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ABSTRACT

Video scene analysis is a well-investigated area where researchers
have devoted efforts to detect and classify people and objects in
the scene. However, real-life scenes are more complex: the intrinsic
states of the objects (e.g., machine operating states or human vital
signals) are often overlooked by vision-based scene analysis. Re-
cent work has proposed a radio frequency (RF) sensing technique,
wireless vibrometry, that employs wireless signals to sense subtle
vibrations from the objects and infer their internal states. We en-
vision that the combination of video scene analysis with wireless
vibrometry form a more comprehensive understanding of the scene,
namely “rich scene analysis”. However, the RF sensors used in wire-
less vibrometry only provide time series, and it is challenging to
associate these time series data with multiple real-world objects. We
propose a real-time RF-vision sensor fusion system, Capricorn, that
efficiently builds a cross-modal correspondence between visual pix-
els and RF time series to better understand the complex natures of
a scene. The vision sensors in Capricorn model the surrounding en-
vironment in 3D and obtain the distances of different objects. In the
RF domain, the distance is proportional to the signal time-of-flight
(ToF), and we can leverage the ToF to separate the RF time series cor-
responding to each object. The RF-vision sensor fusion in Capricorn
brings multiple benefits. The vision sensors provide environmental
contexts to guide the processing of RF data, which helps us select the
most appropriate algorithms and models. Meanwhile, the RF sensor
yields additional information that is originally invisible to vision
sensors, providing insight into objects’ intrinsic states. Our exten-
sive evaluations show that Capricorn real-timely monitors multiple
appliances’ operating status with an accuracy of 97%+ and recovers
vital signals like respirations from multiple people. A video (https:
//youtu.be/b-5nav3Fi78) demonstrates the capability of Capricorn.
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1 INTRODUCTION

I. Motivation. Situation awareness is an operator’s internalized
mental model of its surrounding environment [20], which is crit-
ical for the safety and convenience of autonomous robots or hu-
man decision-makers (e.g., first responders) [31]. Building situation
awareness requires an understanding of the states of the objects in
the scene, which can be divided into two major categories: extrinsic
state and intrinsic state. The extrinsic state refers to the visually ob-
servable properties of an object (e.g., object type, shape, color, and
location), which are often acquired by vision sensors like cameras.
On the flip side, the intrinsic state is concomitant with the internal
physical or biological activities of that object (e.g. machine operat-
ing status or human health conditions). Simultaneous estimation of
both extrinsic and intrinsic states of the objects results in a rich scene
analysis; hence, it boosts the construction of situational awareness.
II. State-of-the-art and Challenges. Scene analysis using ob-
jects’ extrinsic states has been a well-studied research area. With
advances in computer vision technologies, video scene analysis
systems [1] can effectively perform object detection and recogni-
tion [7, 51, 52] or semantic segmentation [37, 47, 64, 79]. However,
objects’ intrinsic states are usually hidden from off-the-shelf vision
sensors. While there are exceptions like vibration sensing using
high-speed cameras [14, 60] or blood pulse sensing from video [32],
these systems require special devices or settings that are generally
not available in real life. The intrinsic states are usually measured by
attaching a sensor (e.g., IMU sensor [50], ECG sensor [50], PPG sen-
sor [68], or geophones [26]) to the sensing targets. However, attach-
ing sensors to objects is not always possible since the process can be
burdensome, and sometime we may not have control of the object.

Recent research has proposed using wireless sensing technolo-
gies to remotely sense the objects’ intrinsic states, where we emit
a traveling wave to the objects and collect the reflected responses.
In this case, we can use the reflected wave to sense vibrations (i.e.,
tiny motions), which reveals information about the intrinsic states.
This technology is known as wireless vibrometry. Some wireless vi-
brometry work focused on high-frequency physical phenomenons
such as vibration generated by industrial machines or household
appliances using millimeter wave (mmWave) [27], radio-frequency
identification (RFID) [35]), ultra-wideband (UWB) radar [65] or
laser [81]. Meanwhile, others focused on sensing lower-frequency
physical phenomenons such as human heartbeat and respiration
rate using WiFi [63], frequency-modulated continuous-wave radar
(FMCW) [2, 80] or UWB radar [83].
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Figure 1: A high-level overview of Capricorn. Information obtained from the depth sensor serves as a bridge for Capricorn to
associate RF times series data with camera pixel data. This RF-vision association allows Capricorn to choose the appropriate
algorithms using object type information and infer object intrinsic states in-real time.

While the existing radio-frequency (RF) sensing systems can
provide inferences about an object’s intrinsic states via wireless vi-
brometry, they face two major challenges. First, the existing wireless
vibrometry sensing systems presuppose the existence of a partic-
ular type of object (e.g., a person) in the scene to process the signal
accordingly, facing adaptability issues if this presumption fails. For
instance, WiFi-based wireless vibrometry systems have been used
to extract acoustic vibrations [35], count human breaths [63], or
recognize human gaits [61]. Since processing methods are vastly
different for each signal type, these systems often assume the ex-
istence of a particular sensing target in the scene and use a fixed,
non-adaptive pipeline. Second, the existing vibrometry systems
have difficulties efficiently handling a dynamic number of objects
in real-time. Early RF sensing research [55, 62, 78] focused on only
a single target. Recent work has been proposed using blind source
separation like a independent component analysis [76, 77] or a blind
search in the angle [72] or distance [65] to handle multiple objects.
However, in a dynamic environment, the number of target objects
is indefinite and often changes. Without the prior knowledge of
the number or location of objects in the scene, these techniques
rely on empirical thresholds that are prone to missing objects with
a low signal-to-noise ratio (SNR) or perceiving nonexistent “ghost”
objects. Moreover, these algorithms are often computationally in-
tensive and struggle in resource-constrained devices in real-time.
IIL. Proposed System. We propose Capricorn, a real-time RF-vision
sensor fusion system to realize our vision of rich scene analysis. The
combination of video scene analysis and wireless vibrometry allows
us to better understand the complex natures of a scene. Our system
is a special case of general multlimodal sensor fusion systems con-
sisting of vision sensors (cameras and depth sensors) and RF sensors
(UWB radar). The key methodology of Capricorn is to utilize the
shared geometry information, namely distance, as a bridge to con-
nect RF signals with the visual world. An RF sensor can estimate
target distances using signal time-of-flight (ToF). Meanwhile, the
distance of the object can be also measured using a depth sensor
aligned with the camera. We can then build associations between
camera pixels and RF time series using the shared distance. This RF-
vision association brings chances to solve the challenges mentioned
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in the previous paragraph. To handle the first challenge, the pro-
posed system leverages the information from the vision sensor as a
prior to choose the most suitable filters and machine learning mod-
els for processing the RF signals. This scheme allows Capricorn to
use a single RF sensor to make various types of inferences of objects
and identify their intrinsic states. To handle the second challenge,
Capricorn first aligns the depth sensor and the camera to form a 3D
model of the world and then estimates the distance of each object
in the scene. With the distance of each object known, Capricorn
can separate the RF signal coming from different objects using ToF
without any blind search or blind decomposition technique.

Figure 1 shows an overview of the proposed system in a futuris-
tic smart-home, monitoring the appliance usage and health status
of the inhabitants. First, the extrinsic sensing pipeline in Capri-
corn uses object detection, classification, and tracking algorithms
to infer the object types and their locations (i.e., bounding boxes
and distance) in the scene. Second, the intrinsic sensing pipeline in
Capricorn uses the distance information estimated above to extract
vibration signals for each object from a three-dimensional RF data
stream (i.e., time, distance, and intensity). Finally, Capricorn lever-
ages the vibration signals and the object type information from
the camera to estimate the objects’ intrinsic states (i.e., machine
operating states and human respiration rate).

