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Abstract—We propose a novel unsupervised anomaly detec-
tion and diagnosis algorithm in power electronic networks. Since
most anomaly detection and diagnosis algorithms in the literature
are based on supervised methods that can hardly be generalized
to broader scenarios, we propose unsupervised algorithms. Our
algorithm extracts the Time-Frequency Domain (TFD) features
from the three-phase currents and three-phase voltages of the
point of coupling (PCC) nodes to detect anomalies and distin-
guish between different types of anomalies, such as cyber-attacks
and physical faults. To detect anomalies through TFD features, we
propose a novel Informative Leveraging for Anomaly Detection
(ILAD) algorithm. The proposed unsupervised ILAD algorithm
automatically extracts noise-reduced anomalous signals, resulting
in more accurate anomaly detection results than other score-
based methods. To assign anomaly types for anomaly diagnosis,
we apply a novel Multivariate Functional Principal Component
Analysis (MFPCA) clustering method. Unlike the deep learning
methods, the MFPCA clustering method does not require labels
for training and provides more accurate results than other deep
embedding-based clustering approaches. Furthermore, it is even
comparable to supervised algorithms in both offline and online
experiments. To the best of our knowledge, the proposed unsuper-
vised framework accomplishing anomaly detection and anomaly
diagnosis tasks is the first of its kind in power electronic networks.

Index Terms—Anomaly detection, anomaly diagnosis, lever-
age score, multivariate principal component analysis based
clustering, power electronic networks.
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I. INTRODUCTION

I
N SMART grids, power electronics are the fundamen-

tal building blocks. The expansion of Distributed Energy

Resources (DERs), such as Photovoltaic (PV) farms and wind

farms, has particularly become a major opportunity and chal-

lenge for smart grids. The interconnection of power electronics

in cyber networks allows coordinated control for better energy

efficiency and resilience in smart grids. On the other hand,

the cyber-network connectivity among power electronics also

exposes them to cyber threats. In addition, the physical faults

due to the deterioration of the equipment, e.g., the con-

verter, also threaten the safety and security of smart grids.

A catastrophic failure of power electronic networks due to a

malicious cyber-attack [1], [2], or an accidental physical fault

would cause degradation of equipment and substantial eco-

nomic loss. Furthermore, false identification of the root cause

might lead to severe operational failure while performing mit-

igation strategies in the power electronic networks [3], [4].

Early detection and diagnosis of the anomalies are essential

for the timely maintenance and recovery of power electronic

networks [5], [6].

Most unsupervised anomaly detection and diagnosis algo-

rithms are offline, which necessitates making decisions based

on all the data across time [7], [8]. The approaches can present

challenges when dealing with streaming data in real-world

situations. Therefore, there is an urgent need to develop an

online framework that can detect and diagnose anomalies in

real-time. Such a framework would enhance the reliability and

efficiency of smart grid operations, ensuring a prompt response

to anomalies as they occur.

To overcome the aforementioned challenges, we propose

an unsupervised, data-driven approach for anomaly detec-

tion and diagnosis called the Informative Leveraging for

Anomaly Detection (ILAD) algorithm, which is combined

with a Multivariate Functional Principal Component Analysis

(MFPCA) clustering algorithm to distinguish between cyber-

attacks and physical faults for anomaly diagnosis. We assume

that the micro phasor measurement unit (¿PMU) is installed

at the point of coupling (PCC) of PV farms as shown in

Figure 1. To detect the cyber-attacks and faults in PV farms,

both voltage and current waveform data are measured at PCC

first. Several features, including PMU data, Total Harmonic

Distortion (THD), and mean current vector (MCV) are then
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extracted. Finally, the proposed method employs the extracted

features to detect and identify cyber-attacks and faults. For

streaming six-dimensional waveform data, we sequentially

process them window by window. Specifically, we first extract

Time-Frequency Domain (TFD) features from the waveform

data to combine the time and frequency domain information.

We then model the TFD features using a Vector Autoregressive

(VAR) model and calculate informative leverage scores [5], [9]

for each time window. Both offline and online exper-

iments show that the ILAD algorithm achieves high

accuracy.

After performing anomaly detection, we assign the type

of anomalies (cyber-attack or physical fault) to the identified

anomalous windows based on our MFPCA clustering algo-

rithm. To evaluate the performance of the proposed ILAD and

MFPCA clustering algorithms, we conduct experiments using

a PV farm as a case study and generate a variety of elec-

tric waveform data under both offline and online scenarios.

In offline scenarios, the proposed offline ILAD (off-ILAD)

successfully identifies the anomalies in 42 out of 43 cases,

achieving an accuracy of about 0.94 for the anomaly diag-

nosis task, which is a competitive and comparable result

to the classification task. For online anomaly detection, the

proposed online ILAD (on-ILAD) algorithm achieves higher

accuracy compared to other change point detection algo-

rithms. For online anomaly diagnosis, we assign the streaming

time window to a closer cluster and obtain more accurate

results compared with other deep embedding based clustering

methods.

The novelty and contribution of our work are summarized

as follows.

1) To the best of our knowledge, our algorithm is one of

the first unsupervised data-driven anomaly detection and

diagnosis algorithms utilizing TFD features in power

electronic networks.

2) We propose a novel ILAD algorithm to remove ran-

dom noise in the original leverage score and amplify

the changes due to anomalies.

3) Our algorithm utilizes a data-driven change point detec-

tion method that triggers an alert if the informative

leverage score rises significantly, instead of heuristically

using a threshold [10], making it more robust to new

anomalies.

4) We apply a novel MFPCA clustering algorithm to

the power electronic network, which projects the TFD

features onto lower-dimensional spaces spanned by

eigenfunctions. Thus, the MFPCA clustering algorithm

extracts features distinguishing cyber-attacks from phys-

ical faults.

5) Our algorithm can operate online to detect anomalies

and diagnose their types based on TFD features in each

time window as they occur.

The paper is organized as follows. In Section II, we review

related literature. Section III presents the model of the power

electronic network and attacks, which includes a typical power

electronic network in a PV farm, a cyber-attack model, and

a physical fault model. The problem setup is described in

Section IV. In section V, we provide the necessary background

before introducing our proposed algorithms. The proposed

algorithms, including feature extraction, informative leverage

score, and multivariate functional principal component analy-

sis, are presented in Section VI. In Sections VII and VIII,

we present the experimental results for offline and online

scenarios, respectively. Finally, we conclude our work in

Section IX.

