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ABSTRACT ARTICLE HISTORY
The rapid expansion of exotic saltcedar along riparian corridors has Received 16 December 2022
dramatically altered the landscape structure and ecological func- Accepted 19 March 2023

tion of riparian habitats in the western United States. The develop-
ment of accurate and reproducible mapping methods with remote
sensing plays an indispensable role in the timely monitoring of
saltcedar, re-evaluating its ecological functions, and establishing
effective control measures. The utmost challenge for achieving
this goal is manifested as the lack of time series of remote sensing
images to capture the saltcedar phenology adequately. To this end,
the newly available Landsat 9 images, combined with its counter-
part of Landsat 8, offer a precious opportunity to compensate for
the temporal image shortage. To understand Landsat 9 in the salt-
cedar classification and to discover helpful information for its appli-
cation, this study presents the first attempt to classify saltcedar
using intra-annual Landsat 8 and Landsat 9 images. We adopted
two machine learning algorithms, support vector machine (SVM)
and random forest (RF), to compare the performance of Landsat 9
and Landsat 8 for intra-annual saltcedar classification. In addition,
we investigated the respective contribution of each spectral band
to the overall performance and identified the optimal time window
for saltcedar classification. The results indicated that the difference
in classification performance between Landsat 9 and Landsat 8 was
insignificant. The shortwave infrared bands associated with both
Landsat 8 & 9 have contributed most to the process of saltcedar
identification. Image acquired in July, November, and December
yielded better results than other months for saltcedar classification.
It is concluded that Landsat 8 & 9 constellation has the potential to
refine saltcedar classification accuracy on larger spatial and tem-
poral scales.

1. Introduction

Saltcedar (Tamarix spp.), an exotic woody shrub introduced to the U.S. in the mid-1800s,
has actively invaded the southwestern US by alternating the riparian zone vegetation
composition, depleting water resources, changing the associated wildlife habitat, and
decreasing biodiversity (Di Tomaso 1998; Friedman et al. 2005; Nagler et al. 2011, 2021).
Since its first cultivation in California in 1856, this aggressive plant has expanded along the
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riparian corridor at a rate of 20 km per river reach per year (Graf 1978). It has not only
significantly destructed the native vegetation but also profoundly altered the riparian
ecosystem (Nagler et al. 2011). Along with the alternation, the remarkable water-
consuming capability of saltcedar has exhausted the water resources, increased the
salinity of the soil, and finally degraded the wildlife habitat quality where the saltcedar
colonized (Di Tomaso 1998; Hart et al. 2005). Consequently, 93% of riparian wetland
habitat has declined along the Rio Grande river compared to 1918, resulting in
a significant decrease in populations of multiple riparian obligate species (Friggens and
Finch 2015). Thus, to guide the effective control of this invasive species, a detailed map of
saltcedar is not enough. Timely continuous monitoring of saltcedar is urgently required to
track its distribution variation.

Remote sensing has greatly succeeded in monitoring the distribution of saltcedar in
the past 30 years. The application of remote sensing to saltcedar research continues to
evolve with the development of data. Aerial photographs were first applied to detect
invasion patterns and spectral characteristics of saltcedar (Everitt and Deloach 1990;
Everitt et al. 1996). Subsequently, the development of high-resolution aerial and satellite
imagery has led to more accurate saltcedar distribution mapping for a single time (Diao
and Wang 2014; Ji and Wang 2015; Silvan-Cérdenas and Wang 2010; Wang and Zhang
2014; Yang, Everitt, and Fletcher 2013). However, due to limited spatial coverage and
expensive acquisition costs, aerial and high-resolution images are difficult to achieve
effective regional-scale saltcedar monitoring. Free and easily accessible moderate-
resolution images provide an effective way to address this problem. The broad spatial
and temporal coverage of the moderate resolution imagery allows mapping of saltcedar
distribution and abundance over a larger area (Evangelista et al. 2009; Maruthi Sridhar
et al. 2010) while quantifying changes in saltcedar evapotranspiration and leaf phenology
due to the release of the biocontrol agent: saltcedar leaf beetles (Diorhabda carinulata)
(Bateman, Nagler, and Glenn 2013; Ji, Wang, and Knutson 2017; Nagler et al. 2012).
However, detecting the distribution of saltcedar by using single-scene Landsat images
acquired at a specific time still faces challenges. Plants of different phenological stages
may exist in a single image. The essential phenological features that facilitate the differ-
entiation of saltcedar cannot be completely captured in a single observation (Diao and
Wang 2016a). The development of timely monitoring methods based on long-time scale
observations to fully utilize the information of phenological dynamics is an important
approach to improve the accuracy of saltcedar distribution mapping.

