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0. Introduction

We work over the complex numbers C.

0.1. Refined BPS invariants for local P 2

Let X = Tot(KP 2) be the Calabi–Yau 3-fold given by the total space of the canonical 

bundle on P 2, which is referred to as the “local P 2”. Let d ≥ 3 be an integer. Consid-

erations from physics predict that there is an action of sl2 × sl2 on the cohomology of 

a certain moduli space of D-branes supported on a degree d curve in X [13]; this yields 

double indexed integral invariants

ni,j
d ∈ Z (1)

as the dimensions of the weight spaces of this sl2×sl2-action.1 These invariants are known 

as the refined BPS invariants of X, which are expected to refine curve counting invariants 

for X defined via Gromov–Witten/Donaldson–Thomas/Pandharipande–Thomas theory 

[39].

This paper concerns two different mathematical theories of calculating the invariants 

(1) which connect two types of geometries. The first approach is to use the perverse 

filtration, as proposed by Hosono–Saito–Takahashi [17], Kiem–Li [22], and Maulik–Toda 

[28]. More precisely, we choose χ ∈ Z coprime to d, and consider Le Potier’s moduli 

space Md,χ of 1-dimensional stable sheaves F on P 2 with

[supp(F)] = dH ∈ H2(P 2, Z), χ(F) = χ;

see [24]. Here supp(−) denotes the Fitting support, and H is the hyperplane class of P 2. 

It is smooth under the coprime assumption. The associated Hilbert–Chow map induces 

an increasing filtration

P0H∗(Md,χ, Q) ⊂ P1H∗(Md,χ, Q) ⊂ · · · ⊂ H∗(Md,χ, Q),

called the perverse filtration; we refer to Section 1.1 for a brief review. The mathemat-

ical definition of the invariant (1) is the dimension of the graded piece of the perverse 

filtration,

ni,j
d := dim GrP

i Hi+j(Md,χ, Q), GrP
i = Pi/Pi−1. (2)

1 For convenience, our (i, j)-index is different with the one used in [21] by a constant; in particular, our 
invariants satisfy that ni,j

d = 0 if i < 0 or j < 0.
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By [26], each ni,j
d is independent on the choice of χ as conjectured in [42]. This realizes 

the original physics proposal of Gopakumar–Vafa; the moduli space Md,χ is considered 

to be the D-brane moduli space, and the sl2 × sl2-action is given by Hard Lefschetz 

actions on

⊕

i,j

GrP
i Hi+j(Md,χ, Q)

where this vector space has the same dimension as H∗(Md,χ, Q). However, perverse 

filtrations are usually mysterious and complicated, which makes the invariants (2) hard 

to compute.

The second proposal is due to Nekrasov–Okounkov [30], motivated by the index in 

M-theory. It predicts that the refined BPS invariants should alternatively be given by 

Nekrasov partition functions. To be more precise, conjecturally (2) are calculated by 

the equivariant index of certain Nakajima quiver varieties. This allows us to obtain a 

combinatorial algorithm to find double-indexed invariants ñi,j
d , which are conjectured to 

recover ni,j
d defined via the perverse filtration. A detailed description is given in Section 3. 

Using this algorithm, we find that the refined BPS invariant ni,j
d , or rather its combina-

torial counterpart ñi,j
d , can be expressed as a nice product formula asymptotically, which 

we describe as follows.

Consider the generating series of two variables:

Fd,BPS(q, t) :=
∑

i,j

ni,j
d qitj .

We also set

H(q, t) := S
•
(

q2 + t2 + q2t2

1 − qt

)
=

∏

i≥0

1

(1 − (qt)iq2)(1 − (qt)iq2t2)(1 − (qt)it2)

where S• denotes the plethystic exponential.

Conjecture 0.1. For i + j ≤ 2d − 4, we have

ni,j
d = [H(q, t)]i,j .

Here [−]i,j denotes the qitj-coefficient in the expansion q, t → 0.

In particular, Conjecture 0.1 predicts that each invariant ni,j
d stabilizes when d → +∞, 

and

Fd,BPS(q, t) = H(q, t), for d → +∞.

As we will see in Section 3.5, the bound 2d −4 is expected to be optimal in Conjecture 0.1

for any d ≥ 3.
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0.2. Tautological classes and P = C

We propose a cohomological lift of Conjecture 0.1 using tautological classes and the 

Chern filtration. This is inspired by the P = W conjecture for Hitchin systems as we 

will discuss in Section 0.4.

The second and the third authors introduced in [35] the (normalized) tautological 

classes

ck(j) ∈ H2(k+j−1)(Md,χ, Q);

they are given by a normalization of the integration over Hj ∈ H2j(P 2, Q) of the Chern 

character chk+1(F) associated with a universal family F ; see Section 1.2. The main 

theorem of [35] is the following generation result, where the bound 2d −4 of Conjecture 0.1

appeared naturally.

Theorem 0.2 ([35]). For d ≥ 3, the tautological classes whose cohomological degrees 

≤ 2d − 4:

c0(2), c2(0) ∈ H2(Md,χ, Q),

ck(0), ck−1(1), ck−2(2) ∈ H2k−2(Md,χ, Q), k ∈ {3, . . . , d − 1}
(3)

have no relations in H∗≤2d−4(Md,χ, Q), and they generate H∗(Md,χ, Q) as a Q-algebra.

Therefore, we call

H∗≤2d−4(Md,χ, Q) ⊂ H∗(Md,χ, Q)

the free part of the cohomology. The Chern filtration of the free part is an increasing 

filtration

C0H∗≤2d−4(Md,χ, Q) ⊂ C1H∗≤2d−4(Md,χ, Q) ⊂ · · · ⊂ H∗≤2d−4(Md,χ, Q),

where the k-th piece CkH∗≤2d−4(Md,χ, Q) is defined as the span of all monomials

s∏

i=1

cki
(ji) ∈ H∗≤2d−4(Md,χ, Q), with

s∑

i=1

ki ≤ k. (4)

The following conjecture connects the perverse and the Chern filtrations for the free 

part.

Conjecture 0.3 (P = C). For d ≥ 3, we have

PkH∗≤2d−4(Md,χ, Q) = CkH∗≤2d−4(Md,χ, Q).
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The next proposition follows from a direct calculation of the dimension of the Chern 

filtration using the freeness result of Theorem 0.2. In particular, Conjecture 0.3 is a co-

homological enhancement of Conjecture 0.1, which explains the product formula H(q, t).

Proposition 0.4. Conjecture 0.3 implies Conjecture 0.1.

Remark 0.5. The bound 2d − 4 of Conjecture 0.3 is expected to be optimal. From the 

numerical perspective, this is due to the fact that the same bound in Conjecture 0.1

is optimal for all the cases we have calculated. Moreover, from the cohomological per-

spective, we verify the optimality of the bound when d = 3, 4; see Remarks 1.4 and 

2.10.

The following diagram summarizes the picture above:

Perverse filtration Chern filtration

Fd,BPS(q, t) H(q, t).

dim Gr(−)

free part

dim Gr(−)

i+j≤2d−4

0.3. Low degree cases

When d = 1, 2, the moduli space Md,χ is the projective space PH0(P 2, OP 2(d)). The 

perverse filtration is trivial:

GrP
k Hm(Md,χ, Q) = 0, for k < m.

