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Abstract—Topological Data Analysis is a fast-growing and
promising approach that recently gains popularity in the data
science field. It utilizes topological and geometric measurements
to describe the structure, for example the shape, of complex
data, which is fundamental and important for modeling the data.
Scalp Electroencephalography (EEG) is widely used in clinical
trials and scientific research to measure the brain activities.
However, analyzing and modeling scalp EEG signals is still an
open field due to the complex and non-stationary nature of the
EEG signal itself as well as the transformed signals. Therefore,
in this paper, we propose a topological-based processing pipeline
that utilizes persistent homology to capture the underlying system
dynamic of the transformed EEG signals and further construct
machine learning classifiers. A public available scalp EEG data
is used to validate our algorithms, and the results show that
the topological features successfully capture the subtle changes
in the time-frequency representations revealed by Hilbert-Huang
Transformation, with area under ROC curve reaching 0.96.

Index Terms—Topological Data Analysis, Scalp EEG, Hilbert-
Huang Transformation, Machine Learning

I. INTRODUCTION

Scalp Electroencephalography (EEG) has been widely used
to record the electrical activity of the brain from the electrodes
placed on the scalp. Clinicians and researchers have been using
scalp EEG to diagnose or treat epilepsy, sleep disorders, brain
damage, etc. The analysis of scalp EEG are generally cate-
gorised in event-related and spectral-related study. The former
usually investigates scalp EEG from temporal domain, for
example detection of the onset of stimulus or epileptic seizure
[1]. The latter studies the spectral content of EEG in the
frequency domain and focuses on the neural oscillations (i.e.,
brain waves) recorded in EEG signals. The spectral-related
scalp EEG study has been extensively used in neuroscience,
cognitive science, and cognitive psychology research [2], [3],
[4]. The brain waves are conventionally categorized as delta,
theta, alpha, beta, and gamma waves based on their frequency
ranges: delta (1-4 Hz), theta (4-8 Hz), alpha (8-12Hz), beta
(12-30Hz), low gamma (30-60Hz) [5], [6]. To study the
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spectral content of EEG signals, numerous research [3], [7],
[8], [9], [10] have been conducted to extract representative
information from brain waves. However, the data can be
complex once transformed into frequency or time-frequency
domain, which requires a powerful tool for analyzing such
complex data.

Topological data analysis (TDA) is a powerful tool for
analyzing complex data which has shown great promise in
extracting the topological features of data. However, few work
has been conducted using TDA to analyze scalp EEG signals.
[11] calculates the area of a 1-dimensional Betti curve of
EEG signal as TDA score. [12] utilizes Betti number from
raw EEG signals as TDA features for kNN classifier. [13]
extracts persistent entropy from single trial EEG to classify
Autism Spectrum Disorder via support vector machine. [14]
leverages persistence landscape of Fourier transformed EEG
signals as TDA features. More information can be revealed by
transforming EEG signals into time-frequency-representation.
However, no study has been conducted to extract TDA features
from the time-frequency-representation of EEG signals.

Therefore, we propose a topological-based processing
pipeline to analyze scalp EEG signals. In the pipeline, we
first leverage Hilbert-Huang Transform (HHT) to decompose
the scalp EEG signal into a collection of sub-signals that
correspond to different brain waves, and acquire their time-
frequency information. Then, TDA features are extracted via
utilizing persistent homology to the time-delay embedding
that captures the underlying system dynamics of the time-
frequency representation of brain waves. TDA score is then
calculated as the area of a 1-dimensional Betti curve, one of
the outputs from persistent homology, that represents irregu-
larity of the time series. The TDA features are then served as
input for the statistical and machine learning models to classify
EEG signals. The processing pipeline is validated using a scalp
EEG data, and results in promising performance.

The remainder of this paper is organized as follows: In Sec-

549
Authorized licensed use limited to: Auburn University. Downloaded on July 03,2025 at 20:18:58 UTC from IEEE Xplore. Restrictions apply.



tion II, we introduce the scalp EEG data and the notation. In
Section III, we present our approach in details. In Section IV,
we summarize the evaluation results. Finally, we conclude the
paper in Section V.

II. ScALP EEG DATA DESCRIPTION
A. Scalp EEG Study

The experiment recruited 19 adults (7 females, 12 males)
from the University of Arizona community'. Participants were
asked to complete a spatial distance monitoring task to identify
two possible outcomes, short vs long distance, while standing
in an immersive virtual environment. Each trial lasts around
5.656 seconds, and each participants completed 48 trials in
total with 24 short and 24 long distance. The scalp EEG data
were recorded over 64 electrodes placed on the scalp, with
a sampling rate of 500 Hz. All data were processed by 1-
50 Hz bandpass filtering, artifact amelioration, and eye/muscle
artifacts removal. The data is available at https://osf.io/3vxkn/,
and the details of experimental design and data pre-processing
is discussed in [15].