The time series of Landsat imagery is suitable for capturing the phenological dynamics
of invasive plants (Bradley 2014). The phenological bands detection strategy based on the
Landsat monthly time series was proposed to adapt to the intra-annual phenological
variation of saltcedar (Diao and Wang 2016a). Compared to the commonly used single-
scene detection strategy, incorporating phenological bands largely increased the detec-
tion accuracy. The overall classification accuracy increased from 83.35% to 88.54%, and
the Kappa coefficient rose from 0.71 to 0.80. The late autumn and early winter periods
(October, November, and December) were discovered to be critical for riparian vegetation
differentiation. In addition to intra-annual phenological change information, inter-annual
leaf senescence of saltcedar can be predicted by the multiyear spectral angle clustering
(MSAC) model (Diao and Wang 2018), which can guide the construction of synthetic
images of Landsat surface reflectance products. Compared to the accuracies of the single-
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date. image, the user’s accuracy of the saltcedar increased by about 3% and the produ-
cer's accuracy of the saltcedar increased by 9% through using the composite image. On
the other hand, to address the possible variation in phenological characteristics within
saltcedar populations in single-date. images, the saltcedar colouration model was dis-
covered (Ji and Wang 2016). The timing of saltcedar peak colouration is linearly correlated
with the timing of leaf drop. This relationship can be modelled by the MODIS end-of-
season time product (EoST) with Landsat images through a simple linear equation as
a guide to determine the optimal date for each pixel to obtain Landsat images for
saltcedar mapping. The result shows that the composite image based on phenology is
more beneficial for saltcedar distinction than a single-scene image. However, the rela-
tively coarse temporal resolution of previous Landsat products makes it difficult to obtain
sufficient cloud-free imagery to develop a phenology-based detection strategy (Diao and
Wang 2016a). The highly dynamic properties of saltcedar invasion may cause synthetic
images generated under the guidance of the saltcedar colouration model or MSAC model
to fail to produce robust classification results (Diao and Wang 2018; Ji and Wang 2016).
There is an urgent need to incorporate new data to make the time series more intensive to
satisfy the requirement for more effective and accurate timely monitoring of saltcedar and
its co-occurring vegetation (Diao and Wang 2016a, 2018; Ji and Wang 2016).

The release of Landsat 9 provides new opportunities for constructing more intensive
time series for saltcedar studies. Landsat 9 carries the Operational Land Imager-2 (OLI-2),
which provides calibrated images, including solar reflectance wavelengths almost equiva-
lent to the Landsat 8 OLI (Masek et al., 2020). The combined Landsat 8/9 constellation will
provide an 8-day observation of the Earth. There have been numerous studies demon-
strating that heterogenous image fusion can break through the limitations of the tem-
poral resolution of a single data source (Bolton et al. 2020; Liu et al. 2020; Moon,
Richardson, and Friedl 2021; Pan et al. 2021; Shen et al. 2021; Wang et al. 2020; Zhang
et al. 2022). However, due to the differences in the sensors in orbit, space, and spectral
configuration, the physical measurement value and radiation properties of the images will
be affected. It is often necessary to select compatible bands in different datasets and
perform appropriate coefficient transformations and resampling to unify remote sensing
data to obtain comparable results (Graf 1978; Liu et al. 2020; Wang et al. 2020; Zhang et al.
2022). The same spatial resolution and similar band design of Landsat 9 and Landsat 8
make it possible to build a more intensive Earth observation system together without the
need for complex data pre-processing. Landsat 9 has proven to produce outstanding
results in land use and land cover classification, plant phenology estimation, and water
quality retrieval (Guo et al. 2022; Niroumand-Jadidi et al. 2022; Shahfahad et al. 2022; You
et al. 2022). However, the applicability of Landsat 9 data to saltcedar-related studies has
not been investigated. The differences in performance between Landsat 9 and Landsat 8
for saltcedar classification need to be scientifically compared. The role played by different
bands in saltcedar identification using OLI series sensors is unclear. More intensive time
series may also bring new knowledge of the critical period for saltcedar classification.
These issues need to be addressed for our in-depth understanding of the utilization of
Landsat 8 & 9 constellation for accurate timely monitoring of saltcedar invasion and re-
evaluation of its ecological functions in the future.

