using the available combinations
22 of metal ions and ligands. Detailed procedures to prepare metal ions, ligands, and enzymes for
23 their co-crystallization together with characterization and assessment are discussed. Cautions of
24 each experimental step and results analysis are highlighted as well. This protocol is important for
25 enzyme immobilization in various research and industrial fields.

26


27 **Key Features**

28

- 29 A wide selection of metal ions and ligands allows for the immobilization of enzymes in
metal-organic frameworks (MOFs) via co-crystallization
- 30
- 31 Step-by-step enzyme immobilization procedure via co-crystallization of metal ions,
organic linkers, and enzymes
- 32
- 33 Practical considerations and experimental conditions to synthesize the enzyme@MOF
biocomposites are discussed
- 34
- 35 The demonstrated method can be generalized to immobilizing other enzymes and
finding other metal ion/ligand combination to form MOFs in water and host enzymes

36

37 **Graphic abstract:**

38

39

40

41

42 **Keywords:** biominerization, MOF, enzyme immobilization, co-crystallization, aqueous phase
43 co-precipitation

44

45 **Background:** Enzyme immobilization is receiving increasing interest in both research and
46 industry due to the (potential) promise of enhanced cost-efficiency and catalytic performance
47 control in certain cases.¹⁻⁴ The biggest challenge is still to maintain enzymatic function without
48 disturbance to the enzyme itself.⁵⁻⁶ Metal-Organic Frameworks (MOFs) are extended 3-
49 dimensional crystalline networks formed by the coordination bonds between certain metal ions
50 and ligands. MOFs typically contain supreme porosity and highly tunable properties, given the
51 high diversity in metal ions and ligands which can form such a 3D network. MOFs are advanced
52 enzyme immobilization platforms but are mostly limited to smaller enzymes and substrates.⁶⁻¹³
53 Co-crystallization of enzymes and certain metal ions/ligands is a unique way to host enzymes in
54 MOF crystal scaffolds, adaptable to large enzymes and enzyme clusters.¹⁴⁻¹⁵ This strategy also
55 allows for a small portion of enzymes to be implanted at the surface of MOF crystals and thus,
56 partially exposed to the reaction medium, allowing contact with substrates larger than MOF
57 apertures.¹⁶ This strategy can therefore be applied to biocatalytic reactions involving large
58 substrates such as proteins/polypeptides, polysaccharides, and cells to be carried out while
59 reusing/recycling the immobilized enzymes.¹⁷⁻²⁵

60 Commonly, the co-crystallization process is performed in an organic solvent such as methanol
61 which is a challenging condition for most enzymes.¹⁵ There is a natural co-crystallization process
62 called biominerization and is essentially co-crystallization, but it takes place in water phase
63 under ambient conditions.²⁶⁻²⁸ Although the reaction can be slow in nature, the formed biominerals
64 are sufficiently stable with immobilized and possibly functional proteins/enzymes. Inspired by
65 nature, biominerization has also been carried out on lab benches too.²⁹⁻³⁰ Although nature might
66 find its own sophisticated way to biomineralize proteins or other biomacromolecules, on-bench
67 biominerization in a reasonable timeframe for enzymes need additional planning. Furthermore,
68 although natural biominerization could generate enzyme @MOF composites in various
69 morphology and crystallinity, to optimize the on-bench strategy, certain considerations are needed
70 in order to better preserve enzyme activity, reusability, and the stability of co-crystals. Lastly,
71 aqueous-phase co-crystallization may generate imperfect crystals but retain enzyme activity and
72 reusability, which would still improve biocatalysis and thus, be worth pursuing. Focusing on
73 aqueous-phase co-crystallization, we have acquired extensive experience in immobilizing various
74 enzymes on MOFs.^{16, 20-21} Our recent work has revealed a combination of 10 metal ions/ligands
75 to carry out biominerization for effective enzyme immobilization; broadening the spectrum of
76 available metal/ligand pairs allows for custom immobilization of enzymes according to their
77 characteristics and stability (in certain metal ions and ligands).¹⁹ However, there is a lack of
78 detailed experimental protocol to carry out such as a sophisticated mission.

79 In this protocol, we will detail the biominerization procedures, highlight the cautions, potential
80 pitfalls, and suggested solutions, as well as summarize the assessment of a successful enzyme
81 biominerization based on our recent experience. We will cover MOF preparation in aqueous
82 phase (metal/ligand selection and preparation and criteria of a useful MOF) to obtain a

83 "background" without enzymes, enzyme@MOF composite formation (enzyme preparation and
84 activity assessment on MOFs), and additional experimental conditions that may help formation of
85 co-crystals without damaging the enzymes. The strategy and methods can be applicable to
86 immobilizing other enzymes and searching for other metal ion/ligand combinations for custom
87 immobilization of other enzymes.

88 **Materials and Reagents**

89 **Reagents**

- 90 1. Zinc nitrate (Sigma-Aldrich catalog no. 228737-100G)
- 91 2. Zirconium oxychloride (Alfa Aesar catalog no. 86108)
- 92 3. Nickel nitrate (Sigma-Aldrich catalog no. 72252-50G)
- 93 4. Aluminum nitrate (CHEM-IMPEX INT'L INC catalog no. 30223)
- 94 5. Copper nitrate (CHEM-IMPEX INT'L INC catalog no. 30277)
- 95 6. Terephthalic acid (BDC,98 %; Sigma-Aldrich catalog no. 185361-100G)
- 96 7. 4,4'-Biphenyldicarboxylic acid (CHEM-IMPEX INT'L INC no. 26841)
- 97 8. Bicinchoninic acid kit for protein determination (Sigma-Aldrich catalog no. BA1-1KT)
- 98 9. Ethanol (standard resources: reagent could be obtained from any commercial resources)
- 99 10. Acetic acid (standard resources)
- 100 11. Sodium hydroxide (standard resources)
- 101 12. Concentrated hydrochloric acid (standard resources)
- 102 13. Double distilled (dd) water (standard resources)

103 **Solutions**

104 **Recipes**

105 MES 0.5 M pH 6: 10 mL

- 106 8 mL DD Water
- 107 0.976 g MES free acid
- 108 pH to 6 using HCl
- 109 Dilute to 10 mL

110 Acetate Buffer 0.05 M pH 4.6: 40 mL

- 111 30 mL DD Water
- 112 82.272 mg sodium acetate
- 113 0.057 mL Glacial Acetic Acid
- 114 pH to 4.6 using HCl
- 115 Dilute to 40 mL