From now on, we focus on the non-trivial cases d ≥ 3. The main result of this paper is 

the following.

Theorem 0.6. Conjecture 0.3 holds for degrees d = 3, 4.

More precisely, we describe the cohomology ring H∗(Md,χ, Q) for d ≤ 4 in terms of 

the generators (3); then the perverse filtration can be calculated using the ring structure. 

As a byproduct, we compute the invariants (2) explicitly for d = 3, 4.

Theorem 0.7 (c.f. Conjecture 3.1). For degrees d = 3, 4, the invariants (2) defined by the 

perverse filtration are matched with the refined BPS invariants defined by the Nekrasov 

partition functions or the refined Pandharipande–Thomas invariants.

In particular, our calculation shows that the (unrefined) BPS invariants ng,d induced 

by the perverse filtration [17,22,28] match with those defined by Gromov–Witten or 

Pandharipande–Thomas theory; this yields the Gopakumar–Vafa/Gromov–Witten cor-

respondence for d = 3, 4.
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0.4. P = W and P = C

The P = C phenomenon is closely related to the P = W conjecture of de Cataldo, 

Hausel, and Migliorini [5].

Let Σ be a smooth projective curve of genus g ≥ 2, and let n, d be two coprime integers. 

The moduli space MDol of stable Higgs bundles on Σ of rank n and degree d admits a 

perverse filtration induced by the associated Hitchin system. The P = W conjecture 

asserts that the perverse filtration of MDol is matched with the double-indexed weight 

filtration associated with the corresponding character variety MB via the non-abelian 

Hodge correspondence:

“P = W” : PkH∗(MDol, Q) = W2kH∗(MB, Q).

This conjecture has been proven recently in [27] and [16] independently.

Analogous to the tautological classes ck(j), we consider the tautological classes for 

the Hitchin moduli space

ck(γ) ∈ H∗(MDol, Q), k ∈ Z≥0, γ ∈ H∗(Σ, Q)

given by a normalization of the integration over γ of chk(U) [6, Section 0.3], where U is 

a fixed universal bundle. These classes are proven to generate the cohomology [25] and 

their weights on MB were calculated in [41]. Consequently, the P = W conjecture is 

equivalent to:

“P = C” : PkH∗(MDol, Q) = CkH∗(MDol, Q) (5)

where the Chern filtration is defined by the Chern degrees of the tautological classes as 

in (4); see [6, Conjecture 0.3]. In fact, all the approaches in [5,6,27,16] for (certain cases 

of) P = W are to prove P = C via various techniques.

In view of (5), Conjecture 0.3 is an analog of P = W for Hitchin systems. We note 

that the major difference between Conjecture 0.3 and (5) is that the former only holds 

for the free part as explained by Remark 0.5. This may be due to the fact that the 

fibration associated with Md,χ fails to be Lagrangian.2

The enumerative geometry perspective of P = W concerning the refined BPS in-

variants for the local curve T ∗Σ × C was discussed in [9]. It connects the conjecture of 

Hausel–Rodriguez-Villegas [15] on mixed Hodge polynomials of character varieties with 

certain equivariant index of the Hilbert scheme Hilb(C2, n) of points on C2.

2 For another type of Lagrangian fibration — the Beauville–Mukai system associated with a K3 or an 
abelian surface, there is a version of P = C for the total cohomology; see [6, Theorem 2.1].



Y. Kononov et al. / Advances in Mathematics 433 (2023) 109294 7

0.5. Relations to other work

Recently there has been much work in connections between moduli of 1-dimensional 

sheaves on P 2 and enumerative geometry for local or logarithmic P 2 [2–4]. In the case 

of a K3 surface or an abelian surface S, the Gopakumar–Vafa theory for the Calabi–

Yau 3-fold S × C is closely related to compact hyper-Kähler geometries; the P = C

phenomenon was deduced in [6] and the invariants (2) were calculated in terms of Hodge 

numbers of certain compact hyper-Kähler manifolds [40,14]; this is matched with the 

prediction from physics [20,21]. Refined BPS invariants for local P 2 have been studied 

via stable pairs [10].

The “P = C” phenomenon also appeared in geometric representation theory for cer-

tain affine Springer fibers [31,32].
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1. Perverse filtrations, moduli spaces, and tautological classes

In this section, we review some basic facts about perverse filtrations, moduli of 1-

dimensional stable sheaves on P 2, and the (normalized) tautological classes introduced 

in [35]. In Proposition 1.2, we reinterpret the normalization of [35] as the only one 

enforcing “P = C” to hold for H∗≤2. As a toy example of the calculation in the next 

section, we conclude this section with the proofs of Theorem 0.6 and Theorem 0.7 for 

d = 3.

1.1. Perverse filtrations

Let f : X → Y be a proper morphism between irreducible nonsingular quasiprojective 

varieties with dim X = a and dim Y = b. Let r be the defect of semismallness of f :

r := dim X ×Y X − dim X.

For convenience, we further assume that f has equidimensional fibers, so that r = a − b. 

The perverse filtration

P0Hm(X, Q) ⊂ P1Hm(X, Q) ⊂ · · · ⊂ P2rHm(X, Q) = Hm(X, Q)

is an increasing filtration on the cohomology of X governed by the topology of the 

morphism f ; it is defined to be
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PiH
m(X, Q) := Im

{
Hm−b(Y, pτ≤i(Rf∗QX [b])) → Hm(X, Q)

}

where pτ≤∗ is the perverse truncation functor [1]. We say that a class γ ∈ H∗(X, Q) has 

perversity k, if

γ ∈ PkH∗(X, Q) \ Pk−1H∗(X, Q).

In general, the perverse filtration associated with a morphism is very complicated and 

hard to compute, as it relies on the mysterious perverse truncation functor. In the case 

when the target Y is projective, we may describe the perverse filtration via an ample 

class on Y as follows.

We fix η to be an ample class on Y . Its pullback gives a class ξ := f∗η ∈ H2(X, Q), 

which acts on the rational cohomology of X via cup product:

ξ : Hm(X, Q)
−∪ξ−−−−−→ Hm+2(X, Q).

Proposition 1.1 (cf. [7] Proposition 5.2.4). With the notation as above, we have

PkHm(X, Q) =
∑

i≥1

(
Ker(ξb+k+i−m) ∩ Im(ξi−1)

)
∩ Hm(X, Q). (6)

As in (2), we are interested in the dimension of the graded piece of the perverse 

filtration

dim GrP
i Hi+j(X, Q)

which can be expressed via the decomposition theorem [1]. More precisely, applying the 

decomposition theorem to f : X → Y , we obtain that

Rπ∗QX [b] 	
2r⊕

i=0

Pi[−i] ∈ Db
c(Y )

with Pi a semisimple perverse sheaf on Y . The perverse filtration can be identified as

PkHm(X, Q) = Im
{

Hm−b(Y,
k⊕

i=0

Pi[−i]) → Hm(X, Q)
}

,

and hence

dim GrP
i Hi+j(X, Q) = dim Hj−b(Y, Pi). (7)
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1.2. Tautological classes for moduli spaces

From now on we focus on the moduli of 1-dimensional stable sheaves. We review the 

tautological classes introduced in [35, Section 1.1]. As we will show in Proposition 1.2, 

the normalization we used in [35] is crucial for the P = C conjecture to hold.