The overall objective of this study was to understand Landsat 9 in saltcedar
classification. Specifically, we set up three objectives: (1) to compare the performance



2096 R.LIETAL.

108°W 104°W
Colorado
36°N Plateau
Santa Fe
o
TG =
i Albdquerque
1 ey
1 I
' -
L 1 *
P Vl\lew M/GXVCD
on / 471
34°N VLT A R
] Y ,5 B ; U
1 1l e 1
1 / 1 i
! 1L o
' N ' L
' L '
1 b\ '
e (e i
| Tucson =~ N TR i
=0 =
32°N
_— Ojgérez
\C Legend
0% 55 110 220Km |
(RS Y F-—- 5
Esri. CGIAR, USGS, New niversity, Esri, HERE, i’ Landsat anprmt N
0, NOAA, USGS, EPA
[ Study site

108°W 104°W

Figure 1. The geographic location of the study site with the preview of the false-colour composite of
Landsat imagery on the right side.

of Landsat 9V.S. Landsat 8 for intra-annual saltcedar classification; (2) to quantify the
individual band contribution of Landsat 8 and Landsat 9; (3) to identify the intra-
annual optimal time window for combining Landsat 8 and 9. We expect the results to
provide a scientific foundation for data selection for the saltcedar remote monitoring
while possessing the potential for generalization and replication to larger spatial and

temporal scales.

2, Study site

The Rio Grande River originates from southern Colorado’s San Juan Mountains and
travels south to the Gulf of Mexico. It is one of the most regulated rivers in the
southwestern US. The study site is near the town of San Antonio, New Mexico (33°
48'18" N, 106°53'26” W, 1375 m elev.), at the Middle Rio Grande River (Figure 1).
The width of the riparian corridor is about 2 km. According to the description
provided in earlier research, the climate at this study location is classified as dry to
the south and semiarid to the north. Dense, single-species saltcedar dominates the

riverbank.

3. Methods

Four major steps were followed in this research as summarized in Figure 2: (i) reference
data preparation and image pre-processing, (ii) intra-annual saltcedar classification with
Landsat 8 & 9, (iii) individual band contribution quantification, (iv) intra-annual optimal

time window identification.
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3.1 Image pre-processing and reference data preparation
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Figure 2. Flowchart of the methodology.

3.1. Image pre-processing and reference data preparation

3.1.1. Landsat time series data

To compare the performance of Landsat 9 and Landsat 8 for intra-annual saltcedar
classification, all the LSR images from Nov.1, 2021, to Nov.1, 2022, were collected
for Landsat 9 and Landsat 8, respectively. Initially, we acquired 66 Landsat 8
images and 65 Landsat 9 images that completely covered the study site. The de-
clouding mask was then established in Google Earth Engine (GEE) for all LSR
images in both Landsat 8 and Landsat 9 datasets. We excluded the images with
more than 20% of cloud coverage. Finally, the remaining 59 Landsat 8 images and
57 Landsat 9 images were collected (Table 1). In addition, two typical vegetation
indices, the normalized difference vegetation index (NDVI) and normalized differ-
ence water index (NDWI) (Diao and Wang 2016a; Gao 1996; Huang et al. 2021;
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Table 1. Summary of LSR image data used in this study. The
number in brackets represents the total number of scenes in
the data series.

Satellite Path and Row Number of scenes
Landsat 8 (59) p33r37 21

p34r36 19

p34r37 19
Landsat 9 (57) p33r37 18

p34r36 19

p34r37 20

Pettorelli et al. 2005), were calculated for each image and involved them as
candidate features for saltcedar classification.

3.1.2. Saltcedar reference data preparation

The saltcedar reference data, including training and validation samples, were pre-
pared by resampling the classification result of an aerial image produced by the
National Agriculture Image Program (NAIP). Since no NAIP image was available in
2021 and 2022, we selected the one acquired at the closest date, 2020, for this study.
This NAIP image, at 0.6 m resolution with four spectral bands: blue, green, red, and
near-infrared, was downloaded from the New Mexico Resource Geographic
Information System (RGIS, http://rgis.unm.edu/). It was ready to use with image
orthorectification.

