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AbstractÐAs networked digital control units become increas-
ingly prevalent in intelligent motor drive systems, cybersecurity
concerns have risen, leading to the development of various
cyber-attack detection methods to improve system reliability.
Although data-driven methods offer advantages over physics-
based approaches, the requirement for extensive experimental
data presents a significant challenge. This paper proposes a
novel cyber-attack detection approach for motor drives using
Transfer Learning based on Convolutional Neural Networks
(CNN). The method initially pre-trains a CNN model with
substantial simulation data and fine-tunes it using transfer
learning with limited experimental data, achieving outstanding
detection performance with 99.5% accuracy while reducing
development costs, risks, and time. Additionally, the proposed
model Maintains satisfactory detection accuracy of over 96%
even when experimental training data is limited to 10% of
original available data. The findings indicate that transfer-learned
models exhibit faster convergence and better performance when
limited experimental data is available compared to newly-trained
models. The proposed approach substantially reduces the reliance
on large quantities of experimental data during the development
process, lowers costs and risks associated with cyber-attack detec-
tor development, strengthens the connections between simulations
and experiments, and significantly shortens the development
period by leveraging powerful simulation models.

Index TermsÐmotor drives, cybersecurity, deep neural net-
work, transfer learning, anomaly detection

I. INTRODUCTION

Over the past decade, concerns about cybersecurity in

intelligent power electronics systems have grown due to

the widespread implementation of networked digital control

units. Numerous studies [1], [2], [3], [4] have demonstrated

the vulnerabilities and impacts of modern power electron-

ics systems across various applications, such as photovoltaic

(PV) systems, electric vehicles, and intelligent manufacturing

systems. Recent research has focused on different detection

approaches targeting diverse power electronics applications,
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including DC microgrids, PV farms, and industrial motor

drives, to address these concerns and enhance the reliability of

intelligent power electronics systems. The majority of recently

proposed detection methods can be classified as either physics-

based methods or data-driven methods.

Physics-based methods commonly detect cyber-attacks by

analyzing pre-defined system performance metrics or resid-

uals between predicted system variables and corresponding

true measurements [5]. For instance, [6] proposed a coop-

erative vulnerability factor for each power electronics agent

within the microgrid to detect stealthy cyber-attacks. [7],

[8] characterized local voltage and frequency measurements

into a 2D feature space, enabling the metrics to distinguish

between cyber-attacks and physical faults in microgrids. [9]

utilized signal temporal and time-frequency logic formalism

to detect anomalies in microgrids. [10] developed a detection

approach targeting microgrid false-data-injection attacks using

the discordant element. [11] devised an attack detector for PV

farms based on harmonic state space models. [12] proposed

a residual-based detector for island microgrids using the

harmonics state-space matrix and space phase model. [13] pro-

posed an anomaly detection method for motor drives in electric

vehicle powertrains using self-defined frequency-domain met-

rics. However, most physics-based methods rely on accurate

physical models of the target systems, which are unavailable

for most cyber-attack scenarios. In real-world applications,

cyber-attacks are highly unpredictable, and their analytical

impact models heavily depend on specific attack policies.

These factors render the performance of most physics-based

methods unreliable.

Recent research has begun to harness the power of data-

driven methods to develop model-free detection methods in

power electronics systems, reducing dependency on physical

models. [14] adopted a specific type of recurrent neural net-

work, namely a nonlinear auto-regressive exogenous model, to

detect false data injection attacks in microgrids. [15] proposed

an attack detection method by combining deep neural networks

and wavelet singular value decomposition. [16] employed

multi-class support vector machines to detect and localize

false-data-injection and denial-of-service attacks in inverter-

based systems. [17] proposed a detection and diagnosis method

targeting data integrity attacks in solar farms using a mul-

tilayer long short-term memory network. [18] examined the

effectiveness of various standard data-driven methods with

micro-PMU data in detecting cyber-attacks in PV farms.

[19], [20] developed anomaly detection methods for electric
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online monitoring system will follow a straightforward logic

shown below:

• Step 1: Sample the measured current sensor signals with

specified window size and sampling frequency.

• Step 2: Convert the raw measurement to motor line

current signature spectra using the same parameters in

the training stage.

• Step 3: Feed the spectra to the final classification model

from the training stage.

• Step 4: Generate monitoring results based on the classifier

output.

• Step 5: Update detection result and clear the workspace

except for the preprocessing parameters and classification

model.

• Step 6: Start a new monitoring cycle from Step 1.

It is essential to underscore the critical role that the safety

and security of the monitoring signals play in the efficacy

of the method proposed herein. Although various approaches

exist to ensure the integrity of a limited set of signals, a

comprehensive treatment of this topic lies beyond the scope

of the present study. Therefore, for the purposes of this paper,

we operate under the assumption that the safety and security

of the monitoring signals have been assured.