B. EEG Notation

For the illustration purpose, we take the EEG recording
of one participant as an example. Denote the scalp EEG
signal recorded from the ;' electrode channel during the
kth trial as xf(t) For the spatial task, the length of the
signal is 2828 (around 5.656 seconds) and the label of x?(t)
is binary (i.e., short or long distance). Our process unit is
ah(t),j=1,...,64,k =1,..., K in the following sections.
The number of trials K is 48 for all subjects. In the following,
each zf (t) for all j and k will go through the processing
pipeline. Therefore, to avoid any further confusion caused by
more subscripts, we will simply use x(t) to denote x;‘(t) for
illustration purpose.

III. OUR APPROACH

In this section, we introduce the proposed topological-based
processing pipeline in details. The pipeline is composed of
three major steps: signal transformation via HHT to reveal
time-frequency representation, topological feature extraction,
and classification. A graphical summary of the pipelie is shown
in Figure 1.

A. Hilbert-Huang Transformation (HHT)

Scalp EEG signal is nonlinear and non-stationary by na-
ture, which introduces difficulties for EEG analysis. Fourier
transform works for stationary signal and estimates a constant
power for each frequency over time. However, the frequency
and the corresponding power changes along with time. To
better capture the time-varying frequency and power, Hilbert-
Huang Transformation (HHT) is utilized. HHT, proposed by
[16], is a data-driven approach for analyzing non-stationary
signals. HHT is composed of two steps: Empirical Mode
Decomposition (EMD) and Hilbert Transform (HT).

'Written informed consent was obtained in accordance with the Institutional
Review Board at the University of Arizona.

EMD decomposes the signal z(t) into a collection of sub-
signals {c;(t),7 = 1,...,n} named Intrinsic Mode Functions
(IMFs) via a sifting processing.

n
2(t) =Y cilt) +r(t). (1)
i=1
The Hilbert transform is then applied on each of the IMFs
to reveal its instantaneous frequency w;(t) and instantaneous
amplitude a,(t). By replacing ¢;(¢) using its analytical expres-
sion, we can rewrite Equation (1) as:

o) = Y- Re(ai(Oean(i [ widn)} + 1), @
=1

x(t) = Re{z a;e™it}. (3)
i=1

Different from Fourier transform which estimates constant
power a; for each frequency w; in Equation (3), HHT reveals
the dynamic frequency and power, which is important espe-
cially for non-stationary signals. For scalp EEG signals, the
dynamic frequency and power are used to reveal the subtle
changes in the underlying dynamic structure. Besides, the
IMFs are in descending frequency ranges with the first IMF
carrying the highest frequency components. IMFs can also be
used to represent different brain waves including delta, theta,
alpha, and beta waves. In this study, we use the first four IMFs
to represent the aforementioned four brain oscillations.

Though the instantaneous frequency w;(t) and amplitude
a;(t) contain the important information about the dynamic
structure of EEG signals, the dimension and amount of data is
much larger. For one subject during one trial, the scalp EEG
is 64 x 2828 with signal length being 2828 from each of the
64 electrode channels. After HHT, the dimension of the data
becomes 64 x 4 x 2 x 2828 if we keep the first four IMFs
and both instantaneous frequency and amplitude. Therefore,
TDA is chosen to efficiently and effectively extract features
from the time-frequency representation of EEG signals in the
following.

B. Topological Data Analysis (TDA)

Both the instantaneous frequency {w;(t),i = 1,...,n}
and the instantaneous amplitude {a;(¢),i = 1,...,n} on
each electronic channel can be treated as scalar time series.
Based on Taken’s embedding theorem, time delay embedding
is a very useful way to reconstruct state space from single
signal source. Here we use w;(t) as an example. The Taken’s
Embedding theorem ([17], [18]) asserts that when the states of
a dynamical system lies on a low-dimensional manifold, the
complete information about the states can be preserved in the
time-series output and the states can be reconstructed through
an embedding map, namely, a delay coordinate mapping.
Hence, we embed w;(t) into an N-dimensional state space
with At time delay. The coordinates of the corresponding
points in the /N-dimensional state space can be represented
by

Yi(t) = (wit), wi(t + At), ..., wi(t + (N — 1)At)). 4
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The parameters N and At determine the embedding. We set
N =3 and At =1 in processing the instantaneous frequency
and the instantaneous amplitude.