To evaluate Capricorn, we implement the proposed system using
Robot Operation System (ROS) and conduct extensive evaluations
in several real-world scenarios. First, we place Capricorn in work-
shop and living room environments for the task of multi-appliance
usage detection. Capricorn robustly detects not only the objects in
the scenes and their corresponding distances but also identifies the
intrinsic states of these objects. Our results show that the system
can estimate the operating states of machines with an accuracy of
more than 97%. Second, we demonstrate that the sensing capability
of Capricorn can benefit complex event detection applications by
recognizing a richer set of simple atomic events. We also evalu-
ate Capricorn quantitatively regarding latency. With the fusion
between vision, RF, and depth sensors, Capricorn generates infer-
ences about both the object’s intrinsic and extrinsic states in less
than 200 ms. Third, we showcase that the same system can be ap-
plied for the health monitoring of multiple individuals. Capricorn
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can simultaneously calculate multiple person’s reparation rates at
a mean error of 1.06 breath-per-minute.

Through Capricorn, we present a novel problem of rich scene
analysis to the sensing community, where we simultaneously es-
timate the extrinsic and intrinsic states of multiple objects in real-
time. Apart from the multimodal sensor system integration, the
major contributions of this work are as follows:
® RF-vision Association. The addition of RF sensing to scene anal-
ysis systems allows us to make inferences about objects’ internal
states, which are originally invisible to vision sensors. To achieve
this goal, Capricorn establishes a cross-model association between
RF time series and visual pixels using the shared distance estimation
from both the RF and vision sensors.

o Context-awareness. The proposed technique enables the adap-
tive processing of RF signals based on the environmental context
provided by vision pipelines. These contexts (e.g., object types and
numbers) allow us to modularly implement signal processing algo-
rithms and internal state classifiers for each object type and then
adaptively select the most suitable modules. The context informa-
tion enhances state classification accuracy and speed by reducing
search space [11].

® Real-time System. The key idea in Capricorn ’s architecture de-
sign is that the inferences from one sensor can serve as the prior
information for processing another sensor. The object detection re-
sults allow Capricorn to estimate the distance of objects in the scene
using the depth map without clustering or background subtraction.
The estimated distances then serve as the prior information to sep-
arate the RF data for individual objects without any blind search.
These optimizations reduce the latency and enable Capricorn to
perform the rich scene analysis in real-time. We also provide a
multi-view version of Capricorn that employs a network of sen-
sors viewing a scene from different angles to demonstrate the sys-
tem’s scalability. The implementation of Capricorn is open-sourced
(https://github.com/nesl/Capricorn).

2 SYSTEM DESIGN

In this section, we first talk about our choice of sensors and then
provide an overview of Capricorn. Afterwards, we present three
primary units of the proposed system with appropriate figures,
descriptions, and algorithms: multimodal data collection, sensor
fusion (i.e., extrinsic and intrinsic object state estimations), and in-
formation storage. Finally, we scale up Capricorn by using multiple
sensor nodes to cover a wider range of views.

2.1

As we have discussed in Section 1, a rich scene analysis system
for situational awareness should simultaneously estimate intrinsic
and extrinsic objects states in the scene. To achieve this goal, we
carefully choose a set of complementary sensors.

Firstly, as a unique sensing modality that perceives the world
similarly to a human, the camera is pervasive in intelligent systems
for scene analysis. We included a camera in Capricorn to lever-
age the previous accomplishments in the domain of video scene
analysis. For intrinsic states sensing, we utilized impulse-radio
ultra-wideband (UWB) radar as the RF sensing device. The UWB
radar is capable of recovering vibrations from multiple objects si-
multaneously in the same scan [65]. This capability is essential

Multimodal Sensors
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when analyzing a complex scene with many objects. Furthermore,
UWRB radar is both energy and cost efficient. The typical power
consumption of a UWB radar development board is expected to
be 600 mW [69], which costs one-third of a mmWave radar unit
(1730-2100mW) [58]. With UWB technologies integrated on flag-
ship cellphones like iPhone, UWB radar is also emerging as a mobile
computing sensor of choice.

However, wireless sensing modalities like UWB produces only
multiple time series, and it is difficult to build a one-on-one asso-
ciation between these time series with the images of real-world
objects. As discussed before in the introduction, we use the shared
geometrical information (e.g., distance) to combine the RF and vi-
sion modalities. UWB radars can perform decimeter-level ranging
as it works with pulses of a wide bandwidth. In other words, UWB
radar provides distance information alongside vibrations. On the
vision end, we combine a camera and a depth sensor that provide
aligned depth and color (RGB) frames to models their surround-
ing environments in 3D. One of such possible choices is the Intel
Realsense Depth Camera that is sufficiently miniaturized and rea-
sonably priced. We considered to use only a 2D camera for the
extrinsic sensing, since there are also some works on depth esti-
mation using the image of a single camera. However, these works
are still less mature to be applicable in Capricorn. For example,
UWRB sensors typically obtain a precision of 5 cm and resolution
of 10 cm [65]. Meanwhile, some recent works on depth estima-
tion using a monocular camera only achieve an average error of
20.3cm [42, 43], which may incur misalignment when we connect
images to their corresponding UWB time series. Also, monocular
camera depth estimations are mostly learning-based that relies
heavily on training data. These models may not generalize well
in unseen indoor environments since the original image only con-
tains partial relative depth information. In summary, we pick UWB
radar as the intrinsic sensor for the extraction of multiple subjects’
vibrations, and we employ a RGBD camera as the extrinsic sensors
for a complimentary 3D modeling of the scene.

2.2 Proposed Architecture

The architecture of Capricorn consists of three different units: data
collection, sensor fusion, and information storage. Figure 2 shows
the overall architecture as blocks and interactions between different
units as directed arrows.

o First, the data collection unit collects raw sensor data from differ-
ent sensors simultaneously and feeds the data into the sensor fusion
unit of Capricorn in a publish—subscribe (Pub-Sub) pattern. A com-
prehensive description of the data collection process is discussed
in Section 3.

e Second, the sensor fusion unit processes the sensor data and es-
timates the extrinsic and intrinsic object states. There are two sep-
arate pipelines. The extrinsic sensing pipeline utilizes the vision
sensor to detect and track the objects in the scene. The intrinsic
sensing pipeline utilizes RF sensors to detect the intrinsic states of
different objects in the scene. These pipelines are bridged by the
common object distance information (Section 4 and 5).

o Third, the information storage unit generates an in-memory table
to store the inference results of the sensing data and facilitate the fu-
sion between different modalities. It also allows for the visualization
functionalities of Capricorn (Section 6).
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As shown in Figure 2, Capricorn takes a late fusion approach: the
vision sensors first make inferences on their own, and then these
inference results are shared with the wireless sensors by updat-
ing and querying a shared in-memory database. There are three
distinct situations where the fusion takes place. First, the object
bounding boxes estimated from the camera images are leveraged to
estimate the distance of the objects in these bounding boxes when
we align the depth frames with the camera frames (to be introduced
in Section 4.3). This information helps Capricorn reduce the search-
ing space of the distance estimation algorithm without any usage
of background subtraction or clustering algorithms [21-23, 39].
Second, once the LiDAR camera have built a 3D model of the sur-
rounding world and identifies the objects of interest, the distances
of these objects are used by the UWB radar to identify and separate
objects’ RF signals. This process avoids blindly searching all the
possible distances in the UWB data matrix and reduces the time
complexity (see Sec. 5.1). Finally, Capricorn uses the object type in-
formation (from the extrinsic sensing pipeline) to choose a specific
object state estimation algorithm in the intrinsic sensing pipeline.
Instead of being a single model, the object state estimator in Capri-
corn is a collection of multiple modular models and algorithms,
each responsible for a different type of object. The extrinsic sensors
make inferences about the object type, which serves as an important
context for the intrinsic sensing pipeline to pick the most suitable
signal processing module. This modular design simplifies the ac-
curacy requirements on the object state classifiers by reducing the
complexity of its decision boundaries (details to follow in Sec. 5.3).