III. SIMULATION AND EXPERIMENT CASE STUDY

This section forms a case study including two types of

cyber-attacks targeting a 1.5 kW PMSM motor drive to test and

validate the proposed method. The rest of this section describes

details of the case study and simulation and experiment setups.

A. Case Study

The case study in this section includes typical false-data-

injection (FDI)attacks targeting two control variables: the off-

set variable of the ADC unit and the calculated speed feedback

variable. In addition, it is imperative to acknowledge that in

practical operational environments, the nature of cyber-attacks

often remains elusive to system architects and designers.

Nevertheless, robust datasets can be synthesized through a

combination of historical records and simulated adversarial

engagements involving blue-red team exercises. In the present

study, we have meticulously crafted attack scenarios to rig-

orously evaluate the performance of the proposed detection

algorithms, thereby substantiating the novelty and efficacy of

our methodological approach.

Another pivotal aspect to consider is the distinction between

common physical faults and cyber-attacks. As elucidated in

[19], [21], physical faults originate from tangible events and

damages, whereas cyber-attacks manifest through digital con-

trollers. The signature frequencies and event-response patterns

associated with physical faults are intrinsically linked to the

physical plants. For instance, the characteristic frequencies

of electric machine bearing faults depend on both rotating

speed and bearing structures, while inter-turn short circuit

faults correlate with the number of turns in the shorted

windings. Conversely, the response characteristics of cyber-

attacks hinge on the controller configurations and control

law implementations, making the current spectra under cyber-

attacks dependent on variables such as controller bandwidth

and sampling frequencies. These distinctions manifest in the

motor current spectra, which we demonstrate in [19], [21] as

distinguishable using data-driven methods, such as the CNN

model employed in this study. Therefore, it is paramount to

underscore that the principal aim of our proposed methodology

is leveraging transfer learning techniques to overcome the

data scarcity challenge in real-world cyberattack scenarios for

data-driven detection methods. Our approach meticulously re-

fines a baseline model, constructed from extensive simulation

datasets, with a limited set of real-world data, establishing

a robust attack detection framework. However, it is pertinent

to note that differentiating between cyberattacks and physical

faults falls beyond the scope of this study.

Meanwhile, in the realm of power converters and electric

machine drives, a myriad of control laws exist. For the purpose

of this study, we have selected field-oriented control, one of

the most universally applied and representative control laws,

as the testbed for demonstrating and validating the proposed

methodology. It should be noted that the principles articulated

herein are not limited to this specific control law. Indeed,

analogous tainted control laws could be derived for alternative

control algorithms by leveraging the control information flow

models delineated in Fig.2 and Fig.3.

1) Scenario 1: FDI attack on the motor current offset

variable: In practical motor drive controllers, current offset

variables are critical to compensate for the current sensors’

zero drift issues. Most controllers calculate such offset vari-

ables during the initialization process. After initialization,

these offsets will maintain constant. However, as these offsets

are stored in the memory data sections, multiple attacks could

access these variables and maliciously modify them, such

as buffer-overflow attacks and FDI attacks. This case study

considers a scenario where the motor phase A current sensor

offset variable is under an FDI attack. According to the CIF

model in fig. 2, the tainted variable and attack policy is shown

in eq. (9),

x̂offsetA = xoffsetA + α (9)

where xoffsetA and x̂offsetA is the original and attacked mo-

tor phase A current offset variables; α is the attack coefficient.

The resulting tainted control laws for this scenario is shown

in eq. (1) - eq. (8).

2) Scenario 2: FDI attack on the motor speed feedback

variable: Besides current offset variables, the calculated speed

feedback is also a vulnerable target of malicious attacks. For

example, the Stuxnet worm compromised the industrial control

TABLE II
PARAMETERS FOR OPERATING CONDITIONS AND ATTACK COEFFICIENT

Operating Speed (rpm) Load Torque (N*m) Attack Coefficient

900 1.38 ±0.3
1200 1.85 ±0.275
1500 2.31 ±0.25
1800 ±0.225

±0.2
±0.175
±0.15
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system by manipulating the rotating speeds of industrial motor

drives. Suppose the attack policy is the same as eq. (9), which

is shown in eq. (10), where ωm and ω̂m is the original and

attacked motor speed feedback variables.

