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0. Introduction
We work over the complex numbers C.
0.1. Refined BPS invariants for local P2

Let X = Tot(Kp2) be the Calabi—Yau 3-fold given by the total space of the canonical
bundle on P2, which is referred to as the “local P2”. Let d > 3 be an integer. Consid-
erations from physics predict that there is an action of sly X sls on the cohomology of
a certain moduli space of D-branes supported on a degree d curve in X [13]; this yields
double indexed integral invariants

nfi’j ez (1)

as the dimensions of the weight spaces of this sl x sly-action.! These invariants are known
as the refined BPS invariants of X, which are expected to refine curve counting invariants
for X defined via Gromov—Witten/Donaldson-Thomas/Pandharipande-Thomas theory

This paper concerns two different mathematical theories of calculating the invariants
(1) which connect two types of geometries. The first approach is to use the perverse
filtration, as proposed by Hosono—Saito—Takahashi [17], Kiem-Li [22], and Maulik—Toda
[28]. More precisely, we choose x € Z coprime to d, and consider Le Potier’s moduli
space M, of 1-dimensional stable sheaves F on P? with

[supp(F)] = dH € Hy(P?%,Z), X(F)=x;

see [24]. Here supp(—) denotes the Fitting support, and H is the hyperplane class of P2.
It is smooth under the coprime assumption. The associated Hilbert—Chow map induces
an increasing filtration

POH*(Md,XaQ) C PlH*(Md,X7Q) - C H*(Md,)oQ)v

called the perverse filtration; we refer to Section 1.1 for a brief review. The mathemat-
ical definition of the invariant (1) is the dimension of the graded piece of the perverse
filtration,

nyl = dim Gry H™V (My,,,Q), Gl =P/P_;. (2)

! For convenience, our (¢, j)-index is different with the one used in [21] by a constant; in particular, our
invariants satisfy that n;? = 0if ¢ < 0 or j < 0.
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By [26], each nzj is independent on the choice of x as conjectured in [42]. This realizes
the original physics proposal of Gopakumar—Vafa; the moduli space My, is considered
to be the D-brane moduli space, and the sly x sls-action is given by Hard Lefschetz
actions on

@ GeriJrj(Md,xv Q)

1,9

where this vector space has the same dimension as H*(Mg,, Q). However, perverse
filtrations are usually mysterious and complicated, which makes the invariants (2) hard
to compute.

The second proposal is due to Nekrasov—Okounkov [30], motivated by the index in
M-theory. It predicts that the refined BPS invariants should alternatively be given by
Nekrasov partition functions. To be more precise, conjecturally (2) are calculated by
the equivariant index of certain Nakajima quiver varieties. This allows us to obtain a
combinatorial algorithm to find double-indexed invariants ﬁfi’j , which are conjectured to
recover nfi’j defined via the perverse filtration. A detailed description is given in Section 3.
Using this algorithm, we find that the refined BPS invariant nil’j , or rather its combina-
torial counterpart ﬁi;j , can be expressed as a nice product formula asymptotically, which
we describe as follows.

Consider the generating series of two variables:

Fapps(g,t) == Z nyq't.
,J

We also set

e (PP 1
e =5 (= )‘g<1—<qt>iq2><1—<qt>iqzt2><1—(qt)iﬂ)

where S® denotes the plethystic exponential.
Conjecture 0.1. For i+ j < 2d — 4, we have
ng’ = [H(q. t)]".

Here [—]" denotes the q't/ -coefficient in the expansion q,t — 0.

In particular, Conjecture 0.1 predicts that each invariant nfi’j stabilizes when d — 400,
and

Fupps(q,t) = H(q,t), for d— +occ.

As we will see in Section 3.5, the bound 2d—4 is expected to be optimal in Conjecture 0.1
for any d > 3.
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0.2. Tautological classes and P = C

We propose a cohomological lift of Conjecture 0.1 using tautological classes and the
Chern filtration. This is inspired by the P = W conjecture for Hitchin systems as we
will discuss in Section 0.4.

The second and the third authors introduced in [35] the (normalized) tautological
classes

ce(j) € H*FH-D (Mg, Q);

they are given by a normalization of the integration over HY € H% (P?,Q) of the Chern
character chgy1(F) associated with a universal family F; see Section 1.2. The main
theorem of [35] is the following generation result, where the bound 2d—4 of Conjecture 0.1
appeared naturally.

Theorem 0.2 (/35]). For d > 3, the tautological classes whose cohomological degrees
<2d—4:

60(2)702(0) S HQ(Md’X7Q)7 (3)
cr(0), cp_1(1), cp—a(2) € H*2(My,,Q), kec{3,...,d—1}
have no relations in H*<24=4(M,,Q), and they generate H* (Mg, Q) as a Q-algebra.
Therefore, we call

H*§2d74(Md,xa Q) - H*(Md,x7 Q)

the free part of the cohomology. The Chern filtration of the free part is an increasing
filtration

COH*SQdizl(Md,XaQ) C ClH*S2d74(Md7X’ Q) c.--C H*S2d74(Md,X,Q),

where the k-th piece CkH*Qd_‘l(MdA,X7 Q) is defined as the span of all monomials

[ cr Gi) € H*=*"*(Myy,Q), with Y k; < k. (4)

i=1 i=1

The following conjecture connects the perverse and the Chern filtrations for the free
part.

Conjecture 0.3 (P = C'). For d > 3, we have

P H* =4 (My Q) = CLH* <4 (My,,, Q).
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The next proposition follows from a direct calculation of the dimension of the Chern
filtration using the freeness result of Theorem 0.2. In particular, Conjecture 0.3 is a co-
homological enhancement of Conjecture 0.1, which explains the product formula H(q,t).

Proposition 0.4. Conjecture 0.3 implies Conjecture 0.1.

Remark 0.5. The bound 2d — 4 of Conjecture 0.3 is expected to be optimal. From the
numerical perspective, this is due to the fact that the same bound in Conjecture 0.1
is optimal for all the cases we have calculated. Moreover, from the cohomological per-
spective, we verify the optimality of the bound when d = 3,4; see Remarks 1.4 and
2.10.