The spectral angle mapper (SAM) was utilized to classify the NAIP image since it
has been proven effective in saltcedar classification with high spatial resolution
images (Narumalani et al. 2006). Thus, we believe SAM can help acquire reliable
ground truth of saltcedar from the NAIP image. SAM identifies the similarity of the
image spectra to the reference spectra in the spectral library by treating them as
vectors in n-dimensional space and calculating the angle. The image spectra forming
the smallest spectral angle are assigned to the corresponding category (Kruse et al.
1993). This technique is relatively insensitive to the effects of illumination and
albedo when used for calibrated reflectance data. Additionally, in order to eliminate
the errors caused by the time mismatch between the Landsat images and the NAIP
image, high-resolution images in 2020, 2021, and 2022 on Google earth pro were
used as references.

Then, the classification result of NAIP was resampled from 0.6 m to 30 m resolution
using zonal statistics in order to produce reference data for the 30 m spatial resolution
Landsat images. First, we used a 30 m grid to perform zonal statistics on the classification
result. Then, 50% was set as the threshold to label each 30 m-by-30 m pixel as saltcedar
(>50%) or non-saltcedar (<50%). At last, a total of 663 30 m-by-30 m pixels were labelled
as saltcedar. A zoom-in view of the resultant reference data can be found in Figure 3.
However, pixels with no saltcedar in their 3-by-3 neighbouring pixels were considered as
salt and pepper errors since they have a high probability of being misclassified. After
removing the salt and pepper errors, a total of 350 pixels were collected as saltcedar
reference data. These reference data were randomly split into two parts: 80% were used to
generate training samples, and the other 20% were used as validation samples for
subsequent accuracy assessment of Landsat classification results.
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Figure 3. A zoom-in view of pixels with more than 50% coverage by saltcedar in zonal statistics. Pixels
in the red box were selected as saltcedar reference data. The base image is an LSR product.

3.2. Intra-annual saltcedar classification with Landsat 8 & 9

To compare the performance of Landsat 9 and Landsat 8 on intra-annual saltcedar
classification, we employed two machine learning algorithms that have been proven to
achieve favourable results in both saltcedar classification and the classification of other
land use and land cover types (Sheykhmousa et al. 2020): support vector machine (SVM)
(Fletcher, Everitt, and Yang 2011; Ji and Wang 2015; Tai and Wang 2014; Wang and Zhang
2014; Xun and Wang 2015) and random forest (RF) (Diao and Wang 2016a, 2018).
However, another algorithm commonly used in saltcedar classification: the spectral
angle mapper (SAM) (Diao and Wang 2018; Silvan-Cardenas and Wang 2010), was not
applied and discussed in this study due to the inability to conduct ground surveys to
obtain sufficient information about the co-occurring species and their spectra. In addition,
the performance of Landsat 8 and Landsat 9 with the two algorithms was investigated by
evaluating the classification accuracy using confusion matrices.

3.2.1. Classification algorithms

SVM has been proven to be effective with a small amount of training samples and high-
dimensional images (Pal and Mather 2005). It strives to find an optimal hyperplane that
maximizes the margin between two classes based on the support vectors, defined as each
class’s nearest vector to the hyperplane. The initial linear SVM assumes that the multi-
dimensional data are linearly separable, but the sample data often overlap in practice.
Therefore, a kernel function is introduced to project the input data into a higher dimen-
sional space to construct the hyperplane. We used the radial basis function (RBF) as the
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kernel function because it is the most commonly used kernel function for classifying
remote sensing images and has the best performance in saltcedar classification (Ji and
Wang 2015; Tai and Wang 2014; Wang and Zhang 2014; Xun and Wang 2015). When using
RBF as the kernel function, it is inevitable to define two critical parameters, y and C. Where
y represents the range of influence of a particular training sample in the high-dimensional
space and C indicates the tolerance of the model to misclassification. Referring to the
previous study on saltcedar classification with SVM (Wang and Zhang 2014), the grid
search method was applied to determine the optimal y and C (Hsu, Chang, and Lin 2003).
We first defined the lower bounds for y and C and independently increased them at each
step up to the upper bounds at an exponential pace (y € [27°, 23], C € [273, 2°],
specifically). Then we compared the overall accuracies obtained by SVM with different
combinations of y and C for a total of eight test images (four for Landsat 8 and four for
Landsat 9, acquired at close dates in March, June, September, and December, respec-
tively). The results suggested that the highest overall classification accuracy could be
achieved when y = 8, C =32 for all test images. Therefore, we applied the SVM constructed
with y =8, C=32 to classify all Landsat images acquired in this study.