Recall that the moduli space Md,χ parameterizes 1-dimensional stable sheaves F on 

P 2 with

[supp(F)] = dH, χ(F) = χ.

Here the stability condition is with respect to the slope

μ(E) =
χ(E)

c1(E) · H
∈ Q.

It admits a Hilbert–Chow map

h : Md,χ → PH0(P 2, OP 2(d)), F 
→ supp(F),

sending a sheaf to its Fitting support. This is a flat and proper map, which induces a 

perverse filtration

P0H∗(Md,χ, Q) ⊂ P1H∗(Md,χ, Q) ⊂ · · · ⊂ H∗(Md,χ, Q)

by the discussion of Section 1.1. The assumption gcd(d, χ) = 1 garantees that the stability 

and the semistability conditions coincide. Its connection to the enumerative geometry 

of the local Calabi–Yau 3-fold X = Tot(KP 2) relies on the fact that Md,χ can also be 

viewed as the moduli of 1-dimensional stable sheaves on X with the same numerical 

data.

Let F be a universal family over P 2 × Md,χ. For a stable sheaf [F ] ∈ Md,χ, the 

restriction of F to the fiber P 2 × [F ] recovers F . Since the choice of F is not unique, 

we need to normalize its Chern character ch(F) to obtain cohomolgy classes ck(j) of 

Section 0.2 which are independent on F . We review the construction as follows.

For a universal family F and a class3

δ = π∗
P δP + π∗

M δM ∈ H2(P 2 × Md,χ, Q), with δP ∈ H2(P 2, Q), δM ∈ H2(Md,χ, Q),

we consider the twisted Chern character

chδ(F) := ch(F) · exp(δ),

and we denote chδ
k(F) its degree k-part. For Hj ∈ H2j(P 2, Q), we set

3 We change the notation of the normalizing class in [35] to δ as α is used in Theorem 2.1 below.
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cδ
k(j) :=

∫

Hj

chδ
k+1(F) = πM∗

(
π∗

P Hj · chδ
k+1(F)

)
∈ H2(k+j−1)(Md,χ, Q),

where πP and πM are the natural projections from the product to P 2 and Md,χ, respec-

tively.

The next proposition asserts that P = C for H∗≤2(Md,χ, Q) holds for the δ-twisted 

tautological classes cδ
k(j), if and only if δ is the normalization class chosen in [35].

Proposition 1.2. With the above notation, we have:

(i) There exists a unique δ0 satisfying the condition that the classes

cδ0

k (j) ∈ H2(k+j−1)(Md,χ, Q) with k + j ≤ 2

has perversity k.

(ii) We define ck(j) using the class δ0 determined by (i). Then

PkH∗≤2(Md,χ, Q) = CkH∗≤2(Md,χ, Q).

Proof. For (i), since H0(Md,χ, Q) = P0H0(Md,χ, Q), we require that

cδ0
1 (0) = 0 ∈ H0(Md,χ, Q).

Moreover, since H2(Md,χ, Q) is 2-dimensional generated by an ample class on the base 

pulled back via h and an h-relative ample class, we have

P1H2(Md,χ, Q) \ P0H2(Md,χ, Q) = 0.

Therefore, we also require that

cδ0
1 (1) = 0 ∈ H2(Md,χ, Q).

These conditions determine δ0 uniquely by [35, Proposition 1.2]. In particular the choice 

of δ0 using (i) recovers the tautological classes ck(j) introduced in [35].

Part (ii) follows from [35, Proposition 1.3(c)]. More precisely, since c0(2) is pulled 

back from the base PH0(P 2, OP 2(d)) and c2(0) is relative ample, we have

c0(2) ∈ P0H2(Md,χ, Q), c2(0) ∈ P2H2(Md,χ, Q) \ P1H2(Md,χ, Q).

This proves P = C for H∗≤2(Md,χ, Q). �

As a consequence of Proposition 1.1, we may determine the perverse filtration for Md,χ

using the tautological class c0(2) ∈ H2(Md,χ, Q); this is our main tool of calculating the 

perverse filtration for low degrees d.
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Corollary 1.3. The perverse filtration P•H∗(Md,χ, Q) is characterized by the formula (6)

with ξ = c0(2).

1.3. Symmetries

We have two types of symmetries between the moduli spaces Md,χ:

(i) The first type is given by the isomorphism

φ1 : Md,χ
∼−→ Md,χ+d, F 
→ F ⊗ OP 2(1).

(ii) The second type is given by the isomorphism

φ2 : Md,χ
∼−→ Md,−χ, F 
→ Ext1(F , ωP 2).

Both symmetries preserve the morphism h : Md,χ → PH0(P 2, OP 2(d)). Furthermore, by 

[35, Proposition 1.4], the tautological classes ck(j) are preserved (up to a sign) by the 

symmetries (i) and (ii) above.

Thus, in order to prove Theorem 0.6 and Theorem 0.7 for Md,χ, it suffices to establish 

them for Md,χ′ with some χ′ satisfying that

χ′ = ±χ mod d.

1.4. Degree 3 case

We conclude Section 1 with a complete calculation of the perverse filtration and their 

dimensions in the degree 3 case; in particular we prove Theorem 0.6 and Theorem 0.7

for d = 3.

Proof of Theorem 0.6 for d = 3. In this case the bound 2d − 4 = 2; therefore Conjec-

ture 0.3 only concerns H∗≤2, which follows immediately from Proposition 1.2(ii). �

Remark 1.4. Since h : M3,χ → P 9 is an elliptic fibration, we know that

P2H∗(M3,χ, Q) = H∗(Md,χ, Q).

Therefore by considering

c2(0)2 ∈ H4(M3,χ, Q),

it is obvious that P = C breaks down for H4(M3,χ, Q). In particular, the bound 2d − 4

of Conjecture 0.3 is optimal for d = 3.
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Proof of Theorem 0.7 for d = 3. We need to show that the invariants

ni,j
3 = dim GrP

i Hi+j(M3,χ, Q)

are matched with the coefficients of F̃3,BPS(q, t) obtained in Section 3.5. This can be 

achieved by calculating the perverse filtration using the ring structure [35, Section 1.3]

combined with Corollary 1.3. We leave this as an exercise to the reader as we will use 

this method to treat the d = 4 case in Section 2 where the calculation is much more 

complicated.

Here we give another proof via the decomposition theorem (7). Since h : M3,χ → P 9

is an elliptic fibration, we have by relative Hard Lefschetz the decomposition theorem 

associated with h:

Rh∗Q[9] 	 (Q[9]) ⊕ P1[−1] ⊕ (Q[9])[−2]. (8)

Therefore, the only unknown is the invariant

n1,j
3 = dim Hj−9(P 9, P1), j ∈ Z.