Homologies are used to capture the topological structures
of simplicial complexes such as components, circles, and
voids. Vietoris-Rips filtration is one of the methods to extract
a filtration of simplicial complexes from a state space.This
filtration starts with expanding each point in the state space to
a disk with radius zero. The radii of the disks grow uniformly,
and then the procedure ends when they reach a predetermined
value. The predetermined value in our calculation is the
one such that the resulting simplicial complex loses all the
topological structures, i.e., homotopy equivalent to a singleton.
For each radius, a graph is formed using the points and edges
between any two points when the associated disks intersect
with each other. The clique complexes (flag complexes) of
such graphs yield a filtration of nested simplicial complexes,
Ko, Kq,...,K, with K; C Kj when ¢ < j.

Let K be a simplicial complex. For each integer p > 0,
the pth simplicial homology group H,(K) with integer co-
efficients is abelian and the rank of H,(K) gives the count
of p-dimensional ‘hole’ in K, which is also called the pth
Betti number 3, (K). Topologically, a 1-dimensional ‘hole’ is
a circle and a 2-dimensional ‘hole’ is a void. The rank of
the Oth homology group Hy(K) is the number of components
in the simplicial complex K. The Betti numbers of the state
spaces in our discussion are [y, 51, and Ps. In this paper,
we choose the 1st Betti number 3; of the corresponding state
spaces to represent the information about whether a participant
monitors short or long distances. Each inclusion map from
a simlicial complex K; to another K; with ¢ < j induces
a homomorphism ¢ from the homology group H,(K;) to
H,(L;) for each p > 0.

The persistent homology of a filtration of simplicial com-
plexes {K; i = 1,...,n} is the homology groups
{Hp(K;):p>0and i=1,...,n} and the homomorphisms
{gbi;j :p >0and1 < i < j < n}, where ¢2;j is the
homomorphism from H,(K;) to H,(K;) induced by the
inclusion map. As the radii of disks increase, some topological
invariants (components, circles, or voids) persist longer in
these simplicial complexes, while others disappear quickly.
Hence, the persistent homology yields p-dimensional Betti
interval, [tpirth, taearh), Which defines the time at which a p-
dimensional hole appears in the simplicial complex K.,
while dies in the simplicial complex K, .

A graphical representation of those intervals of a state space
is called a persistence barcode and it is associated to the
Vietoris-Rips filtration. A persistence barcode can also be
represented by a persistence diagram. The simplicies involved
in the p-dimensional holes, which are the generators of the
p-dimensional homology group, can also be obtained in the
computation of persistent homology.

We use B, to represent the collection of p-dimensional
Betti intervals of a state space with a Vietoris-Rips filtra-
tion. The element in B, is in the interval form [x,y). Let
B, = {[zk,yx) : k € I} where I is a finite index set. Then

we calculate a p-dimensional TDA score of a state space

Co=>_lyr — xxl. )
kel
The p-dimensional TDA score roughly measure the magni-
tude of the persistence of all p-dimensional ‘hole’. To summa-
rize, for each p, we obtain a p-dimensional TDA score of the
state space from each instantaneous frequency or instantaneous
amplitude.

Time Delay Embedded
Embedding Coordinates y(#)
(N=3,At=1) [48x64x4%2826%3]
A A A
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Fig. 1. A graphical summary of the proposed topological-based processing
pipeline. The time delay embedding module takes one of the three time series
(i.e., ¢(t), w(t), or a(t)) as input. m is the number of Betti intervals obtained
by Vietoris-Rips filtration and is decided by the time series input.

C. Classification

Given a EEG signal x(t), the pipeline starts with HHT
in Section IM-A. z(t) is decomposed into a set of IMFs
{ci(t),i = 1,...,4} through EMD. In our study, we choose
the first 4 IMFs based on their Hilbert spectrum. Then the
instantaneous frequency {w;(t),i = 1,...,4} and instanta-
neous amplitude {a;(¢),s = 1,...,4} are obtained via HT.
For each time series (i.e., ¢;(t), w;(t), or a;(t)), TDA features
are then extracted according to Section III-B. In this study,
we set p = 1 and extract C for each series. Taking ¢;(¢) as
an example, the TDA feature is created from embedding c;(¥)
into a state space and calculate the 1-dimensional TDA score
C1 using the 1-dimensional Betti intervals from the persistent
homology of the state space. Similarly, the instantaneous
frequency and instantaneous amplitude are also used as signal
sources from which the state space is reconstructed, and the
corresponding TDA features form the second and third feature
set, respectively. Lastly, the second and third feature set are
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combined to construct a fourth set of features. For each
subject, the dimension of the scalp EEG data is 48 x 64 x 2828.
The entire TDA feature extraction pipeline, as well as the
dimension of the input and output at each step, are presented
in Figure 1, and the 4 extracted feature sets are summarized
in Table I.