The following diagram summarizes the picture above:

free part

Perverse filtration ------=--- » Chern filtration
idim Gr(—) édim Gr(—)
i+j<2d—4
Fd,BPS(‘L t) 7777777 I ” H(Qa t)

0.3. Low degree cases

When d = 1,2, the moduli space My ,, is the projective space P H?(P?, Op2(d)). The
perverse filtration is trivial:

Crp H™(Mg,,Q) =0, for k<m.

From now on, we focus on the non-trivial cases d > 3. The main result of this paper is
the following.

Theorem 0.6. Conjecture 0.3 holds for degrees d = 3,4.

More precisely, we describe the cohomology ring H*(Mg,, Q) for d < 4 in terms of
the generators (3); then the perverse filtration can be calculated using the ring structure.
As a byproduct, we compute the invariants (2) explicitly for d = 3,4.

Theorem 0.7 (c.f. Conjecture 3.1). For degrees d = 3,4, the invariants (2) defined by the
perverse filtration are matched with the refined BPS invariants defined by the Nekrasov
partition functions or the refined Pandharipande—Thomas invariants.

In particular, our calculation shows that the (unrefined) BPS invariants ng 4 induced
by the perverse filtration [17,22,28] match with those defined by Gromov-Witten or
Pandharipande-Thomas theory; this yields the Gopakumar—Vafa/Gromov-Witten cor-
respondence for d = 3,4.
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0.4. P=W and P = C

The P = C phenomenon is closely related to the P = W conjecture of de Cataldo,
Hausel, and Migliorini [5].

Let X be a smooth projective curve of genus g > 2, and let n, d be two coprime integers.
The moduli space Mp, of stable Higgs bundles on X of rank n and degree d admits a
perverse filtration induced by the associated Hitchin system. The P = W conjecture
asserts that the perverse filtration of Mp, is matched with the double-indexed weight
filtration associated with the corresponding character variety Mp via the non-abelian
Hodge correspondence:

“P=W": PyH"(Mpo, Q) = Wor H" (Mg, Q).

This conjecture has been proven recently in [27] and [16] independently.
Analogous to the tautological classes ci(j), we consider the tautological classes for
the Hitchin moduli space

ce(7) € H*(Mpo1, Q), k€ Z>o, ve H*(X,Q)

given by a normalization of the integration over v of chy (i) [6, Section 0.3], where U is
a fixed universal bundle. These classes are proven to generate the cohomology [25] and
their weights on Mp were calculated in [41]. Consequently, the P = W conjecture is
equivalent to:

“P=C": PyH*(Mpe,Q) = CrH*(Mpe, Q) (5)

where the Chern filtration is defined by the Chern degrees of the tautological classes as
in (4); see [6, Conjecture 0.3]. In fact, all the approaches in [5,6,27,16] for (certain cases
of) P =W are to prove P = C' via various techniques.

In view of (5), Conjecture 0.3 is an analog of P = W for Hitchin systems. We note
that the major difference between Conjecture 0.3 and (5) is that the former only holds
for the free part as explained by Remark 0.5. This may be due to the fact that the
fibration associated with M, fails to be Lagrangian.”

The enumerative geometry perspective of P = W concerning the refined BPS in-
variants for the local curve T*% x C was discussed in [9]. It connects the conjecture of
Hausel-Rodriguez-Villegas [15] on mixed Hodge polynomials of character varieties with

certain equivariant index of the Hilbert scheme Hilb(C?2,n) of points on C2.

2 For another type of Lagrangian fibration — the Beauville-Mukai system associated with a K3 or an
abelian surface, there is a version of P = C for the total cohomology; see [6, Theorem 2.1].
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0.5. Relations to other work

Recently there has been much work in connections between moduli of 1-dimensional
sheaves on P? and enumerative geometry for local or logarithmic P? [2-4]. In the case
of a K3 surface or an abelian surface S, the Gopakumar—Vafa theory for the Calabi—
Yau 3-fold S x C is closely related to compact hyper-Kéhler geometries; the P = C
phenomenon was deduced in [6] and the invariants (2) were calculated in terms of Hodge
numbers of certain compact hyper-Kahler manifolds [40,14]; this is matched with the
prediction from physics [20,21]. Refined BPS invariants for local P? have been studied
via stable pairs [10].

The “P = C” phenomenon also appeared in geometric representation theory for cer-
tain affine Springer fibers [31,32].
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1. Perverse filtrations, moduli spaces, and tautological classes

In this section, we review some basic facts about perverse filtrations, moduli of 1-
dimensional stable sheaves on P2, and the (normalized) tautological classes introduced
in [35]. In Proposition 1.2, we reinterpret the normalization of [35] as the only one
enforcing “P = C” to hold for H*<2. As a toy example of the calculation in the next
section, we conclude this section with the proofs of Theorem 0.6 and Theorem 0.7 for
d=3.

1.1. Perverse filtrations

Let f : X — Y be a proper morphism between irreducible nonsingular quasiprojective
varieties with dim X = a and dimY = b. Let r be the defect of semismaliness of f:

r:=dimX xy X — dim X.

For convenience, we further assume that f has equidimensional fibers, so that r = a — b.
The perverse filtration

POHm(XvQ) - Ple(XvQ) c---C PZTHm(X7Q) = Hm(X7Q)

is an increasing filtration on the cohomology of X governed by the topology of the
morphism f; it is defined to be
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P,H™(X,Q) :=Im {Hm_b(K Pr<i(Rf.Qx][b])) — Hm(XaQ)}

where P7<, is the perverse truncation functor [1]. We say that a class v € H*(X, Q) has
perversity k, if

v € PkH*(XvQ)\Pk—lH*(XaQ)

In general, the perverse filtration associated with a morphism is very complicated and
hard to compute, as it relies on the mysterious perverse truncation functor. In the case
when the target Y is projective, we may describe the perverse filtration via an ample
class on Y as follows.

We fix 7 to be an ample class on Y. Its pullback gives a class ¢ := f*n € H?(X,Q),
which acts on the rational cohomology of X via cup product:

¢ H™(X,Q) —=— H™2(X, Q).