ω̂m = ωm + α (10)

Then, the resulting tainted control law is shown in eq. (11) -

eq. (18).

dẑm

dt
= Ωm − ω̂m = Ωm − (ωm + α) (11)

dzd

dt
= Id − id (12)

dẑq

dt
= Îq − iq (13)

Îq = Kmp(Ωm − (ωm + α)) +Kmi · ẑm (14)

ud = Kdp(Id − id)−Kdi · zd (15)

ûq = Kqp(Îq − iq) +Kqi · ẑq (16)

v̂d = ud − (ωm + α)Lsiq (17)

v̂q = ûq + (ωm + α)Lsid + (ωm + α)λPM (18)

B. Simulation Setups

Based on the tainted control laws described by eq. (1) -

eq. (8) and eq. (11) - eq. (18), the simulation encompasses var-

ious attack coefficients α for both scenarios. Simultaneously,

the simulation also considers different operating conditions for

the motor drives. Table II provides details of the operating

parameters and attack coefficients. With these diverse operat-

ing conditions and attack scenarios, the simulation comprises

336 (4 × 3 × 14 × 2) distinct scenarios. Subsequently, the

simulation extracts 100 samples from each scenario, forming

a simulation dataset consisting of 67,200 samples labeled as

‘normal condition’, ‘attack type 1’, and ‘attack type 2’. Fig. 7

displays two samples from the simulation dataset.

C. Experiment Setups

Fig. 9 presents a photograph of the experimental prototype,

while Table III provides a detailed overview of its specifi-

cations. The prototype features a 1.5 kW Permanent Magnet

Synchronous Motor (PMSM) and shares the same structure

illustrated in Fig. 4. Operating at a speed of 1000 rpm, the

prototype experiences a mechanical load torque of approxi-

mately 2.77 N*m. Field-Oriented Control (FOC) algorithms,

along with the malicious ’backdoor,’ are implemented using

a TMS320F28335 Microcontroller Unit (MCU) from Texas

Instruments. Table IV outlines the attack coefficients employed

in various attack scenarios during the experiment. From the

10 distinct scenarios, a total of 2000 samples are extracted,

effectively capturing the diverse characteristics of each sce-

nario.Fig. 8 showcases two representative samples extracted

from the experimental dataset. It is important to emphasize

that in the interest of experimental safety and reliability,

cyber-attacks were manually embedded and controlled. This

approach ensured the availability of accurate labels for both

normal operations and attack scenarios. By incorporating these

experimental samples into the training and validation process,

TABLE III
SPECIFICATIONS OF THE EXPERIMENT PLATFORM.

Rated Power 1.5 kW Stator Resistance 0.4050 Ω

Rated Current 8.2 A Stator Inductance 0.0024 mH

DC Bus Voltage 200 V Magnet Flux Linkage 0.0599 Wb

Rated Frequency 250 Hz Number of Pole Pairs 5

Control Frequency 10 kHz Motor Inertia 3.10e-4 kgm2

TABLE IV
PARAMETERS FOR ATTACK COEFFICIENTS IN EXPERIMENT

Scenario 1 (ADC Offset) Scenario 2 (Speed Feedback)

0.1 0.05
0.2 0.1
0.3 0.15
-0.1 -0.05
-0.2 -0.1

the study aims to assess the proposed method’s performance

and generalizability in real-world situations. Ultimately, this

experimental setup serves to bridge the gap between simulation

and real-world implementation, ensuring the development of

a more reliable and robust cyber-attack detection system for

motor drives.

IV. DISCUSSIONS ON VALIDATION RESULTS

The simulation data (67,200 samples) and experimental data

(2,000 samples) are initially divided into 80% for training

datasets and 20% for validation datasets. Subsequently, the

simulation data is employed to pre-train and validate the CNN

model. The 80% experimental training datasets are considered

as the overall available experimental datasets for training.

Thereafter, only a fraction of these experimental training data

(10%, 20%, 30%, 40%, 50%, 100%) is used to train transfer-

learned CNN models, as well as new CNN models with

identical structures from scratch. It is essential to emphasize

that when utilizing fewer than 50% of samples for the train-

ing dataset, special precautions have been taken to preserve

representativeness. In lieu of a random sampling strategy,

we adopted a stratified sampling methodology. This approach

ensures a proportional representation of both normal operating

conditions and diverse cyber-attack types within the reduced

dataset. Consequently, this mitigates the potential for sampling

bias and affirms that the performance metrics derived from

this subset are genuinely indicative of the system’s behavior

under a wide array of conditions. This section discusses the

outcomes of the training and validation processes based on the

aforementioned settings.

TABLE V
VALIDATION RESULTS WITH EXPERIMENT VALIDATION SETS

Overall Accuracy False Alarm Rated

Simulation-Trained Model 47.75% 92.25%

Transfer-Learned Model 99.50% 0.01%

A. Discussion: Validation with Experimental Data Sets

Table V highlights the validation outcomes derived from

independent experimental validation sets, which were deliber-

ately excluded from both the training and transfer learning
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