3 MULTIMODAL DATA COLLECTION UNIT

In the proposed system, there are three drivers to collect the vision,
depth, and RF sensor data, respectively. The first two drivers process
the raw data coming from the camera and depth sensors, which
acquire both the camera and depth frames at a rate of 30 fps. The
camera frames are RGB pixel matrices, and the depth frames contain
the absolute distance (in meters) as a matrix. The RGB and depth
frames are aligned together as follows. Let us consider K¢ and Kg4
representing parameters of vision and depth sensors, respectively;
and T4 is the transformation matrix between the RGB plane and
the depth plane. All the three transforms are predetermined by the
sensor manufacturing and placements. Let us also use [x, y, d]T to

Camera |[ ) ) )
Driver Depth Driver , UWB Driver J Data_
! — 1 . Collection
B | . uffering an .
‘ Frame Alignment Streaming Section 3
Depth Pub/Sub | Camera Pub/Sub IUWB Data Pub/Sub
- N
Object Detection | S . Obiject Distance:
_ and Classification 1 | Vibration Extraction T QUERY()
Extrin\sicI Ingrinsicph IN - Sensor
Object Tracking 1 ase Tolse Fusion
\ Correction ) o
I | Section 4/5
L.l L 1 [ Object State Object Type:
\ Depth Estimation J : Estimation 4"—QUERY()
Object: CREAW[E()/UPDATE() Object:\UPDATE()
In-memory Object Table T . B
(ID, Timestamp, Object Type, Bounding Box, Distance, Information
Vibration, State, Persistent) Storage
Visualization Section 6

Figure 2: An overview of Capricorn.
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represent a pixel coordinate in the depth plane where d is the depth
value at [x,y]7. Then, the corresponding pixel value [x',y,d |7
in the aligned depth plane can be calculated by projecting original
[x,4,d]T to the 3D space and applying the transformation T,q, and
then projecting back into the image coordinate as follows [16]:

d[x,y, 117 =K TeqKg 'd[x,y,1]7 (1)

Afterwards, the two aligned frames are published as the RGB and
depth streams, respectively.

The third driver collects the UWB radar data. This driver runs
two separate threads to smoothly stream the RF frames to the sen-
sor fusion unit. The first thread listens for a hardware interrupt
indicating a new frame’s arrival, allocates a memory space for the
new frame, and pushes the new frame into a shared buffer. The
second thread streams the RF frame out of that shared buffer once
the buffer is full.

4 SENSOR FUSION UNIT: EXTRINSIC SENSING

There are two processing pipelines in the sensor fusion unit: ex-
trinsic sensing and intrinsic sensing. The extrinsic sensing pipeline
utilizes the object detection and tracking algorithms to get the ob-
ject types, distances, and bounding boxes in the scene (the current
Section). The intrinsic sensing pipeline utilizes a three-dimensional
RF stream (i.e., time, depth, and intensity) and the distance informa-
tion from the extrinsic pipeline to obtain the vibration patterns of
different objects (Section 5). In the following sections, we discuss
these two pipelines and the overall sensor fusion mechanism.

While existing wireless vibrometry systems [35, 63, 65, 72, 81]
provide a new perspective to infer an object’s internal states via
vibrations, such systems experience challenges detecting and clas-
sifying objects. Also, the RF time series processing depends a lot on
the target object type because of the nature of the signals they pro-
duce. For example, the algorithms for classifying machine vibration
patterns and human respirations require very different filtering and
machine learning models. Therefore, we leverage vision sensors’
advantage to provide a dynamic context for RF data processing. The
extrinsic property sensing pipeline aims to (1) detect each object’s
location in the 3D space, (2) classify each object, and (3) keep track
of these detected objects over time.

4.1 Object Detection and Classification

For object detection and classification purposes, we process the
RGB images using a state-of-the-art object detection and classifi-
cation model, YOLOv5 [28]. The object detection and classification
model predicts classes and their corresponding bounding boxes
in the scene. From each RGB frame, we get a vector I; for each
detected object 0; as follows:

1" )
where o is the object type, (x;, y;, wj, hj) defines its bounding box,
and t; is the timestamp. For a single object in the scene, YOLOv5
can generate multiple overlapping boxes. We apply the soft non-
max suppression algorithm [8] to remove redundant boxes while
preserving the bounding boxes for visually overlapped objects.

4.2 Object Tracking

The proposed system then applies an object tracking algorithm on
the detected objects in the scene. The tracker learns the velocity

Ly = loj. xjoyj. wj: hjp 1)
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model (i.e., (vx,vy)) of each object in the scene using a Kalman
Filter [5]. Let us consider that the Kalman Filter maintains a state
vector s; N1 for the previously seen j! h object from the previous
N — 1 frames as follows:

y

J ]T

®)

where vy and vy are the velocities along x and y axis. In the N th
frame, the tracker receives the detected object vector I; for that

— sy X che ts
Sj,N-1= [x],yj,vj,v ,Wj,h],t]

object j and generates the state vector s;. y using the Kalman Fil-
ter. Then, the Kalman Filter adjusts the state vector s;. N oSN
according to the observation I; as follows:

©)

where K € R7* is the Kalman gain matrix, and H € R°*7 is the
observation model matrix.

The ultimate goal of the tracker is to associate the YOLO-detected
bounding boxes in the current frame with the existing objects in the
previous frames (whose information is kept by Kalman Filters). The
trackers use the Hungarian algorithm to find the optimal associa-
tions between the Kalman-predicted bounding boxes and the YOLO-
detected boxes, where the Intersection-over-Union (IoU) is used as a
metric to measure the distance between any pair of bounding boxes.

The tracker continues predicting the states of an object even if
it fails to associate it with any detected object in the subsequent
frames. If the association fails successively for next Tp,4x frames,
the tracker assumes the object is no longer present in the scene.

sj,N = N +K(Ij _Hsj,N)

4.3 Distance Estimation

In the third step of the extrinsic sensing pipeline, we fuse the depth
map with the inference results (bounding boxes) generated by the
object tracker to estimate the 3D coordinates of objects. Specifi-
cally, the bounding boxes serve as prior information to reduce the
complexity of this distance estimation process. Without any prior
information, we have to manually search the whole space and apply
clustering algorithms to discover candidate objects and their dis-
tances. The predicted bounding boxes help reduce the search space
by “drawing attention” to particular regions on the depth map.

Let us consider that we get the detected object state vector I;
(as in Equation (2)) where (x;,y;) and (wj, hj) define a bounding
box. We can directly apply these bounding boxes to the depth map,
as the color frame and the depth frame are aligned in Section 3
(see Figure 3). Within each bounding box, we draw a histogram of
each pixel’s depth value. On the histogram, we first remove all zero
values, and then we set a threshold to filter out the background
points, and select the depth of the most significant peak as the esti-
mated depth of the object. Now, for each object j, we have obtained
its location (xj,y;) in pixels and its depth Z; in meters under the
camera coordinate system. With the known camera intrinsic matrix
K. € R3*4, we can estimate the object’s 3D coordinates using

[xj,yj 117 = Ke[X;, Y}, 25,117 (5)

We can solve for X; and Y; to obtain the 3D coordinate of ob-
ject j, and then calculate the object’s euclidean distance d; =

\ /XJZ + sz + ZJZ. The object distance d; will be used later to build an

association between camera pixels and the UWB radar time series.
Now, at the end of the extrinsic sensing pipeline, we have obtained
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the objects’ images (bounding boxes), coordinates in 3D space, and
predicted types.

Figure 3: The extrinsic sensing pipeline of Capricorn. (Left)
Object types and corresponding bounding boxes. (Right)
Distance estimation for the detected objects.

