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Abstract—We propose a novel unsupervised anomaly detec-
tion and diagnosis algorithm in power electronic networks. Since
most anomaly detection and diagnosis algorithms in the literature
are based on supervised methods that can hardly be generalized
to broader scenarios, we propose unsupervised algorithms. Our
algorithm extracts the Time-Frequency Domain (TFD) features
from the three-phase currents and three-phase voltages of the
point of coupling (PCC) nodes to detect anomalies and distin-
guish between different types of anomalies, such as cyber-attacks
and physical faults. To detect anomalies through TFD features, we
propose a novel Informative Leveraging for Anomaly Detection
(ILAD) algorithm. The proposed unsupervised ILAD algorithm
automatically extracts noise-reduced anomalous signals, resulting
in more accurate anomaly detection results than other score-
based methods. To assign anomaly types for anomaly diagnosis,
we apply a novel Multivariate Functional Principal Component
Analysis (MFPCA) clustering method. Unlike the deep learning
methods, the MFPCA clustering method does not require labels
for training and provides more accurate results than other deep
embedding-based clustering approaches. Furthermore, it is even
comparable to supervised algorithms in both offline and online
experiments. To the best of our knowledge, the proposed unsuper-
vised framework accomplishing anomaly detection and anomaly
diagnosis tasks is the first of its kind in power electronic networks.

Index Terms—Anomaly detection, anomaly diagnosis, lever-
age score, multivariate principal component analysis based
clustering, power electronic networks.
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I. INTRODUCTION

N SMART grids, power electronics are the fundamen-

tal building blocks. The expansion of Distributed Energy
Resources (DERs), such as Photovoltaic (PV) farms and wind
farms, has particularly become a major opportunity and chal-
lenge for smart grids. The interconnection of power electronics
in cyber networks allows coordinated control for better energy
efficiency and resilience in smart grids. On the other hand,
the cyber-network connectivity among power electronics also
exposes them to cyber threats. In addition, the physical faults
due to the deterioration of the equipment, e.g., the con-
verter, also threaten the safety and security of smart grids.
A catastrophic failure of power electronic networks due to a
malicious cyber-attack [1], [2], or an accidental physical fault
would cause degradation of equipment and substantial eco-
nomic loss. Furthermore, false identification of the root cause
might lead to severe operational failure while performing mit-
igation strategies in the power electronic networks [3], [4].
Early detection and diagnosis of the anomalies are essential
for the timely maintenance and recovery of power electronic
networks [5], [6].

Most unsupervised anomaly detection and diagnosis algo-
rithms are offline, which necessitates making decisions based
on all the data across time [7], [8]. The approaches can present
challenges when dealing with streaming data in real-world
situations. Therefore, there is an urgent need to develop an
online framework that can detect and diagnose anomalies in
real-time. Such a framework would enhance the reliability and
efficiency of smart grid operations, ensuring a prompt response
to anomalies as they occur.

To overcome the aforementioned challenges, we propose
an unsupervised, data-driven approach for anomaly detec-
tion and diagnosis called the Informative Leveraging for
Anomaly Detection (ILAD) algorithm, which is combined
with a Multivariate Functional Principal Component Analysis
(MFPCA) clustering algorithm to distinguish between cyber-
attacks and physical faults for anomaly diagnosis. We assume
that the micro phasor measurement unit («PMU) is installed
at the point of coupling (PCC) of PV farms as shown in
Figure 1. To detect the cyber-attacks and faults in PV farms,
both voltage and current waveform data are measured at PCC
first. Several features, including PMU data, Total Harmonic
Distortion (THD), and mean current vector (MCV) are then
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extracted. Finally, the proposed method employs the extracted
features to detect and identify cyber-attacks and faults. For
streaming six-dimensional waveform data, we sequentially
process them window by window. Specifically, we first extract
Time-Frequency Domain (TFD) features from the waveform
data to combine the time and frequency domain information.
We then model the TFD features using a Vector Autoregressive
(VAR) model and calculate informative leverage scores [5], [9]
for each time window. Both offline and online exper-
iments show that the ILAD algorithm achieves high
accuracy.

After performing anomaly detection, we assign the type
of anomalies (cyber-attack or physical fault) to the identified
anomalous windows based on our MFPCA clustering algo-
rithm. To evaluate the performance of the proposed ILAD and
MFPCA clustering algorithms, we conduct experiments using
a PV farm as a case study and generate a variety of elec-
tric waveform data under both offline and online scenarios.
In offline scenarios, the proposed offline ILAD (off-ILAD)
successfully identifies the anomalies in 42 out of 43 cases,
achieving an accuracy of about 0.94 for the anomaly diag-
nosis task, which is a competitive and comparable result
to the classification task. For online anomaly detection, the
proposed online ILAD (on-ILAD) algorithm achieves higher
accuracy compared to other change point detection algo-
rithms. For online anomaly diagnosis, we assign the streaming
time window to a closer cluster and obtain more accurate
results compared with other deep embedding based clustering
methods.

The novelty and contribution of our work are summarized
as follows.

1) To the best of our knowledge, our algorithm is one of
the first unsupervised data-driven anomaly detection and
diagnosis algorithms utilizing TFD features in power
electronic networks.

2) We propose a novel ILAD algorithm to remove ran-
dom noise in the original leverage score and amplify
the changes due to anomalies.

3) Our algorithm utilizes a data-driven change point detec-
tion method that triggers an alert if the informative
leverage score rises significantly, instead of heuristically
using a threshold [10], making it more robust to new
anomalies.

4) We apply a novel MFPCA clustering algorithm to
the power electronic network, which projects the TFD
features onto lower-dimensional spaces spanned by
eigenfunctions. Thus, the MFPCA clustering algorithm
extracts features distinguishing cyber-attacks from phys-
ical faults.

5) Our algorithm can operate online to detect anomalies
and diagnose their types based on TFD features in each
time window as they occur.

The paper is organized as follows. In Section II, we review
related literature. Section III presents the model of the power
electronic network and attacks, which includes a typical power
electronic network in a PV farm, a cyber-attack model, and
a physical fault model. The problem setup is described in
Section IV. In section V, we provide the necessary background
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before introducing our proposed algorithms. The proposed
algorithms, including feature extraction, informative leverage
score, and multivariate functional principal component analy-
sis, are presented in Section VI. In Sections VII and VIII,
we present the experimental results for offline and online
scenarios, respectively. Finally, we conclude our work in
Section IX.