116 HEPES Buffer 0.2 M pH 6.8: 40 mL

- 117 30 mL DD Water
- 118 1.91 g HEPES
- 119 pH to 6.8 using HCl
- 120 Dilute to 40mL

121 Glycine Buffer 0.05 M pH 9: 40 mL

122 30 mL DD Water

123 150 mg Glycine

124 10 mg Sodium Hydroxide

125 pH to 9 with NaOH

126 Dilute to 40 mL

127

128 **Equipment**

129 Sorvall Legend Micro 21R Centrifuge (ThermoFisher)

130 TGA – Q500 Thermogravimetric Analyzer (TA instruments WatersTM)

131 XRD- Brucker's Single Crystal Diffractometer, Apex 2 Duo with Cu I μ S X-ray Soruce

132 STEM- JEOL JSM-7600F field-emission scanning electron microscope

133 Millipore concentrators (catalog no. UFC500396)

134

135 **Procedure**

136 To minimize mineral impact on our MOF preparation, all water in this procedure is double-
137 deionized water (dd-water) and all solutions were prepared using dd-water. Should be needed,
138 all buffers' pHs were adjusted with 1 M HCl or NaOH. Enzyme activity often requires specific pHs
139 however, caution is that certain MOFs are unstable in certain pHs; in this case, alternative buffers
140 in the same pH range are provided in the Recipes section. All enzymes and enzyme@MOF
141 composites should be stored at 4 °C and delivered on ice prior to activity tests. Enzyme@MOF
142 composites do not need to be freshly prepared unless left in the fridge for over a month. All
143 involved equipment operation and data analysis should follow the corresponding users'
144 manuals/guidance and will only be briefly covered here. A general overview of this protocol is
145 shown in Scheme 1.

146

147 **Scheme 1.** An overview of the procedures involved in this protocol.

148 **A. Metal ion/ligand selection and aqueous-phase MOF preparation**

149 It is necessary to prepare MOFs without enzyme because these can serve as the “background”
150 or control signals for characterization. The best pool to select metal ions and ligands is the
151 published MOFs prepared via solvothermal or hydrothermal methods,⁶⁻⁸ bearing in mind that the
152 same pair may not form the same crystal structures in the aqueous phase under ambient
153 conditions or may not form crystal at all in water. A few summative lists of commonly seen
154 combinations of metal ions and ligand can be found in the literature.^{8, 14, 31} Enzyme stability and
155 functionality in the presence of excess metal ions and ligands, solubility of ligands, and potential
156 toxicity should be considered during the selection and scanning of metal ion-ligand
157 combinations.³²⁻³⁵ It is common to scan a number of metal ions and ligands but only find a few
158 combinations that can form crystals.¹⁹ Normally +2 oxidation state of metal ions are preferred
159 according to our experiences, although +3 and +4 are possible for certain circumstances. Once
160 a combination is found as judged by direct visualization, the following can be proceeded.

161 1. Optimize MOF forming conditions. This step is necessary because the optimal metal: ligand
162 ratio often deviates from the content ratio in a MOF. We have found the quality of co-crystals
163 formed this way is dependent on volume of reaction even under the same metal and ligand
164 concentrations. In rare cases, the anions of the metal ion stock can affect the formation and
165 stability of co-crystals.³⁶ We found the following steps useful for a new metal/ligand
166 combination.

167 a. Improve ligand solubility in water. Organic linkers/ligands can have a low solubility in
168 water. To be able to reach the concentration needed for co-crystallization, a typical
169 operation is to react the ligand with NaOH to prepare a salt-based ligand as detailed in
170 our recent work. In brief, 50 mM NaOH reacting with 25 mM ligand in water under vigorous
171 stirring at room temperature for 1-2 hours should be sufficient, although the concentration
172 and reaction time may vary depending on ligands. Taking disodium terephthalate (BDC)

173 and terephthalic acid (BPDC) as example ligands, the following procedures were proved
174 effective.

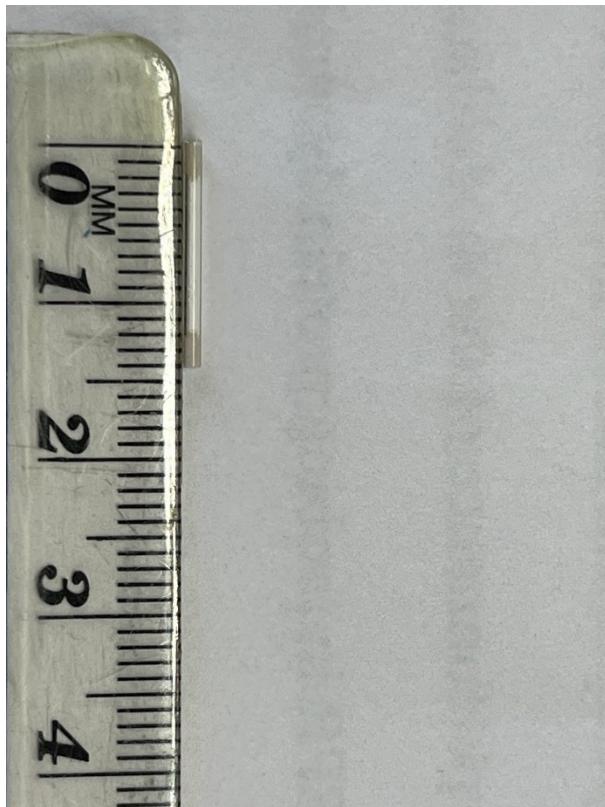
175 To prepare the more soluble disodium terephthalate (BDC-Na₂), terephthalic acid (4.16 g,
176 25 mM) and NaOH (2.0 g, 50 mM) were mixed by stirring in 20 mL DD water at room
177 temperature until transparent (~1 hour). Then, the mixture was precipitated in 400 mL cold
178 isopropanol by mixing. Precipitate was washed via centrifugation with isopropanol until
179 filtrate reached pH 7 and dried overnight at 75 °C in an oven.

180 Disodium biphenyl-4,4'-dicarboxylate (BPDC-Na₂) was synthesized by adding 6 g (22.2
181 mM) of biphenyl-4,4'-dicarboxylate (DMBPDC) along with 2.65 g of NaOH in 100 mL of
182 DD water. The mixture was stirred at 95 °C for 3 hours until transparent which was then
183 precipitated, washed, and dried in similar fashion to the BDC-Na₂ synthesis above.