II. RELATED WORKS

To the best of our knowledge, several studies have explored

anomaly detection and diagnosis by information embed-

ded in electrical signals for cyber-threat in cyber-physical

systems [11], presenting a great opportunity to advance

cyberspace security and trustworthy research and design.

Anomaly detection methods can be either supervised or unsu-

pervised. Unsupervised methods. For the supervised ones,

several supervised deep learning algorithms [3], [6], [12],

[13], [14], [15], [16], [17], [18], [19] have been developed

for anomaly detection. These methods use two different path-

ways to solve the anomaly detection problem. One pathway

is to train Autoencoder models [3], [18] to reconstruct the

distribution of normal data, and flags anomalies if the recon-

struction error of testing data significantly exceeds that of

the normal data. Such methods rely on labeled normal data

to train and assume the same distribution for the training

and testing data, which may limit their applicability. For

example, when the system load increases, those methods

will tend to cause false-positive alarms. The second pathway

approaches anomaly detection as a binary classification task,

which uses binary labels (normal and abnormal) and wave-

forms to train a classification model [6], [13], [14], [15],

[17], [19] by Convolutional Neural Network (CNN) and Long

Short-Term Memory (LSTM) network. Since training deep

learning models needs to balance the trade-off between train-

ing and generalization, inappropriate training will lead to bad

performance in the testing data with different distribution from

the training data [20]. In this case, novel anomalies with differ-

ent patterns from the training data enter, and then the detector

trained by deep learning models would misclassify the data,

which leads to substantial loss. Another disadvantage of the

supervised model is that the classification models need a large

amount of labeled training data to increase the accuracy [21],

which is challenging to obtain in smart grids.

Some anomaly detection methods are unsupervised, such

as the isolation forest [8], [22], and do not need labels in

the training process. However, the isolation forest algorithm

cannot be updated in real time, which limits its usefulness

for real-time anomaly detection. Several statistics-based meth-

ods [5], [23], [24] can be used for real-time anomaly detection.

For example, the correlation-based [23] method can calcu-

late an anomalous score based on the correlation between

two PMU parameters, but it requires a pre-defined thresh-

old to detect anomalies. Expert knowledge and experience are

needed to determine a suitable threshold, and an inappropriate

threshold can lead to false alarms and false negatives. The

leverage score based on the VAR model, proposed in [5],

achieves higher accuracy than other unsupervised methods.
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TABLE I
SUMMARY OF ANOMALY DETECTION AND DIAGNOSIS METHODS

The leverage score is more effective, as shown in Figure 6

where the red lines indicate its performance. To overcome

the limitations of the aforementioned methods, we propose

an unsupervised real-time anomaly detection algorithm with

higher accuracy than other unsupervised methods in the exper-

iment results in Table III and V. Moreover, the proposed

framework utilizes the change point detection algorithm, thus,

it can circumvent the limitations of the pre-defined threshold.

Anomaly diagnosis is the task of distinguishing cyber-

attacks from physical faults, which can be approached as

either a classification or a clustering problem, depending on

whether labels are used in training. Most available approaches

focus on supervised learning methods [6], [13], [14], [15],

[16], [17], [19], [25] that use a support-vector-based algo-

rithm or deep learning framework for binary-classification

to distinguish cyber-attacks from physical faults. Similar to

the deficiencies in supervised methods of anomaly detection,

supervised methods for anomaly diagnosis need large labeled

training data to achieve high performance, which can be a sig-

nificant limitation. Unsupervised methods [5], [26] are more

potent in applications since they do not need label information

during training. The proximity methods [26] treat each time

point independently, and apply clustering methods such as K-

means on the multivariate features of each time point. Binary

Matrix Factorization (BMF) [5] can extract high-dimensional

features from the entire time series, and t-SNE can reduce the

dimension of the features. Then, proximity-based clustering

methods can be easily applied to the whole dataset. However,

the above two methods have limitations, as they do not cap-

ture the inter-dependence of different time series dimensions

and the temporal dependency of single time series. To address

these limitations, we propose to use MFPCA-based cluster-

ing. MFPCA approximates the data probability distribution

function (p.d.f.) by the product of the p.d.f. of the princi-

pal components, which is the projection of the input features

on the lower dimensional space spanned by eigenfunctions,

calculated by the singular value decomposition of the covari-

ance matrix of multivariate time series. Thus, MFPCA is able

to capture the inter-dependence of the multi-dimensional time

series and auto-correlation within a single dimension of the

time series.

Fig. 1. Schematic diagram of the power electronic converter-enabled PV
farm. Ipv, Upv, If , and Uc are PV array current, PV array voltage, inductance
current in the LCL, and capacitor voltage in the LCL, respectively.

For a comprehensive comparison of different methods, we

summarize several aspects that are important to the real appli-

cation of anomaly detection and diagnosis, whether it’s online

or not, unsupervised or not, for anomaly detection or diag-

nosis, and the gap existing in the methods to achieve the

goal, accurate and real-time unsupervised anomaly detection

and diagnosis. To make the comparison clear, we present the

summary of all related works in Table I.

III. POWER ELECTRONIC NETWORK AND ATTACK

MODELS

A. A General Power Electronic Network Model

As the number of DERs grows, a power electronic network

for converting renewable energy sources into smart grids

is gradually taking shape. Figure 1 shows a typical power

electronic network in a PV farm.

To study the impact of cyber-attacks and physical faults, a

high-fidelity PV farm is modeled. In the first stage, maximum

power point tracking (MPPT) is designed to generate the max-

imum power of the PV array. In the second stage, voltage and

current control are designed to maintain DC-link voltage and

convert the power from the PV array to the power grid. Then,

the LCL of each PV inverter is designed to filter out high-

order harmonics in inductance current, which is expressed as

follows:

Ûx = Ax + Bu, (1)
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Fig. 2. Physical faults in PV converter and high-voltage line.

where x = [Ifa, Ifb, Ifc]T , and If {·} is one phase

inverter-side inductance current in the LCL,

u = [Uka, Ukb, Ukc, Uga, Ugb, Ugc]T , Uk{·} and Ug{·} are

one phase inverter-side voltage and grid-side voltage in the

LCL, respectively, and
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where R and L are the resistance and inductance.