Proposition 1.1 (cf. [7] Proposition 5.2.4). With the notation as above, we have

PH™(X,Q) =) (Ker(¢"™ =) nIm(¢)) N H™(X, Q). (6)

i>1

As in (2), we are interested in the dimension of the graded piece of the perverse
filtration

dim Grl H' (X, Q)

which can be expressed via the decomposition theorem [1]. More precisely, applying the
decomposition theorem to f : X — Y, we obtain that

Rm.Qx|[b] @P ] € DY)

with P; a semisimple perverse sheaf on Y. The perverse filtration can be identified as
k
PH™(X,Q) = Im{H’”_b(Y, B Pil-i]) » H™(X, Q)},

=0

and hence

dim Grl H'(X, Q) = dim HI (Y, ;). (7)



Y. Kononov et al. / Advances in Mathematics 433 (2023) 10929/ 9

1.2. Tautological classes for moduli spaces

From now on we focus on the moduli of 1-dimensional stable sheaves. We review the
tautological classes introduced in [35, Section 1.1]. As we will show in Proposition 1.2,
the normalization we used in [35] is crucial for the P = C conjecture to hold.

Recall that the moduli space My, parameterizes 1-dimensional stable sheaves F on
P2 with

[supp(F)] = dH, x(F)=x.

Here the stability condition is with respect to the slope

ue) = e

It admits a Hilbert—Chow map
h: Mgy, — PH(P? Op:2(d)), F s supp(F),

sending a sheaf to its Fitting support. This is a flat and proper map, which induces a
perverse filtration

PoH"(Ma,y, Q) C PLH™ (M, Q) C -+ C H"(May, Q)

by the discussion of Section 1.1. The assumption ged(d, x) = 1 garantees that the stability
and the semistability conditions coincide. Its connection to the enumerative geometry
of the local Calabi-Yau 3-fold X = Tot(Kp2) relies on the fact that Mgy, can also be
viewed as the moduli of 1-dimensional stable sheaves on X with the same numerical
data.

Let F be a universal family over P? x M, ,. For a stable sheaf [F] € My,, the
restriction of F to the fiber P? x [F] recovers F. Since the choice of F is not unique,
we need to normalize its Chern character ch(F) to obtain cohomolgy classes ¢ (j) of
Section 0.2 which are independent on F. We review the construction as follows.

For a universal family F and a class®

§=7pdp +mhon € HX (P2 x My, Q), with 6p € H*(P2,Q), dx € H*(May,Q),
we consider the twisted Chern character
ch®(F) := ch(F) - exp(d),

and we denote chl (F) its degree k-part. For H/ € H? (P2 Q), we set

3 We change the notation of the normalizing class in [35] to & as « is used in Theorem 2.1 below.
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5 s * 17j s 2(k4j—1
) = [ i () = mar. (mpH? - i (F)) € B0 (M, Q).
Hi
where 7p and 7y are the natural projections from the product to P? and Mg, respec-

tively.

The next proposition asserts that P = C for H*<?(My,,, Q) holds for the §-twisted

tautological classes ¢ (j), if and only if d is the normalization class chosen in [35].

Proposition 1.2. With the above notation, we have:

(i) There exists a unique 0y satisfying the condition that the classes
() € H*FH=D (M, ,Q) with k45 <2

has perversity k.
(ii) We define ci(j) using the class §g determined by (i). Then

PLH"=* (M, Q) = CH"=*(May, Q).
Proof. For (i), since H%(Mgy,, Q) = PoH(Mg,, Q), we require that
°(0) =0 € H'(My,, Q).

Moreover, since H? (Mg, Q) is 2-dimensional generated by an ample class on the base
pulled back via h and an h-relative ample class, we have

P1H2(Md,X7Q) \P0H2(Md,X7 Q) =0.
Therefore, we also require that
(1) =0 € H* (Mg, Q).

These conditions determine dy uniquely by [35, Proposition 1.2]. In particular the choice
of dp using (i) recovers the tautological classes ¢ (j) introduced in [35].

Part (ii) follows from [35, Proposition 1.3(c)]. More precisely, since ¢g(2) is pulled
back from the base P H°(P2, Op2(d)) and c,(0) is relative ample, we have

co(2) € PoH?*(Myy, Q), c2(0) € PoH?* (Mg, Q) \ PLH?* (Mg, Q).
This proves P = C for H*<*(My,, Q). O

As a consequence of Proposition 1.1, we may determine the perverse filtration for Mg
using the tautological class c(2) € H?(Mg,, Q); this is our main tool of calculating the
perverse filtration for low degrees d.
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Corollary 1.3. The perverse filtration PoH* (Mg, Q) is characterized by the formula (6)
with € = ¢o(2).

1.8. Symmetries
We have two types of symmetries between the moduli spaces Mg,y
(i) The first type is given by the isomorphism
¢1 : Md,x = Md’Xer, F=F® O]P&(l).
(ii) The second type is given by the isomorphism
P2t Mgy = Mgy, Fr Extl(}", wp2).
Both symmetries preserve the morphism h : My, — PH°(P?, Op2(d)). Furthermore, by
[35, Proposition 1.4], the tautological classes c(j) are preserved (up to a sign) by the
symmetries (i) and (ii) above.
Thus, in order to prove Theorem 0.6 and Theorem 0.7 for My ,, it suffices to establish
them for My, with some x’ satisfying that
X =%x mod d.
1.4. Degree 3 case
We conclude Section 1 with a complete calculation of the perverse filtration and their
dimensions in the degree 3 case; in particular we prove Theorem 0.6 and Theorem 0.7

for d = 3.

Proof of Theorem 0.6 for d = 3. In this case the bound 2d — 4 = 2; therefore Conjec-
ture 0.3 only concerns H*<2, which follows immediately from Proposition 1.2(ii). O

Remark 1.4. Since h : M3, — P? is an elliptic fibration, we know that
PyH* (M35, Q) = H*(Ma,x, Q).
Therefore by considering
2(0)% € H* (M3, Q),

it is obvious that P = C breaks down for H*(M5 ,, Q). In particular, the bound 2d — 4
of Conjecture 0.3 is optimal for d = 3.
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Proof of Theorem 0.7 for d = 3. We need to show that the invariants
ng’ = dim Gr H'™* (M., Q)

are matched with the coefficients of ﬁgﬁBpS(q,t) obtained in Section 3.5. This can be
achieved by calculating the perverse filtration using the ring structure [35, Section 1.3]
combined with Corollary 1.3. We leave this as an exercise to the reader as we will use
this method to treat the d = 4 case in Section 2 where the calculation is much more
complicated.