184 b. Metal ion selection. Typical salts containing the needed metal ions with a low charge
185 are preferred, as high negative charges may interfere with the formation of MOFs (*i.e.*,
186 Zn(NO₃)₂, Ca(NO₃)₂, Al(NO₃)₂, etc). Caution: in water co-crystallization, the anion of the
187 metal ion stock solution may affect the formation of the co-crystals. A typical example is
188 ZIF: Zn(AoC)₂ forms more stable, smaller ZIF, yet Zn(NO₃)₂ forms larger ones. When
189 choosing commercial resources for metal ions, the anions should be carefully selected.

190 c. Forming MOF. We typically start with 1 ml of water containing 25 mM metal ions and 50
191 mM of ligands under gentle nutation at room temperature. MOFs can be formed between
192 minutes to hours depending on metal and ligand selection. Caution is that we found it
193 more effective to add the metal first followed by the ligand.

194 d. Washing off unreacted species. We suggest centrifuge the composites down (15000
195 rpm for 5 min) and remove the water from the supernatant as much as possible. Then, 1
196 ml of EtOH or MeOH should be used to wash additional reaction residuals as water may
197 crush the formed crystals which can be weak given the formation condition. Usually three
198 washes are sufficient. The obtained co-crystals should be stored at 4 °C for further use.
199 Caution: we suggest avoiding extensive washes with water as water may disrupt the
200 crystal lattice. In addition, organic solvents are easier to dry out for crystal characterization.


201 2. MOF characterization. All characterization techniques are well-established with standard
202 operation procedures. Here we only highlight the differences/cautions when dealing with
203 MOFs formed in the aqueous phase.

204 a. Powder X-ray diffraction (PXRD). Upon removal of EtOH via drying, a PXRD sample
205 should be prepared by loading the powder to the bottom of a thin test tube (Figure 1;
206 Wiretrol® II catalog no. 5-000-2020). The sample height should be ~1.6 mm with ~2.5 mm
207 seal. If a single crystal is formed (which may happen in aqueous phase too), then the
208 crystal should be directly loaded to the X-ray Diffractometer for data acquisition. For
209 powder samples, it is very important to finely grind the particles, in order to obtain a high-
210 quality diffraction pattern. Usually we use a regular mortar and pestle setup
211 (MilliporeSigma, catalog no. Z136077). Once the data is acquired, we typically compare
212 the pattern from 4-70° of 2θ to those reported in the literature on the same metal/ligand. If
213 no matching can be found, there is a chance that we are forming multi-phase co-crystals

214
215

or a completely new crystal, either of which can be resolved with a powder X-ray diffractometer and proper analysis.

216

217
218

Figure 1. Preparing a powder sample for PXRD data acquisition by loading the powder to the bottom of a thin test tube.

219

220
221
222

b. Scanning electron microscope (SEM). SEM is needed to confirm the morphology and size of the formed co-crystals. Regular operation on SEM data acquisition is applicable here without special cautions (~2 mg of dried sample is needed).

223
224
225
226
227

c. Thermalgravimetric analysis (TGA). TGA needs special cautions because the sample holders can be sensitive and thus, be damaged during data acquisition for MOFs made of Al, Zn, Ni, Fe, etc. Our typical suggestion is to select ceramic holds for these MOFs and regular holds for the rest (to save the cost). 10 mg of sample is needed in most cases. Cautions is that it is very important to completely dry all samples.

228
229
230
231
232
233
234

d. N₂ isotherm. This is necessary to determine the confirm the porosity which is needed for substrate diffusion and enzyme activity. N₂ isotherm measurements require a high amount of sample and high crystallinity. A collapsed N₂ isotherm plot often indicates poor crystallinity and porosity.¹⁹ Typical data analysis reported in the literature is applicable here. We found 10 mg of sample is needed, with typical porosity of 0.05 - 0.5 cm³/g being the normal range for an acceptable MOF. Caution: avoiding wash with water can reduce the potential crystal damage during wash. MeOH or EtOH are good options.

235 e. pH stability. Due to the potential interaction between metal ions and the anions in buffers,
236 certain buffer can disassemble certain MOFs. PBS buffer is a typical example, wherein
237 the highly negatively charged phosphate group could coordinate with cations and
238 disassemble the MOF scaffolds. We found citrate buffer also capable of disassembling
239 MOFs. For low pH range, we typically use acetate and MES buffer; for near neutral pH,
240 we found HEPES buffer the best; at high pH range, glycine buffer is optimal. These buffers
241 (usually at 50 mM concentration) also do not significantly affect the activities of most
242 enzymes and thus, should be tested on the formed MOFs, in order to guide the pH stability
243 for the next steps. Once soaked in a buffer, we monitor the turbidity at 450 nm over time
244 using Thermo Scientific NanoDrop2000 spectrometer. If no turbidity changes over a
245 certain time (1 day for example), the pellets will then be subjected for PXRD and SEM
246 studies to confirm the presence of co-crystals.

247 f. Thermal stability. For thermal stability test, we usually place the co-crystals in an oven
248 and set the temperature to the target temperature. For most biological applications, 37
249 and 45 °C are the typical temperature range. The turbidity is measured every hour or so to
250 confirm the presence of crystals. After 1-2 days if a crystal is still present, then PXRD and
251 SEM should be applied to confirm, as broken crystals can also show turbidity. Same test
252 should be carried out for crystals stored at 4 °C over a long period of time to document the
253 long-term stability of the formed crystals.

254 **B. Enzyme@MOF composite preparation**

255 Enzyme may participate in the co-crystallization of metal ions and ligands by serving as the nuclei,
256 which can affect the kinetics of co-crystal formation and even the structure. Thus, all data on
257 enzyme@MOF composites should be compared to those on MOF alone. Because enzymes'
258 properties differ significantly, the following procedures were only based on our experience on a
259 few enzymes. Specific enzymes' biomimetic mineralization should be dealt with in a case-by-case manner.

260 1. Prepare enzymes and control experiments. This step is necessary to retain enzyme
261 functionality and validate the measured enzyme activity in the next steps.