II. RELATED WORKS

To the best of our knowledge, several studies have explored
anomaly detection and diagnosis by information embed-
ded in electrical signals for cyber-threat in cyber-physical
systems [11], presenting a great opportunity to advance
cyberspace security and trustworthy research and design.
Anomaly detection methods can be either supervised or unsu-
pervised. Unsupervised methods. For the supervised ones,
several supervised deep learning algorithms [3], [6], [12],
[13], [14], [15], [16], [17], [18], [19] have been developed
for anomaly detection. These methods use two different path-
ways to solve the anomaly detection problem. One pathway
is to train Autoencoder models [3], [18] to reconstruct the
distribution of normal data, and flags anomalies if the recon-
struction error of testing data significantly exceeds that of
the normal data. Such methods rely on labeled normal data
to train and assume the same distribution for the training
and testing data, which may limit their applicability. For
example, when the system load increases, those methods
will tend to cause false-positive alarms. The second pathway
approaches anomaly detection as a binary classification task,
which uses binary labels (normal and abnormal) and wave-
forms to train a classification model [6], [13], [14], [15],
[17], [19] by Convolutional Neural Network (CNN) and Long
Short-Term Memory (LSTM) network. Since training deep
learning models needs to balance the trade-off between train-
ing and generalization, inappropriate training will lead to bad
performance in the testing data with different distribution from
the training data [20]. In this case, novel anomalies with differ-
ent patterns from the training data enter, and then the detector
trained by deep learning models would misclassify the data,
which leads to substantial loss. Another disadvantage of the
supervised model is that the classification models need a large
amount of labeled training data to increase the accuracy [21],
which is challenging to obtain in smart grids.

Some anomaly detection methods are unsupervised, such
as the isolation forest [8], [22], and do not need labels in
the training process. However, the isolation forest algorithm
cannot be updated in real time, which limits its usefulness
for real-time anomaly detection. Several statistics-based meth-
ods [5], [23], [24] can be used for real-time anomaly detection.
For example, the correlation-based [23] method can calcu-
late an anomalous score based on the correlation between
two PMU parameters, but it requires a pre-defined thresh-
old to detect anomalies. Expert knowledge and experience are
needed to determine a suitable threshold, and an inappropriate
threshold can lead to false alarms and false negatives. The
leverage score based on the VAR model, proposed in [5],
achieves higher accuracy than other unsupervised methods.
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TABLE I
SUMMARY OF ANOMALY DETECTION AND DIAGNOSIS METHODS

Method Year Online? Unsupervised? Objective Gap

CRED [3] 2019 Yes No Detection Need normal data to train
HTM [18] 2020 Yes No Detection Need normal data to train
Statistical Correlation [23] 2019 Yes Yes Detection Pre-defined threshold
Isolation Forest [8], [22] 2019, 2022 No Yes Detection Non-online

SSL [12] 2019 Yes No Detection Need labels to train
Leverage [5] 2019 Yes Yes Detection Less Informative
CNN [15], [13], [6] 2020, 2021 Yes No Both Need labels to train
LSTM [14], [19] 2020, 2022 Yes No Both Need labels to train
PMUNET [17] 2021 Yes No Diagnosis Need labels to train
SVM [16] 2021 Yes No Diagnosis Need labels to train
Incremental Classifier [25] 2018 Yes No Diagnosis Need labels to train
BMF [5] 2019 Yes Yes Diagnosis No time-dependence
Proximity-based Clustering [26] 2019 No Yes Diagnosis No time dependence

The leverage score is more effective, as shown in Figure 6
where the red lines indicate its performance. To overcome
the limitations of the aforementioned methods, we propose
an unsupervised real-time anomaly detection algorithm with
higher accuracy than other unsupervised methods in the exper-
iment results in Table III and V. Moreover, the proposed
framework utilizes the change point detection algorithm, thus,
it can circumvent the limitations of the pre-defined threshold.

Anomaly diagnosis is the task of distinguishing cyber-
attacks from physical faults, which can be approached as
either a classification or a clustering problem, depending on
whether labels are used in training. Most available approaches
focus on supervised learning methods [6], [13], [14], [15],
[16], [17], [19], [25] that use a support-vector-based algo-
rithm or deep learning framework for binary-classification
to distinguish cyber-attacks from physical faults. Similar to
the deficiencies in supervised methods of anomaly detection,
supervised methods for anomaly diagnosis need large labeled
training data to achieve high performance, which can be a sig-
nificant limitation. Unsupervised methods [5], [26] are more
potent in applications since they do not need label information
during training. The proximity methods [26] treat each time
point independently, and apply clustering methods such as K-
means on the multivariate features of each time point. Binary
Matrix Factorization (BMF) [5] can extract high-dimensional
features from the entire time series, and t-SNE can reduce the
dimension of the features. Then, proximity-based clustering
methods can be easily applied to the whole dataset. However,
the above two methods have limitations, as they do not cap-
ture the inter-dependence of different time series dimensions
and the temporal dependency of single time series. To address
these limitations, we propose to use MFPCA-based cluster-
ing. MFPCA approximates the data probability distribution
function (p.d.f.) by the product of the p.d.f. of the princi-
pal components, which is the projection of the input features
on the lower dimensional space spanned by eigenfunctions,
calculated by the singular value decomposition of the covari-
ance matrix of multivariate time series. Thus, MFPCA is able
to capture the inter-dependence of the multi-dimensional time
series and auto-correlation within a single dimension of the
time series.
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Fig. 1. Schematic diagram of the power electronic converter-enabled PV
farm. Ipy, Upy, If, and U, are PV array current, PV array voltage, inductance
current in the LCL, and capacitor voltage in the LCL, respectively.

For a comprehensive comparison of different methods, we
summarize several aspects that are important to the real appli-
cation of anomaly detection and diagnosis, whether it’s online
or not, unsupervised or not, for anomaly detection or diag-
nosis, and the gap existing in the methods to achieve the
goal, accurate and real-time unsupervised anomaly detection
and diagnosis. To make the comparison clear, we present the
summary of all related works in Table I.

III. POWER ELECTRONIC NETWORK AND ATTACK
MODELS

A. A General Power Electronic Network Model

As the number of DERs grows, a power electronic network
for converting renewable energy sources into smart grids
is gradually taking shape. Figure 1 shows a typical power
electronic network in a PV farm.