B. Cyber-Attack Model

As discussed in many studies [27], [28], [29], cyber-attacks

could destroy the operation of PV farms by compromising

sensor measurement. In this paper, we assume that the attacker

manipulates the measured data or injects false data into the

sensor. The cyber-attack can be expressed as

YA(t) = ³Yo(t) + ´ (3)

where YA is the compromised data vector that is eventually

the input of the controller, Yo is the original measurement

including Ipv, Upv, If , and Uc as shown in Figure 1, ³ is a

multiplicative factor, and ´ is the false data injection.

C. Physical Fault

Besides cyber-attacks, physical faults also threaten PV

farms. As shown in Figure 2, two types of physical faults,

including open-circuit faults in the switch (F1), and short-

circuit faults in the transmission line (F2), are modeled and

simulated in the real-time testbed. In F1, the open-circuit

fault occurs in a switch of the PV converter, which leads to

the open transistor. Short-circuit fault causes a heavy current

which creates overheating or destroys the equipment in the

power grid. As shown in Figure 2, three-phase, two-phase,

and single-phase short-circuit faults are modeled. RAB is the

fault resistance between Phase A and Phase B. RAG is the fault

resistance between Phase A and the ground. RG is the ground

resistance. The model for F2 results in incorrect connections

between each phase on the high-voltage line. More details of

the setting and types of physical faults we used in the article

are presented in Table II.

IV. PROBLEM STATEMENT

In a power network, our data consists of observations of the

waveform in the PCC node in many cases. For case i at time

t, let Xi(t) = [Iia(t), Iib(t), Iic(t), Uia(t), Uib(t), Uic(t)] denotes

Fig. 3. An example of waveform data for three-phase voltages (bottom
panel), three-phase currents (middle panel), and nine-dimensional TFD fea-
tures (bottom panel), respectively, for one case. This example shows the data
in a time range (14-16s). The anomaly happens at 15s.

a multivariate time series consisting of three-phase current

I = (Ia, Ib, Ic) and three-phase voltage U = (Ua, Ub, Uc). By

combining information both in the time domain and frequency

domain, we utilize the TFD features proposed in [6]. We

denote the nine-dimensional TFD features, a multivariate time

series, by X(t) = [X
1
(t), . . . , X

�
(t), . . . , X

9
(t)], where the i-th

case is denoted as Xi(t). Figure 3 shows an example of wave-

form data for three-phase voltages (bottom panel), three-phase

currents (middle panel), and nine-dimensional TFD features

(bottom panel) respectively, for one case. Based on this mul-

tivariate time series, we have two goals. The first is to find

the starting point tk+1 and ending point tk+T of an anomaly

in the multivariate time series Xi(t) and diagnose the anoma-

lous portion of the series, [Xi(tk+1), . . . , Xi(tk+T)]. Given this

anomalous series, the second goal is to assign an anomaly type

(cyber-attack or physical fault) to each detected anomalous

time period.

A. Anomaly Detection Problem

Based on the extracted TFD feature vector from one case,

we aim to find a change point that shows a large change in

the pattern of the data. We assume that there are n cases in

total and the i-th case of the TFD feature Xi(t) under normal

conditions is generated by the model, Xi(t) = ·i(t)+εi(t), where

t = 1, .., tk, and i = 1, . . . , n. If there is an abrupt change at

time point tk+1, then the TFD feature vector would be assumed

to have the form: Xi(t) = ³i·i(t) + εi(t), for some real number

³i and t = tk+1, . . . , tk+T for some T , where ³i denotes the

rate of change. That is, there would be a significant change in

some dimensions of the TFD feature vector when an anomaly

happens. In statistics, leverage is a measure of how far away the

value of the observation of TFD feature X is from those of other
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TABLE II
SETTING OF PHYSICAL FAULTS

observations. As shown in Figure 3, the TFD features increase

at 15 s, at which the anomaly happens. Thus, we formulate

the problem as the identification of the time points with high

leverage scores like the previous work [5], [9] did.

B. Anomaly Diagnosis Problem

There are two major anomaly types in the device-level

power electronics converters (PEC), cyber-attacks and physical

faults. While these are two common types of anomalies, it is

hard to distinguish cyber-attacks from physical faults. Wrong

identification of the anomaly types might cause degradation of

the devices and huge economic losses in the power electronic

network. Thus, it is essential to identify the anomaly types of

the anomalous time series after performing anomaly detection.

To make sure our algorithm is still applicable to the online sce-

nario, we slice the anomalous series [Xi(tk+1), . . . , Xi(tk+T)]

into pieces of anomalous windows. We are interested in

predicting the cluster that each anomalous window belongs

to with a label z * {1, 2}, where 1 denotes cyber-attack, and

2 denotes physical fault. Note that this is an unsupervised

problem where we do not have labels during the training

phase, which is common in studies involving power electronic

networks.

V. PRELIMINARIES

Before proceeding into the details of our proposed algo-

rithm, we introduce the background knowledge of the paper

including the VAR model, calculation of leverage score in the

VAR model, and details about the embedding method for time

series, MFPCA.

A. Vector Autoregressive Model

A classical p-th order VAR model representation characterizes

the temporal dependence structure of the time series X(t):

X(tk) = X(tk21)A1 + X(tk22)A2 + · · · + X
(

tk2p

)

Ap + ε(t)

(4)

where {Ai}
p

i=1 are 9 × 9 unknown parameters matrices and

ε(t) is the vector of error terms that are independently and

identically distributed with mean zero and constant variance.

The VAR(p) model in (4) can also be expressed in the form

of a linear model:

Y = D
p
A + ε, (5)

where Y = [X
T
(tk), X

T
(tk+1), . . . , X

T
(tk+T)]T , D

p
is the lag

matrix of time series X(t), defined as:

£

£

£

£

£

X(tk21) X(tk22) · · · X
(

tk2p

)

X(tk) X(tk21) · · · X
(

tk2p+1

)

...
...