262 a. Enzyme preparation. If an enzyme is ordered in the powder form, then an appropriate
263 buffer or dd-water should be used to dissolve it under the consideration of suggestions by
264 the merchandise if available. If no suggestions were given, we typically start with HEPES
265 buffer. The typical enzyme stock concentration should follow the ones that are suggested
266 in the literature as high enzyme concentration can cause enzyme precipitation. We
267 suggest storing enzymes below 1 mM at 4 °C. If possible, it is also ideal to store enzymes
268 in the buffers which are favored by MOF (see above). If an enzyme is ordered or
269 expressed/purified in the solution form in a low concentration, then a buffer exchange via
270 dialysis or centrifugation-concentrators is needed to maximize the effectiveness of MOF
271 encapsulation. Caution is again to minimize enzyme loss by optimizing concentration and
272 buffer selection during buffer exchange.

273 b. Positive control of enzyme activity. Typical activity assays should be carried out to
274 confirm the enzymes are active. Usually results are compared to the activity data from a
275 reliable resource with known activity. Often, the dependence of activity as a function of
276 enzyme concentration is needed, in order to confirm the enzymes are active.

277 c. Negative controls of activity. It is necessary to confirm that metal ions, ligands, and
278 MOFs alone do not show activity using the typical activity assays. Should a metal/ligand
279 combination influence the activity of the target enzyme, an alternative MOF should be
280 used to biomimic this specific enzyme. Enzyme physically mixed with MOFs after
281 washing (on ice with sonication under 50% duty cycle with medium power) should also be
282 subjected for activity tests, to confirm no physical adsorption of enzymes. This is important
283 because physical adsorption can result in enzyme leaching and poor reusability after
284 multiple rounds of activity tests. Only enzyme “implanted” in MOFs are needed. Caution:
285 although often metal ions and ligands do not affect enzyme activity measurements,
286 depending on the activity kit and mechanism, certain metal ions and ligands may affect
287 the reading of the involved equipment. Thus, negative controls are necessary and have to
288 be carefully designed.

289 2. Prepare enzyme@MOF composites.

290 a. Typical recipe. Usually mixing 1 mL of dd-H₂O, 25 μ L of 0.5 M metal salt solution, 1 mM
291 enzyme, and 0.5 M - 0.25 M ligand (total volume is usually ~1.1 mL after mixing)
292 depending on the ligand can form the needed composites. The concentrations are mostly
293 applicable to the MOFs reported in our recent work. Should a new combination of metal
294 and ligand be needed, the concentrations of both metal ion and ligand need to be
295 optimized. Caution: avoiding high enzyme concentrations can reduce enzyme loss.

296 b. Reaction at room temperature overnight under nutation.

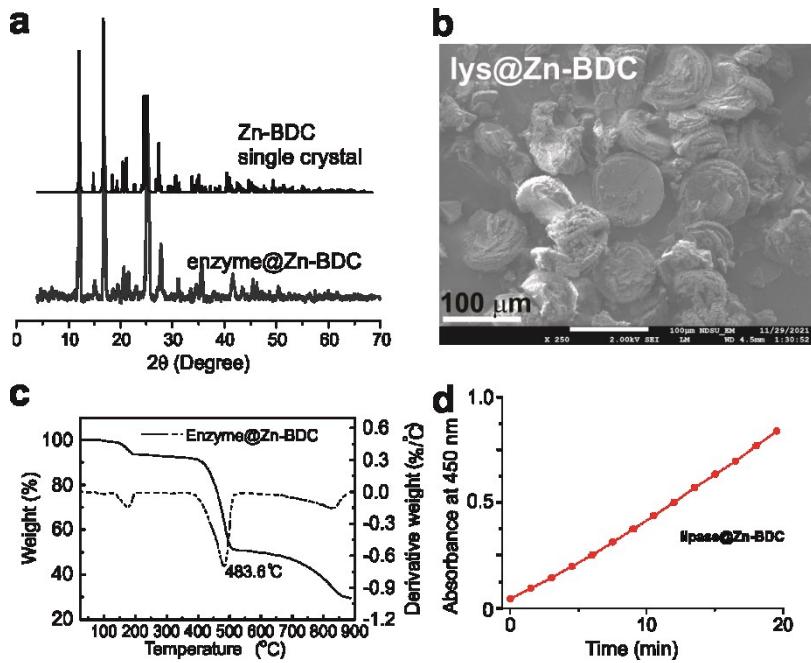
297 c. Wash with EtOH at 4 °C as described above (A.1.d). The low temperature is needed for
298 retaining enzyme activity.

299 d. The prepared enzyme@MOF composites can be stored at 4 °C.

300 3. Enzyme@MOF characterization. All characterization techniques are well-established with
301 standard operation procedures. Here we only highlight the differences/cautions when dealing
302 with enzyme@MOF composites.

303 a. Powder X-ray diffraction (PXRD). Upon removal of EtOH via drying, a similar loading
304 procedure and analysis should be applied as described above (A.2.a). Example PXRD
305 data is shown in Figure 2a.

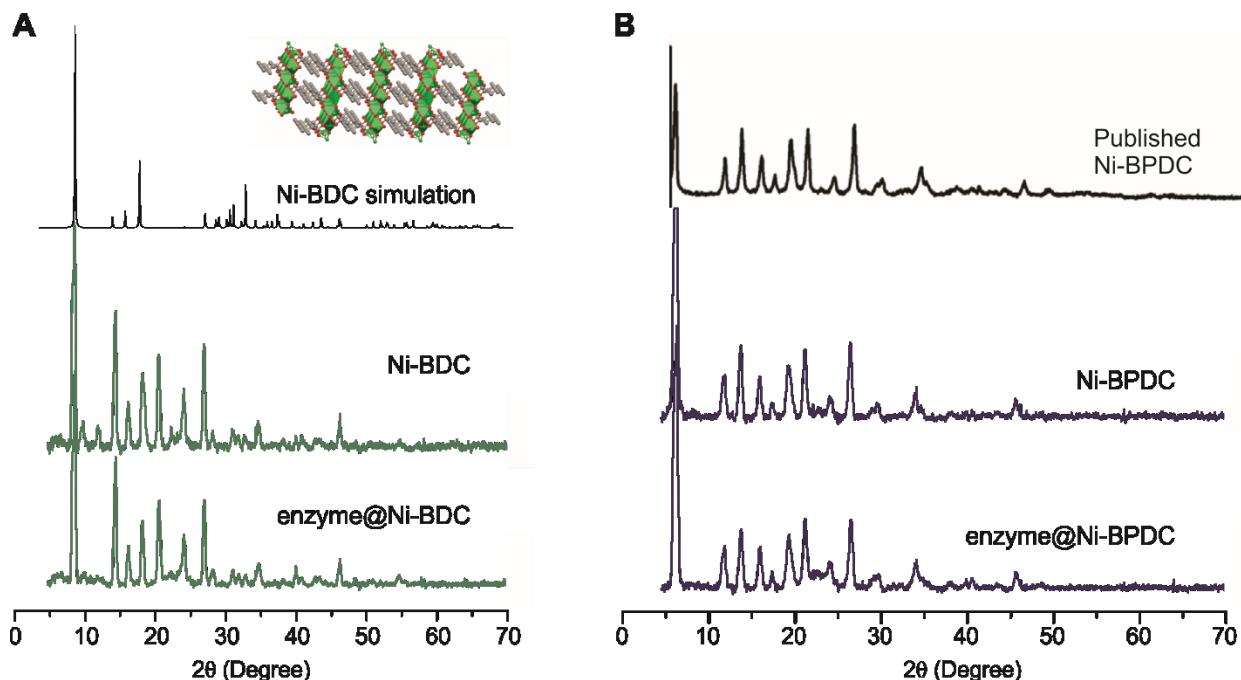
306 b. Scanning electron microscope (SEM). SEM is needed to confirm the morphology and
307 size of the formed co-crystals. Regular operation on SEM data acquisition is applicable
308 here without special cautions (2 mg of the composite sample is needed). Example SEM
309 data is shown in Figure 2b.