To study the impact of cyber-attacks and physical faults, a
high-fidelity PV farm is modeled. In the first stage, maximum
power point tracking (MPPT) is designed to generate the max-
imum power of the PV array. In the second stage, voltage and
current control are designed to maintain DC-link voltage and
convert the power from the PV array to the power grid. Then,
the LCL of each PV inverter is designed to filter out high-
order harmonics in inductance current, which is expressed as
follows:

X = Ax + Bu, (D)
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Fig. 2. Physical faults in PV converter and high-voltage line.

where x = [l Ip, Ip]", and I;y is one phase
inverter-side inductance current in  the LCL,
[Uka, Uiy Ukes Uga, Ugn, Ugel™, Uxqy and Uy are
one phase inverter-side voltage and grid-side voltage in the
LCL, respectively, and

u =
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where R and L are the resistance and inductance.

B. Cyber-Attack Model

As discussed in many studies [27], [28], [29], cyber-attacks
could destroy the operation of PV farms by compromising
sensor measurement. In this paper, we assume that the attacker
manipulates the measured data or injects false data into the
sensor. The cyber-attack can be expressed as

Ypa(t) = a¥o(t) + B 3)

where Y4 is the compromised data vector that is eventually
the input of the controller, Y, is the original measurement
including Iy, Upy, Ir, and U, as shown in Figure 1, o is a
multiplicative factor, and g is the false data injection.

C. Physical Fault

Besides cyber-attacks, physical faults also threaten PV
farms. As shown in Figure 2, two types of physical faults,
including open-circuit faults in the switch (F1), and short-
circuit faults in the transmission line (F2), are modeled and
simulated in the real-time testbed. In F1, the open-circuit
fault occurs in a switch of the PV converter, which leads to
the open transistor. Short-circuit fault causes a heavy current
which creates overheating or destroys the equipment in the
power grid. As shown in Figure 2, three-phase, two-phase,
and single-phase short-circuit faults are modeled. Ryp is the
fault resistance between Phase A and Phase B. R4 is the fault
resistance between Phase A and the ground. Rg is the ground
resistance. The model for F2 results in incorrect connections
between each phase on the high-voltage line. More details of
the setting and types of physical faults we used in the article
are presented in Table II.

IV. PROBLEM STATEMENT

In a power network, our data consists of observations of the
waveform in the PCC node in many cases. For case i at time
t, let X;(t) = [Lia(t), Lip(2), Lic (1), Uia(2), Uip(t), Uic(1)] denotes
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3-phase voltages

|
FE

Fig. 3.  An example of waveform data for three-phase voltages (bottom
panel), three-phase currents (middle panel), and nine-dimensional TFD fea-
tures (bottom panel), respectively, for one case. This example shows the data
in a time range (14-16s). The anomaly happens at 15s.

a multivariate time series consisting of three-phase current
I = (I, Ip, I;) and three-phase voltage U = (U,, Uy, U,). By
combining information both in the time domain and frequency
domain, we utilize the TFD features proposed in [6]. We
denote the nine-dimensional TFD features, a multivariate time
series, by X(1) = [X' (1), ..., X (1), ..., X ()], where the i-th
case is denoted as i,-(t). Figure 3 shows an example of wave-
form data for three-phase voltages (bottom panel), three-phase
currents (middle panel), and nine-dimensional TFD features
(bottom panel) respectively, for one case. Based on this mul-
tivariate time series, we have two goals. The first is to find
the starting point #;4; and ending point #;47 of an anomaly
in the multivariate time series X,-(t) and diagnose the anoma-
lous portion of the series, [Xi(tk_H), e, X,-(tk_g)]. Given this
anomalous series, the second goal is to assign an anomaly type
(cyber-attack or physical fault) to each detected anomalous
time period.

A. Anomaly Detection Problem

Based on the extracted TFD feature vector from one case,
we aim to find a change point that shows a large change in
the pattern of the data. We assume that there are n cases in
total and the i-th case of the TFD feature X;(¢) under normal
conditions is generated by the model, X;(7) = ni(t)+¢€(t), where
t=1,.,tr,and i = 1,...,n. If there is an abrupt change at
time point #¢41, then the TFD feature vector would be assumed
to have the form: X;(¢) = a;1;(f) + €; (), for some real number
oj and t = tgyq, ..., tyrr for some T, where «; denotes the
rate of change. That is, there would be a significant change in
some dimensions of the TFD feature vector when an anomaly
happens. In statistics, leverage is a measure of how far away the
value of the observation of TFD feature X is from those of other
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TABLE I

SETTING OF P

HYSICAL FAULTS

Fault type  Location Definition Case No.
F1 IGBT IGBT 51 Fi
IGBT S2 Py
IGBT S3 F;
IGBT S5 Fy
F2 High voltage (HV) line phase A Rg € {1,0.1} Ohm Fs,Fg
HV line phase A R4 =02 Ohm & Rg = 0.1 Ohm Fr
HV line phase AB Rap =2 Ohm Fy
Rap=2 Ohm & Rg € {1,0.1} Ohm Fy,Fio
Rap= 0.2 Ohm & Rg= 0.1 Ohm Fi1
HV line phase AC Rac =2 Ohm Fio
RAc= 2 Ohm & RG S {1,0.1} Ohm F137F14
Rac=0.2 Ohm & Rg= 0.1 Ohm Fis
HV line phase ABC Rapc=2 Ohm & Rg € {1,0.1} Ohm  Fig, Fir
Rapc=0.2 Ohm & Rg= 0.1 Ohm Fig

observations. As shown in Figure 3, the TFD features increase
at 15 s, at which the anomaly happens. Thus, we formulate
the problem as the identification of the time points with high
leverage scores like the previous work [5], [9] did.

B. Anomaly Diagnosis Problem

There are two major anomaly types in the device-level
power electronics converters (PEC), cyber-attacks and physical
faults. While these are two common types of anomalies, it is
hard to distinguish cyber-attacks from physical faults. Wrong
identification of the anomaly types might cause degradation of
the devices and huge economic losses in the power electronic
network. Thus, it is essential to identify the anomaly types of
the anomalous time series after performing anomaly detection.
To make sure our algorithm is still applicable to the online sce-
nario, we slice the anomalous series [ii(tkﬂ), A ii(tHT)]
into pieces of anomalous windows. We are interested in
predicting the cluster that each anomalous window belongs
to with a label z € {1, 2}, where 1 denotes cyber-attack, and
2 denotes physical fault. Note that this is an unsupervised
problem where we do not have labels during the training
phase, which is common in studies involving power electronic
networks.