This can be calculated by taking Hj(−, Q) in (8):

dim Hj(P 9, Q) + n1,j
3 + dim Hj−2(P 9, Q) = dim Hj(M3,χ, Q) = dim Hj(P 2 × P 8, Q),

where the last equation follows from the fact that M3,χ is a projective bundle over P 2, see 

[24]. Therefore we have calculated all the refined BPS invariants ni,j
3 , which completes 

the proof by comparing with F̃3,BPS(q, t) in Section 3.5. �

2. P = C for degree 4 and matching BPS invariants

2.1. Overview

We complete the proof of Theorem 0.6 and Theorem 0.7 in this section. Since we 

concern the case d = 4, in view of the discussion of Section 1.3, we only need to prove 

both theorems for the moduli space M4,1. From now on, we only consider the case 

d = 4, χ = 1.

The cohomology ring H∗(M4,1, Q) has been calculated by Chung–Moon [11] explicitly 

in terms of generators given by certain geometric classes. In order to prove P = C, we 

apply Chung–Moon’s result to calculate the ring structure of H∗(M4,1, Q) using the 

tautological classes ck(j). Then Corollary 1.3 allows us to write the perverse filtration in 

terms of the tautological classes.

Our main technical theorem of this section is Theorem 2.9 which provides the transla-

tion between the geometric classes α, β, x, y, z in Theorem 2.1 below and the tautological 

classes of [35].
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2.2. Cohomology of M4,1

We first recall the following theorem due to Chung–Moon [11]. For an algebraic class 

in H2i(M4,1, Q), we say that this class is of algebraic degree i.

Theorem 2.1 ([11, Theorem 6.5]). The Chow ring of M4,1 is given by4

A∗(M4,1) 	 Q[α, β, x, y, z]/〈xz − yz, β2z − 3yz − 9z2, 3α2z − αβz + yz, β2y − 3y2 − 9yz,

β2x − xy − 3y2 − 3αβz − 9yz + 9z2, β4 + 3x2 − 9xy − 3y2 − 54yz − 81z2,

βyz + 9αz2 − 3βz2, 2βxy − 3βy2 − 9αyz − 27αz2 + 9βz2, 3βx2 − 7βy2

− 36αyz − 108αz2 + 36βz2, α12 + 3α11β + 3α10(β2 + 2x − y)

+ α9(−β3 + 12βx + 2βy) + 3α8(9x2 − 16xy + 17y2)

+ 28α7βy2 + 56α6y3 + 201αβz5 − 19yz5 − 613z6,

6α10xy − 12α10y2 − 10α9βy2 − 45α8y3 − 104αβz6 + 2yz6 + 310z7〉,

where α, β are of algebraic degree 1 and x, y, z of degree 2. This also gives the cohomology 

ring H2∗(M4,1, Q), with the degrees of the generators doubled.

The class α can be described as the locus of F ∈ M4,1 such that a fixed point 

p ∈ P 2 lies in supp(F); see [11, Proposition 7.8]. Otherwise said, it is the pull-back 

of a hyperplane class on P 14 = PH0(P 2, OP 2(4)) via h : M4,1 → P 14. For geometric 

descriptions of the other generators, see Sections 2.3.1 and 2.3.2, and also [11, Section 

7]. As we discuss in Section 2.3, only the descriptions of β and z will be needed for our 

calculations.

2.3. Comparing generators

The major part of this section consists of comparing the generators in Theorem 2.1

with the five tautological generators

c0(2), c2(0), c1(2), c2(1), c3(0) ∈ H∗(M4,1, Q) (9)

given in [35].

To begin with, note that

α = c0(2)

by the discussion above, both being the pull-back of a hyperplane class on the base P 14. 

Thus we write the two classes interchangeablely in what follows.

4 We correct a typo in the original paper.
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To determine the remaining classes of Theorem 2.1 in terms of (9), we proceed by the 

following three steps:

(i) Compute the classes β and z explicitly in terms of (9); this is carried out in Sec-

tions 2.3.1 and 2.3.2.

(ii) Compute the total Chern class c(TM ) of M4,1 in terms of (9); this is carried out in 

Section 2.3.3.

(iii) Comparing the result of (ii) with [11, Proposition 7.5], we obtain two identities by 

taking the terms in c(TM ) of algebraic degrees 2 and 3. This allows us to find the 

expressions for x and y in terms of (9).

Remark 2.2. Most steps in (i, ii, iii) are technical calculations in intersection theory. For 

the first time reading this article, the reader may skip this part and jump to Theorem 2.9

directly.

2.3.1. The class β

We first introduce some notation and recall Proposition 2.3 from [11] which will be 

needed.

A general element F ∈ M4,1 has a unique nonzero section s : OP 2 → F up to scalar 

multiplication, whose cokernel QF has finite support. We denote by L the closure of the 

locus of F ∈ M4,1 such that QF meets a fixed line. Let O be the closure of the locus of 

F ∈ M4,1 such that QF contains a fixed point.

Proposition 2.3 ([11, Proposition 7.11]). With the notation as above, we have:

(i) L = −β in H2(M4,1, Q).

(ii) O = x − y in H4(M4,1, Q).

Let K(−) be the Grothendieck group of coherent sheaves. Consider the group homo-

morphism λ : K(P 2) → Pic(M4,1) given by the following composition

K(P 2) → K(P 2 × M4,1) → K(M4,1) → Pic(M4,1).

Explicitly, it is defined by

λ(ν) = det(q∗(F ⊗ p∗ν)) ∈ Pic(M4,1), ν ∈ K(P 2).

Here F is a fixed universal sheaf on P 2 × M4,1 and p (resp. q) is the projection to the 

first (resp. second) factor. We write

D := λ(−4OP 2 + OH) ∈ H2(M4,1, Q)

with H ⊂ P 2 a hyperplane.
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Proposition 2.4 ([8, Proposition 2.5]). Under the above notation, we have

D = −3α + L (10)

Combining Proposition 2.3(i) and (10), we deduce that

β = −3α − D. (11)

Since α = c0(2), it suffices to express D in terms of ck(j). For this purpose, we first 

present a general lemma that expresses the normalization class δ0 of Proposition 1.2:

Lemma 2.5. For a general moduli space Md,χ, the normalization class δ0 is given by

δ0 =

(
3

2
− χ

d

)
· H − 1

d

((
3

2
− χ

d

)
c0(2) + e1(1)

)
, (12)

where e1(1) :=
∫

H
ch2(F) ∈ H2(Md,χ, Q).

Proof. This is a direct calculation following the proof of [35, Proposition 1.2]. �

The precise expression of the second term in (12) is of little significance for our pur-

pose, and thus we write simply δ0 =
(

3
2 − χ

d

)
· H − γ from now on. Specializing to M4,1, 

we have

δ0 =
5

4
H − γ ∈ H2(P 2 × M4,1, Q).

Now we can compute the class D ∈ H2(M4,1, Q). By definition, we have

D = λ(−4OP 2 + OH) = ch1

(
det(q∗(F ⊗ p∗(−4OP 2 + OH)))

)

= ch1

(
q∗(F ⊗ p∗(−4OP 2 + OH))

)

= −4 · ch1(q∗F) + ch1

(
q∗(F ⊗ p∗OH)

)
.