. . .
...

X(tk+T21) X(tk+T22) · · · X
(

tk+T2p

)

¤

§

§

§

§

, (6)

and A = [AT
1 , . . . , AT

p ]T is the parameter matrix to be

estimated, and ε is the random noise.

B. Leverage Score in VAR

By the linear model representation in equation (5), the lever-

age score of the q-th data point can be interpreted as the

amount of leverage or influence the q-th observed value exerts

on the q-th fitted value. The leverage score in the linear model

has been generalized to the VAR model in time series [9]. In

the VAR model, the time points with drastic fluctuation tend

to have higher leverage scores, and we call them influential

data points. In this way, we can convert the problem of detect-

ing anomalies into the problem of identifying time points with

high leverage scores.

The time points associated with the drastic fluctuation indi-

cate the starts or ends of anomalies. Since the TFD features

drastically change when an anomaly happens, we are moti-

vated to use the leverage scores to detect anomalies. For

each case, the leverage score of the q-th observation can be

expressed as

lqq = d
p

(q)

T
(

D
pT

D
p
)21

d
p

(q), (7)
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where d
p

(q)

T
is the q-th row of D

p
, and we call D

pT
D

p
the

lag-covariance matrix of the TFD features X(t).

C. Multivariate Functional Principal Component Analysis

MFPCA can embed the multivariate time series into a

low-dimensional space spanned by eigenfunctions based on

Karhunen-Loeve expansion [30]. Compared with other deep

learning classification models [5], [14], [17], [31], the advan-

tage of the proposed MFPCA clustering method is that it is

interpretable and does not use labels to train. Compared with

other unsupervised clustering approaches [3], [5], [26], the

advantage of MFPCA is that it can model both the inter-

dependence of different dimensions of time series and the

auto-correlation of a single dimension of time series.

To find the optimal representation of the time series in

a functional space, we further assume that X(t) is an L2-

continuous stochastic process, that is,

"t * [t1, t2], lim
h³0

E

[

‖X(t + h) 2 X(t)‖2
]

= lim
h³0

∫ t2

t1

9
∑

�=1

E

[

(

X
�
(t + h) 2 X

�
(t)
)2
]

dt = 0. (8)

Note that most real data satisfy this assumption, and so does

the TFD feature, which is normalized in [0, 1]. We also denote

the mean of the �-th variate as ¿� = {¿�(t) = E[X
�
(t)]}t*[0,T],

and let ¿(t) = E[X(t)] = (¿1, . . . ¿�, . . . , ¿9)T . We further

define the covariance function of X(t) as:

V(s, t) = E

[(

X(s) 2 ¿(s)
)

·
(

X(t) 2 ¿(t)
)]

, (9)

where s, t * [t1, t2], and · is the tensor product on R
p.

Then, the eigenfunctions {f m = (f 1
m, . . . , f �

m, . . . , f 9
m)T}mg1 are

defined as:

∫ t2

t1

V(·, t)fm(t)dt = »mf m, (10)

which satisfy
∫ t2

t1

∑9
�=1 f �

m(t)′f �
m′(t)dt = 1 if m = m′ and 0 oth-

erwise, and {»m}mg1 are associated eigenvalues. Consequently,

the principal component {Cm}mg1 are the projections of X

on the space spanned by the eigenfunctions {f m}mg1 of the

covariance function:

Cm =

∫ t2

t1

9
∑

�=1

(

X
�
(t) 2 ¿�(t)

)

f �
m(t)dt, (11)

where the principal components {Cm}mg1 are zero-mean

uncorrelated random variables with variance {»m}mg1, respec-

tively. After removing the mean effect of X(t), we truncate the

first q′ terms of the Karhunen-Loeve expansion of X(t) and

write it as:

X(t) =

q′
∑

m=1

Cm f m(t), t * [t1, t2]. (12)

The truncation leads to a dimension-reduced subspace.

Fig. 4. The workflow chart of the online algorithm of anomaly detection
and anomaly diagnosis.

VI. ALGORITHM DESIGN

Our algorithm consists of three parts, as shown in Figure 4.

First, through domain knowledge, we calculate the streaming

TFD features for each time window. The extracted features

contain information that not only helps distinguish normal

data from anomalous data, but also enables us to distin-

guish between a cyber-attack and a physical fault. Second,

we detect anomalies of the extracted features by the proposed

ILAD algorithm. Since the informative leverage score of the

extracted features will increase drastically if an anomaly starts

or ends, we can easily detect the change points and raise

flags when anomalies happen. The informative leverage score

selects significant singular vectors for the leverage score calcu-

lation using a permutation test. The ILAD algorithm removes

the noise and enlarges the difference between the anomalous

period and the normal period. The ILAD algorithm does not

need labels in training and is effective in various emerging

anomalies. Third, the anomaly diagnosis task would be trig-

gered to assign labels (cyber-attack or physical fault) to the

anomalous time windows after getting the anomalous data

from the second step. This step also uses an unsupervised

method, MFPCA, to cluster different anomaly types. Most

classification methods need labels to train, while in power

electronic networks, the true anomaly types are hard to obtain.

Without needing the labels to train, our method extracts fea-

ture characterizing the difference between cyber-attacks and

physical faults.

A. Feature Extraction

Based on the raw waveform data, it is hard to distinguish

the two anomaly types, cyber-attacks and physical faults. As

shown in Figure 5, the plots of waveform data for two cases

are on the left, one is under cyber-attack and the other has

a physical fault. There is little difference between the two

cases solely from the waveform data. This motivates us to use

domain knowledge to extract some higher-level time domain

features and frequency domain features to help distinguish

between the two anomaly types. We use the TFD features [6]

to identify the onset of anomalies and to distinguish between

the two anomaly types via distinct patterns.