5 SESNOR FUSION UNIT: INTRINSIC SENSING

The existing RF sensor data processing algorithms [65, 67, 72] pri-
marily utilize blind search techniques during intrinsic state estima-
tion due to the lack of object location information. As a result, they
are computationally intensive and error-prone. To overcome this
challenge, Capricorn firstly uses the estimated distance (as shown
in Section 5.1) to extract each object’s vibration data from the raw
UWSB signal in real-time. Then, Capricorn applies the phase noise
correction on the extracted vibration data (Section 5.2). Finally,
Capricorn estimates the intrinsic states of each object using the
most suitable signal processing and machine learning algorithm,
guided by the object type information (Section 5.3).

5.1 Vibration Extraction

The vibration extraction module first receives chunks of RF sensor
stream data from the multimodal data collection unit. The received
data is a two dimensional matrix M € CP*T | where D represents
the sensor-target distances, and T stands for time steps. The sensor-
target distances are discretized into several distance bins.

Without any prior knowledge of the object locations, existing
wireless vibrometry systems [65, 67, 72] rely on a blind search mech-
anism to locate the distance bins containing vibrations, sequentially
processing all the distance bins. For instance, UWHear [65] had
to apply phase noise correction (to be introduced later), and nu-
merous filters to remove the reflections caused by static objects.
Then, UWHear calculated the Herfindahl-Hirschman index (HHI)
for each distance bin. The distance bins with vibrating objects tend
to have high HHI values because their frequency spectrums contain
dominant frequency components. The entire time complexity is
O(n-Tlog(T)), where n is the number of total distance bins (e.g.,
n = 120 when the sensing range is 6 meters). Aside from the time
complexity, UWHear also suffers drastically in a dynamic scene
where the number of objects is not predetermined. If there are k
objects in the scene, the top-k distance bins with the highest HHI
index can be selected. However, in a dynamic scene with a vary-
ing number of objects, the authors had to rely on an error-prone
empirical threshold to choose the desired distance bins.

In Capricorn, we address the aforementioned issues using the
object distance information gathered from the extrinsic sensing
pipeline. For an object j whose distance is dj, we can locate its
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vibrations at the distance bin 7; as follows:

dj —dp
nj % (6)
Here gy is the granularity of distance bins (i.e., how much dis-
tance each bin covers). For our hardware setup, we have g
0.0514m [69]. The first dp meters in the received data are usually
discarded to minimize the interference of the signal leaking directly
from the UWB transmitter to the receiver. adj is an adjustment
term to compensate for the UWB radar’s distance estimation error
(which is theoretically 10.71 cm). We set adj € [—2, 2] based on a
set of empirical calibration measurements.
Once we calculate 7; for each object, we can take a slice from
the RF data matrix M in the distance axis, and extract a vibration
signal V;(t) € CT, such that:

+adj.

V(t) « Slice(M|D = n;). 7)
Ideally, this slicing operation gives us a few UWB time series con-
taining the vibration information of the objects. Any further pro-
cessing (i.e., phase noise correction and filtering) can be applied to
only these chosen UWB time series instead of the entire matrix M.
Here, the complexity of the vibration extraction algorithms drops
from O(n-TlogT) to O(m-TlogT), where m is the number of the ob-
jects of interest, n is the number of total distance bins, and m << n.
For our exemplar scene, the vibration profiles (spectrogram of the
selected time series) of the three appliances are shown in Figure 4.
From the spectrograms, it is visually apparent that in this exemplar
scene, the washing machine is in washing mode, the vacuum cleaner
is sweeping, while the fan is on speed three.

=

- m
Figure 4: Spectrogram extracted from the three objects using
an UWB radar sensor.

5.2 Phase Noise Correlation

Next, Capricorn applies a phase noise correction on the extracted
vibration time series V(t). Usually, the UWB raw data matrix M is
gradually collected frame by frame. Phase noise correction aims to
mitigate the displacements across frames [3].

To correct for the phase noise, Capricorn first selects a refer-
ence bin R(#) € CT that does not contain vibrations. Typically, the
first bin is the reference bin since it is very close to the sensor and
unlikely to contain any vibrations. Then, Capricorn calculates the
mean phase of this reference bin, denoted as $. For each subsequent
time step, Capricorn calculates the phase difference with respect
to 5 as follows:

A¢(t) = ¢ — phase(R(t)),t € [0,T]. 8)
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Finally, the proposed system applies the phase noise correction to
any vibration signal V() € CT using the following:

V(t) = V(t)exp™?) . ()

5.3 Object State Estimation

The last module of the intrinsic sensing pipeline is the object (in-
trinsic) state estimation. Capricorn estimates both discrete (e.g., ap-
pliance usages) and continuous (e.g., vital signals) types of intrinsic
object states. Unlike previous wireless vibrometry work [65, 67, 83],
Capricorn does not rely on any pre-assumptions about the existence
of a particular type of object in the scene. The proposed system
adaptively selects the most appropriate signal processing and ma-
chine learning algorithm to estimate the intrinsic states given the
object type information. Capricorn utilizes two types of estimators.
The first one is a discrete state estimator, built with the Support
Vector Machine (SVM) algorithm. The second one is a continuous
state estimator, built with the Variational Mode Decomposition
(VMD) algorithm.

5.3.1 Discrete State Estimation. The extracted vibration signal
V (t) after the phase noise correction still contains static compo-
nents and additive noise. As the first step of discrete state estimation,
Capricorn applies a high pass filter to remove the DC component
and low-frequency noise. The cutoff frequency of the high pass
filter is empirically set to 20Hz.

The vibrations from different objects have different patterns,
which are often manifested as various frequency peaks in the spec-
trum. As the second step, Capricorn performs the Fast Fourier
Transform (FFT) algorithm on the filtered time series to extract
frequency domain features. The features extracted by the FFT al-
gorithm are often too high-dimensional for any simple classifiers
since the length of FFT output is the same as the raw signal. We
further reduce the feature dimension by linearly grouping the fre-
quencies into b linear bins (i.e., b = 32 in our prototype), and use the
maximum magnitudes in each bin as the final feature value. This
techniques is similar to the MaxPooling layer in a neural network.

For the discrete state estimation, we train a group of lightweight
state classifiers M, one for each object type. Each model is trained
using the features described in the previous paragraph. An alter-
nate choice would be training a unified model for the union of all
the objects. However, a unified classification model deals with a
more complicated decision boundary (i.e., whose complexity will
grow with the types of the object Capricorn can support). Thus, the
unified model has to be sufficiently more complicated to achieve the
same performance as the individual models, which requires larger
amounts of data and longer inference time. Since we already know
the object type information from the extrinsic sensing pipeline,
we utilize that information to choose a certain model M; for a
specific object type j from a group of lightweight simple models M.
Algorithm 1 shows the psuedocode of the discrete state estimation.
Our solution requires some self-collected data to train these simple
classifiers for each object type, and further details can be found in
section 8.2.3. Thanks to the context information provided by sensor
fusion, our design is sufficiently modular so that in order to support
more object types, we just need a small amount of new data to train
a simple new model, rather than require large amounts of data to
retrain the whole classifier.



Capricorn: Towards Real-time Rich Scene Analysis Using RF-Vision Sensor Fusion

SenSys 22, November 6-9, 2022, Boston, MA, USA

Algorithm 1: Discrete object state estimation.

Algorithm 2: Continuous object state estimation.