Using the Grothendieck–Riemann–Roch theorem and the projection formula, we obtain

ch(q∗F) = q∗(ch(F) · td(P 2))

= q∗

(
chδ0(F) · exp

(
−5

4
H

)
· td(P 2)

)
· exp(γ).

Since td(P 2) = 1 + 3
2H + H2, it follows that

ch1(q∗F) = − 3

32
c0(2) + c2(0) + γ.

Similarly, we have
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ch1(q∗F ⊗ OH) = −1

4
c0(2) + 4γ.

Therefore we arrive at

D = −4 · ch1(q∗F) + ch1

(
q∗(F ⊗ p∗OH)

)
=

1

8
c0(2) − 4c2(0).

We conclude from (11) that

β = −25

8
c0(2) + 4c2(0).

2.3.2. The class z

We compute the class z by an application of the Porteous formula. Denote by C4 the 

universal quartic curve in P 2 × P 14. This sits naturally in M4,1 and can be described 

as the Brill–Noether locus of sheaves F ∈ M4,1 with dim H0(P 2, F) = 2; see [12]. For a 

sheaf not belonging to C4, we have dim H0(P 2, F) = 1. The following proposition gives 

a geometric description of the class z:

Proposition 2.6 ([11, Proposition 7.7]). We have z = [C4] in H∗(M4,1, Q).

The Brill–Noether locus C4 has codimension two and can be viewed as a degeneracy 

locus of a map between vector bundles, as we explain now. Fix a universal sheaf F

on P 2 × M4,1, and consider the second projection q : P 2 × M4,1 → M4,1. The derived 

push-forward

Rq∗F ∈ DbCoh(M4,1)

admits a two-term resolution φ : K0 → K1 by vector bundles, as it computes the 

cohomology groups on curves. For a sheaf F ∈ M4,1 supported on a curve C, we have 

the exact sequence

0 → H0(C, F) → K0(F)
φ(F)−−−→ K1(F) → H1(C, F) → 0.

Denote by e the rank of the vector bundle K0. We have

χ(F) = dim H0(C, F) − dim H1(C, F) = 1,

and thus f := rank K1(F) = e − 1. Recall that

C4 = {F ∈ M4,1 | dim H0(P 2, F) = dim H0(C, F) = 2};

we see that C4 coincides with the degeneracy locus Me−2(φ) where the map φ : K0 → K1

between vector bundles has rank ≤ e − 2. Moreover, it has the expected codimension
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(e − (e − 2))(f − (e − 2)) = 2.

Thus by the Porteous formula, we obtain that

[C4] = [Me−2(φ)] = ∆2
1

[
c(K1)

c(K0)

]

= c1(K1 − K0)2 − c2(K1 − K0)

= c1(−q∗F)2 − c2(−q∗F)

=
1

2
ch1(q∗F)2 − ch2(q∗F).

On the other hand, we have computed ch(q∗F) in Section 2.3.1:

ch(q∗F) = 1 − 3

32
c0(2) + c2(0) + γ − 3

32
c1(2) +

1

4
c2(1) + c3(0)

+ γ ·
(

− 3

32
c0(2) + c2(0)

)
+

γ2

2
+ · · · ,

where the omitted terms have algebraic degrees ≥ 3. We conclude by Proposition 2.6

that

z = −c3(0) − 1

4
c2(1) +

3

32
c1(2) +

1

2
(c2(0) − 3

32
c0(2))2.

2.3.3. The total Chern class

The goal of this subsection is to compute the total Chern class c(TM ) in terms of (9). 

As before, we fix a universal sheaf F on P 2 × M4,1. Since M4,1 is a smooth projective 

variety, the tangent space at a sheaf F ∈ M4,1 is given by

TF = Ext1(F , F).

Consider the object RHom(F , F) ∈ DbCoh(P 2 × M4,1). The derived push-forward

Rq∗RHom(F , F) ∈ DbCoh(P 2 × M4,1)

admits a three-term resolution L0 → L1 → L2 by vector bundles. For a sheaf F ∈ M4,1, 

the i-th cohomology of the sequence

L•(F) : 0 → L0(F) → L1(F) → L2(F) → 0 (13)

computes the extension group Exti(F , F). We have

H0(L•(F)) = Hom(F , F) 	 C

by the stability of F . The first cohomology is
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H1(L•(F)) = Ext1(F , F) = TF .

For the second cohomology, we have by Serre duality

H2(L•(F)) = Ext2(F , F) 	 Hom(F , F ⊗ OP 2(−3))∨ = 0,

where the last equality again results from stability of F . It follows that

TM = −Rq∗RHom(F , F) + OM4,1
∈ K(M4,1).

Taking Chern characters, we obtain

ch(TM ) = −ch(q∗(F∨ ⊗L F)) + 1.

We calculate using Grothendieck–Riemann–Roch that

ch(q∗(F∨ ⊗L F)) = q∗(ch(F∨ ⊗L F) · td(P 2))

= q∗(ch(F∨) · ch(F) · td(P 2))

= q∗(chδ0(F∨) · chδ0(F) · td(P 2)),

where we write in the last term

chδ0(F∨) := ch(F∨) · exp(−δ0) =
∑

k≥1

(−1)kchδ0

k (F).

Therefore, we get

ch(TM ) = −q∗(chδ0(F∨) · chδ0(F) · td(P 2)) + 1

= 17 + 12c0(2) + (c0(2)2 + 8c2(1) + 2c0(2)c2(0)) + (12c2(2) + 3c0(2)c2(1)) + · · · ,

where the omitted terms have algebraic degrees ≥ 4. Hence the total Chern class is

c(TM ) = 1+12α+(71α2−8c2(1)−2αc2(0))+(24c2(2)−90αc2(1)−24α2c2(0)+276α3)+· · · .

(14)

So far, we have already written c(TM) in terms of ck(j). It remains to express c2(2) in 

terms of the five tautological generators (9). This is achieved by an explicit computation 

using [35, Proposition 2.6]. We state a modified version for tautological classes on M4,1

here; see [35] for the setup and notation.

Proposition 2.7. For every � ≥ 5 and n ∈ {1, 2, 3}, the following identity holds for M4,1:

∑

m

�∏

s=1

((s − 1)!)ms

(ms)!

⎛
⎝∑

i≥0

(−1)i π∗
M γi

i!
π∗

M As−i − (π∗
Rβ + π∗

M γ)i

i!
(−1)iπ∗

M Bs−i

⎞
⎠

ms

= 0.

(15)
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Here, the first sum is over all �-tuple of non-negative integers m = (m1, m2, . . . , m�)

such that m1 + 2m2 + · · · + �m� = �, and writing c̃s(j) := (−1)s+1cs(j), the terms As, Bs

are given by

As := c̃s+1(0) +

(
11

4
− n

)
c̃s(1) +

(
1

2
n2 − 11

4
n +

117

32

)
c̃s−1(2) ∈ H2s(M4,1, Q),

Bs := c̃s+1(0) +

(
7

4
− n

)
c̃s(1) +

(
1

2
n2 − 7

4
n +

45

32

)
c̃s−1(2) ∈ H2s(M4,1, Q).