V. PRELIMINARIES

Before proceeding into the details of our proposed algo-
rithm, we introduce the background knowledge of the paper
including the VAR model, calculation of leverage score in the
VAR model, and details about the embedding method for time
series, MFPCA.

A. Vector Autoregressive Model
A classical p-th order VAR model representation characterizes
the temporal dependence structure of the time series X():
X(1) = X(t-1)A1 +X(6-2) A + - + X(5e—p)Ap + €(0)
“4)

where {Al-}fl.”:1 are 9 x 9 unknown parameters matrices and
€(?) is the vector of error terms that are independently and
identically distributed with mean zero and constant variance.
The VAR(p) model in (4) can also be expressed in the form
of a linear model:
Y =D'A +e¢, (5)
s <7 <T =T T =P .
where Y = [X" (%), X" (t+1), - - -, X (e+1)]", D is the lag
matrix of time series X(¢), defined as:

X(t-1)  X(-2) X(tr—p)

X(.tk) X(fl.cfl) X(tk:er]) , ©
X(lkJ;lr—l) X(fk—e.—T—2) X(tiﬁ;r—p)

and A = [AT,...,A;]T is the parameter matrix to be

estimated, and € is the random noise.

B. Leverage Score in VAR

By the linear model representation in equation (5), the lever-
age score of the g-th data point can be interpreted as the
amount of leverage or influence the g-th observed value exerts
on the g-th fitted value. The leverage score in the linear model
has been generalized to the VAR model in time series [9]. In
the VAR model, the time points with drastic fluctuation tend
to have higher leverage scores, and we call them influential
data points. In this way, we can convert the problem of detect-
ing anomalies into the problem of identifying time points with
high leverage scores.

The time points associated with the drastic fluctuation indi-
cate the starts or ends of anomalies. Since the TFD features
drastically change when an anomaly happens, we are moti-
vated to use the leverage scores to detect anomalies. For
each case, the leverage score of the g-th observation can be
expressed as

=p T (=pT—p\ ~1=p
ly=d;,) (V') . (7
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— T —; —pT—
where dl()q) is the g-th row of Dp, and we call D" D’ the
lag-covariance matrix of the TFD features i(t).

C. Multivariate Functional Principal Component Analysis

MFPCA can embed the multivariate time series into a
low-dimensional space spanned by eigenfunctions based on
Karhunen-Loeve expansion [30]. Compared with other deep
learning classification models [5], [14], [17], [31], the advan-
tage of the proposed MFPCA clustering method is that it is
interpretable and does not use labels to train. Compared with
other unsupervised clustering approaches [3], [5], [26], the
advantage of MFPCA is that it can model both the inter-
dependence of different dimensions of time series and the
auto-correlation of a single dimension of time series.

To find the optimal representation of the time series in
a functional space, we further assume that X(1) is an Lo-
continuous stochastic process, that is,

vieln,nl, Jim E[IX( -+ k) = X ]

(P - <€, \2
:/}%/,. ;E[<X (t+h) —X (t)) i|dt:0. (8)

Note that most real data satisfy this assumption, and so does
the TFD feature, which is normalized in [0, 1]. We also denote
the mean of the ¢-th variate as u¢ = {ut@) = IE[}_(‘Z ®Deero0,115
and let u(t) = E[X®] = (u!, ... ub, ..., u2)T. We further
define the covariance function of i(t) as:

Ve =E[(X0) - ne) @ (X0 —n®)].  ©

where s,t € [t1, ], and ® is the tensor product on R”.
Then, the eigenfunctions {f,, = (fnll, . ,f,f,, .. ,f,?l)T}mzl are
defined as:

15}
/ VI, Ofm(Ddt = donf (10)
n

which satisfy fttlz Z?:l f,fl(t)/f:;, (t)dt = 1 if m = m’ and 0 oth-
erwise, and {A,,},;>1 are associated eigenvalues. Consequently,
the principal component {C,,},>1 are the projections of X
on the space spanned by the eigenfunctions {f,,}u>1 of the
covariance function:

9
Cn= [ (%0 - )i
top=1

1

(1)

where the principal components {C,},>1 are zero-mean
uncorrelated random variables with variance {A;,},,>1, respec-
tively. After removing the mean effect of X(¢), we truncate the
first ¢’ terms of the Karhunen-Loeve expansion of X(r) and
write it as:

q/
X(0) =) Cufu®), 1€ln,nl (12)

m=1

The truncation leads to a dimension-reduced subspace.
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Fig. 4. The workflow chart of the online algorithm of anomaly detection
and anomaly diagnosis.

VI. ALGORITHM DESIGN

Our algorithm consists of three parts, as shown in Figure 4.
First, through domain knowledge, we calculate the streaming
TFD features for each time window. The extracted features
contain information that not only helps distinguish normal
data from anomalous data, but also enables us to distin-
guish between a cyber-attack and a physical fault. Second,
we detect anomalies of the extracted features by the proposed
ILAD algorithm. Since the informative leverage score of the
extracted features will increase drastically if an anomaly starts
or ends, we can easily detect the change points and raise
flags when anomalies happen. The informative leverage score
selects significant singular vectors for the leverage score calcu-
lation using a permutation test. The ILAD algorithm removes
the noise and enlarges the difference between the anomalous
period and the normal period. The ILAD algorithm does not
need labels in training and is effective in various emerging
anomalies. Third, the anomaly diagnosis task would be trig-
gered to assign labels (cyber-attack or physical fault) to the
anomalous time windows after getting the anomalous data
from the second step. This step also uses an unsupervised
method, MFPCA, to cluster different anomaly types. Most
classification methods need labels to train, while in power
electronic networks, the true anomaly types are hard to obtain.
Without needing the labels to train, our method extracts fea-
ture characterizing the difference between cyber-attacks and
physical faults.

A. Feature Extraction

Based on the raw waveform data, it is hard to distinguish
the two anomaly types, cyber-attacks and physical faults. As
shown in Figure 5, the plots of waveform data for two cases
are on the left, one is under cyber-attack and the other has
a physical fault. There is little difference between the two
cases solely from the waveform data. This motivates us to use
domain knowledge to extract some higher-level time domain
features and frequency domain features to help distinguish
between the two anomaly types. We use the TFD features [6]
to identify the onset of anomalies and to distinguish between
the two anomaly types via distinct patterns.