Input: Extracted vibration signal V (#) and object type 0
Output: Discrete intrinsic object state s{,d

V(t) « HPF(V(¢));
2 QIf] « FFT(V(2));

/* apply the high pass filter =/
/* apply FFT algorithm */
/* feature size for classification */

-

=
1
o

-

s

«
T

/* applying

@

F «— MaxPool1D(Q[f1]), ps, stride = ps);
MaxPool1D(...) */

6 M; « select SVM(S.);

«— M predict(F)

J
return Si, a4

/* select a proper SVM model */

N

J
Sid
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5.3.2 Continuous State Estimation. When the sensing target is
a living being, it is more meaningful to estimate the intrinsic states
in a continuous manner. Previous works have shown the possibility
of continuously estimating and tracking the vital signals of a human
(i.e., respiration rate and heart rate) from vibrations [63, 83]. In this
case, Capricorn estimates the continuous state, which requires the
simultaneous extraction of vital signs from multiple living beings.
For the continuous state estimation, a longer buffer is necessary
to make meaningful inferences. Capricorn first concatenates the
sliced vibration signal V(¢)’s in a longer buffer (e.g., a duration
of 30 seconds). For vital signal extraction, model decomposition
methods have been proven to be effective [40, 45, 83]. Thus, sec-
ondly, Capricorn applies the VMD algorithm [17] to the extracted
vibration signal V(¢) [30]. The vibration signal from a living being
is a combination of respiration, heartbeat, body movement, and
environmental noise [83]. The VMD algorithm decomposes the
input signal V (t) into a number of band-limited sub-signals uy, (i.e.,
also known as intrinsic mode functions or IMFs) by solving the

following optimization problem [17]:

2
)

(10)

K-1
p
where the vibration signal V is decomposed into K different IMFs
uy. with center frequencies wg. The IMF uy with the lowest cen-
ter frequency gives us an estimation of the respiration rate. Third,
Capricorn performs the spectrum analysis on ug to generate its
spectrum Uy (f). The typical respiratory rate for a resting healthy
adult is 12-16 breaths-per-minute [4]. Thus, for the respiration
estimation, we focus only the frequency components between 0.13-
2Hz. Capricorn repeats the continuous estimation process for all
living objects in the scene, updating the continuous state using the
stored vibration data at regular intervals. Algorithm 2 shows the
continuous object state estimation process.

K-1
min
U, Wk

o [(S(t) + L) * uk(t)] e Jokt
Tt

6 INFORMATION STORAGE UNIT

The information storage unit creates an in-memory table and fur-
ther uses that table to provide the rich scene analysis information
via operations including “create”, “query”, “update”, and “delete”.
There are eight different entries in the in-memory table: primary
ID, time stamp, (object) type, distance, bounding box, vibration
(signal), (intrinsic) state, and persistence. Each row in the table is
used to keep track of these eight entries of an object as follows:

s.t. Z u = V(t)
k=0

340

Input: Extracted vibration signal V (), object type 0; = person
Output: Continuous intrinsic object state s{ .

IMF(t) < VMD(V(t)) ; /* calculate the VMD */
Uy (f),F(f) « FFT(IMF,) ; /% calculate the FFT %/
[« argmaxf[F(f) >4l /* low cut-off frequency */
s h g, [F() < Gl:
5 fo = Us| atgpuae, (Uo(F).f € [LADY];

Search x/

6 s — foxt;

w onom

/% high cut-off frequency */
/* Frequency Peak
e /* Convert to breath rate */

Jj
7 return Sic

1. The primary ID initially is generated by the object tracker (in the
extrinsic sensing pipeline) and it is fixed as long as the object is
present in the scene.

2.The time stamp represents the most recent time when object states
are updated.

3. The object type represents the detected object type from the ex-
trinsic sensing pipeline.

4. The distance represents the current distance estimation of the
object.

5.The bounding box represents the current bounding box coordi-
nates of the object from the detection algorithm.

6. The vibration stands for the time series data from the RF sensor.
It is stored as a data stream (i.e., bytes).

7.The state represents the current intrinsic state of object.

8.The persistent represents whether the object is currently present
or not. As we mentioned in Section 4, the object detection algorithm
may fail to detect and identify the bounding box of an object in the
scene for a few consecutive frames. To handle this issue, Capricorn
persists the object state in the in-memory table for the next Tnqx
frames even it is not present in the scene.

7 MULTI-VIEW CAPRICORN

In this section, we discuss how Capricorn can be up-scaled to a
sensor network covering the scene from different perspectives. In
the intrinsic sensing pipeline (Section 5), the UWB radar separates
the vibration of different objects based on their distances. The sys-
tem’s performance can be negatively impacted by multiple nearby
objects. Previous research show that UWB radars, when separating
vibrations from two objects, assume the targets are placed more
than 25 cm apart from the sensor’s perspective [65]. Following is a
motivational example: since the distance measurement of the UWB
radar is one-dimensional, if two objects sit at the same distance dy
to the sensor, their vibration signals can contaminate each other
(see Figure 5 (Left)). There are majorly two possible ways to par-
tially address this problem. One can instrument the sensor system
with mobility by placing it on a ground robot. Another approach is
to have a network of sensors that views the scene from different
perspectives. In Capricorn, we pick the second approach as the pro-
posed architecture can be easily up-scaled to a network of multiple
sensor nodes covering a wider range of views.

We add another sensor view as is shown in Figure 5 (Left). The
newly added sensor set is controlled by another host machine in the
same local area network. The data collection and processing units
in Capricorn employ a publish-subscribe mechanism. Therefore, we
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Figure 5: (Left) Multi-view version of Capricorn to distinguish
the objects at the same distance. (Right) Real-world setup of
the multi-view Capricorn.

only need to add a set of new sensor data topics and new processing
functions subscribing to these new topics. For the extrinsic sensing,

we leverage an AprilTag [48] to coordinate multiple sensor nodes.

When a LiDAR and camera-based system observes an AprilTag in
the scene, it can automatically calculate the camera extrinsic matrix
K& [48]. With the help of KE¥, we transfer the coordinates of each
sensor node and object to a global coordinate system defined by the
AprilTag [48]. Then, we can compute the distance between each
object and each sensor. In the multi-view Capricorn, we use the
sensor view #1 as the primary view for visualization, and its UWB
radar #1 is also the primary RF data source. In the example shown in
Figure 5 (Left), Capricorn found that the distances between sensor
view #1 and the two objects are similar (within a threshold). In this
case, we switch to the UWB radar in sensor view #2, where the
two objects are separable because the two objects have different
distances di and dy from view #2.

In the real-world deployment (as shown in Figure 5 (Right)),
Capricorn firstly calculates the sensor-target distances and picks a
viewpoint where the objects are separable. The UWB sensor on the

selected viewpoint then becomes the primary source of the RF data.

Finally, Capricorn takes slices from the RF data matrix to separate
the vibrations time series for each object.

The pub-sub data handling mechanism in Capricorn ensures its
scalability. The above approaches can be applied for adding one
or more sensors to the system regardless of the sensor types. In
the current implementation, most of the computation happens on
the sensor node #1, which also runs the ROS broker. However, it is
also possible to compute in a distributed manner to reduce the data
communication overhead by streaming sensor inference results.

8 IMPLEMENTATION
8.1 Hardware

We implemented a multimodal sensor module of Capricorn with
an Intel RealSense LIDAR Camera L515 and a Novelda AS Xethru
X4MO05 Radar sensor. The L515 LiDAR Camera provides both the
RGB images and the depth map. It can be substituted by another
stereo vision camera or separate vision and depth sensors. We
mounted the sensors onto a tripod using a cheeseplate, as shown
in Figure 6. The X4M05 Radar sensor is connected to a Raspberry
Pi 4B using Serial Peripheral Interface (SPI). The main system runs

on an Intel NUC mini PC consists of an Intel i7-6770HQ processor.

The LiDAR Camera is connected to the main system using a USB
cable, and the main system handles the communication with the
LiDAR Camera via Intel RealSense SDK 2.0. No special hardware
accelerator is used in the entire system.
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Intel® RealSense™
LiDAR Camera L515

Novelda AS XeThru
X4MO05 UWB Radar

-

8.2 Software

We implemented the entire architecture in C++ using ROS [57].
We mainly utilized the Pub-Sub mechanism in ROS for sensor data
collection. Specifically, we implemented two separate ROS nodes to
collect the data from LiDAR camera and UWB Radar, respectively.
We implemented another ROS node for the sensor fusion and in-
formation storage units of Capricorn. All the nodes are run on the
Intel NUC mini PC except for the driver node responsible for the
UWB Radar data collection that runs on the Raspberry Pi.