TABLE I
SUMMARY OF 4 FEATURE SETS FOR EACH SUBJECT

Feature Set Signal Source for TDA Dimension
1 {e;@)]i=1,...,4} 48 x 64 x 4
2 {wi®)]i=1,...,4} 48 x 64 x 4
3 {ai(®)i=1,...,4} 48 X 64 x 4
4

{(wi(t),a;(®)]i=1,...,4} 48x64x8

The extracted TDA features are then fed into a variety
of machine learning classifiers including random forest (RF),
support vector machine (SVM), extreme gradient boosting
(XGBoost), and least absolute shrinkage and selection operator
(LASSO) to evaluate the effectiveness of the proposed TDA
features. For each of the 19 subjects, the number of features are
much larger than the number of trials. To avoid overfitting, we
conduct feature selection to select the most important features
for each classifier. For RF and XGBoost, the importance
of each feature is measured by the mean decrease in Gini
coefficient, which is an indication of how much each feature
contributes to the homogeneity of the nodes and leaves in a
tree-based model. For SVM, the importance of each feature is
measured by the area under receiver operating characteristic
curve (AUC) value when only that feature is present in the
model. For RF, SVM, and XGBoost, a full model is fitted
with the entire feature set first, and the normalized importance
score of each feature is obtained. Recursive feature elimination
(RFE) is then performed, starting with the top 40 strongest
features from each set and eliminating 5 weakest features
at each step. The reduced model with the highest AUC
value is chosen as the final model, and the features used to
produce the final model is considered the optimal selection.
For LASSO, since the L1 penalty already equips it with feature
selection and regularization, no additional feature selection is
performed. For each subject and each model, repeated leave-
group-out cross-validation (LGOCYV), which uses 75% trials as
training set and the rest 25% as testing set, is performed as well
as hyperparameter tuning to maximize model performance.

In addition, to demonstrate the competitiveness of the pro-
posed approach against existing deep-learning-based feature
extraction methods, we built a simple neural network with 2
dense layers with ReLU activation, 2 dropouts with rate 0.5
and 0.3, and a dense layer with sigmoid activation for binary
classification at the end. For comparison, ¢;(t), w;(t), and a;(t)
are used to train this network without passing through the TDA
feature extraction process.

IV. RESULTS

To evaluate the model performance, we use area under
receiver operating characteristic curve (AUC) as the metric.

(A) Feature Set 4

-

T o 0ss *
0.8
s 0.901
<€

0.851

(B) Random Forest

0.801

B RF B SVM
Model

B 18 2
Feature Set
B3 Xgboost B2 LASSO

B3 84

Fig. 2. AUC of Final Models among 19 Patients. (A) with feature set 4, the
performance of the four Classifiers. (B) with RF, the performance of the four
feature sets.

Figure 2 shows the model performance across all subjects.
Panel (A) shows the comparison of classifiers using the same
feature set while Panel (B) compares the four features using
the same classifier. Combining four feature sets and four
classifiers, 16 models are trained in total, and the average
performance of each model over 19 subjects are summarized
in Table II. The performance of the 4 neural networks trained
with the corresponding time series without extracting TDA
features are summarized in Table III. In general, the machine
learning classifiers coupled with TDA features outperform the
neural network, except for LASSO. Overall, the fourth feature
set which contains the TDA features extracted from both in-
stantaneous frequency and amplitude shows the best prediction
performance, and RF is the best classifiers regardless of the
feature sets.

TABLE 11
AVERAGE AUC OF FINAL MODELS AMONG 19 PATIENTS

Feature Set

Model 1 2 3 4
RF 0.8963 0.9499 09132 0.9612
SVM 0.8663 0.9445 0.8778  0.9540
XGBoost  0.8440 0.8536  0.8615  0.8869
LASSO  0.5216 05126  0.5221  0.5011
TABLE III

AVERAGE AUC OF NEURAL NETWORK AMONG 19 PATIENTS

Feature
Average AUC

wi(t), ai(t)
0.5317

ci(t)
0.5385

w; (t)
0.5036

a;(t)
0.5122

V. CONCLUSION

In this paper, we propose a topological-based processing
pipeline for scalp EEG signal analysis. The pipeline is capable
of analyzing both stationary and non-stationary signals, and
can be applied to signals in various fields including agri-
culture, computer vision, and biomedical imaging. There are
mainly three steps in the processing pipeline: HHT to reveal
the time-frequency-representation of signals, TDA to extract
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topological features from the Hilbert spectrum, and classifiers
to classify signals. The effectiveness and competitiveness of
the proposed pipeline is validated using real scalp EEG data,
and compared with deep learning-based methods. Besides
extracting the proposed TDA features from Hilbert spectrum,
we are also exploring other TDA features coupled with wavelet
transform.
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