Proof. The proof follows almost line by line as in [35, Proposition 2.6], except that we 

use the twisted Chern character chδ0(F∨) = ch(F∨) · exp(−δ0) by the class δ0 given in 

Lemma 2.5. The classes c̃s(j) show up since we take the Chern character of the dual 

universal sheaf. �

Now we take � = 5 and integrate (15) with respect to π∗
R(1P 2) as in [35, Section 2.3]. 

This leads to a relation in H6(M4,1, Q) of the form

C1 + C2γ + C3γ2 + C4γ3 = 0, (16)

where C2, C3 are expressions entirely in terms of the tautological generators (9), and 

C4 ∈ Q is a constant. The vanishing holds for every universal sheaf F and the class γ

obtained from the normalization class δ0 associated with F . In particular, if we write L
to be the line bundle on M4,1 corresponding to the divisor c0(2) and replace F with

F ′ := F ⊗ q∗L⊗m

for m ∈ Z, a straightforward computation shows that

γ′ = γ + m · c0(2).

Since (16) holds for all these γ, we deduce that C2 = C3 = C4 = 0, using the fact 

that there are no relations among the tautological generators in H∗≤6(M4,1, Q), cf. [35, 

Section 3.2]. Therefore, we can actually set γ = 0 in (15) for the computation. Setting 

n = 1, 2, 3, we obtain as in [35, Section 2.3] three linearly independent relations in 

H6(M4,1, Q), whose linear combinations give the following relations:

c2(2) =
32

3
c3(0)c2(0) − 28

3
c3(0)c0(2) − 1

4
c2(1)c0(2) − 4c1(2)c2(0) +

93

32
c1(2)c0(2)

+
3

8
c2(0)c0(2)2 +

47

768
c0(2)3.

c3(1) = − 4c3(0)c2(0) +
35

8
c3(0)c0(2) +

15

8
c1(2)c2(0) − 405

256
c1(2)c0(2) − 55

512
c0(2)3.

c4(0) =
7

3
c3(0)c2(0) − 49

24
c3(0)c0(2) +

1

12
c2(1)c2(0) − 1

24
c2(1)c0(2) − 7

8
c1(2)c2(0)



20 Y. Kononov et al. / Advances in Mathematics 433 (2023) 109294

+
691

1024
c1(2)c0(2) +

1

48
c2(0)2c0(2) +

1

32
c0(2)2c2(0) +

537

16384
c0(2)3.

This provides the desired expression of c2(2) in terms of (9). Consequently, we obtain 

from (14) an expression of c(TM ) in terms of (9).

2.3.4. The classes x and y

We will use the following result in [11], which expresses c(TM ) in terms of the gener-

ators α, β, x, y, z.

Proposition 2.8 ([11, Proposition 7.5]). The total Chern class of M4,1 is given by

c(TM ) = 1 + 12α + (66α2 − 3αβ − 3β2 + 6x + 2y + 34z) + (220α3 − 33α2β − 33αβ2

− 4β3 + 60αx − 6βx + 30αy + 22βy + 414αz + 22βz)

+ terms of algebraic degrees ≥ 4.

Comparing the terms of algebraic degrees 2 and 3 in this expression with (14), we 

obtain

71α2 − 8c2(1) − 2αc2(0) = 66α2 − 3αβ − 3β2 + 6x + 2y + 34z,

24c2(2) − 90αc2(1) − 24α2c2(0) + 276α3 = 220α3 − 33α2β − 33αβ2 − 4β3 + 60αx − 6βx

+ 30αy + 22βy + 414αz + 22βz.

Except for the classes x and y, everything in the two identities is known in terms of 

(9). Recall that there is no relation among the tautological generators in H∗≤6(M4,1, Q), 

we obtain the expressions for x and y as we want:

x = 4c3(0) − 1

8
c1(2) + 4c2(0)2 − 8c0(2)c2(0) +

831

256
c0(2)2,

y = 5c3(0) +
1

4
c2(1) − 39

32
c1(2) +

7

2
c2(0)2 − 221

32
c0(2)c2(0) +

5423

2048
c0(2)2.

This completes the comparison between the tautological generators (9) and the gen-

erators α, β, x, y, z in Theorem 2.1. We summarize our results in the following theorem; 

combined with Theorem 2.1, we are able to write the cohomology H∗(M4,1, Q) in terms 

of the generators (9) and relations.

Theorem 2.9. The following identities hold in H∗(M4,1, Q):

c0(2) = α, c2(0) =
25

32
α +

1

4
β,

c1(2) =
3

16
α2 +

1

4
αβ + x − y − z,
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c2(1) =
55

128
α2 +

5

16
αβ +

3

8
β2 − 3

4
x − 1

4
y − 17

4
z,

c3(0) =
75

512
α2 +

15

128
αβ − 1

16
β2 +

9

32
x − 1

32
y − 1

32
z.

2.4. Proof of the main results for degree 4

In this section we prove Theorem 0.6 and Theorem 0.7 for d = 4. Consider now the 

morphism h : M4,1 → P 14. By Corollary 1.3, the perverse filtration can be characterized 

using the class ξ = c0(2) as follows:

PkHm(M4,1, Q) =
∑

i≥1

(
Ker(ξ14+k−m+i) ∩ Im(ξi−1)

)
∩ Hm(M4,1, Q). (17)

The equation (17), combined with the ring structure of H∗(M4,1, Q) given by Theo-

rem 2.1 and Theorem 2.9, provides a complete description of the perverse filtration in 

terms of the generators in Theorem 2.1 or the five tautological generators (9). In partic-

ular, using a computer, we are able to check5

PkH∗≤4(M4,1, Q) = CkH∗≤4(M4,1, Q),

and calculate the dimensions of the graded piece

dim GrP
k Hm(M4,1, Q), ∀k, m ∈ Z.

The refined invariants

ni,j
4 = dim GrP

i Hi+j(M4,1, Q)

are matched with the formula F̃BPS,4(q, t) in Section 3.5 obtained via the Nekrasov 

partition function. This proves both Theorem 0.6 and Theorem 0.7.

In the following, we provide more details on checking P = C for the reader’s conve-

nience. The filtration P•Hm(M4,1, Q) is concentrated in perverse degrees [0, m], and the 

fundamental class 1M4,1
lies in P0H0(M4,1, Q). Since the class c0(2) is the pull-back of 

a hyperplane class on the base P 14, and c2(0) is a relative ample class [35], we obtain 

immediately from relative Hard Lefschetz that:

c0(2) c2(0) c0(2)2 c0(2)c2(0) c2(0)2

Perversity 0 2 0 2 4

Furthermore, we use (17), Theorem 2.1, and Theorem 2.9 to check that the perversity 

of the generators in H4(M4,1, Q) are as expected:

5 The computation is conducted via the software Macaulay2. Explicit descriptions of the perverse filtration 
for M4,1 can be found on the second author’s website: https://github .com /Weite -Pi /weitepi .github .io.
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c1(2) c2(1) c3(0)

Perversity 1 2 3

Finally, we check as above that any Q-linear combination of the classes

c0(2)c2(0), c2(1) ∈ H4(M4,1, Q)

has perversity 2. In particular, we have

SpanQ〈c0(2)c2(0), c2(1)〉 ∩ P1H4(M4,1, Q) = {0}.