8.2.1 Numerous Parameters. In Section 2, we introduced a num-
ber of parameters. We summarize the values of these parameters
used in the prototype as follows. Some of the parameter values are
determined by hardware specifications while others are empirically
tuned for optimal performance.

1. In the object tracking module, we set Tjqx to 10 to compensate
for the bounding box jitters of YOLOVS.

2. The chunk size of the UWB radar data is set to 1024frames, and
the frame rate of the UWB data is 1000 Hz.

3.In the phase noise correlation, we have dy = 0.3 and go = 0.0514.
4. In continuous intrinsic state estimations, {; = 0.13Hz, {}, = 2Hz.

8.2.2 Object Detection and Classification Model. There are
multiple variants of YOLOs with different model sizes. We used
YOLOv5s as the object detection and classification model for a
balance between fast inference speed and prediction stability. We
fine-tuned a YOLOv5s model on a self-collected dataset since the
application scenarios (to be discussed in Section 9) include several
objects which are not covered by the pre-trained YOLOv5s model.
Model training. The training dataset consists of five classes: people,
vacuum cleaners, washing machines, table fans, and drills. The im-
ages of people are obtained from the Common Objects in Context
(COCO) dataset, while the pictures of the household objects are a
combination of images captured on a smartphone camera and pic-
tures found online. The online household object pictures are often
obtained from shopping websites, which depicted the objects with
a blank background. However, this results in the model struggling
in scenarios with a more complex background. To combat this, we
use a photo editor to remove the background and isolate the object.
The processed image was then placed in randomly chosen back-
grounds of home spaces, enabling the model to recognize images in
the smart home context. Roboflow is used to aggregate the images,
and its ability to augment a dataset by applying transformations
(i.e., shear, rotate, and brightness adjustment) allowed the dataset
to grow exponentially, eventually producing a set of 20000 images.

The composition of the twenty thousand images are as follows:
29.5% washing machines, 21.8% fans, 16.9% vacuums, 21.1% people,
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and 10.7% drills. We put more training data in the “washing ma-
chine” category to correct the model’s tendency of failing to classify
washing machines. After training, the mAP@.5 values were 0.479
for person, and over 0.99 on the rest of the objects.

8.2.3 Discrete Object State Estimation Model. As mentioned
earlier, we use a group of SVM models S as the discrete object state
estimation classifier. We collected a UWB dataset covering all the
discrete states of each object, during which we randomly changed
the object’s location and orientation to improve the diversity of
the dataset. The UWB dataset is sampled at 1kHz. Table 1 presents
the summary of collected UWB dataset (number indicates minutes
collected). We collected more data for 'Dry’ state of the washing
machine and "Speed 1” and *Speed 2’ states of the table fan, because
these states present partially similar features to their neighbouring
states. More data help the model to build a better decision boundary.

Drill | Vaccum | Washing Machine Fan Speed
Idle | On | Sweeping | Wash Dry 1 2 3
14.3 | 10.3 8 15.3 28.3 19 | 193 | 43

Table 1: A summary of the collected UWB dataset for discrete
object states. Number indicates minutes collected.

(f)Fan, Speed2 (g)Fan, Speed3 (hDrill, On

(e) Fan, Speed1

Figure 7: UWB data spectrogram for discrete object states.

We also present the post-processed data spectrogram (i.e., change
of frequency over time) of all the discrete object states in Figure 7.
As we see in the figure, the returned signal carries the vibration
frequency characteristic of the appliances, and there are obvious
signal patterns corresponding to different states of the same object.
These data characteristics make it feasible to build a classifier to
recognize the discrete operating states of these appliances using
the FFT spectrum as the feature of the classifier.

9 EVALUATIONS

Next, we evaluated our prototype with extensive experiments,
showing that Capricorn works well in many real-life settings in
a real-time and scalable manner. This video (https://youtu.be/b-
5nav3Fi78) covers the evaluations in this section.

9.1 Workshop Machine Operation Monitoring

In industrial assembly lines or workshops, it is important to monitor
the machine’s operating states to promote safety and productivity.
A workshop setting is shown in Figure 8(a), where we placed four
drills in front of Capricorn as a surrogate of machines on an assem-
bly line. The aim is to detect all the drills’ operating states. Here we
use s; = 1/0 to represent their "on/off" states, where i = 0, 1, 2, 3 cor-
responds to the four drills from left to right. Figure 8(b) is a screen-
shot of our real-time system. The four drills’ states are "on off on
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(b)

Figure 8: A Workshop scene: (a) Four drills are placed in
front of our Capricorn prototype (b) An example output of
our system.
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Figure 9: Accuracies of all the sixteen possible states sys15253
from 0000 (0) to 1111 (15) of the four drills.

on'", therefore sps1s2s3 is 1011. This scene is challenging for purely
audiovisual-based systems (e.g., human perception or a combination
of a camera and a microphone array), since (1) there is limited visual
clues about whether a drill is operating or not, and (2) the scene
is noisy with multiple drills operating and it is difficult to achieve a
clean audio separation. From the authors’ experiences, the audio of
two objects cannot be clearly separated without noticeable residuals
if they are placed less than 20 degrees apart in terms of angles, using
ReSpeaker 2.0 [53] and the state-of-the-art Geometric High-order
Dicorrelation-based Source Separation (GHDSS) algorithm [15].
The scene in Figure 8(a) contains four objects with a FOV of 70
degrees, which is challenging for small-scale microphone arrays.

To evaluate the effectiveness of this system, we enumerated all
possible sps1s253 cases from 0000 (0) to 1111 (15). For each case,
we ran the system for one minute and calculated their accuracies
based on the outputs of every 1.024 second (the state estimation is
updated every time a new chunk of UWB data arrives). The results
in Figure 9 show that all cases can reach more than 97% accuracy,
and the average accuracy is 99.47%.

9.2 Home Appliance Usage Tracking

Household robots for home monitoring like Amazon Astro have
been emerging in recent years. These household robots can benefit
from Capricorn’s technologies. We considered the second scene at
a smart home (see Figure 10(a)), where the homeowner wants to
know the usages of multiple household appliances. This application
can provide insights into household appliance usage habits and
associated energy consumption. We placed a washing machine,
vacuum cleaner, and table fan in the scene and controlled their
operating states separately.

A visualization of Capricorn’s output is shown in Figure 10,
where the object types, object bounding boxes, distances, and es-
timated internal states are overlaid on top of each object. On the
left examplar scene, Capricorn detected that the washing machine
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is in the washing mode, the vacuum cleaner is sweeping, and the
fan is spinning at speed 2. On the right-hand side, Capricorn found
the washing machine in drying mode and the fan at speed 3. These
object internal states won’t be possible from only video scene anal-
ysis. By applying rich scene analysis technologies, we can make
these household appliances “smart” without instrumenting them
with any electronics.

9.3 Latency Analysis

Capricorn is a real-time system, so it is important to analyze the
processing time of its individual building blocks and its end-to-end
latency. The numbers in Table 2 are measured using ten random
data frames, and we report the mean and standard deviation. For
clarity, we ignore those components whose execution requires less
than 1 ms.

Capricorn Component Mean(ms) | Std(ms)
Camera/Depth Pub-Sub Delay 1.08 0.13
YOLOv5 38.35 5.25
YOLOv5 (GPU) 6.28 1.29
Whole Extrinsic Sensing Pipeline 42.81 6.3
UWB Chunk Pub-Sub Delay 171.61 21.87

Table 2: Latency analysis of Capricorn in the appliance usage
classification scene.