1) Frequency Domain Features: First, we obtain ¿PMU

features through fast Fourier transform (FFT) to project a

signal into the frequency domain. Since the signal is dis-

torted when an anomaly happens, we use THD to capture the

harmonic information of the distorted waveform. This yields
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Fig. 5. An example of waveform data for two cases (5 and 31) and extracted
TFD features. The first column shows the plots of waveform data, and the
second column shows the plots of extracted TFD features. Case 5 encounters
a cyber-attack while case 31 encounters a physical fault. In this example, we
show the data in a time slot, from 15.025s to 15.525s.

a feature vector denoted by

F =
[

M{·}, T{·}

]

, (13)

where M{·}, and T{·} are six-dimensional vectors representing

the magnitude (M) of the fundamental frequency and THD

(T), respectively, for each phase of the waveform. Whereas

the THD in a waveform is known to be lower than some

boundaries under normal conditions. Through expert knowl-

edge, the maximum THD is set as Tmax = 5%. Then, THD

for each phase is normalized as follows:

T̄{·} = min

{

T{·}

Tmax
, 1

}

(14)

The raw ¿PMU features sometimes lead to false positive

results, especially when the magnitude is affected by a huge

change in irradiance. Thus, we extract the difference between

the magnitudes of the three-phase waveforms Rm to distinguish

physical faults from cyber-attacks:

Rm,I =

√

�M2
I1

+ �M2
I2

+ �M2
I3

Rm,U =

√

�M2
U1

+ �M2
U2

+ �M2
U3

Rm =
(

Rm,I + Rm,U

)

/2 (15)

where �MI1
= MIa 2 MIb

, �MI2
= MIb

2 MIc , �MI3
=

MIa 2 MIc , and Rm,U is defined similarly. After normalization

and scaling, the magnitude-based features become:

R̄m1 = min

{

Rm

Rm1,max
, 1

}

R̄m2 = min

{

ln(Rm + e) 2 1

Rm2,max
, 1

}

, (16)

where Rm1,max is the maximum of Rm, and Rm2,max is the

maximum of ln(Rm + e) 2 1.

2) Time Domain Features: Except for the frequency

domain features, the transformation of the time domain fea-

tures, three-phase currents, helps distinguish physical faults

from cyber-attacks. We use a variant of the MCV by current

Concordia transformation, which is used in anomaly detection

for power electronic networks [6]:

I³ =

√

2

3
Ia 2

√

1

6
Ib 2

√

1

6
Ic

I´ =

√

1

2
Ib 2

√

1

2
Ic.

The degree of distortion of points (I³, I´) at a time point tk
indicates physical faults. Thus, we define the MCV point at

time tk as:

Pmcv(tk) =

»

¿

1

Nk

tk
∑

i=tk2Nk+1

I³(i),
1

Nk

tk
∑

i=tk2Nk+1

I´(i)

À

£ (17)

According to the domain knowledge from [6], since the

poor circuit contacts would affect the MCV locations, thus,

Concordia transformation of MCV has clear patterns when an

open circuit fault happens. Thus, P̄mcv is defined based on the

maximum number of points of all regions in the panel (I³, I´).

The P̄mcv feature represents the concentration of MCV points,

which is helpful when distinguishing open-circuit faults from

other threats.

In all, we combine both the time and frequency domain

features, and use the following set of features to do anomaly

detection and anomaly diagnosis:

X =
[

R̄m1, R̄m2, P̄mcv, T̄
]

(18)

We refer to the above 9-dimensional feature as the TFD fea-

tures, where R̄m1, R̄m2, and P̄mcv are all scaler features, and T̄

are six-dimensional features. We use this feature to carry out

anomaly detection and anomaly diagnosis.

B. Informative Leveraging for Anomaly Detection

After extracting TFD features that could signal anomalous

patterns of power electronic networks, we further model the

9-dimensional TFD features X(t) by a VAR model, and deter-

mine the highly influential time points based on the leverage

score of the VAR model. The original leverage score calcu-

lation method cannot eliminate the random noise, resulting

in an insignificant difference between the normal and anoma-

lous periods. This insignificant difference would result in false

detection of the starts and ends of the anomalies. To overcome

this issue, we propose an informative leverage score to remove

the random noise from the small singular values.

After extracting the bump pattern through the informative

leverage score, we use a sequential change point method [32]

to identify the starts and ends of anomalies automatically. Our

method can also be generalized to an online scenario to detect

the starts and ends of the anomalies using the informative

leverage scores. For this, a generalization of the idea in [9]

yields a streaming leverage score that only utilizes the history

and the current information to approximate the leverage score.
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1) Streaming Leverage Score for Online Anomaly

Detection: When the anomaly detection problem is extended

to a real-time task, some additional difficulties arise. The main

challenge is that one usually needs to make an immediate

decision as soon as a new data point streams in. However,

the calculation of the lag covariance matrix needs the input

of the whole time series. To overcome this, a natural and

effective way is to use a pilot sample to approximate the true

lag covariance matrix. Here, we use the method introduced

by [9] to calculate the streaming leverage score, which

guarantees the accuracy of the estimation while reducing

the computational cost. We use the pilot sample of size r to

approximate the lag-covariance matrix D
pT

D
p
. The streaming

leverage score of the q-th observation, Þlqq, is defined as:

Þlqq = d
p

(q)

T(
�

p
r

)21
d

p

(q), (19)

where �
p
r represents the approximation to the lag-covariance

matrix based on the pilot sample with size r, and we call it

the sketched lag-covariance matrix.

We show a simplified version of the streaming leverage

score. We denote the singular value decomposition (SVD) of

the sketched lag-covariance matrix �
p
r by U�VT , where � is

the diagonal matrix of singular values, U and V are orthogonal

matrices such that UTU = VTV = I. Let

Þlqq =

r2p
∑

j=1

(

d
p

(q)

T
v(j)
)2

/Ã 2
j , (20)

where v(j) is the j-th column of V, Ã j is the j-th singular

value, and r 2 p is the total number of singular values of the

sketched lag-covariance matrix �
p
r . The singular values of the

lag-covariance matrix are also referred to as spectrum in this

article.

Here, the information of the lag-covariance matrix is pro-

jected onto orthogonal directions of singular vectors v(j), and

each singular value is the variance of the projected data in the

corresponding singular vector space. In our case, each pair of

eigenvalue and associated Principal Component (PC) of the

lag-covariance matrix characterizes an oscillatory mode, e.g.,

trend, periodicity, and noise. However, not every PC can help

distinguish between normal and anomalous data. For exam-

ple, the first PC characterizing the trend is not informative

to anomaly detection, and anomalies often appear in other

oscillatory modes.