1) Frequency Domain Features: First, we obtain uPMU
features through fast Fourier transform (FFT) to project a
signal into the frequency domain. Since the signal is dis-
torted when an anomaly happens, we use THD to capture the
harmonic information of the distorted waveform. This yields
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Fig. 5. An example of waveform data for two cases (5 and 31) and extracted
TFD features. The first column shows the plots of waveform data, and the
second column shows the plots of extracted TFD features. Case 5 encounters
a cyber-attack while case 31 encounters a physical fault. In this example, we
show the data in a time slot, from 15.025s to 15.525s.

a feature vector denoted by

F= [M{.}, T{.}], (13)

where M{,, and T, are six-dimensional vectors representing
the magnitude (M) of the fundamental frequency and THD
(T), respectively, for each phase of the waveform. Whereas
the THD in a waveform is known to be lower than some
boundaries under normal conditions. Through expert knowl-
edge, the maximum THD is set as Ty;0x = 5%. Then, THD
for each phase is normalized as follows:

Ty
0 ’1}
Tmax
The raw uPMU features sometimes lead to false positive
results, especially when the magnitude is affected by a huge
change in irradiance. Thus, we extract the difference between

the magnitudes of the three-phase waveforms R, to distinguish
physical faults from cyber-attacks:

Ty = min{ (14)

Rt =AM}, + AMD, + AM},

Rnu = \/ AMY, + AMG, + AMY,
Ry = (Rm,l +Rm,U)/2

where AM]1 = M[a —M]b, AM[2 = Mlb — M]C, AM[3 =
M, — M;,, and Ry, y is defined similarly. After normalization
and scaling, the magnitude-based features become:

15)

- R
R = min{—m, 1}
le,max
_ In(R -1
Rm2=min{m, 1}, (16)
Rm2,max

where Ry max 15 the maximum of R,,, and R, maex 1S the
maximum of In(R,, + ¢) — 1.
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2) Time Domain Features: Except for the frequency
domain features, the transformation of the time domain fea-
tures, three-phase currents, helps distinguish physical faults
from cyber-attacks. We use a variant of the MCV by current
Concordia transformation, which is used in anomaly detection
for power electronic networks [6]:

e

The degree of distortion of points (I, Ig) at a time point f
indicates physical faults. Thus, we define the MCV point at
time f#; as:

tx 13
L1 .
R S DR MON D DR 10} IO
i=ty—Ni+1 i=ty—Np+1
According to the domain knowledge from [6], since the

poor circuit contacts would affect the MCV locations, thus,
Concordia transformation of MCV has clear patterns when an
open circuit fault happens. Thus, Py, is defined based on the
maximum number of points of all regions in the panel (Iy, Ig).
The Py, feature represents the concentration of MCV points,
which is helpful when distinguishing open-circuit faults from
other threats.

In all, we combine both the time and frequency domain
features, and use the following set of features to do anomaly
detection and anomaly diagnosis:

X= [les RmZv Pmcw T] (18)

We refer to the above 9-dimensional feature as the TFD fea-
tures, where Ry, Ry, and P, are all scaler features, and T
are six-dimensional features. We use this feature to carry out
anomaly detection and anomaly diagnosis.

B. Informative Leveraging for Anomaly Detection

After extracting TFD features that could signal anomalous
patterns of power electronic networks, we further model the
9-dimensional TFD features X(7) by a VAR model, and deter-
mine the highly influential time points based on the leverage
score of the VAR model. The original leverage score calcu-
lation method cannot eliminate the random noise, resulting
in an insignificant difference between the normal and anoma-
lous periods. This insignificant difference would result in false
detection of the starts and ends of the anomalies. To overcome
this issue, we propose an informative leverage score to remove
the random noise from the small singular values.

After extracting the bump pattern through the informative
leverage score, we use a sequential change point method [32]
to identify the starts and ends of anomalies automatically. Our
method can also be generalized to an online scenario to detect
the starts and ends of the anomalies using the informative
leverage scores. For this, a generalization of the idea in [9]
yields a streaming leverage score that only utilizes the history
and the current information to approximate the leverage score.
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1) Streaming Leverage Score for Online Anomaly
Detection: When the anomaly detection problem is extended
to a real-time task, some additional difficulties arise. The main
challenge is that one usually needs to make an immediate
decision as soon as a new data point streams in. However,
the calculation of the lag covariance matrix needs the input
of the whole time series. To overcome this, a natural and
effective way is to use a pilot sample to approximate the true
lag covariance matrix. Here, we use the method introduced
by [9] to calculate the streaming leverage score, which
guarantees the accuracy of the estimation while reducing
the computational cost. We use the pilot sample of size r to

. . . =Ty .
approximate the lag-covariance matrix D’ D’. The streaming

leverage score of the g-th observation, /4, is defined as:

l=d,, (t7)"'@,), (19)
where T represents the approximation to the lag-covariance
matrix based on the pilot sample with size r, and we call it
the sketched lag-covariance matrix.

We show a simplified version of the streaming leverage
score. We denote the singular value decomposition (SVD) of
the sketched lag-covariance matrix T by UXV’, where X is
the diagonal matrix of singular values, U and V are orthogonal
matrices such that UTU = VIV =1 Let

5 2 = T i\?, 2
qu:Z(d(q) v(l)> /o

J=1

(20)

where v?) is the j-th column of V, o; is the j-th singular
value, and r — p is the total number of singular values of the
sketched lag-covariance matrix I'}. The singular values of the
lag-covariance matrix are also referred to as spectrum in this
article.

Here, the information of the lag-covariance matrix is pro-
jected onto orthogonal directions of singular vectors v?), and
each singular value is the variance of the projected data in the
corresponding singular vector space. In our case, each pair of
eigenvalue and associated Principal Component (PC) of the
lag-covariance matrix characterizes an oscillatory mode, e.g.,
trend, periodicity, and noise. However, not every PC can help
distinguish between normal and anomalous data. For exam-
ple, the first PC characterizing the trend is not informative
to anomaly detection, and anomalies often appear in other
oscillatory modes.