We refer readers to Figure 2 where we explain Capricorn’s archi-
tecture for a better understanding of the discussions in this section.
First, we discuss the required time of the data collection unit. This
unit streams the sensory data in a Pub-Sub mechanism. Recall that
the camera and depth sensors are connected to the Intel NUC using
a USB cable. Therefore, the data streaming latency is insignificant
(1.08 £ 0.13 ms). On the other hand, the UWB radar is hosted on
a Raspberry Pi, which buffers and streams a UWB data matrix M
over the network. Therefore, the required time of streaming UWB
sensor data cannot be ignored. We connected the Intel NUC and
the Raspberry Pi to a Ethernet switch and set up a pair of NTP
server and client between these two devices to synchronize their
local clock. In this way, we were able to measure 172.61 + 21.87 ms
to stream a 1024 ms chunk of UWB data.

Next, we look into the required time of the sensor fusion unit. In
the sensor fusion unit, the extrinsic and intrinsic sensing pipelines
are running in parallel threads. Recall that the extrinsic sensing
pipeline in sensor fusion unit is triggered by the arrival of camera
and depth frames. From Table 2, we can see that the latency of the
whole extrinsic sensing pipeline is 42.81+6.30 ms, and almost all the
computation time is spent on the YOLOV5 inference (38.35+5.25 ms).
The rest component of the pipeline (i.e., object tracking and depth
estimation algorithms) all consumes less than 1 ms. This amount

Figure 10: Capricorn’s exemplar output in a smart home.
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of inference latency is reasonable since we are using an Intel NUC
mini PC without any hardware accelerator. We also measured the
YOLOVS5 latency on a PC with Nvidia Titan X GPU (see Table 2 Line
3) and its latency can be reduced to 6.28 + 1.29 ms.

We then analyse the latency of the intrinsic sensing pipeline
running in parallel. This pipeline is trigger by the arrival of a UWB
chunk. The first two steps are vibration extraction and phase noise
correction, which take only 0.73 + 0.03 ms because the prior object
depth information from extrinsic sensing pipeline reduces the com-
plexity of the vibration extraction step. In this application scenario,
the final step is to select the most suitable SVM model for the in-
trinsic state estimation based on the object type. In this step, we
create a new thread for each object presented in the scene to handle
multiple objects simultaneously. Therefore, the overall latency of
the discrete state estimation mostly depends on the inference time
of the slowest SVM model. The longest inference time of the SVM
model (for the washing machine states) requires 0.53 + 0.10 ms.

The information storage unit is current implemented as a class
in the memory shared by all the threads, and its I/O delay is trivial.
From the above discussions, we can see that Capricorn generates
the simultaneous estimation of extrinsic and intrinsic object states
within 200 ms when the objects possess discrete states.

9.4 Complex Event Modeling

Understanding and modeling human behavior has been a hot topic
in the sensing community. Recent research has expanded from clas-
sifying simple activities to understanding complicated sequences of
events. This section demonstrates how Capricorn uplifts complex
event detection research. A complex event detection system must
first understand multiple simple “atomic” events. Then, the system
makes logical reasonings to model a complicated event that spans
space and time [71]. Through the rich scene analysis, Capricorn
provides a richer set of atomic events and simplifies the design of
these systems.

Using Capricorn, we provide a simple example as is shown jointly
in Figure 11 and Figure 12. We show how we model the behavior
of “a person doing laundry” as a finite state machine in Figure 12.

Figure 11 shows the screenshots of the complex event detection
system. We have the current state (defined in Figure 12) displayed
on top of each subfigure. The system first started with the “Idle”
state (Figure 11(a)). In (b), the extrinsic sensing pipeline detected
the human-machine interaction based on their spatial proximity.
Then, in (c), the state transition fired, and we entered the “Washing”
state as defined in Figure 12. The state transition happens because
Capricorn detected that the machine’s vibration mode changed
from idle to washing. This transition demonstrates the unique rich
scene analysis capability of Capricorn: with vision sensors alone,
we can only capture the interaction between the user and the ma-
chine where the machine states are invisible. On the other hand,
by the RF-vision fusion, the proposed system makes inferences
about the operating states of the washing machine and provide a
wider range of possible atomic events. Nextly, in (d), the system
moved to the “Wash Done” state because Capricorn detected that
the vibration from washing had stopped, and the machine became
idle. Here, the system sent an alarm to remind the user to collect
the clothes. The system removed the alarm when another human-
machine interaction was detected in (e). Similarly, the system went
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Figure 11: Screenshot of Capricorn performing complex event detection.
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Vibration = None

Wash_Done

Figure 12: A finite state machine modeling a person doing
laundry.

through the state of “Drying”(e) and “Dry Done”(f) based on Capri-
corn’s estimation of the washing machine’s intrinsic state. Finally,
when Capricorn detected that the user had collected the laundry, it
finished a laundry cycle and moved back to idle.

9.5 Multi-view Capricorn

In Section 7, we have proposed scaling up Capricorn by adding
another set of sensors and introduced a setting in Figure 5. Figure
13(a) shows a failure case of the single-view Capricorn under that
setting: the two drills were both placed at around 1.62m from the
sensor, making them fall into the same distance bin. Although only
one of the drills is ’on’, the system recognized both of them as
‘on’ because the UWB radar could not separate these two objects
based on their distances. With the multi-view scaling-up, Capricorn
separated these two drills from UWB 2, as shown in Figure 13(b).

(a) Single 7iew s

Figure 13: A Multi-view implementation of Capricorn: (a)
Single view: two drills are at the same distance from UWB
1’s viewpoint, so the left drill is misidentified as ’on’ state; (b)
Multi-view: when UWB 2 is used, the two drills are separated
and recognized correctly.
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When the multi-view Capricorn detected that the two objects are
sitting at the same distance, it automatically switched the RF data
source to sensor view #2 (note that the top-left corner of Figure
13(b) shows "UWB2 is being used"). From the perspective of sen-
sor view #2, the two objects were separable, and the left drill was
correctly recognized as ’oft” as shown in the figure.

9.6 Multi-person Respiration Estimation

Capricorn’s intrinsic sensing pipeline captures not only high-frequency

motions such as machine vibrations but also low-frequency move-
ments such as human vital signals. In the last application scenario,
we employed Capricorn for the multi-person respiration estimation
to evaluate the performance of its continuous intrinsic state estima-
tion algorithms. Here, we simulated a medical triage scene where
one needs to rapidly assess the medical condition of people, particu-
larly whether they are alive, so that medical care should be focused
on the survivors in a timely manner. As shown in Figure 14(a), we
had a mix of multiple persons and inflatable dummies (as proxies for
dead bodies). Currently, one has to search for survivors by checking
for the presence of vital signs one by one, since technologies to do
so from a distance get confused when there are multiple candidates.
The existing video scene analysis systems can detect the persons on
the scene but fail to distinguish between dead bodies and survivors.
However, as the figure suggests, Capricorn accurately identifies and
classifies dead bodies and survivors in the same scene. Capricorn
captures and separates multiple vibrations at different distances,
which allows us to recover the respiration waveforms from living
objects. As shown in Figure 14(c), Capricorn robustly recovers the
respiration waveforms of multiple human subjects (person 1 and 3).
9.6.1 Estimation Accuracy. Capricorn calls the continuous in-
trinsic state estimation when an object is classified as a living being,
which is a learning-free estimator based on VMD algorithm. We col-
lected a human respiration dataset from five of the authors. In each
session, the volunteer sat in from of the Capricorn sensors for one
minute. Each volunteer repeated the data collection session for five
times, and we used the self-reported breath counts as the baseline.

We can see that the estimation error is less than 0.2 bpm in
about 50% cases and it is less than 1.2 bpm in 80% cases. The mean
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Figure 14: Multi-person respiration rate estimation. (a) Object
detection (b) Distance estimation (c) Respiration waveforms
recovered from each "person".

estimation error is 1.0586 bpm, the median error is 0.9603 bpm,
and the standard deviation is 1.3424 bpm. In one of the sessions,
we had one author wearing a respiration monitoring belt (NUL-
236 from Neulog) to provide a baseline respiration waveform. In
Figure 15, we compared the respiration waveform from Capricorn
(orange) with the ground truth (blue). From the waveform, we can
say that Capricorn can obtain human respiration waveforms with
a reasonable quality.