310 c. Thermalgravimetric analysis (TGA). TGA needs special cautions because the sample
311 holders can be sensitive and thus, damaged during data acquisition for MOFs made of Al,
312 Zn, Ni, Fe, etc. Our typical suggestion is to select ceramic holds for these MOFs and
313 regular holds for the rest (to save the cost). 10 mg of sample is needed in most cases.
314 The TGA of enzyme@MOF composites should be compared to that of MOF alone, which
315 should highlight the weight loss due to enzyme encapsulation. Example TGA data is
316 shown in Figure 2c.

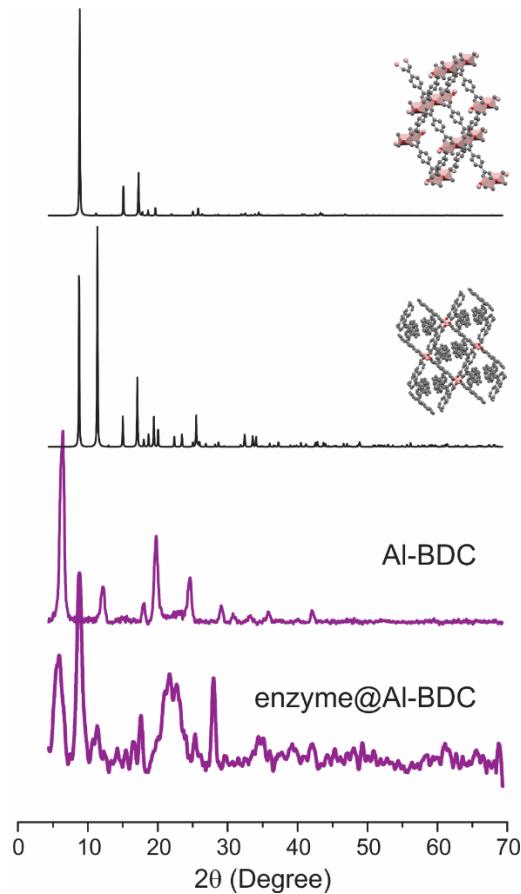
317 d. N_2 isotherm. Typical data analysis reported in the literature is applicable here. We found
318 10 mg of sample is needed. The N_2 isotherm of enzyme@MOF composites should be
319 compared to that of MOF alone, which should highlight the porosity loss due to enzyme
320 encapsulation. Typical porosity loss range is 0.05-0.3 cm^3/g . Most N_2 isotherm instruments
321 directly provide digital numbers of porosity.

322 e. pH and thermal stability. A similar procedure to test the pH and thermal stability should
323 be carried out for the enzyme@MOF composites as well.

324 f. Enzyme activity on MOFs. Enzyme@MOF composites should be subjected for the
325 activity assays mentioned above to confirm the functionality of the encapsulated enzymes.
326 Also, if enzyme performance is needed to compare among different MOFs, then the same
327 loading capacity should be used (or at least normalized) for comparison. This is typically
328 done via Sigma Aldrich's Bicinchoninic acid (BCA) assay. In detail, the formation and
329 reduction of a Cu^{2+} to Cu^+ with the help of specific amino acids (cystine, tryptophan,
330 tyrosine etc.) is proportional to the amount of protein present. The commercially available
331 BCA working reagent is light green and turns to purple-blue in the presence of protein.
332 ~0.1 ml of protein sample was mixed with 2 ml of working BCA reagent and incubated for
333 30 minutes at 37°C. Absorbance of standard solutions and samples were measured at
334 562 nm. Under the same enzyme quantity, a fair comparison can be carried out to
335 determine which MOF best reserves enzyme activity. Example activity data when lipase
336 is immobilized in Zn-BDC is shown in Figure 2d.


337 g. If multiple combinations of metal ions and ligands are all able to immobilize enzymes
338 with acceptable activity remaining, usually large, crystalline MOFs are favorable in
339 biocatalysis applications, although smaller particles may improve the catalytic efficiency
340 against large-size substrates.

342 **Figure 2.** Example PXRD (a), SEM (b), TGA (c), and lipase activity (d) data when lipase was
343 immobilized in a model MOF, Zn-BDC.¹⁹ The close PXRD patterns in the absence and presence
344 of enzyme indicate that enzyme did not cause significant alteration to the crystal structure (a).
345 SEM images displayed the general shape of the enzyme@Zn-BDC biocomposites (b). TGA
346 data suggested the loading capacity (~1 %; c). The activity assay indicates that lipase is active
347 in Zn-BDC (d).


348 Data Analysis

349 Typical data analysis procedure is to compare the characterization data with published ones. For
350 example, the PXRD pattern of a MOF with and without enzyme immobilization should be
351 compared to the literature on the same MOF without enzymes (examples see Figure 2).

352 **Figure 3.** Simulation of the PXRD pattern of Ni-BDC and NI-BPDC based on published
353 structures upon overlapping with the experimental data.³⁷⁻³⁸ Simulation was done using the
354 freeware Mercury developed by the Cambridge Crystallographic Data Centre which is
355 accessible to most public academic users. Based on the simulation, we were able to propose
356 the possible crystal structure of our biominerization products.