2) Informative Leverage Scores for Anomaly Detection:
The aforementioned challenges motivate us to propose an
informative leveraging for anomaly detection algorithm to
select more informative PCs to differentiate between the nor-
mal and anomalous periods. Instead of directly using the
original leverage scores, we perform a test to see if each singu-
lar vector is informative by examining the amount of noise it
contains. If a singular vector contains excessive random noise,
we exclude it while calculating the leverage score. Mimicking
the idea of a permutation test, we randomize different rows
of the lag-covariance matrix ﬁfTﬁf for each feature in the
offline setting and the sketched lag-covariance matrix ' in
the online setting, and perform an SVD again. The result of
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Fig. 6. An example of the original leverage score and informative leverage
score. By removing the noise and obtaining an informative leverage score,
the gap between the normal and the anomalous rises. This leads to higher
accuracy while detecting the starts and ends of anomalies.

the SVD in online and offline settings is usually denoted by
USV7. We repeat this procedure many times, and each time
compare the actual values to the randomized ones. If the true
singular value is outside the 95% confidence interval, then we
declare that the singular value and the associated singular vec-
tor are informative. Through the permutation test, we get a set
T of informative singular vectors. Then, we let

lyy= 2 (%)TW))Z/#,

j=€L

1)

where 3 is the Jj-th column of \7 o is the j-th entry of f,
and k is the cardinality of the set of the informative singular
vectors Z. We illustrate the advantages of filtering informative
singular vectors via a comparison of original leverage scores
and the proposed informative leverage scores for two cases in
Figure 6; these are calculated in an offline manner. The red
lines shown in Figure 6 are the original leverage scores, and
the blue lines shown in Figure 6 are the informative leverage
scores. The informative leverage scores are able to remove
the noise, and the gap between the score of the normal to that
of the anomalous rises significantly. Thus, the performance
of anomaly detection improves by removing the information
from the least important singular vectors.

To illustrate that the proposed ILAD algorithm still works
in online settings, we show that informative leverage scores
reflect drastic changes caused by the starts and ends of
anomalies in an online manner. Figure 8 shows examples
of streaming data with five cyber-attacks and one physical
fault. The coincidence between time points with high lever-
age scores and those indicating the presence of anomalies
confirms our belief that influential points with high lever-
age scores are where anomalies occur. Due to the drastic
change in the informative leverage scores as soon as there is
an anomaly, we subsequently use a sequential change point
detection algorithm [32] to identify the starts and ends of
anomalies. Most available anomaly detection methods use a
pre-specified threshold to raise a flag. The threshold based
methods are ad-hoc and need a fine-tuning step to set an
appropriate value. Instead, the sequential change point method
is data-driven, making decisions based on past information.
Thus, the anomaly detector prevents information leakage from
future observations and identifies anomalies adaptive to the
data.
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C. Multivariate Functional Principal Component Analysis
Clustering for Anomaly Diagnosis

Most approaches for anomaly diagnosis [14], [31] use a
supervised classification model, where information from labels
is used for training and prediction. However, for anoma-
lies in power electronic networks, the labels for the anomaly
types are hard to obtain. Thus, accurate unsupervised meth-
ods are urgently needed for anomaly diagnosis in power
electronic networks. Currently, existing unsupervised anomaly
diagnosis methods distinguish between anomaly types using
proximity-based methods, such as K-means and hierarchical
clustering [5], [26]. These methods ignore the dependency
between different data features and are sensitive to outliers.
In addition, these methods do not assume models. Therefore,
we cannot find the probability that a new data point belongs to
a certain cluster. In order to model the dependence and assign
a probability of cluster membership to each data point, we use
the MFPCA to approximate the data distribution and maximize
the likelihood of the mixture model. Through projections by
MFPCA in Section V, the density of the multivariate time
series can be approximated by the product of the densities of
the principal component scores.

Assume that the data is generated from multiple clus-
ters, then the multivariate time series follows a mixture
model, whose likelihood can be maximized by the iterative
Expectation—maximization (EM) algorithm [33]. After we
apply MFPCA and embed the time series into a dimension-
reduced subspace, we further assume each principal compo-
nent C,, follows univariate Gaussian distribution. Since the
structure of the distribution of the multivariate time series can
be retained in the spectrum of the covariance of the data, one
natural density surrogate of TFD feature X(7) is the density of
the first ¢ principal components:

q/
1@ = [T fen(en: i), 22)
m=1

where c,,(X) is the principal component score of data X, and fc,,
is the density of the m-th principle component C,,. Assume
the data generation procedure follows a mixture model, the
probability of generating data from g-th cluster 7, satis-
fies Zif:l me = 1. We denote the indicator of the cluster
g as Z8, which takes the value 1 when the data belongs
to g-th cluster and O otherwise. Then, we approximate the
density of i|zg:1(t) by product of the densities of ran-
dom variables {Cyyzs=1}m=1,....# With zero mean and variance
4+ Thus, the density of X(f) can be represented

AN 60 = an ch,,,lzg (emg @i hng).  (23)

where ¢y, ,(X) is m-th the principal component score
of X belonging to g-th cluster, and qé is the num-
ber of principal components for g-th cluster, and 6 =
{(g, A1 g, ...,)\,qg”g)]sgsl(} are unknown parameters to be
estimated. We can represent the likelihood of the observed
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where ¢, ¢(X;) is the m-th principal component score of i-th
observation x; belonging to the g-th group. We use the iterative
EM algorithm to maximize the above likelihood function with
respect to 6. By finding the optimal representation of the data
X, we can estimate the most probable clustering assignment
for each observation X;.

To make this algorithm applicable to anomaly diagnosis
in power electronic networks, we use the sliding window
approach to slice the long time series into small fragments.
Thus, we assign clustering labels to each sliding window. In
our context, there are only two anomaly types to be distin-
guished. Thus, we set the number of clusters as two. Another
implementation issue of the MFPCA clustering algorithm is
how to decide the number of principal components for approx-
imating the likelihood function. We use the Cattell scree
test [33] to select q;, for g-th cluster.