A random forest (RF) is an ensemble of a number of decision trees. The construction of
each decision tree is based on randomly selected features of the training samples
(Breiman 2001). As an ensemble method, RF is robust to small changes in the input
data and insensitive to noise. In addition, RF is able to process thousands of candidate
features simultaneously and measure the importance of each candidate feature since it
does not require dimensionality reduction of the data, making it one of the ideal
classification methods for saltcedar classification (Diao and Wang 2016a). The ability of
the random forest to evaluate the variable importance measures (VIMs) is also an impor-
tant reason for choosing it as one of our classification algorithms, which can provide the
basis for the subsequent quantification of individual band contribution. To run the RF
model, two parameters must be set: the number of randomly selected features (Mtry) and
the number of trees (Ntree). In this study, Mtry was set to the square root of the total
number of features, which is the most recommended value (Sheykhmousa et al. 2020).
The number of decision trees (Ntree) for RF was set to 100. This number was derived by
the following two steps: we first trained the RF model consisting of 50 decision trees using
training samples, then used this model to pre-classify the Landsat 8 and Landsat 9
datasets. Images with the highest overall classification accuracy of both datasets were
extracted for testing the effect of the number of decision trees in the interval from 5 to
200 with a step size of 5. The result indicated that two images achieved the highest overall
accuracy when the number of decision trees was 100. Therefore, all images were reclassi-
fied using an RF model containing 100 decision trees.

3.2.2. Accuracy assessment

The confusion matrix was constructed for each classification result with validation sam-
ples. Four accuracy metrics: overall Accuracy (OA), Kappa coefficients, producer’s accuracy
(PA), user’s accuracy (UA), and F-1 score, were calculated from the confusion matrix.
Among them, the saltcedar producer’s accuracy, the saltcedar user’s accuracy, and
Kappa coefficients are the most frequently used metrics in the subsequent analysis
because the saltcedar producer’s accuracy and the saltcedar user’s accuracy are intuitive
representations of saltcedar classification results (Diao and Wang 2016a, 2016b; Ji and
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Wang 2016; Ji, Wang, and Knutson 2017; Wang et al. 2013), while the kappa coefficient
considers all elements of the confusion matrix and better reflects the consistency of
classification results with the reality than overall accuracy (Fung and LeDrew 1988). The
F-1 score was also calculated to compare the comprehensive performance of the two
datasets in saltcedar classification. In addition, since the LSR images of path 34 row 36 and
path 34 row 37 covered the whole study area and were acquired at the same time, we
selected the images with relatively higher saltcedar user’s accuracy for the subsequent
analysis.

3.3. Individual band contribution quantification

The individual band contribution for saltcedar classification was quantified by the feature
important analysis with variable importance measurement (VIM) carried by the RF classi-
fication algorithm. The RF classification results with the highest overall accuracy were
selected for VIM in Landsat 8 and Landsat 9, respectively. The VIM was accomplished by
the ‘ee. Classifier. explain’ function in GEE. This function uses the mean decrease in Gini
(MDG) to quantify the importance of different variables, defined as the total decrease in
node impurities from splitting on the variable, averaged over all trees (Han, Guo, and Yu
2016). If a variable is important to the classification result, it tends to split mixed labelled
nodes into pure single-class nodes. The higher quantity of pure nodes produced after
splitting, the greater the total impurities reduction and the corresponding MDG. For each
variable, i.e. the individual band used for the classification, the higher this mean value was,
the greater the impact on classification accuracy when this band was changed, as well as
the higher importance.

It should be noted that only the RF was used for feature importance analysis in this
study. This is because the classification performance of SVM can benefit from feature
importance derived by RF (Low et al. 2013). The feature importance ranking generated by
RF can guide the input feature selection of the SVM algorithm, thus improving the overall
accuracy of the SVM based on the reduction of feature redundancy. In addition, the RF-
based feature selection technique has the advantage of less training time while providing
comparable performance to the SVM-based feature selection technique (Pal 2006).
Therefore, we believe that feature importance analysis using RF to quantify the contribu-
tion of the individual band in saltcedar classification is representative and generalizable.

3.4. Intra-annual optimal time window identification

The classification results of Landsat 8 and Landsat 9 images after accuracy assessment in
Section 3.2.2 were arranged and integrated in order of image acquisition time for the
whole year to identify the intra-annual optimal time window for saltcedar classification.
The Kappa coefficients for the classification results in this dataset were then aggregated
month by month. In addition, their medians were calculated for each month. Larger
Kappa coefficients and medians represent higher classification accuracy of LSR images
obtained in that month. Thus this month was defined as the best time window. Although
in previous studies, late fall and early winter were considered the optimal time window
because saltcedar at this stage has a characteristic orange-yellow colour that better
distinguishes it from co-occurring vegetation (Diao and Wang 2016a; Evangelista et al.
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2009; Ji and Wang 2016; Narumalani et al. 2006; Silvan-Cardenas and Wang 2010; Wang
et al. 2013; Yang, Everitt, and Fletcher 2013). However, a more intensive time series
consisting of Landsat 8 and Landsat 9 together may bring new knowledge on the optimal
time window for saltcedar classification and provide more options in terms of data
acquisition time. In addition, the distribution of kappa coefficients for each month can
describe the robustness of saltcedar classification with different algorithms in different
periods.