358
359 It is possible to find multiple PXRD for a certain MOF in the literature. The obtained MOFs could
360 be a combination of several PXRD patterns, indicating the presence of multiple crystal phases as
361 in the case shown in Figure 4 wherein Al-BDC MOF synthesized in the aqueous phase is most
362 likely a multi-phase MOF with at least two possible structures. It is not uncommon to see multi-
363 phase MOF when the synthesis is carried out in water under ambient conditions.

364

365 **Figure 4.** Simulation of the PXRD pattern of AI-BDC (black) based on two published structures
 366 (inset) upon overlapping with the experimental data (purple).³⁹ Simulation was done using the
 367 freeware Mercury developed by the Cambridge Crystallographic Data Centre which is
 368 accessible to most public academic users. Our PXRD patterns do not match either simulated
 369 spectra, suggesting the possibility of multiple phases coexist in our products.

370 The activity assay of the enzyme in solution and upon immobilization in MOFs should also be
 371 compared. Depending on the enzyme being studied, different data analysis and interpretation
 372 could be carried out. For example, for lysozyme enzyme, we typically compare the drop in OD450
 373 and compare the slope to that of the free enzyme in the lysozyme activity assay. For lipase, we
 374 compare the slope of increase in optical density to assess the efficiency of catalysis by lipase.
 375 Details of the comparison are shown in our recent work.¹⁹

376

377 **Validation of Protocol**

378 The whole procedure is validated in our recent work and the supplemental information.¹⁹

379

380 **General Notes and Troubleshooting**

381 All procedures and conditions assumed normal conditions. Once an enzyme is immobilized on
382 various MOFs, there could be additional considerations that are worth mentioning to better utilize
383 the formed composites.

384 1. Cause of activity difference. For biomaterials/biocatalyst development purposes, the
385 molecular level details of the performance of enzymes is often needed, in order to understand
386 the functionality and guide the rational design of future MOF platforms. Depending on enzyme
387 and metal/ligand selection, there could be multiple reasons to cause the differences in enzyme
388 activity on different MOFs even under the same loading quantity. For example, different MOFs
389 may present different hydrophilicity and thus, result in different enzyme intrinsic dynamics
390 (most enzymes are hydrophilic and could be less active in a hydrophobic scaffold). Smaller
391 ligand may present smaller gaps/pores and thus, tight restrictions to enzymes, which would
392 also reduce the activity. For large-substrate enzymes, the amount of active site being exposed
393 to the solution is directly related to the activity. These structure/dynamic details of enzymes
394 upon biomineralization in MOFs can be probed using our recently developed techniques.⁴⁰⁻⁴¹

395 2. Disassemble MOFs to release enzymes. This is a common practice to confirm the loading
396 capacity and enzyme functionality after MOF encapsulation. Most MOFs are unstable under
397 either acidic or basic pHs as well as specific buffers (ca. PBS buffer). Thus, it is possible to
398 disassemble MOFs to release the enzyme and double check the integrity using circular
399 dichroism (CD) and activity assay. This is also an effective approach to confirm the loading
400 capacity.

401 3. Other synthetic conditions of enzyme@MOF composites. We found practically useful if
402 slightly higher temperatures (<60 °C) can help the formation of co-crystals without damage
403 some enzymes. It is also possible to use some modulators to adjust the rate of crystal
404 formation.

405 4. Cautions on metal/ligand selection according to the target enzyme. Metalloenzymes should
406 receive additional caution when being biomineralized this way because the endogenous metal
407 binding site may be occupied by the metal ions required for MOF formation. Our typical
408 suggestion would be to use MOFs with different charges than the endogenous metal. For
409 example, to immobilize human Cu/Zn superoxide dismutase (SOD1),⁴²⁻⁴³ Al³⁺ should be used
410 as the metal center of MOF.

411 5. Imperfect crystallinity and low porosity of MOFs formed in the aqueous phase. High
412 crystallinity enhances stability and substrate diffusivity for sure. However, if an amorphous or
413 multi-phase crystal is formed when enzyme is co-crystallized with certain metal ions and
414 ligands, which can be easily and quickly confirmed with PXRD, we still suggest testing the
415 reusability of enzymes on these MOFs. It is likely that the imperfect crystals are still able to
416 immobilize enzyme and retain enzyme activity and thus, be useful for biocatalysis applications.
417 It is especially useful when only specific metal ions can be applied to immobilize a
418 metalloenzyme and imperfect crystals are the only option.

419 6. Stability and reusability. The enzyme@MOF composites are generally stable after
420 interacting with substrates under reaction conditions. This has been confirmed with our
421 reusability tests in the key reference.¹⁹

422

423 **Acknowledgements**

424 This work is supported by the National Science Foundation (NSF: MCB 1942596 and DMR
425 2306137). We appreciate Dr. Peter G. Fajer for generously donating the Bruker ECS-106 to our
426 institution (North Dakota State University) and Dr. Wayne Hubbell for generously providing the
427 EPR data analysis software.