Here we give another proof via the decomposition theorem (7). Since h : M3, — P?
is an elliptic fibration, we have by relative Hard Lefschetz the decomposition theorem
associated with h:

Rh.Q[9] ~ (Q[9]) & P1[—1] & (Q[9])[-2]: (8)
Therefore, the only unknown is the invariant
ny’ = dim H'=°(P°, Py), jeZ.
This can be calculated by taking H7(—, Q) in (8):
dim H?(P?, Q) + ny’ 4 dim H~2(P°, Q) = dim H? (M3, Q) = dim H (P? x P*,Q),

where the last equation follows from the fact that Ms , is a projective bundle over P2, see
[24]. Therefore we have calculated all the refined BPS invariants ny’, which completes
the proof by comparing with F3 pps(q,t) in Section 3.5. O

2. P = C for degree 4 and matching BPS invariants
2.1. Overview

We complete the proof of Theorem 0.6 and Theorem 0.7 in this section. Since we
concern the case d = 4, in view of the discussion of Section 1.3, we only need to prove
both theorems for the moduli space My ;. From now on, we only consider the case
d=4,x=1.

The cohomology ring H*(Mjy 1, Q) has been calculated by Chung—Moon [11] explicitly
in terms of generators given by certain geometric classes. In order to prove P = C, we
apply Chung-Moon’s result to calculate the ring structure of H*(My1,Q) using the
tautological classes ¢ (j). Then Corollary 1.3 allows us to write the perverse filtration in
terms of the tautological classes.

Our main technical theorem of this section is Theorem 2.9 which provides the transla-
tion between the geometric classes «, 3, x, y, z in Theorem 2.1 below and the tautological
classes of [35].
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2.2. Cohomology of My 1

We first recall the following theorem due to Chung-Moon [11]. For an algebraic class
in H?(My,1,Q), we say that this class is of algebraic degree i.

Theorem 2.1 ([11, Theorem 6.5]). The Chow ring of My 1 is given by*

A*(My,) ~ Qla, B, 7, y, 2] /{(x2 — yz, B2z — 3yz — 922,302 — aBz + yz, B2y — 3y* — Jyz,
B%x — xy — 3y? — 308z — Iyz + 922, B + 322 — 9y — 3y — Hdyz — 8122,
Byz + 9az? — 3622, 2Bxy — 36y* — Yayz — 27az* + 9822, 36z — 76y>
— 36ayz — 108az? + 36622, ' + 32 B + 3a'°(B? + 22 — y)
+ (=83 + 128z + 28y) + 308 (92 — 162y + 17y%)
+28a7By? + 5605y> + 201a82° — 19y2° — 61325,
6002y — 12a1%? — 10a°By? — 4508y> — 104a52° + 2y2° + 310z7>,

where a, B are of algebraic degree 1 and x,y, z of degree 2. This also gives the cohomology
ring H?*(My1,Q), with the degrees of the generators doubled.

The class o can be described as the locus of F € My, such that a fixed point
p € P2 lies in supp(F); see [11, Proposition 7.8]. Otherwise said, it is the pull-back
of a hyperplane class on P4 = PH?(P2,Opz(4)) via h : My, — P, For geometric
descriptions of the other generators, see Sections 2.3.1 and 2.3.2, and also [11, Section
7). As we discuss in Section 2.3, only the descriptions of 8 and z will be needed for our
calculations.

2.3. Comparing generators

The major part of this section consists of comparing the generators in Theorem 2.1
with the five tautological generators

00(2)7 02(0)7 1 (2)7 02(1)7 03(0) € H” (M4,17 Q) (9)

given in [35].
To begin with, note that

a = cy(2)

by the discussion above, both being the pull-back of a hyperplane class on the base P4,
Thus we write the two classes interchangeablely in what follows.

4 We correct a typo in the original paper.
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To determine the remaining classes of Theorem 2.1 in terms of (9), we proceed by the
following three steps:

(i) Compute the classes § and z explicitly in terms of (9); this is carried out in Sec-
tions 2.3.1 and 2.3.2.

(ii) Compute the total Chern class ¢(Tp) of My 1 in terms of (9); this is carried out in
Section 2.3.3.

(iii) Comparing the result of (ii) with [11, Proposition 7.5], we obtain two identities by
taking the terms in ¢(7ys) of algebraic degrees 2 and 3. This allows us to find the
expressions for z and y in terms of (9).

Remark 2.2. Most steps in (i, ii, iii) are technical calculations in intersection theory. For
the first time reading this article, the reader may skip this part and jump to Theorem 2.9
directly.

2.83.1. The class

We first introduce some notation and recall Proposition 2.3 from [11] which will be
needed.

A general element F € M, ; has a unique nonzero section s : Op2 — F up to scalar
multiplication, whose cokernel Q) has finite support. We denote by L the closure of the
locus of F € My such that @) meets a fixed line. Let O be the closure of the locus of
F € My, such that @ r contains a fixed point.

Proposition 2.3 (11, Proposition 7.11]). With the notation as above, we have:

(i) L=—0in H*(My1,Q).
(il) O =2 —y in H*(My1,Q).

Let K(—) be the Grothendieck group of coherent sheaves. Consider the group homo-
morphism \ : K(P?) — Pic(My 1) given by the following composition

K(P?) — K(P? x My1) — K(My;) — Pic(My ).
Explicitly, it is defined by
Av) = det(q.(F @ p*v)) € Pic(My ), v € K(P?).

Here F is a fixed universal sheaf on P? x My and p (resp. q) is the projection to the
first (resp. second) factor. We write

D := \(—40p> + Oy) € H*(My1,Q)

with H C P? a hyperplane.
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Proposition 2.4 (/8, Proposition 2.5]). Under the above notation, we have
D=-3a+L (10)
Combining Proposition 2.3(i) and (10), we deduce that
B =—-3a—D. (11)

Since a = ¢((2), it suffices to express D in terms of ¢x(j). For this purpose, we first
present a general lemma that expresses the normalization class J§y of Proposition 1.2:

Lemma 2.5. For a general moduli space Mg, the normalization class do is given by

5o = <3§)~H;(<Z§>co(2)+el(1)>, (12)

where e1(1) := fH cha(F) € H*(Mgy,,, Q).
Proof. This is a direct calculation following the proof of [35, Proposition 1.2]. O

The precise expression of the second term in (12) is of little significance for our pur-

pose, and thus we write simply §g = (% — %) - H — ~ from now on. Specializing to My 1,
we have

5
5o = ZH — v € H*(P? x My1,Q).