AN

-0.5 —Ground Truth
—Capricorn

25
Tlme/s
Figure 15: The respiration waveforms recovered from Capri-
corn compared with the ground truth.

9.6.2 Latency Analysis. Note that the code for multi-person res-
piration monitoring is the same as the one we used before for
appliance usage detection. The design of Capricorn allows the sys-
tem to automatically choose the most appropriate signal processing
pipeline based on the environmental context. Therefore, the time
latency of data streaming, extrinsic state estimation, and UWB data
processing remains the same. The only difference is the latency of
the continuous state estimation. For this estimator, the running time
is 1742.56+215.38ms for a buffer containing 30 seconds of UWB data.
Here, the most time-consuming calculation is the VMD algorithm
to decouple the respiration vibration from other noises. Again, we
created different threads for each person presented in the scene to
increase parallelism. The current buffer size is set as 30seconds and
is updated on a rolling basis, so the bpm estimation will be updated
around every 2 seconds. It is also possible to shrink this interval
by using a shorter buffer. At the beginning stage, Capricorn does
not start the respiration rate estimation until there are 15 seconds
of data in the buffer to avoid generating random bpm results.
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10 RELATED WORK

Wireless Vibrometry. Researchers have devoted efforts to mea-
suring vibration remotely using active sensing. A majority of these
works employed radio-frequency (RF) sensing modalities to mea-
sure the amplitude and frequency of a vibration, such as RFID [35],
WiFi [49, 67], IR-UWB Radar [65], and mmWave [27, 72]. Some
other work sensed vibrations remotely using a laser [81, 82]. A
number of applications are enabled by these explorations, such as
monitoring the spin of centrifugal machines [74], managing the us-
age of smart home appliances [81], and even sensing human speech
for user authentication [33]. Wireless Vibrometry has also been em-
ployed to sense low-frequency phenomenons such as human vital
signals, for example, the subtle chest movements caused by human
respiration and heartbeat, even from multiple persons [25, 75-77],
or under body movements [12, 84, 85] However, these works suffer
from two major limitations. First, many of these systems are not
real-time and only work offline. Second, it is difficult to associate
the detected vibration with real-world objects because these sys-
tems cannot visually “see” the world and they have no knowledge
of the extrinsic object states.
Multimodal Sensor Fusion. Application of multimodal sensor
fusion involves gait abnormality detection [54], activity recogni-
tion [73], 3D imaging [56], security monitoring for intelligent build-
ings [38], localization [29], and vehicle navigation [9]. A substantial
category of sensor fusion is decision-level fusion. In this scheme,
the fusion happens after the classification [59]. Commonly seen
techniques include but are not limited to majority voting [66], score
weighing [18], and ranking [41]. In recent years, with the fast de-
velopment of deep learning, multimodal sensor fusion has started
utilizing neural networks. Some of them even applied an end-to-end
structure to make inferences about the environment. This type of
fusion is also known as data-level fusion. For example, [6] proposed
aneural architecture to process LIDAR, camera, and radar data, and
the system can reliably perform objection detection in adversarial
weather. Similar works include [10, 24, 29, 34, 44, 46, 64], where they
use an end-to-end neural structure to combine RF and EO (Electro-
optical) sensors for semantic segmentation or object detection.
Another class of sensor fusion methods is known as feature-level
fusion [59]. In feature-level fusion, algorithms generate interme-
diate "features" (inferences) from the raw signal, and use these
features to improve the task performance. In [19], the authors per-
form robust human activity recognition combining time-domain
features extracted from wearable inertial sensors and histograms
of oriented gradients extracted from a RGBD camera. Xin et al. ex-
tracted Fisher feature vectors from images, fingerprints, and finger
veins, fusing them for human identification [70].

11 LIMITATIONS AND FUTURE DIRECTIONS

1. Accurate Perception Models in Real Deployments. The
main contributions of this paper lie in the conceptual design and
platform-independent algorithms for real-time rich scene analysis.
While our paper makes use of several machine learning models,
we do not claim them as our technical contribution and hence, our
main efforts went towards designing our real-time framework with
platform-independent algorithms and not towards the optimization
of these machine learning models. Currently, the experiments are
conducted mostly in controlled in-lab configurations. It would be
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interesting to research how the system will perform in real produc-
tion environments on tasks such as machine state monitoring. Also,
the current object state estimators are simple classifiers to distin-
guish a few discrete states of the object. We are working to leverage
the combination of signal processing and sequence-to-sequence
deep learning models to reconstruct fine-grained waveforms of
objects’ vibrations. There are more open research questions to be
solved. For example, how prior knowledge (e.g., physics) can be
exploited to increase efficiency, reduce the need for large training
data, and minimize uncertainty simultaneously.

2.Sensor Mobilities and Close-by Objects As discussed in Sec. 7,
Capricorn faces challenges when two objects of interest sit at simi-
lar distances. We propose using a network of sensor infrastructures
and viewing the scene from different angles to mitigate the issue.
But since this is a fundamental issue in ToF-based sensing methods,
we cannot fully eliminate this effect if two objects are physically
placed too close together. Apart from using a sensor network, an-
other possible solution is to employ sensors with mobilities. For
example, Capricorn currently places its sensors on a fixed tripod. If
the sensors can be migrated to a moving robot or held in hand, it
will be much easier to obtain viewpoints where objects are more
separable. However, this is not a trivial problem as the movements
of the sensor platform mask out the target vibrations and distort the
signal significantly. There are already some pioneering works look-
ing into this issue [36], and we are also working towards enabling
RF sensing platforms with mobilities.

3. Integrating More Sensing Modalities. Currently, our system
fuses LiDAR, camera, and RF sensors only, which is a prototype
to demonstrate the novel idea of rich scene analysis. The current
system does not have sensing capabilities such as audio or thermal,
which could also be very informative. For example, microphone
arrays can also be useful for intrinsic state estimation if the target
phenomenons make a noticeable sound and are angularly sepa-
rated. This capability is complementary to the wireless vibrometry
technologies we employed that work better to separate vibration
(maybe inaudible) from similar directions but at different distances.
In the future, we expect to build a large sensor network consisting
of multiple nodes, each possessing several sensing capabilities (e.g.,
LiDAR, thermal camera, mmWave radar, microphone arrays). Also,
on the UWB radar front, recent research has introduced a MIMO
platform with antenna arrays and beamforming ability which can
be adopted to improve the robustness of isolating objects’ RF sig-
nal [13]. Related research questions include the optimal scheduling
of data, computations, and neural architecture to fuse similar sens-
ing modalities. To fully unleash the potential of multimodal sensors,
it might be promising to investigate neural architectures where
there is a common representation for different sensor modalities (as
opposed to making independent predictions from different modal-
ities and then fusing those predictions together).

12 CONCLUSIONS

In this paper, we presented a novel concept of rich scene analysis
where the proposed RF-vision sensor fusion system simultaneously
captures the intrinsic and extrinsic object states in real-time. The
proposed system demonstrates that the information acquired from
the vision sensor helps us to make more sense of the RF data and
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improve the versatility of the RF system in dynamic environments
(e.g, when the sensing object types and their numbers are indef-
inite). Correspondingly, the RF sensors complements the vision
sensors by making inferences about the objects’ intrinsic states
that are invisible to vision sensors. One limitation of Capricorn is
that it relies a lot on the robustness of its individual machine learn-
ing components (for object detection and signal classification) to
correctly perceive the scene. With self-collected datasets, we were
able to train these models enough to demonstrate our core ideas.
However, these models might suffer a performance drop if deployed
in unseen environments due to the distribution mismatch between
the training and real-world data. Thus, an interesting future di-
rection will be developing robust machine learning technologies
to offset the distribution shift of the data, especially when large
labeled training datasets are unavailable.
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