428

429 **Competing Interests**

430 The authors declare no competing interests.

431

432 **Ethical Considerations**

433 No human subjects are involved in this work.

434

435 **References**

1. Hoarau, M.; Badieyan, S.; Marsh, E. N. G., Immobilized enzymes: understanding enzyme - surface interactions at the molecular level. *Org. Biomol. Chem.* **2017**, *15* (45), 9539-9551.
2. Sheldon, R. A., Enzyme Immobilization: The Quest for Optimum Performance. *Adv. Syn. Catal.* **2007**, *349* (8-9), 1289-1307.
3. Hartmann, M.; Jung, D., Biocatalysis with enzymes immobilized on mesoporous hosts: the status quo and future trends. *J. Mater. Chem.* **2010**, *20* (5), 844-857.
4. Datta, S.; Christena, L. R.; Rajaram, Y. R. S., Enzyme immobilization: an overview on techniques and support materials. *3 Biotech* **2013**, *3* (1), 1-9.
5. Hartmann, M.; Kostrov, X., Immobilization of enzymes on porous silicas - benefits and challenges. *Chem. Soc. Rev.* **2013**, *42* (15), 6277-6289.
6. Li, P.; Modica, J. A.; Howarth, A. J.; Vargas L, E.; Moghadam, P. Z.; Snurr, R. Q.; Mrksich, M.; Hupp, J. T.; Farha, O. K., Toward Design Rules for Enzyme Immobilization in Hierarchical Mesoporous Metal-Organic Frameworks. *Chem* **2016**, *1* (1), 154-169.
7. Li, P.; Chen, Q.; Wang, T. C.; Vermeulen, N. A.; Mehdi, B. L.; Dohnalkova, A.; Browning, N. D.; Shen, D.; Anderson, R.; Gómez-Gualdrón, D. A.; Cetin, F. M.; Jagiello, J.; Asiri, A. M.; Stoddart, J. F.; Farha, O. K., Hierarchically Engineered Mesoporous Metal-Organic Frameworks toward Cell-free Immobilized Enzyme Systems. *Chem* **2018**, *4* (5), 1022-1034.
8. Du, Y.; Jia, X.; Zhong, L.; Jiao, Y.; Zhang, Z.; Wang, Z.; Feng, Y.; Bilal, M.; Cui, J.; Jia, S., Metal-organic frameworks with different dimensionalities: An ideal host platform for enzyme@MOF composites. *Coord. Chem. Rev.* **2022**, *454*, 214327.
9. Wang, X.; Lan, P. C.; Ma, S., Metal-Organic Frameworks for Enzyme Immobilization: Beyond Host Matrix Materials. *ACS Centr. Sci.* **2020**, *6*, 1497-1506.
10. Drout, R. J.; Robison, L.; Farha, O. K., Catalytic applications of enzymes encapsulated in metal-organic frameworks. *Coord. Chem. Rev.* **2019**, *381*, 151-160.
11. Gkaniatsou, E.; Sicard, C. m.; Ricoux, R. m.; Benahmed, L.; Bourdreux, F.; Zhang, Q.; Serre, C.; Mahy, J.-P.; Steunou, N., Enzyme Encapsulation in Mesoporous Metal-Organic

463 Frameworks for Selective Biodegradation of Harmful Dye Molecules. *Angew. Chem. Inter. Ed.*
464 **2018**, *57* (49), 16141-16146.

465 12. Lian, X.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou,
466 H.-C., Enzyme-MOF (metal-organic framework) composites. *Chem. Soc. Rev.* **2017**, *46* (11),
467 3386-3401.

468 13. Gkaniatsou, E.; Sicard, C. m.; Ricoux, R. m.; Mahy, J.-P.; Steunou, N.; Serre, C., Metal-
469 organic frameworks: a novel host platform for enzymatic catalysis and detection. *Mater. Horiz.*
470 **2017**, *4* (1), 55-63.

471 14. An, H.; Song, J.; Wang, T.; Xiao, N.; Zhang, Z.; Cheng, P.; Huang, H.; Ma, S.; Chen, Y.,
472 Metal-Organic Framework Disintegrants: A New Generation of Enzyme Preparation Platforms
473 with Boosted Activity. *Angew. Chem. Int. Ed.* **2020**, *59* (10.1002/anie.202007827), 16764-
474 16769.

475 15. Lyu, F.; Zhang, Y.; Zare, R. N.; Ge, J.; Liu, Z., One-Pot Synthesis of Protein-Embedded-
476 Supporting Information. *Nano Letters* **2014**, *14* (10), 5761-5765.

477 16. Pan, Y.; Li, H.; Farmakes, J.; Xiao, F.; Chen, B.; Ma, S.; Yang, Z., How Do Enzymes
478 Orient on Metal-Organic Framework (MOF) Surfaces? *J. Am. Chem. Soc.* **2018**, *140*, 16032-
479 16036.

480 17. Pan, Y.; Li, Q.; Liu, W.; Armstrong, Z.; MacRae, A.; Feng, L.; McNeff, C.; Zhao, P.; Li,
481 H.; Yang, Z., Unveiling the orientation and dynamics of enzymes in unstructured artificial
482 compartments of metal-organic frameworks (MOFs). *Nanoscale* **2023**, *15* (6), 2573-2577.

483 18. Li, Q.; Armstrong, Z.; Ugrinov, A.; Chen, B.; Liu, B.; Li, H.; Pan, Y.; Yang, Z., Metal-
484 Organic Materials Enhance Proteolytic Selectivity, Efficiency, and Reusability of Trypsin: A
485 Time-Resolved Study on Proteolysis. *ACS Appl. Mater. Interfaces* **2022**, *15* (7), 8927-8936.

486 19. Jordahl, D.; Armstrong, Z.; Li, Q.; Gao, R.; Liu, W.; Johnson, K.; Brown, W.; Scheiwiller,
487 A.; Feng, L.; Ugrinov, A.; Mao, H.; Chen, B.; Quadir, M.; Pan, Y.; Li, H.; Yang, Z., Expanding the
488 library of Metal-Organic Frameworks (MOFs) for enzyme biomineralization. *ACS Appl. Mater.
489 Interfaces* **2022**, *14* (46), 51619-51629.

490 20. Pan, Y.; Li, Q.; Li, H.; Farmakes, J.; Ugrinov, A.; Zhu, X.; Lai, Z.; Chen, B.; Yang, Z., A
491 General Ca-MOM Platform with Enhanced Acid/Base Stability for Enzyme Biocatalysis. *Chem
492 Catal.* **2021**, *1*, 146-161.

493 21. Pan, Y.; Li, H.; Lenertz, M.; Han, Y.; Ugrinov, A.; Kilin, D.; Chen, B.; Yang, Z., One-pot
494 Synthesis of Enzyme@Metal-Organic Materials (MOM) Biocomposites for Enzyme Biocatalysis.
495 *Green Chem.* **2021**, *33*, 4466-4476.

496 22. Li, Q.; Pan, Y.; Li, H.; Lenertz, M.; Reed, K.; Jordahl, D.; Bjerke, T.; Ugrinov, A.; Chen,
497 B.; Yang, Z., Cascade/parallel biocatalysis via multi-enzyme encapsulation on Metal-Organic
498 Materials for rapid and sustainable biomass degradation. *ACS Appl. Mater. Interfaces* **2021**, *13*,
499 43085-43093.

500 23. Li, Q.; Pan, Y.; Li, H.; Alhalhooly, L.; Li, Y.; Chen, B.; Choi, Y.; Yang, Z., Size-tunable
501 Metal-Organic Framework Coated Magnetic Nanoparticles for Enzyme Encapsulation and
502 Large-Substrate Biocatalysis. *ACS Appl. Mater. Interfaces* **2020**, *12*, 41794-41801.

503 24. Farmakes, J.; Schuster, I.; Overby, A.; Alhalhooly, L.; Lenertz, M.; Li, Q.; Ugrinov, A.;
504 Choi, Y.; Pan, Y.; Yang, Z., Enzyme immobilization on graphene oxide (GO) surface via one-pot
505 synthesis of GO/metal-organic framework composites for large-substrate biocatalysis. *ACS
506 Appl. Mater. Interfaces* **2020**, *12* (20), 23119-23126.