4, Results
4.1. Comparison of Landsat 8 & 9 in intra-annual saltcedar classification

The performance of Landsat 9 and Landsat 8 for intra-annual saltcedar classification was
first compared by averaging five accuracy metrics of all classification results (Figure 4). For
Landsat 9, the average overall classification accuracy obtained with the SVM classification
algorithm was 0.92, the average Kappa coefficient was 0.89, and the corresponding
average producer’s accuracy, user's accuracy, and F-1 score of saltcedar were 0.86, 0.98,
and 0.91, respectively. The average overall accuracy, average saltcedar producer’s accu-
racy, average kappa coefficient, and average F-1 score obtained with RF classification
algorithm are higher than those of SVM, which are 0.93, 0.90, 0.91, and 0.93, respectively.
However, the average saltcedar user’s accuracy yielded from the RF classification algo-
rithm (0.97) is lower than that of SVM (0.98). The classification results of Landsat 8 exhibit
similar patterns among the five average accuracy metrics. Regardless of the classification
algorithm used, the difference between the average of the five metrics for Landsat 9 and
Landsat 8 was insignificant (maximum difference of 0.01). Our results indicated that
Landsat 9 performs consistently with Landsat 8 for intra-annual saltcedar classification
and is independent of the choice of the classification algorithm.

The line graphs generated chronologically from image-by-image revealed the
reasons for the similar average accuracy metrics achieved by Landsat 9 and
Landsat 8 across the year (Figure 5). Regardless of which classification algorithm
was used, the classification results obtained by Landsat 9 and Landsat 8 presented
a high degree of overlap and similar trends on the time scale, especially on the

®SVM Landsat 8 ®5VM Landsat 9 RF Landsat 8 RF Landsat 9
1.00

098 0.98
0.98

097 0.97
0.96
0.94 093 093
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195 0.93

Figure 4. Average accuracy metrics of Landsat 8 & 9 classification results.
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Figure 5. Three accuracy metrics for classification results produced by using the same algorithm for
different datasets: (a) saltcedar producer’s accuracy by SVM; (b) saltcedar producer’s accuracy by RF; (c)
saltcedar user’s accuracy by SVM; (d) saltcedar user’s accuracy by RF; (e) Kappa coefficient by SVM; (f)
Kappa coefficient by RF.

saltcedar user’'s accuracies and Kappa coefficients. In addition, RF outperformed
SVM in terms of saltcedar producer’s accuracy and Kappa coefficients for both
datasets. In contrast, more than 54% of the saltcedar user’s accuracies produced by
SVM were higher than those of RF (Figure 6). This indicated that using RF for
classification can better avoid the omission of saltcedar pixels, while using SVM can
reduce the probability of saltcedar pixels being misclassified as other land cover

types.

4.2. Contribution of individual band to saltcedar classification

Two shortwave infrared bands (SR_B6 and SR_B7) contribute more to the saltcedar
classification. The importance of the sixth band (SR_B6, SWIR 1, wavelength 1.57-1.65
pm) is the most prominent, 43.5% higher than the green band, which has the lowest
contribution. The contribution of the same individual bands in the saltcedar classification
of Landsat 9 is identical to that of Landsat 8. Different bands contribute to the saltcedar
classification at different levels (Figure 7). Each band of the Landsat 8 and Landsat 9
products contains valuable information for saltcedar classification.
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Figure 6. Three accuracy metrics for classification results produced by using different algorithms for
the same dataset: (a) saltcedar producer’s accuracy of Landsat 8; (b) saltcedar producer’s accuracy of
Landsat 9; (c) saltcedar user’s accuracy of Landsat 8; (d) saltcedar user’s accuracy of Landsat 9; (e)
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Figure 7. Variable importance of RF classification in Landsat 8 and Landsat 9 datasets.