Now we can compute the class D € H? (My1,Q). By definition, we have

D = \(~40p: + Op) = chy (det(¢: (F © p* (=402 + On))))
= chy (¢ (F @ p*(—40p2 + Op)))
= —4 - chy(¢:F) + chy (¢ (F ® p*Op)).

Using the Grothendieck—Riemann—Roch theorem and the projection formula, we obtain
ch(g.F) = g.(ch(F) - td(P?))
5
= ¢ <ch‘SO (F) - exp (_ZH) . td(IP’Q)) - exp(7).

Since td(P?) = 1+ 2H + H?, it follows that

3
ch;(¢.F) = —3—200(2) + c2(0) + 7.

Similarly, we have
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1
chi(¢.F ® Op) = —Zco(Q) + 4.
Therefore we arrive at
. 1
D = —4-chy(¢.F) + chy (¢ (F ® p*Opn)) = §00(2) — 4¢2(0).

We conclude from (11) that

2.3.2. The class z

We compute the class z by an application of the Porteous formula. Denote by C4 the
universal quartic curve in P2 x P14, This sits naturally in My and can be described
as the Brill-Noether locus of sheaves F € My with dim H°(P2, F) = 2; see [12]. For a
sheaf not belonging to Cy4, we have dim H°(IP2, F) = 1. The following proposition gives
a geometric description of the class z:

Proposition 2.6 ([11, Proposition 7.7]). We have z = [C4] in H*(My1,Q).

The Brill-Noether locus C4 has codimension two and can be viewed as a degeneracy
locus of a map between vector bundles, as we explain now. Fix a universal sheaf F
on P2 x My,1, and consider the second projection g : P2 x My — My,;. The derived
push-forward

Rq.F € D°Coh(My,)
admits a two-term resolution ¢ : K° — K' by vector bundles, as it computes the

cohomology groups on curves. For a sheaf F € M, supported on a curve C, we have
the exact sequence

0 H(C,F) - K°F) 2% KY(F)  HY(C, F) = 0.

Denote by e the rank of the vector bundle K°. We have
X(F) =dim H°(C, F) —dim H'(C, F) =1,
and thus f :=rank K'(F) = e — 1. Recall that
Cy = {F € My, | dim H°(P? F) = dim H°(C, F) = 2};

we see that C4 coincides with the degeneracy locus M,_»(¢) where the map ¢ : K — K*!
between vector bundles has rank < e — 2. Moreover, it has the expected codimension
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(e—(e=2)(f —(e—-2)) =2
Thus by the Porteous formula, we obtain that

c 1
Ca) = [Mo—2(6)] = A3 [g;]

= (K' — K%? — ¢p(K' — KY)
= c1(—¢.F)? — ca(—q.F)

1
= §ch1(q*]F)2 — chy(q.TF).

On the other hand, we have computed ch(g.[F) in Section 2.3.1:

ch(q.F) = 1 — 3—3200(2) +ea(0) 4y — 33201(2) + icz(l) + ¢5(0)
3 72
+7- (= 3502 +e0) + 5+,

where the omitted terms have algebraic degrees > 3. We conclude by Proposition 2.6
that

1)+ 5 @) + 5(@0) - Sa2)?

z=—c(0) = ¢ D) 32

2.8.8. The total Chern class

The goal of this subsection is to compute the total Chern class ¢(7j) in terms of (9).
As before, we fix a universal sheaf F on P? x My 1. Since My is a smooth projective
variety, the tangent space at a sheaf 7 € My ; is given by

Tr = Ext!(F, F).
Consider the object RHom(F,F) € D*Coh(P? x My 1). The derived push-forward
Rg.RHom(F,F) € D’ Coh(P? x My ,)

admits a three-term resolution L — L' — L? by vector bundles. For a sheaf F € My 1,
the i-th cohomology of the sequence

L*(F): 0= L°F) = LYF) = L*(F) = 0 (13)
computes the extension group Ext’(F, F). We have
H°(L*(F)) = Hom(F, F) ~ C

by the stability of F. The first cohomology is
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HY(L*(F)) = Ext'(F,F) = T#.

For the second cohomology, we have by Serre duality
H?*(L*(F)) = Ext*(F,F) ~ Hom(F, F ® Op2(—3))" =0,
where the last equality again results from stability of F. It follows that
Tu = —Rq. RHom(F,F) + On,, € K(My).

Taking Chern characters, we obtain

ch(Tar) = —ch(g (FY @F F)) + 1.
We calculate using Grothendieck—Riemann—Roch that

ch(g.(FY @ F)) = qu(ch(FY @ F) - td(P?))

= g.(ch(F") - ch(F) - td(P?))
= o (ch®(FY) - ch®(F) - td(P?)),

where we write in the last term

ch®(FY) := ch(F") - exp(—dp) = »_(—1)"chy (F).
E>1

Therefore, we get

ch(Tar) = =g (ch® (FY) - ch® (F) - td(P?)) + 1
=17+ 12¢0(2) + (c0(2)* + 8c2(1) + 2¢0(2)c2(0)) + (12¢2(2) + 3co(2)c2(1)) + -+ ,

where the omitted terms have algebraic degrees > 4. Hence the total Chern class is

c(Tar) = 14+12a4+(71a* =8¢y (1) —2ac2(0))+(24c2(2) —90aca (1) —24a2c2 (0)+2760°) +- - - .

(14)

So far, we have already written ¢(7s) in terms of ¢ (7). It remains to express ¢2(2) in

terms of the five tautological generators (9). This is achieved by an explicit computation

using [35, Proposition 2.6]. We state a modified version for tautological classes on My ;
here; see [35] for the setup and notation.

Proposition 2.7. For every £ > 5 and n € {1,2,3}, the following identity holds for My 1 :

meg

) m. s i T* T* 7 .
Z H % Z(_l)z MY T A — M(—l)lﬂ-ijs—i =0.