507 25. Neupane, S.; Patnode, K.; Li, H.; Baryeh, K.; Liu, G.; Hu, J.; Chen, B.; Pan, Y.; Yang, Z.,
508 Enhancing Enzyme Immobilization on Carbon Nanotubes via Metal-Organic Frameworks for
509 Large-Substrate Biocatalysis. *ACS Appl. Mater. Interfaces* **2019**, *11* (12), 12133-12141.

510 26. Harding, J. H.; Duffy, D. M.; Sushko, M. L.; Rodger, P. M.; Quigley, D.; Elliott, J. a.,
511 Computational techniques at the organic-inorganic interface in biomineralization. *Chem. Rev.*
512 **2008**, *108* (11), 4823-54.

513 27. Nudelman, F.; Sommerdijk, N. A. J. M., Biomineralization as an Inspiration for Materials
514 Chemistry. *Angew. Chem. Int. Ed.* **2012**, 51 (27), 6582-6596.

515 28. Dunleavy, R.; Lu, L.; Kiely, C. J.; McIntosh, S.; Berger, B. W., Single-enzyme
516 biomineralization of cadmium sulfide nanocrystals with controlled optical properties. *Proc. Natl.*
517 *Acad. Sci.* **2016**, 113 (19), 5275.

518 29. Liao, F. S.; Lo, W. S.; Hsu, Y. S.; Wu, C. C.; Wang, S. C.; Shieh, F. K.; Morabito, J. V.;
519 Chou, L. Y.; Wu, K. C. W.; Tsung, C. K., Shielding against Unfolding by Embedding Enzymes in
520 Metal-Organic Frameworks via a de Novo Approach. *J. Am. Chem. Soc.* **2017**, 139 (19), 6530-
521 6533.

522 30. Liang, K.; Ricco, R.; Doherty, C. M.; Styles, M. J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock,
523 D.; Hill, A. J.; Doonan, C. J.; Falcaro, P., Biomimetic mineralization of metal-organic frameworks
524 as protective coatings for biomacromolecules. *Nat. Commun.* **2015**, 6, 7240.

525 31. Zheng, Z.; Alawadhi, A. H.; Yaghi, O. M., Green Synthesis and Scale-Up of MOFs
526 for Water Harvesting from Air. *Mol. Front. J.* **2023**, 1-20.

527 32. Zhao, M.; Wang, H.-B.; Ji, L.-N.; Mao, Z.-W., Insights into metalloenzyme
528 microenvironments: biomimetic metal complexes with a functional second coordination sphere.
529 *Chem. Soc. Rev.* **2013**, 42 (21), 8360-8375.

530 33. Cohen, S. M., A Bioinorganic Approach to Fragment-Based Drug Discovery Targeting
531 Metalloenzymes. *Acc. Chem. Res.* **2017**, 50 (8), 2007-2016.

532 34. Mesbah, N. M.; Wiegel, J., Biochemical characterization of halophilic, alkalithermophilic
533 amylopullulanase Puld7 and truncated amylopullulanases Puld7ΔN and Puld7ΔC. *Int. J. Biol.*
534 *Macromol.* **2018**, 111, 632-638.

535 35. Chen, G.; Kou, X.; Huang, S.; Tong, L.; Shen, Y.; Zhu, W.; Zhu, F.; Ouyang, G.,
536 Modulating the Biofunctionality of Metal-Organic-Framework-Encapsulated Enzymes through
537 Controllable Embedding Patterns. *Angew. Chem. Int. Ed.* **2020**, 59 (7), 2867-2874.

538 36. Jian, M.; Liu, B.; Liu, R.; Qu, J.; Wang, H.; Zhang, X., Water-based synthesis of zeolitic
539 imidazolate framework-8 with high morphology level at room temperature. *RSC Adv.* **2015**, 5
540 (60), 48433-48441.

541 37. Gumilar, G.; Kaneti, Y. V.; Henzie, J.; Chatterjee, S.; Na, J.; Yuliarto, B.; Nugraha, N.;
542 Patah, A.; Bhaumik, A.; Yamauchi, Y., General synthesis of hierarchical sheet/plate-like M-BDC
543 (M = Cu, Mn, Ni, and Zr) metal-organic frameworks for electrochemical non-enzymatic glucose
544 sensing. *Chem. Sci.* **2020**, 11 (14), 3644-3655.

545 38. Rawool, C. R.; Karna, S. P.; Srivastava, A. K., Enhancing the supercapacitive
546 performance of Nickel based metal organic framework-carbon nanofibers composite by
547 changing the ligands. *Electrochim. Acta* **2019**, 294, 345-356.

548 39. Alaerts, L.; Maes, M.; Giebelter, L.; Jacobs, P. A.; Martens, J. A.; Denayer, J. F. M.;
549 Kirschhock, C. E. A.; De Vos, D. E., Selective Adsorption and Separation of ortho-Substituted
550 Alkylaromatics with the Microporous Aluminum Terephthalate MIL-53. *J. Am. Chem. Soc.* **2008**,
551 130 (43), 14170-14178.

552 40. Pan, Y.; Li, H.; Li, Q.; Lenertz, M.; Zhu, X.; Chen, B.; Yang, Z., Site-directed spin
553 labeling-Electron Paramagnetic Resonance spectroscopy in biocatalysis: enzyme orientation
554 and dynamics in nanoscale confinement. *Chem Catal.* **2021**, 1, 207-231.

555 41. Pan, Y.; Li, H.; Li, Q.; Lenertz, M.; Schuster, I.; Jordahl, D.; Zhu, X.; Chen, B.; Yang, Z.,
556 Protocol for resolving enzyme orientation and dynamics in advanced porous materials via
557 SDSL-EPR. *STAR Protoc.* **2021**, 2 (3), 100676.

558 42. McCord, J. M.; Fridovich, I., Superoxide Dismutase: AN ENZYMIC FUNCTION FOR
559 ERYTHROCUPIREIN (HEMOCUPREIN). *J. Biol. Chem.* **1969**, 244 (22), 6049-6055.

560 43. Tainer, J. A.; Getzoff, E. D.; Richardson, J. S.; Richardson, D. C., Structure and
561 mechanism of copper, zinc superoxide dismutase. *Nature* **1983**, 306, 284.