It should be noted that NDVI and NDWI bands contribute more to the saltcedar
classification than the visible and near-infrared bands. As a result, the incorporation of
NDVI and NDWI bands for classification improved the annual average of all accuracy
metrics for RF classification results (Figure 8), but the maximum improvement was
only 0.02.
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Figure 8. Comparison of RF classification results with and without the inclusion of NDVI and NDWI as
classification features.

4.3. Optimal months for saltcedar classification

The optimal time window for saltcedar classification was investigated by summarizing the
Kappa coefficients from the classification results of SYM and RF month by month. Our results
indicated that the SVM-based saltcedar classification exhibits considerable monthly differ-
ences. November to December is the optimal time window for saltcedar classification with
SVM in the study area. The median values of Kappa coefficients for these two months are the
highest at 0.91, which is 0.05 higher than the lowest month (January, 0.86) (Figure 9). In
addition to January, the classification results for March and April are also unfavourable. The

1.004
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0.90 1

Kappa

0.854
. ® Sep.

0.801 b4

T T T T T T T T T T T T
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Figure 9. Individual value plots of Kappa coefficients based on SVM classification results. The black
spots stand for the median value of each month.
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Figure 10. Individual value plots of Kappa coefficients based on RF classification results. The black
spots stand for the median value of each month.

median values of the Kappa coefficients of these two months are relatively low and the intra-
month distribution of them is also dispersed with a maximum variation of 0.09, indicating that
the classification results of the images acquired in these two months are inconstant. The RF-
based classification results are less affected by the image acquisition time. July is the optimal
time window for saltcedar classification with RF in the study area, with a median Kappa
coefficient of 0.93. Both intra-month and inter-month classification results exhibit robustness.
The maximum difference between Kappa coefficients within the same month is 0.07. The
median values of monthly Kappa coefficients are all above 0.90, and the difference between
the maximum and the minimum median values is 0.03. The maximum difference in median
values between the two adjacent months was even more negligible (0.02) (Figure 10).

Although the optimal months for the two classification algorithms, SVM and RF, to be used
for saltcedar classification are different, this does not indicate that the optimal time windows
for the different classification algorithms are entirely independent. For example, July is the
only month which all the Kappa coefficients produced by the SVM exceeded 0.90. This
indicated that it is feasible to obtain accurate results for saltcedar classification using SVM in
July. In addition, both SVM and RF yielded the best Kappa coefficient (0.96) on
4 December 2021. This implied that the best saltcedar classification results could be obtained
for images acquired in early December. In conclusion, our results revealed that July,
November, and December are crucial months for saltcedar classification using the Landsat
time series and can be used as optimal time windows.

5. Discussion

The newly available Landsat 9 images, combined with its counterpart of Landsat 8,
offer a precious opportunity to compensate for the temporal image shortage. In
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this study, we compared the intra-annual classification performance of Landsat 9
and Landsat 8 by adopting SVM and RF. The results indicated that there is no
significant difference in the performance of Landsat 9 in intra-annual saltcedar
classification compared to Landsat 8. The comparison of the classification results
also revealed differences in the performance of the two algorithms. In addition, we
quantified the contribution of the individual band to saltcedar classification and
identified the optimal time window for intra-annual saltcedar classification using
Landsat 8 & 9 constellation. Our findings suggested that the more intensive time
series constructed by combining Landsat 8 & 9 has the potential to improve the
accuracy of saltcedar classification further. To our knowledge, this study presented
the first attempt at classifying saltcedar over the course of an entire year with
Landsat 9 images.

5.1. Merits of saltcedar classification with Landsat 9

Landsat 9 images, while obtaining promising single-scene saltcedar classification accu-
racy, can be combined with Landsat 8 to construct a more intensive time series to improve
the timely monitoring efficiency of saltcedar and capture more comprehensive informa-
tion on saltcedar dynamics in the future.

The results of our study indicated that the classification performance of Landsat 8 & 9
for saltcedar is largely identical. This finding is consistent with the conclusions of studies
on land use and land cover classification with Landsat 9 (Shahfahad et al. 2022; You et al.
2022). Regardless of the classification algorithm used, Landsat 8 and Landsat 9 yielded
similar classification results. This can be attributed to the fact that Landsat 9 is equipped
with an almost equivalent OLI-2 sensor as the Landsat 8 OLI (Masek et al., 2020). Therefore,
the constellation system of Landsat 8 & 9 can be employed as a comprehensive, 30-metre
spatial resolution and 8-day temporal resolution data source to construct a more intensive
time series, doubling the amount of available data. The increase in the number of
available images will promote the construction of a more intensive time series, enabling
remote observations to more easily locate characteristic phenology information that is
conducive to distinguishing saltcedar and thus improving classification accuracy (Diao
and Wang 2016a, 2016b, 2018; Ji and Wang 2016). For example, the saltcedar peak
colouration model proposed by Ji and Wang (2016) is based on the principle of selecting
the Landsat image closest to the characteristic saltcedar phenology for each pixel, thus
improving the discrimination of saltcedar. It can be envisaged that as the time series
become more intensive, we will have more images available of specific areas, which may
enable our approaching or covering the distinct phenological periods of saltcedar.