2) Informative Leverage Scores for Anomaly Detection:

The aforementioned challenges motivate us to propose an

informative leveraging for anomaly detection algorithm to

select more informative PCs to differentiate between the nor-

mal and anomalous periods. Instead of directly using the

original leverage scores, we perform a test to see if each singu-

lar vector is informative by examining the amount of noise it

contains. If a singular vector contains excessive random noise,

we exclude it while calculating the leverage score. Mimicking

the idea of a permutation test, we randomize different rows

of the lag-covariance matrix D
p

i

T
D

p

i for each feature in the

offline setting and the sketched lag-covariance matrix �
p
r in

the online setting, and perform an SVD again. The result of

Fig. 6. An example of the original leverage score and informative leverage
score. By removing the noise and obtaining an informative leverage score,
the gap between the normal and the anomalous rises. This leads to higher
accuracy while detecting the starts and ends of anomalies.

the SVD in online and offline settings is usually denoted by
ÞU Þ� ÞVT . We repeat this procedure many times, and each time

compare the actual values to the randomized ones. If the true

singular value is outside the 95% confidence interval, then we

declare that the singular value and the associated singular vec-

tor are informative. Through the permutation test, we get a set

I of informative singular vectors. Then, we let

Þlkqq =
∑

j=*I

(

d
p

(q)

T
Þv(j)
)2

/ ÞÃ 2
j , (21)

where Þv(j) is the j-th column of ÞV, ÞÃ j is the j-th entry of Þ�,

and k is the cardinality of the set of the informative singular

vectors I. We illustrate the advantages of filtering informative

singular vectors via a comparison of original leverage scores

and the proposed informative leverage scores for two cases in

Figure 6; these are calculated in an offline manner. The red

lines shown in Figure 6 are the original leverage scores, and

the blue lines shown in Figure 6 are the informative leverage

scores. The informative leverage scores are able to remove

the noise, and the gap between the score of the normal to that

of the anomalous rises significantly. Thus, the performance

of anomaly detection improves by removing the information

from the least important singular vectors.

To illustrate that the proposed ILAD algorithm still works

in online settings, we show that informative leverage scores

reflect drastic changes caused by the starts and ends of

anomalies in an online manner. Figure 8 shows examples

of streaming data with five cyber-attacks and one physical

fault. The coincidence between time points with high lever-

age scores and those indicating the presence of anomalies

confirms our belief that influential points with high lever-

age scores are where anomalies occur. Due to the drastic

change in the informative leverage scores as soon as there is

an anomaly, we subsequently use a sequential change point

detection algorithm [32] to identify the starts and ends of

anomalies. Most available anomaly detection methods use a

pre-specified threshold to raise a flag. The threshold based

methods are ad-hoc and need a fine-tuning step to set an

appropriate value. Instead, the sequential change point method

is data-driven, making decisions based on past information.

Thus, the anomaly detector prevents information leakage from

future observations and identifies anomalies adaptive to the

data.
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C. Multivariate Functional Principal Component Analysis

Clustering for Anomaly Diagnosis

Most approaches for anomaly diagnosis [14], [31] use a

supervised classification model, where information from labels

is used for training and prediction. However, for anoma-

lies in power electronic networks, the labels for the anomaly

types are hard to obtain. Thus, accurate unsupervised meth-

ods are urgently needed for anomaly diagnosis in power

electronic networks. Currently, existing unsupervised anomaly

diagnosis methods distinguish between anomaly types using

proximity-based methods, such as K-means and hierarchical

clustering [5], [26]. These methods ignore the dependency

between different data features and are sensitive to outliers.

In addition, these methods do not assume models. Therefore,

we cannot find the probability that a new data point belongs to

a certain cluster. In order to model the dependence and assign

a probability of cluster membership to each data point, we use

the MFPCA to approximate the data distribution and maximize

the likelihood of the mixture model. Through projections by

MFPCA in Section V, the density of the multivariate time

series can be approximated by the product of the densities of

the principal component scores.

Assume that the data is generated from multiple clus-

ters, then the multivariate time series follows a mixture

model, whose likelihood can be maximized by the iterative

Expectation–maximization (EM) algorithm [33]. After we

apply MFPCA and embed the time series into a dimension-

reduced subspace, we further assume each principal compo-

nent Cm follows univariate Gaussian distribution. Since the

structure of the distribution of the multivariate time series can

be retained in the spectrum of the covariance of the data, one

natural density surrogate of TFD feature X(t) is the density of

the first q′ principal components:

f
(q′)
X(t)

(x) =

q′
∏

m=1

fCm(cm(x); »m), (22)

where cm(x) is the principal component score of data x, and fCm

is the density of the m-th principle component Cm. Assume

the data generation procedure follows a mixture model, the

probability of generating data from g-th cluster Ãg satis-

fies
∑K

g=1 Ãg = 1. We denote the indicator of the cluster

g as Zg, which takes the value 1 when the data belongs

to g-th cluster and 0 otherwise. Then, we approximate the

density of X|Zg=1(t) by product of the densities of ran-

dom variables {Cm|Zg=1}m=1,...,q′ with zero mean and variance

{»m,g}m=1,...,q′ . Thus, the density of X(t) can be represented

by:

f
(q′)
X(t)

(x; ») =

K
∑

g=1

Ãg

q′
g
∏

m=1

fCm|Zg=1

(

cm,g(x); »m,g

)

, (23)

where cm,g(x) is m-th the principal component score

of x belonging to g-th cluster, and q′
g is the num-

ber of principal components for g-th cluster, and » =

{(Ãg, »1,g, . . . , »q′
g,g

)1fgfK} are unknown parameters to be

estimated. We can represent the likelihood of the observed

Fig. 7. Real-time testbed using OPAL-RT and NI device.

data x = {xi} by:

L(q′)(»; x) =

n
∏

i=1

K
∑

g=1

Ãg

q′
g
∏

m=1

1
√

2Ã»m,g

exp

(

2
1

2

c2
m,g(xi)

»m,g

)

,

(24)

where cm,g(xi) is the m-th principal component score of i-th

observation xi belonging to the g-th group. We use the iterative

EM algorithm to maximize the above likelihood function with

respect to » . By finding the optimal representation of the data

x, we can estimate the most probable clustering assignment

for each observation xi.