VII. OFFLINE TESTING RESULTS
A. Experiment setup

The model and data used in this study are based on a festbed
model co-developed by the Intelligent Power Electronics
Electric Machine Lab and the Sensorweb Research Lab at the
University of Georgia (UGA) for generating electric waveform
data. In this study, we refer to the data from this festbed as the
UGA dataset. The PV farm consisting of seven converters and
an IEEE 37-node distribution grid is simulated in OPAL-RT as
shown in Figure 7. To simulate the dynamics of the PV farms,
PV converters are modeled in Embedded Field Programmable
Gate Array (eFPGA). The IEEE 37-node distribution grid is
simulated in Advanced Real-Time Electro-Magnetic Solvers
(ARTMEIS) to realize the real-time simulation. In the real-
time testbed, a number of cases are simulated. The offline
dataset consists of 43 abnormal cases. Among all 43 anoma-
lous cases, there are 25 cyber-attack cases, of which 14 are
single-DIA cyber-attack cases, 10 are coordinated-DIA cyber-
attack cases, 1 is a replay attack, and 18 are physical fault
cases, of which 14 are short circuit fault cases and 4 are open
circuit fault cases. The data is the six-dimensional raw wave-
form data composed of three-phase currents and three-phase
voltages. Each case has a total of 800,000 time points with a
sampling frequency of 20,000 Hz. As a pre-processing step,
we first down-sample the raw time series every ten points to
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prevent the high computational cost. Then, we extract TFD
features from the raw waveform data. For the down-sampled
six-dimensional waveform of length 1000, we could extract
nine-dimensional TFD features of length 20. After feature
extraction, we get a multivariate time series with dimension
(1600, 9).

B. Offline Test Results

1) Offline Anomaly Detection: For offline anomaly detec-
tion, our task is to identify the starts and ends of the anomalies.
The input for our algorithm is the 9-dimensional TFD features
with 1600 time points. The true anomalies start at 15 seconds
and end at 25 seconds. If the delay of the detector’s responses
to the true starts or ends is no later than 5 seconds, we say
the detection is successful.

Before implementing the ILAD algorithm, we first fit the
VAR(p) model to the TFD features, then we calculate the infor-
mative leverage scores for all time points and detect the change
points of the scores, which are our estimated starts and ends
of anomalies. It should be noted that the choice of the hyper-
parameter p in the VAR(p) model is data-driven. Since the
initial part of the streaming data is mostly normal, we take this
part as the pilot sample to determine the order p of the time-
dependence structure. Specifically, we aim to find the VAR (p)
model which best represents the underlying dependence struc-
ture of the normal patterns of the TFD features. Considering
both the prediction loss and the model complexity, we choose
p with the smallest BIC value in the range of p € [1, 15]. We
also build the model under different pilot sample sizes (from
35 to 65) to test if our model is sensitive to the pilot sample
size. We find that the optimal choice of the order p remains
the same. Thus, we set the pilot sample size as 50.

To show the benefits of the proposed informative lever-
age score, we compared it with the original leverage score in
terms of the accuracy of identifying the starts and ends of the
anomalies. We also compared two unsupervised score-based
algorithms, Hotelling T2 [34] and Multivariate CUSUM [35],
for detecting the starts and ends of anomalies. We deployed
these two methods since they are designed to deal with mul-
tivariate time series data. The same sequential change point
detection algorithm is applied to the proposed ILAD algo-
rithm to ensure fairness. Results are shown in Table III. The
performance of the proposed algorithm denoted by “off-ILAD”
is better than that of the original “Leverage” approach and
is superior to the other score-based methods. Note that “off-
ILAD” identifies 42 starts and 32 ends of anomalies out of
the 43 cases. The reason why the accuracy of “off-ILAD” in
detecting the ends of the anomalies is lower than detecting
the starts is that, even though some physical faults are with-
drawn, the system cannot return to its normal state. This is
why detecting the ends of anomalies fails in some cases.

2) Offline Anomaly Diagnosis: Among all the anomalies,
two major anomaly types are to be categorized. Since the
repair involved after attacks of different types of anomalies
are significantly different, it is necessary to distinguish
cyber-attack from physical faults accurately.

The extracted TFD features for each case are long and
periodic, therefore, we slice the long time series into several
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TABLE III
EXPERIMENT RESULTS OF OFFLINE ANOMALY DETECTION

Approach Start End

off-ILAD 42/43 | 32/43

Leverage 40/43 21/43

Hotelling T2 | 33/43 3/43

MCUSUM 17/43 17/43
TABLE IV

EXPERIMENT RESULTS OF OFFLINE ANOMALY DIAGNOSIS

Approach Accuracy F1 TPR TNR

MFPCA 0.9912 1.0000 | 0.9825 | 0.9912
t-SNE 0.6002 0.6557 | 0.5650 | 0.4630
UMAP 0.6663 0.6469 | 0.5709 | 0.6190
PCA+t-SNE 0.5604 0.5529 | 0.5379 | 0.5833

time slots (each slot has 20 time points). Thus, we have 80
time slots from one case. Furthermore, we filter the data
in the anomalous duration detected by our proposed ILAD
algorithm. Thus, we obtain 893 windows in total. We apply
the MFPCA clustering to diagnose the 893 observations of
multivariate time series. Our method embeds the data onto
a low-dimensional space spanned by eigenfunctions. Thus,
we compare the benchmark deep embedding methods, t-SNE
and UMAP, to embed the data onto a two-dimensional space
and cluster the data by K-means. In addition, we compare
the MFPCA method with the combination of two dimension
reduction approaches, Principal Component Analysis (PCA),
and t-SNE. The results are shown in Table IV. We measure
the performance of clustering through Accuracy, F1 score,
TPR (True Positive Rate), and TNR (True Negative Rate).
In terms of all four measures, the proposed MFPCA algo-
rithm is the best among the four methods considered here. This
is because the MFPCA, unlike other unsupervised dimension
reduction approaches, could model both the inter-dependence
of different dimensions of time series and the auto-correlation
of a single dimension of time series. The Accuracy mea-
sure of the MFPCA algorithm is 99.12% and the F1 score
is 100.00%, which are relatively higher numbers and even
comparable to some of the classification algorithms [6]. Our
MFPCA clustering algorithm successfully identifies all the
cyber-attacks. However, some physical faults are wrongly
identified as cyber-attacks because some are hard to distinguish
from cyber-attacks.