7! 7!
m s=1 >0
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Here, the first sum is over all {-tuple of non-negative integers m = (my,ma, ..., my)
such that my +2mao+- - +4my = £, and writing ¢s(j) := (—=1)*tles(j), the terms Ag, By
are given by

- 11 - 1 11 117\
Ag :=¢541(0) + <4 - n) cs(1) + <2n2 -t 32> Cs—1(2) € H**(My1,Q),

_ 7\~ 1, 7 45\ .
By :=¢541(0) + <Z - n) cs(1) + <§n2 - Zn + §> cs—1(2) € H? (Myq,Q).

Proof. The proof follows almost line by line as in [35, Proposition 2.6], except that we
use the twisted Chern character ch® (FY) = ch(FY) - exp(—do) by the class y given in
Lemma 2.5. The classes ¢s(j) show up since we take the Chern character of the dual
universal sheaf. O

Now we take ¢ = 5 and integrate (15) with respect to 7} (1p2) as in [35, Section 2.3].
This leads to a relation in H%(My 1, Q) of the form

Cy + Cyy + C372 + Oy = 0, (16)

where Cy,C5 are expressions entirely in terms of the tautological generators (9), and
C4 € Q is a constant. The vanishing holds for every universal sheaf F and the class v
obtained from the normalization class dg associated with FF. In particular, if we write £
to be the line bundle on My ; corresponding to the divisor ¢o(2) and replace F with

F' :=F ® ¢ L%
for m € Z, a straightforward computation shows that
Y =y+m-co(2).

Since (16) holds for all these 7, we deduce that Cy = C3 = C4 = 0, using the fact
that there are no relations among the tautological generators in H*<5(My 1, Q), cf. [35,
Section 3.2]. Therefore, we can actually set v = 0 in (15) for the computation. Setting
n = 1,2,3, we obtain as in [35, Section 2.3] three linearly independent relations in
HS(My 1,Q), whose linear combinations give the following relations:

32 28

62(2) = 303(0)02(0) - 363(0)60(2) — 302(1)60(2) - 461 (2)62(0) + £61(2)00(2)
+ §c2(0)c0(2)2 + %c (2)?
es(1) = — des(0)ea(0) + Les(0)co(2) + e (2)ea(0) — pooer(2)en?) — sonco(2)*

49

ﬂ% (0)eo(2) +

%62(1)62(0) - 2—1402(1)00(2) - 261(2)62(0)
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691 1 9 1 9 537 3
+ 102401(2)60(2) 4802(0) C()( ) 3200(2) 62(0)+ 1638400(2) .

This provides the desired expression of ¢2(2) in terms of (9). Consequently, we obtain
from (14) an expression of ¢(7y) in terms of (9).

2.8.4. The classes x and y
We will use the following result in [11], which expresses ¢(Tys) in terms of the gener-
ators o, 8, x,, 2.

Proposition 2.8 (/11, Proposition 7.5]). The total Chern class of My is given by

c(Ta) = 14 12a + (6602 — 3aB — 3% + 62 + 2y + 342) + (2200° — 33023 — 333>
—43% + 60axr — 632 + 300y + 228y + 414az + 2232)
+ terms of algebraic degrees > 4.
Comparing the terms of algebraic degrees 2 and 3 in this expression with (14), we
obtain
7102 — 8cy(1) — 2ae2(0) = 6602 — 38 — 3% + 6 + 2y + 342,
24¢5(2) — 90aca (1) — 2402y (0) + 27603 = 22002 — 33028 — 33af% — 48% + 60ax — 65z
+ 300y + 22By + 4140z + 22[z.
Except for the classes x and y, everything in the two identities is known in terms of

(9). Recall that there is no relation among the tautological generators in H*<5(My 1, Q),
we obtain the expressions for x and y as we want:

831

1
x = 4e3(0) — gc1(2) +4c2(0) — 8¢p(2)c2(0) + ﬁco(z)“‘,
1 39 7 221 5423
= — 1 —_ = 2 - 2 — Taa 2 2 2'
y = 5c3(0) + 402( ) 3261( )+ 202(0) o c0(2)c2(0) + 204860( )

This completes the comparison between the tautological generators (9) and the gen-
erators a, 3, x,y, z in Theorem 2.1. We summarize our results in the following theorem;
combined with Theorem 2.1, we are able to write the cohomology H* (M, 1,Q) in terms
of the generators (9) and relations.

Theorem 2.9. The following identities hold in H*(My1,Q):

(@) =a, o) =2t f,

3
a(2) = 1_6a + aﬁ—’_x_y_za
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55 5 3 30117
1) = — 2 -~ Yp2 _ 2. -, -0
o) = oga” + gab+ g - qw— v — 4
75 15 1 9 1 1
M= 20?4 B —B2 4 g —y— —2,
c3(0) = 5507+ g~ 6 F 37 T ¥ T 357

2.4. Proof of the main results for degree 4

In this section we prove Theorem 0.6 and Theorem 0.7 for d = 4. Consider now the
morphism h : My 1 — P, By Corollary 1.3, the perverse filtration can be characterized
using the class &€ = ¢p(2) as follows:

P H™(My1,Q) = Z (Ker(§M*+F=m+) N Im(&~1)) N H™ (M1, Q). (17)

i>1

The equation (17), combined with the ring structure of H*(My1,Q) given by Theo-
rem 2.1 and Theorem 2.9, provides a complete description of the perverse filtration in
terms of the generators in Theorem 2.1 or the five tautological generators (9). In partic-
ular, using a computer, we are able to check’

PyH*S(My,Q) = CoH*S*(My1,Q),
and calculate the dimensions of the graded piece
dim Gry H™(My1,Q), Vk,m € Z.
The refined invariants
n%? = dim CrlH™I (M, 1, Q)

are matched with the formula }T”BpsA(q,t) in Section 3.5 obtained via the Nekrasov
partition function. This proves both Theorem 0.6 and Theorem 0.7.