To make this algorithm applicable to anomaly diagnosis

in power electronic networks, we use the sliding window

approach to slice the long time series into small fragments.

Thus, we assign clustering labels to each sliding window. In

our context, there are only two anomaly types to be distin-

guished. Thus, we set the number of clusters as two. Another

implementation issue of the MFPCA clustering algorithm is

how to decide the number of principal components for approx-

imating the likelihood function. We use the Cattell scree

test [33] to select q′
g for g-th cluster.

VII. OFFLINE TESTING RESULTS

A. Experiment setup

The model and data used in this study are based on a testbed

model co-developed by the Intelligent Power Electronics

Electric Machine Lab and the Sensorweb Research Lab at the

University of Georgia (UGA) for generating electric waveform

data. In this study, we refer to the data from this testbed as the

UGA dataset. The PV farm consisting of seven converters and

an IEEE 37-node distribution grid is simulated in OPAL-RT as

shown in Figure 7. To simulate the dynamics of the PV farms,

PV converters are modeled in Embedded Field Programmable

Gate Array (eFPGA). The IEEE 37-node distribution grid is

simulated in Advanced Real-Time Electro-Magnetic Solvers

(ARTMEiS) to realize the real-time simulation. In the real-

time testbed, a number of cases are simulated. The offline

dataset consists of 43 abnormal cases. Among all 43 anoma-

lous cases, there are 25 cyber-attack cases, of which 14 are

single-DIA cyber-attack cases, 10 are coordinated-DIA cyber-

attack cases, 1 is a replay attack, and 18 are physical fault

cases, of which 14 are short circuit fault cases and 4 are open

circuit fault cases. The data is the six-dimensional raw wave-

form data composed of three-phase currents and three-phase

voltages. Each case has a total of 800,000 time points with a

sampling frequency of 20,000 Hz. As a pre-processing step,

we first down-sample the raw time series every ten points to
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prevent the high computational cost. Then, we extract TFD

features from the raw waveform data. For the down-sampled

six-dimensional waveform of length 1000, we could extract

nine-dimensional TFD features of length 20. After feature

extraction, we get a multivariate time series with dimension

(1600, 9).

B. Offline Test Results

1) Offline Anomaly Detection: For offline anomaly detec-

tion, our task is to identify the starts and ends of the anomalies.

The input for our algorithm is the 9-dimensional TFD features

with 1600 time points. The true anomalies start at 15 seconds

and end at 25 seconds. If the delay of the detector’s responses

to the true starts or ends is no later than 5 seconds, we say

the detection is successful.

Before implementing the ILAD algorithm, we first fit the

VAR(p) model to the TFD features, then we calculate the infor-

mative leverage scores for all time points and detect the change

points of the scores, which are our estimated starts and ends

of anomalies. It should be noted that the choice of the hyper-

parameter p in the VAR(p) model is data-driven. Since the

initial part of the streaming data is mostly normal, we take this

part as the pilot sample to determine the order p of the time-

dependence structure. Specifically, we aim to find the VAR(p)

model which best represents the underlying dependence struc-

ture of the normal patterns of the TFD features. Considering

both the prediction loss and the model complexity, we choose

p with the smallest BIC value in the range of p * [1, 15]. We

also build the model under different pilot sample sizes (from

35 to 65) to test if our model is sensitive to the pilot sample

size. We find that the optimal choice of the order p remains

the same. Thus, we set the pilot sample size as 50.

To show the benefits of the proposed informative lever-

age score, we compared it with the original leverage score in

terms of the accuracy of identifying the starts and ends of the

anomalies. We also compared two unsupervised score-based

algorithms, Hotelling T2 [34] and Multivariate CUSUM [35],

for detecting the starts and ends of anomalies. We deployed

these two methods since they are designed to deal with mul-

tivariate time series data. The same sequential change point

detection algorithm is applied to the proposed ILAD algo-

rithm to ensure fairness. Results are shown in Table III. The

performance of the proposed algorithm denoted by “off-ILAD”

is better than that of the original “Leverage” approach and

is superior to the other score-based methods. Note that “off-

ILAD” identifies 42 starts and 32 ends of anomalies out of

the 43 cases. The reason why the accuracy of “off-ILAD” in

detecting the ends of the anomalies is lower than detecting

the starts is that, even though some physical faults are with-

drawn, the system cannot return to its normal state. This is

why detecting the ends of anomalies fails in some cases.

2) Offline Anomaly Diagnosis: Among all the anomalies,

two major anomaly types are to be categorized. Since the

repair involved after attacks of different types of anomalies

are significantly different, it is necessary to distinguish

cyber-attack from physical faults accurately.

The extracted TFD features for each case are long and

periodic, therefore, we slice the long time series into several

TABLE III
EXPERIMENT RESULTS OF OFFLINE ANOMALY DETECTION

TABLE IV
EXPERIMENT RESULTS OF OFFLINE ANOMALY DIAGNOSIS

time slots (each slot has 20 time points). Thus, we have 80

time slots from one case. Furthermore, we filter the data

in the anomalous duration detected by our proposed ILAD

algorithm. Thus, we obtain 893 windows in total. We apply

the MFPCA clustering to diagnose the 893 observations of

multivariate time series. Our method embeds the data onto

a low-dimensional space spanned by eigenfunctions. Thus,

we compare the benchmark deep embedding methods, t-SNE

and UMAP, to embed the data onto a two-dimensional space

and cluster the data by K-means. In addition, we compare

the MFPCA method with the combination of two dimension

reduction approaches, Principal Component Analysis (PCA),

and t-SNE. The results are shown in Table IV. We measure

the performance of clustering through Accuracy, F1 score,

TPR (True Positive Rate), and TNR (True Negative Rate).

In terms of all four measures, the proposed MFPCA algo-

rithm is the best among the four methods considered here. This

is because the MFPCA, unlike other unsupervised dimension

reduction approaches, could model both the inter-dependence

of different dimensions of time series and the auto-correlation

of a single dimension of time series. The Accuracy mea-

sure of the MFPCA algorithm is 99.12% and the F1 score

is 100.00%, which are relatively higher numbers and even

comparable to some of the classification algorithms [6]. Our

MFPCA clustering algorithm successfully identifies all the

cyber-attacks. However, some physical faults are wrongly

identified as cyber-attacks because some are hard to distinguish

from cyber-attacks.