VIII. ONLINE TESTING RESULTS
A. Online Experiment Setup

To validate the proposed method, we develop a real-time
detection and diagnosis testbed using the NI device. As shown
in Figure 7, the NI 9205 is connected to the OPAL-RT. The
real-time data obtained by NI 9205 is sent to the PC through
Ethernet. To perform a comprehensive real-time data analysis,
we obtained streaming data consisting of different anomaly
types under two scenarios: (1) Scenario one consists of a set
of streaming data with five cyber-attacks, and one physical
attack due to a short circuit fault; (2) Scenario two consists
of another set of streaming data with five cyber-attacks and
one physical attack due to an open circuit fault. There are
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Fig. 8. The results of online Informative Leveraging for anomaly detection.
The solid black line is the informative leverage score. The blue vertical lines
are where the anomalies happen. The red vertical lines are the detected starts
and ends of anomalies. The upper one shows the results of scenario one, and
the lower one shows the results of scenario two.

6 starts and 5 ends of anomalies to be detected under both
scenarios.

B. Online Test Results

1) Online Anomaly Detection: The proposed online-ILAD
algorithm is implemented on the above online datasets to test
its performance. Under each scenario, we continuously collect
waveform data and detect the anomaly as the new data streams.
The raw streaming waveform data contain around 500,000 time
points(= 25s). Our goal is to detect the starts and ends of all
attacks. We first down-sample the long time series every 10
time points to prevent high computational cost, and then extract
the nine-dimensional TFD features. Our following analysis
is based on the TFD features. We use a similar procedure
in the offline setting to choose the best VAR(p) model and
apply the online-ILAD algorithm to the streaming data. As in
the offline experiment, the pilot sample size for selecting the
best VAR model is 50. Varying different order values p, we
choose the best hyper-parameter for the VAR(p) model with
the smallest BIC value. Figure 8 shows the calculated online
informative leverage scores for both scenarios. The top panel
is the result of scenario one, and the bottom panel is the result
of scenario two. The blue vertical lines indicate where the
anomalies happen. The red vertical lines indicate the detected
starts and ends of anomalies. We can see that the time points
with high leverage scores are consistent with the anomalies
on waveform data. We then use the change point detection
algorithm to sequentially detect change points of the informative
leverage score. Table V shows the results of online anomaly
detection for scenario one and scenario two. Our proposed online
ILAD algorithm is denoted by “on-ILAD”. We compare the
proposed methods with other score-based anomaly detection
methods and identify the anomalies by the same sequential
change point algorithm.

The performance of the anomaly detection task in the two
scenarios is good, with 100% accuracy. Thus, our method is
superior in performance to other competing methods. It should
be noted that the anomalous data returns to the normal state
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COMPARISON OF PREDICTION RESULTS FOR SCENARIOS 1 AND 2

TABLE V

Approach Scenario 1 Scenario 2

Start | End | Start | End

on-ILAD 6/6 | 5/5 6/6 5/5

Leverage 5/6 2/5 4/6 3/5

Hotelling T2 | 5/6 | 4/5 | 2/6 | 1/5

MCUSUM 3/6 2/5 5/6 4/5
TABLE VI

EXPERIMENTAL RESULTS OF REAL-TIME ANOMALY
DIAGNOSIS FOR SCENARIO 1

Approach Accuracy F1 TPR TNR
MFPCA 0.9524 0.9697 | 1.0000 | 0.9412
t-SNE 0.7619 0.8571 | 0.8824 | 0.2500
UMAP 0.8095 0.8947 | 1.0000 | 0.0000
PCA+t-SNE 0.8095 0.8824 | 0.8824 | 0.5000
TABLE VII

EXPERIMENTAL RESULTS OF REAL-TIME ANOMALY
DIAGNOSIS FOR SCENARIO 2

Approach Accuracy F1 TPR TNR
MFPCA 1.0000 1.0000 | 1.0000 | 1.0000
t-SNE 0.8095 0.8667 | 0.7647 | 1.0000
UMAP 0.9047 0.9444 | 1.0000 | 0.5000
PCA+t-SNE 0.8095 0.8947 | 1.0000 | 0.0000

after the attack ends. Thus, our proposed method successfully
detects all the ends of anomalies and validates the efficiency
of the proposed algorithm.

2) Online Anomaly Diagnosis: As in the offline experi-
ment, we slice the TFD feature in the anomalous period into
small time slots and predict the TFD feature label in each
time slot based on the mixture model we trained in the offline
experiment. For each incoming time slot, we estimate its prin-
cipal components in each cluster and compare the likelihood
of the window belonging to each cluster. Finally, we assign the
clustering label to the one with a higher likelihood. The online
testing result of the MFPCA clustering algorithm is shown in
Table VI and Table VII. In the online testing, the performance
of our clustering algorithm is still comparable to the classifi-
cation method mentioned in [6], and our method is superior in
performance to other deep embedding-based clustering meth-
ods in terms of the binary classification metrics we use. For
scenario one, our MFPCA clustering method identifies all the
cyber-attacks successfully. Besides, our method successfully
identifies 95.24% of all the time slots for scenario one. For sce-
nario two, our method identifies all the open circuit faults and
cyber-attacks. Compared to the open circuit fault, it is harder
to distinguish the short circuit fault from the cyber-attack.

IX. CONCLUSION

This paper presents a novel framework for solving
anomaly detection and diagnosis problems in power elec-
tronic networks. To detect anomalies, we use a novel ILAD
algorithm. Compared to other deep learning algorithms that
need labels of the normal data or labels of both the normal and
anomalous data, the proposed algorithm is unsupervised and
does not need labels to train. Compared to other unsupervised
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score-based anomaly detection methods, the proposed method
is not threshold-based and has higher accuracy. Furthermore,
it is shown that our offline ILAD algorithm can be generalized
to the online ILAD by sketching the lag-covariance matrix.

Most available work uses supervised classification mod-
els for the anomaly diagnosis task. However, the labels for
anomaly types in the power electronic networks are not easily
accessible in real applications. Therefore, we use an unsuper-
vised MFPCA clustering method which does not need labels
to train. Based on the model trained by offline cases, for each
time window, we tested the data in an online manner to decide
the clustering labels. To the best of our knowledge, this is
the first article to use unsupervised anomaly detection and
diagnosis algorithm for the power electronic network.

It should be mentioned that more work needs to be done in
the future to make our anomaly diagnosis algorithm discover
novel anomaly types. Our clustering model cannot discover
new clusters in an online scenario as more data streams in.
To make the algorithm identify new clusters, we may need to
borrow ideas from dynamic linear models to generalize the
MFPCA clustering algorithm to a dynamic version.
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