In the following, we provide more details on checking P = C for the reader’s conve-
nience. The filtration Py H™ (M1, Q) is concentrated in perverse degrees [0, m], and the
fundamental class 1y, , lies in PyH°(My1,Q). Since the class ¢o(2) is the pull-back of
a hyperplane class on the base P4 and c3(0) is a relative ample class [35], we obtain
immediately from relative Hard Lefschetz that:

60(2) CQ(O) 00(2)2 60(2)62(0) 02(0)2
Perversity 0 2 0 2 4

Furthermore, we use (17), Theorem 2.1, and Theorem 2.9 to check that the perversity
of the generators in H*(My 1, Q) are as expected:

5 The computation is conducted via the software MACAULAY2. Explicit descriptions of the perverse filtration
for My 1 can be found on the second author’s website: https://github.com/Weite-Pi/weitepi.github.io.
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a(2) (1) s(0)
Perversity 1 2 3

Finally, we check as above that any Q-linear combination of the classes

co(2)c2(0), c2(1) € H*(My1,Q)

has perversity 2. In particular, we have
Spang (co(2)c2(0), c2(1)) N P1H4(M4’1, Q) ={0}.
This guarantees the identity
PyH*=4(My1,Q) = CrH*="(Ma1,Q)
which completes the proof. O

Remark 2.10. One can verify also that the class ¢2(0)c3(0) has perversity 3, so we see
that the bound 2d — 4 in Conjecture 0.3 is optimal for d = 4.

3. Pandharipande-Thomas theory, Nekrasov partition functions, and combinatorial
BPS invariants

3.1. Owverview

In this section, we introduce the combinatorial BPS invariants

Fupps(q,t Z nglq't.

They are defined by the Nekrasov partition function (24), and they refine the (standard)
Pandharipande-Thomas (PT) invariants [36-38] for the local P2.

In contrast to n “J defined via the perverse filtration, the combinatorial invariants e i
are very easy to compute. For a fixed d, the generating function Fd7Bps(q, t) is obtained
by a calculation in only finitely many terms. Nevertheless, these two types of invariants
are expected to coincide by string-theoretic considerations.

Conjecture 3.1 (cf. [30]). We have

=i i
ng’ =ny’.
Conjecture 3.1 is the main source for us to make predictions on the structure of
the refined BPS invariants n;;’. For example, using a computer we are able to check
Conjecture 0.1 for 7}’ in all degrees d < 14.



Y. Kononov et al. / Advances in Mathematics 433 (2023) 10929/ 23

Finally, we list in Section 3.5 the formulas
Fupps(q,t), ford=34

which are needed to match the invariants (2) obtained from the perverse filtration. These
formulas were also obtained in [10].

3.2. PT theory of local P2

We first recall the (unrefined) PT invariants for X = Tot(Kpz). We consider the
moduli space PT(X, d, n) of stable pairs (F, s) where F is a pure 1-dimensional sheaf on
X with

[supp(]:)] =dH € HQ(]P)zaz) = HQ(X7Z)7 X(f) =n

and a section s : Ox — F satisfying that dim coker s = 0. Although X is not projective
itself, the moduli spaces PT(X,d,n) are projective. The PT invariants [36] are defined
to be the degrees of the virtual cycles

PT,. = / 1€Z.
[PT(X,d,n)]vir

They form a generating function

ZE(X) =Y Q") PTya-(—2)" (18)
d

nezZ

Here the superscript “ur” stands for unrefined invariants.

3.83. Refined PT invariants

X

01.q2,q5 dCting on X such

In order to refine (18), we consider the 3-dimensional torus C
that

cr = 0t C Aut (H°(P?, Op2(1)))

q1,92,93

(See Fig. 1.)
The perfect obstruction theory on PT(X,d,n) yields a virtual structure sheaf OV
and its symmetrized version

@vir = Ovir ® (]CVir)% ,
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EYNA
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Fig. 1. Toric diagram of P2. Vertices denote the fixed points, and the edges denote the invariant rational
curves. Arrows at the vertices denote the weights of the tangent spaces.

as explained in [34]. The virtual index with respect to OYIr coincides with the invariant
Pde:

X(PT(X,d,n),0"") = PT,, 4 € Z; (19)

see [10, (7.7)] and [30]. Then the equivariant virtual index with respect to the torus
action naturally refines PT,, 4. More precisely, in view of (19), we express (18) as the
K-theoretic PT generating function of virtual indices:

ZEn(X) =Y Q7> x(PT(X,d,n),0"") - (—2)". (20)
d nez

X
q1,92,93

of the K-theoretic generating function (20) is expressed as the contraction of three

Using the torus action C on X and localization, the equivariant version ZE?EHV(X )
equivariant PT vertex functions along the edges of the toric diagram. The localization
formula [33,34] relies only on the description of the tangent space to a pair (F,s) as

Tangent space at (F,s) = x(F) + x(F,O) — x(F,F).

It turns out that each coefficient in front of Q% converges to a rational function in the
variable z. The coefficients of the expansion of the plethystic logarithm of Zp&" (X)) are
the Gopakumar-Vafa invariants GV, € Z[z, k2 ]:

i GVy
equiv __ce 2 . 0% =
ZPT (X> =S (1—2\/E)(1— \/ZE) Q ) K 414243-

a>1

Each GV is equivalent to Fj pps(q,t) up to a change of variables (see (24) below), and
we list the first few expressions of GVy:

GVi=z-(k+1+r71),
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GVQZ—Z-(I{%+/€%+KJ%+I€_%+FL—%+H_%),
GVi=z- (KB +r2+r+14+r+r 24173

ot

F (2 H1) (52 4R RS RS A RE AR SRS R

Indeed, it was proven in [30, Theorem 1] that Zg&"(X) depends on the equivariant
parameters ¢; with ¢ = 1,2, 3 only as a function of the weight of the Calabi—Yau 3-form
K = q1q2q3. Thus it can be evaluated in the refined limit ¢; — 0, o0 when x = const.

The refined limit of the vertex function is particularly simple when there is a preferred
direction. Briefly speaking, the preferred direction is a weight of C? which goes to 0 or
oo much more slowly than the other two weights. In the case of the Donaldson—Thomas
vertex it was investigated in [30], and for the 2-legged PT vertex in [23].

Unfortunately, for local P? we need to consider the 3-legged PT vertex, and it is not
possible to make a limit of equivariant parameters such that each of the three vertices
has a preferred direction. For example, if we take a limit

q1 =~ q2 — 0, g3 = 00, q1q2q3 = const,

then the bottom two vertices have preferred directions along the edge joining them, while
the third vertex does not have one. Thus, we can not reduce Zgi'¥(X) completely to
the refined topological vertex [19], and it requires a new type of vertex as explained in
[18].