This guarantees the identity

PkH∗≤4(M4,1, Q) = CkH∗≤4(M4,1, Q)

which completes the proof. �

Remark 2.10. One can verify also that the class c2(0)c3(0) has perversity 3, so we see 

that the bound 2d − 4 in Conjecture 0.3 is optimal for d = 4.

3. Pandharipande–Thomas theory, Nekrasov partition functions, and combinatorial 

BPS invariants

3.1. Overview

In this section, we introduce the combinatorial BPS invariants

F̃d,BPS(q, t) =
∑

i,j

ñi,j
d qitj .

They are defined by the Nekrasov partition function (24), and they refine the (standard) 

Pandharipande–Thomas (PT) invariants [36–38] for the local P 2.

In contrast to ni,j
d defined via the perverse filtration, the combinatorial invariants ñi,j

d

are very easy to compute. For a fixed d, the generating function F̃d,BPS(q, t) is obtained 

by a calculation in only finitely many terms. Nevertheless, these two types of invariants 

are expected to coincide by string-theoretic considerations.

Conjecture 3.1 (cf. [30]). We have

ñi,j
d = ni,j

d .

Conjecture 3.1 is the main source for us to make predictions on the structure of 

the refined BPS invariants ni,j
d . For example, using a computer we are able to check 

Conjecture 0.1 for ñi,j
d in all degrees d ≤ 14.
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Finally, we list in Section 3.5 the formulas

F̃d,BPS(q, t), for d = 3, 4

which are needed to match the invariants (2) obtained from the perverse filtration. These 

formulas were also obtained in [10].

3.2. PT theory of local P 2

We first recall the (unrefined) PT invariants for X = Tot(KP 2). We consider the 

moduli space PT(X, d, n) of stable pairs (F , s) where F is a pure 1-dimensional sheaf on 

X with

[supp(F)] = dH ∈ H2(P 2, Z) = H2(X, Z), χ(F) = n

and a section s : OX → F satisfying that dim coker s = 0. Although X is not projective 

itself, the moduli spaces PT(X, d, n) are projective. The PT invariants [36] are defined 

to be the degrees of the virtual cycles

PTn,d :=

∫

[PT(X,d,n)]vir

1 ∈ Z.

They form a generating function

Zur
PT(X) :=

∑

d

Qd
∑

n∈Z

PTn,d · (−z)n. (18)

Here the superscript “ur” stands for unrefined invariants.

3.3. Refined PT invariants

In order to refine (18), we consider the 3-dimensional torus C×
q1,q2,q3

acting on X such 

that

C×
q1,q2,q3

=

⎧
⎨
⎩

⎛
⎝

q−1
1

q−1
2

q−1
3

⎞
⎠

⎫
⎬
⎭ ⊂ Aut

(
H0(P 2, OP 2(1))

)

(See Fig. 1.)

The perfect obstruction theory on PT(X, d, n) yields a virtual structure sheaf Ovir

and its symmetrized version

Ôvir := Ovir ⊗
(
Kvir

) 1
2 ,
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q3
1 q3

2

q3
3

q2

q1

q1

q2

q3

q1

q3

q2

q1

q3

q2

q3

Fig. 1. Toric diagram of P 2. Vertices denote the fixed points, and the edges denote the invariant rational 
curves. Arrows at the vertices denote the weights of the tangent spaces.

as explained in [34]. The virtual index with respect to Ôvir coincides with the invariant 

PTn,d:

χ(PT(X, d, n), Ôvir) = PTn,d ∈ Z; (19)

see [10, (7.7)] and [30]. Then the equivariant virtual index with respect to the torus 

action naturally refines PTn,d. More precisely, in view of (19), we express (18) as the 

K-theoretic PT generating function of virtual indices:

Zur
PT(X) =

∑

d

Qβ
∑

n∈Z

χ(PT(X, d, n), Ôvir) · (−z)n. (20)

Using the torus action C×
q1,q2,q3

on X and localization, the equivariant version Zequiv
PT (X)

of the K-theoretic generating function (20) is expressed as the contraction of three 

equivariant PT vertex functions along the edges of the toric diagram. The localization 

formula [33,34] relies only on the description of the tangent space to a pair (F , s) as

Tangent space at (F , s) = χ(F) + χ(F , O) − χ(F , F).

It turns out that each coefficient in front of Qd converges to a rational function in the 

variable z. The coefficients of the expansion of the plethystic logarithm of Zequiv
PT (X) are 

the Gopakumar–Vafa invariants GVd ∈ Z[z, κ
1
2 ]:

Zequiv
PT (X) = S

•

⎛
⎝∑

d≥1

GVd

(1 − z
√

κ)(1 − z√
κ

)
· Qd

⎞
⎠ , κ = q1q2q3.

Each GVd is equivalent to F̃d,BPS(q, t) up to a change of variables (see (24) below), and 

we list the first few expressions of GVd:

GV1 = z · (κ + 1 + κ−1),
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GV2 = −z · (κ
5
2 + κ

3
2 + κ

1
2 + κ− 1

2 + κ− 3
2 + κ− 5

2 ),

GV3 = z · (κ3 + κ2 + κ + 1 + κ−1 + κ−2 + κ−3)

+ (z2 + 1) · (κ
9
2 + κ

7
2 + κ

5
2 + κ

3
2 + κ

1
2 + κ− 1

2 + κ− 3
2 + κ− 5

2 + κ− 7
2 + κ− 9

2 ).

Indeed, it was proven in [30, Theorem 1] that Zequiv
PT (X) depends on the equivariant 

parameters qi with i = 1, 2, 3 only as a function of the weight of the Calabi–Yau 3-form 

κ = q1q2q3. Thus it can be evaluated in the refined limit qi → 0, ∞ when κ = const.

The refined limit of the vertex function is particularly simple when there is a preferred

direction. Briefly speaking, the preferred direction is a weight of C3 which goes to 0 or 

∞ much more slowly than the other two weights. In the case of the Donaldson–Thomas 

vertex it was investigated in [30], and for the 2-legged PT vertex in [23].

Unfortunately, for local P 2 we need to consider the 3-legged PT vertex, and it is not 

possible to make a limit of equivariant parameters such that each of the three vertices 

has a preferred direction. For example, if we take a limit

q1 ≈ q2 → 0, q3 → ∞, q1q2q3 = const,

then the bottom two vertices have preferred directions along the edge joining them, while 

the third vertex does not have one. Thus, we can not reduce Zequiv
PT (X) completely to 

the refined topological vertex [19], and it requires a new type of vertex as explained in 

[18].