VIII. ONLINE TESTING RESULTS

A. Online Experiment Setup

To validate the proposed method, we develop a real-time

detection and diagnosis testbed using the NI device. As shown

in Figure 7, the NI 9205 is connected to the OPAL-RT. The

real-time data obtained by NI 9205 is sent to the PC through

Ethernet. To perform a comprehensive real-time data analysis,

we obtained streaming data consisting of different anomaly

types under two scenarios: (1) Scenario one consists of a set

of streaming data with five cyber-attacks, and one physical

attack due to a short circuit fault; (2) Scenario two consists

of another set of streaming data with five cyber-attacks and

one physical attack due to an open circuit fault. There are

Authorized licensed use limited to: University of Georgia. Downloaded on March 05,2024 at 19:40:32 UTC from IEEE Xplore.  Restrictions apply. 



2224 IEEE TRANSACTIONS ON SMART GRID, VOL. 15, NO. 2, MARCH 2024

Fig. 8. The results of online Informative Leveraging for anomaly detection.
The solid black line is the informative leverage score. The blue vertical lines
are where the anomalies happen. The red vertical lines are the detected starts
and ends of anomalies. The upper one shows the results of scenario one, and
the lower one shows the results of scenario two.

6 starts and 5 ends of anomalies to be detected under both

scenarios.

B. Online Test Results

1) Online Anomaly Detection: The proposed online-ILAD

algorithm is implemented on the above online datasets to test

its performance. Under each scenario, we continuously collect

waveform data and detect the anomaly as the new data streams.

The raw streaming waveform data contain around 500,000 time

points(j 25s). Our goal is to detect the starts and ends of all

attacks. We first down-sample the long time series every 10

time points to prevent high computational cost, and then extract

the nine-dimensional TFD features. Our following analysis

is based on the TFD features. We use a similar procedure

in the offline setting to choose the best VAR(p) model and

apply the online-ILAD algorithm to the streaming data. As in

the offline experiment, the pilot sample size for selecting the

best VAR model is 50. Varying different order values p, we

choose the best hyper-parameter for the VAR(p) model with

the smallest BIC value. Figure 8 shows the calculated online

informative leverage scores for both scenarios. The top panel

is the result of scenario one, and the bottom panel is the result

of scenario two. The blue vertical lines indicate where the

anomalies happen. The red vertical lines indicate the detected

starts and ends of anomalies. We can see that the time points

with high leverage scores are consistent with the anomalies

on waveform data. We then use the change point detection

algorithm to sequentially detect change points of the informative

leverage score. Table V shows the results of online anomaly

detection for scenario one and scenario two. Our proposed online

ILAD algorithm is denoted by “on-ILAD”. We compare the

proposed methods with other score-based anomaly detection

methods and identify the anomalies by the same sequential

change point algorithm.

The performance of the anomaly detection task in the two

scenarios is good, with 100% accuracy. Thus, our method is

superior in performance to other competing methods. It should

be noted that the anomalous data returns to the normal state

TABLE V
COMPARISON OF PREDICTION RESULTS FOR SCENARIOS 1 AND 2

TABLE VI
EXPERIMENTAL RESULTS OF REAL-TIME ANOMALY

DIAGNOSIS FOR SCENARIO 1

TABLE VII
EXPERIMENTAL RESULTS OF REAL-TIME ANOMALY

DIAGNOSIS FOR SCENARIO 2

after the attack ends. Thus, our proposed method successfully

detects all the ends of anomalies and validates the efficiency

of the proposed algorithm.

2) Online Anomaly Diagnosis: As in the offline experi-

ment, we slice the TFD feature in the anomalous period into

small time slots and predict the TFD feature label in each

time slot based on the mixture model we trained in the offline

experiment. For each incoming time slot, we estimate its prin-

cipal components in each cluster and compare the likelihood

of the window belonging to each cluster. Finally, we assign the

clustering label to the one with a higher likelihood. The online

testing result of the MFPCA clustering algorithm is shown in

Table VI and Table VII. In the online testing, the performance

of our clustering algorithm is still comparable to the classifi-

cation method mentioned in [6], and our method is superior in

performance to other deep embedding-based clustering meth-

ods in terms of the binary classification metrics we use. For

scenario one, our MFPCA clustering method identifies all the

cyber-attacks successfully. Besides, our method successfully

identifies 95.24% of all the time slots for scenario one. For sce-

nario two, our method identifies all the open circuit faults and

cyber-attacks. Compared to the open circuit fault, it is harder

to distinguish the short circuit fault from the cyber-attack.

IX. CONCLUSION

This paper presents a novel framework for solving

anomaly detection and diagnosis problems in power elec-

tronic networks. To detect anomalies, we use a novel ILAD

algorithm. Compared to other deep learning algorithms that

need labels of the normal data or labels of both the normal and

anomalous data, the proposed algorithm is unsupervised and

does not need labels to train. Compared to other unsupervised
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score-based anomaly detection methods, the proposed method

is not threshold-based and has higher accuracy. Furthermore,

it is shown that our offline ILAD algorithm can be generalized

to the online ILAD by sketching the lag-covariance matrix.

Most available work uses supervised classification mod-

els for the anomaly diagnosis task. However, the labels for

anomaly types in the power electronic networks are not easily

accessible in real applications. Therefore, we use an unsuper-

vised MFPCA clustering method which does not need labels

to train. Based on the model trained by offline cases, for each

time window, we tested the data in an online manner to decide

the clustering labels. To the best of our knowledge, this is

the first article to use unsupervised anomaly detection and

diagnosis algorithm for the power electronic network.

It should be mentioned that more work needs to be done in

the future to make our anomaly diagnosis algorithm discover

novel anomaly types. Our clustering model cannot discover

new clusters in an online scenario as more data streams in.

To make the algorithm identify new clusters, we may need to

borrow ideas from dynamic linear models to generalize the

MFPCA clustering algorithm to a dynamic version.
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