Another approach is to relate, using the flop relation, Z;%lﬂv(X ) with the equivariant
PT invariants of the local Ai-surface, for which there is a limit such that each vertex
has a preferred direction. As a consequence, such calculation relates Zfﬁf’iv(X ) to the
Nekrasov partition function associated with the rank 2 instanton moduli space with an
insertion of the tautological line bundle O(1) given by (23). More generally, equivariant
PT counts for the local A,-surface are related to the Euler characteristic of the sheaf
O(n) on the instanton moduli space. In this case, the two Kéahler parameters for the
PT moduli space are related with one Kéahler and one equivariant parameters of the
framing for the instanton moduli space. By this approach, we may recover GV4 from the
instanton invariants Py defined later in Section 3.4:

z

TR (21)

GV4(z, k) = monomial prefactor - Py(2v/k,

3.4. Nekrasov partition functions

Let M(r,n) be the Nakajima variety [29] corresponding to the quiver as in Fig. 2.

In the physics literature M (r,n) is known as the instanton moduli space. It is iso-
morphic to the moduli space of rank r framed torsion-free sheaves F on P2, such that
c2(F) = n, with a trivialization over PL C P2

~ DT
Fl,, =ogr
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Qm

1
cr Og=2o "

J
X

Fig. 2. The graph consists of two vertices, C™ and C". The latter is referred to as the framing vertex. The
variety is defined as the GIT quotient M (r,n) := {X1, X2, I,J | [X1,X2]+ 1 -J =0}/ GL(n).

Note that the P2 here has nothing to do with the P2 for the PT theory; they are
complement to each other from the M-theoretic point of view.
There is an action of the torus

T= (CtXth x CX

ULyeenyUn?

on M(r,n), where C/ ,, acts as
X; — tz‘Xi, I~ I, J — tthJ,

and

Uy
Coour = C Aut(C").

Uy

The Nakajima variety M (r,n) is smooth and of dimension 2rn. The vertex C™ in the
quiver gives rise to the tautological vector bundle V of rank n over M(r,n), and the
framing vertex gives rise to the trivial rank r vector bundle W with the character of the
fiber u; + us + -+ + u,. The K-theory class of the tangent bundle to M (r,n) can be
written as

T = Hom(W, V) + t1ta Hom(V, W) — (1 — t1)(1 — t2) Hom(V, V). (22)
The Picard group of M (r,n) is of rank 1 generated by the determinant bundle
O(1) ;= det V. (23)

See [29] for details on these facts. Finally, the Nekrasov partition function is defined as
the generating series for the equivariant Euler characteristics:

Z(l) = Z 2"xt(M(r,n),0)) € Q(t1,t2, u1, ..., up)[[2]].

n>0

The function Z(¢) can be computed explicitly by equivariant localization. The set of
fixed points M (r,n)" are identified with r-tuples of Young diagrams with n boxes in
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total. The contribution of each fixed point can be easily computed using the formula
(22).

Now the PT invariants for X = Tot(Kp=2) can be obtained as a certain limit for Z(1)
with 7 = 2, as we explain in the following. The partition function Z(¢) depends on the
four variables z,t1,ta, us/uy. Setting u = ug/uy, the plethystic logarithm of Z(1) then
determines the invariants Py(t1,t2):

. tt3 O (1) 252

d>1

_ Paltite) o 42
f-ta—m" tow H)))‘

Each Pj(t1,t2), mentioned earlier in (21), is a symmetric polynomial in the variables
t1,t2. We define the combinatorial BPS invariants by

_ (d=1)(d-2)

Fupps(q,t) = <t1 2 'Pd(t17t2)> €1+ °Zlt,q). (24)

ti=% ta=tq

Remark 3.2. We see from the formulas of Z(1) and P,; that the generating series
ﬁmgps(q,t) can be evaluated by a calculation of finitely many terms. We also note
that ﬁdJ};PS(q,t) is equivalent to the Gopakumar—Vafa invariants GVy via Py(t1,t2).
Therefore it recovers and refines the PT invariants (18).

3.5. Numerical data

We list in this last section the combinatorial BPS invariants for d = 3,4, which are
used in the proof of Theorem 0.7. The terms that coincide with the expansion of H (g, t),
c¢f. the remark after Conjecture 3.1, are enclosed in a square bracket.

Fypps = [1+ (g% +3)] + (282 + ¢t +1%)

7t + qt® + 1) + (*t° + ¢t” +17)

*t® +qt? + ') + ("0 + gt't +1?)

t12 +qt13 t14) + (q2t14 +qt15 —|—t16)

q t16 +t18) +q t18.

Fipes = [L+ (¢° + %) + (¢* + ¢°t + 2¢° + qt® + t*)]
+(¢° + 20" + 2678 + 3¢°t* + qt° +1°)
+ (¢°F + ¢t + 3¢M " + 3¢%° + 470 + ¢t” +17)
+ (q6t4 4 q5t5 + 4(]41}6 + 3q3t7 4 4q2t8 + qt9 4 th)
+ (q6t6 + q5t7 + 4q4t8 —|—4q3t9 4 4(]2t10 + qtll + t12)

/\/\/\/\

.
N
N
N
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+ ( 6t8 +q5t9 +4q4t10 +4q3t11 +4q2t12 +qt13 +t14)
+ ( 6t10 +(]5t11 +4q t12 +4q3t13 +4q2t14 +qt15 +t16
4 ( 6t12 +q5t13 ~|—4q4t14 +4q3t15 +4q2t16 +qt17 +t18
+ (q t14 q5t15 +4q4t16 4 4q3t17 + 4q2t18 + qt19 + t20
+ ( 6t16 +q5t17 +4q tlS +4q3t19 +4q2t20 +qt21 +t22
+ ( 6t18 +q5t19 +4q t20 +3q3t21 +4q2t22 +qt23 +t24
+ ( 6t20 + q5t21 —|—4q4t22 + 3q3t23 + 3q2t24 4 qt25 + t26
+ (¢%% + ¢°t*% + 3¢ + 264 + 24770 4 %)

+ (g
+ (g

)
)
)
)
)
)

6t24 +q5t25 + 2(] t26 +q3t27 +q2t28)
6t26 +q4t28) +q t28

By the same method, we have checked the combinatorial version of Conjecture 0.1
g = [H(gt)]™, i+j<2d-4
for all degrees d < 14.
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