Another approach is to relate, using the flop relation, Zequiv
PT (X) with the equivariant 

PT invariants of the local A1-surface, for which there is a limit such that each vertex 

has a preferred direction. As a consequence, such calculation relates Zequiv
PT (X) to the 

Nekrasov partition function associated with the rank 2 instanton moduli space with an 

insertion of the tautological line bundle O(1) given by (23). More generally, equivariant 

PT counts for the local An-surface are related to the Euler characteristic of the sheaf 

O(n) on the instanton moduli space. In this case, the two Kähler parameters for the 

PT moduli space are related with one Kähler and one equivariant parameters of the 

framing for the instanton moduli space. By this approach, we may recover GVd from the 

instanton invariants Pd defined later in Section 3.4:

GVd(z, κ) = monomial prefactor · Pd(z
√

κ,
z√
κ

). (21)

3.4. Nekrasov partition functions

Let M(r, n) be the Nakajima variety [29] corresponding to the quiver as in Fig. 2.

In the physics literature M(r, n) is known as the instanton moduli space. It is iso-

morphic to the moduli space of rank r framed torsion-free sheaves F on P 2, such that 

c2(F) = n, with a trivialization over P 1
∞ ⊂ P 2:

F
∣∣∣
P 1

∼= O⊕r
P 1 .
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Cr Cn
I

J

X1

X2

Fig. 2. The graph consists of two vertices, Cn and Cr. The latter is referred to as the framing vertex. The 
variety is defined as the GIT quotient M(r, n) := {X1, X2, I, J | [X1, X2] + I · J = 0} // GL(n).

Note that the P 2 here has nothing to do with the P 2 for the PT theory; they are 

complement to each other from the M-theoretic point of view.

There is an action of the torus

T = C×
t1,t2

× C×
u1,...,un

,

on M(r, n), where C×
t1,t2

acts as

Xi 
→ tiXi, I 
→ I, J 
→ t1t2J,

and

C×
u1,...,ur

=

⎧
⎨
⎩

⎛
⎝

u1

. . .
ur

⎞
⎠

⎫
⎬
⎭ ⊂ Aut(Cr).

The Nakajima variety M(r, n) is smooth and of dimension 2rn. The vertex Cn in the 

quiver gives rise to the tautological vector bundle V of rank n over M(r, n), and the 

framing vertex gives rise to the trivial rank r vector bundle W with the character of the 

fiber u1 + u2 + · · · + ur. The K-theory class of the tangent bundle to M(r, n) can be 

written as

T = Hom(W, V) + t1t2 Hom(V, W) − (1 − t1)(1 − t2) Hom(V, V). (22)

The Picard group of M(r, n) is of rank 1 generated by the determinant bundle

O(1) := det V. (23)

See [29] for details on these facts. Finally, the Nekrasov partition function is defined as 

the generating series for the equivariant Euler characteristics:

Z(�) =
∑

n≥0

znχT(M(r, n), O(�)) ∈ Q(t1, t2, u1, ..., ur)[[z]].

The function Z(�) can be computed explicitly by equivariant localization. The set of 

fixed points M(r, n)T are identified with r-tuples of Young diagrams with n boxes in 
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total. The contribution of each fixed point can be easily computed using the formula 

(22).

Now the PT invariants for X = Tot(KP 2) can be obtained as a certain limit for Z(1)

with r = 2, as we explain in the following. The partition function Z(�) depends on the 

four variables z, t1, t2, u2/u1. Setting u = u2/u1, the plethystic logarithm of Z(1) then 

determines the invariants Pd(t1, t2):

Z(1) = S
•
(

t2
1t2

2

(1 − t1)(1 − t2)
u · z +

∑

d≥1

zd

(
(−1)d−1(t1t2)

−d(d−3)
2

· Pd(t1, t2)

(1 − t1)(1 − t2)
u2d + O(u2d+1)

))
.

Each Pd(t1, t2), mentioned earlier in (21), is a symmetric polynomial in the variables 

t1, t2. We define the combinatorial BPS invariants by

F̃d,BPS(q, t) :=

(
t
− (d−1)(d−2)

2
1 · Pd(t1, t2)

)∣∣∣∣
t1= t

q
,t2=tq

∈ 1 + t2Z[t, q]. (24)

Remark 3.2. We see from the formulas of Z(1) and Pd that the generating series 

F̃d,BPS(q, t) can be evaluated by a calculation of finitely many terms. We also note 

that F̃d,BPS(q, t) is equivalent to the Gopakumar–Vafa invariants GVd via Pd(t1, t2). 

Therefore it recovers and refines the PT invariants (18).

3.5. Numerical data

We list in this last section the combinatorial BPS invariants for d = 3, 4, which are 

used in the proof of Theorem 0.7. The terms that coincide with the expansion of H(q, t), 

cf. the remark after Conjecture 3.1, are enclosed in a square bracket.

F̃3,BPS =
[
1 +

(
q2 + t2

)]
+

(
q2t2 + qt3 + t4

)

+
(
q2t4 + qt5 + t6

)
+

(
q2t6 + qt7 + t8

)

+
(
q2t8 + qt9 + t10

)
+

(
q2t10 + qt11 + t12

)

+
(
q2t12 + qt13 + t14

)
+

(
q2t14 + qt15 + t16

)

+
(
q2t16 + t18

)
+ q2t18.

F̃4,BPS =
[
1 +

(
q2 + t2

)
+

(
q4 + q3t + 2q2t2 + qt3 + t4

)]

+
(
q6 + 2q4t2 + 2q3t3 + 3q2t4 + qt5 + t6

)

+
(
q6t2 + q5t3 + 3q4t4 + 3q3t5 + 4q2t6 + qt7 + t8

)

+
(
q6t4 + q5t5 + 4q4t6 + 3q3t7 + 4q2t8 + qt9 + t10

)

+
(
q6t6 + q5t7 + 4q4t8 + 4q3t9 + 4q2t10 + qt11 + t12

)
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+
(
q6t8 + q5t9 + 4q4t10 + 4q3t11 + 4q2t12 + qt13 + t14

)

+
(
q6t10 + q5t11 + 4q4t12 + 4q3t13 + 4q2t14 + qt15 + t16

)

+
(
q6t12 + q5t13 + 4q4t14 + 4q3t15 + 4q2t16 + qt17 + t18

)

+
(
q6t14 + q5t15 + 4q4t16 + 4q3t17 + 4q2t18 + qt19 + t20

)

+
(
q6t16 + q5t17 + 4q4t18 + 4q3t19 + 4q2t20 + qt21 + t22

)

+
(
q6t18 + q5t19 + 4q4t20 + 3q3t21 + 4q2t22 + qt23 + t24

)

+
(
q6t20 + q5t21 + 4q4t22 + 3q3t23 + 3q2t24 + qt25 + t26

)

+
(
q6t22 + q5t23 + 3q4t24 + 2q3t25 + 2q2t26 + t28

)

+
(
q6t24 + q5t25 + 2q4t26 + q3t27 + q2t28

)

+
(
q6t26 + q4t28

)
+ q6t28.

By the same method, we have checked the combinatorial version of Conjecture 0.1

ñi,j
d = [H(q, t)]i,j , i + j ≤ 2d − 4

for all degrees d ≤ 14.
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