More intensive time series will also contribute to our ability to track and identify
phenological changes in specific vegetation. The 16-day temporal resolution of the
previous Landsat products has been argued to be unable to fully exploit the potential
of some vegetation indices (e.g. NDVI) in describing plant phenology (Diao and Wang
2016a). More intensive observations make it possible to map phenology at a finer spatial
scale and over a larger area (Gao and Zhang 2021) and determine the optimal vegetation
indices for vegetation mapping at different phenophases (Guo et al. 2022). For example,
in another study by Diao and Wang (2016b), the phenological process of saltcedar from
leaf growth to leaf drop (i.e. leaf senescence process) was simulated using multi-temporal
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spectral features. This multi-temporal spectral feature will become more accurate with the
densification of time series.

It should be noted that the reason why the higher radiometric resolution of Landsat 9
than Landsat 8 was not outstanding in the saltcedar classification of this study is unclear.
Landsat 9 can differentiate 16,384 shades of a given wavelength with the higher radio-
metric resolution. In comparison, Landsat 8 provides 12-bit data and 4,096 shades (Masek
et al., 2020). The advanced design for radiation information acquisition makes Landsat 9
spacecraft could downlink the full 14 bits-per-pixel from OLI-2, rather than the 12 bits
currently downlinked by Landsat 8, allowing sensors to detect more subtle differences,
especially over darker areas such as water or dense forests. We assume that because the
study site is a mixed stand of woody species dominated by saltcedar (Hamilton et al.
2019), the absence of dense canopy shade prevents Landsat 9 from fully exploiting its
advantage of providing information in the dark area. On the other hand, it has been
proven that there is a sizable intra-scene variation in the phenology of saltcedar. With the
change in environmental conditions, such as latitude and the distance to water resources,
the saltcedar in the same region may be in different phenological stages at the same time
(Ji and Wang 2016). The impact of this intra-scene variation on the classification perfor-
mance of Landsat 9 needs to be further investigated in the future.

5.2. Selection of the classification algorithm

The pixel-level classification performance of two machine learning algorithms that have
proven to have outstanding capabilities in saltcedar monitoring: SVM and RF, were
compared in this study. Although both algorithms obtain remarkable classification accu-
racy for the same images, the results show the advantages and disadvantages of each
algorithm. For example, RF outperforms SVM in saltcedar producer’s accuracy, while SYM
is superior in saltcedar user's accuracy. In other words, RF would be a better choice if the
objective is to avoid missing pixels of saltcedar, while SVM can better satisfy the require-
ment of preventing saltcedar from being misclassified as other land cover types and
improving the accuracy in fieldwork.

Differences between the classification performance of SVM and RF affected by image
acquisition time were observed on long-time scales. Although the input candidate
features are the same for both classification models, the randomness of the features
and samples of RF makes it insensitive to spectral differences in the same land cover type
due to the different times of image acquisition. This can also be reflected in the more
concentrated Kappa distribution of multiple images acquired within the same month
using the RF classifier. SVM emphasizes the linear differentiability between each feature.
When the spectral difference between saltcedar and co-occurring vegetation is relatively
small (e.g. they have completely defoliated), the classification accuracy will be reduced
accordingly. At the same time, the variation trend exhibited by SVM classification results
can reflect the change of vegetation phenology in the study area to some extent. For
example, the better classification results obtained by SVM in November may be due to the
completion of the peak colouration of the saltcedar in the study area, turning it into
a distinctive orange-yellow colour that allows it to be better distinguished from the co-
occurring vegetation. Therefore, we suggest observing the distinct stages of plant life-
cycle using SYM when conducting a study under phenological guidance is easier. On the
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other hand, the robustness of RF makes it possible to identify saltcedar at any period
without worrying about excessive degradation of classification accuracy due to the
limitation of data acquisition time.

It should be emphasized that the classification and accuracy comparisons were per-
formed separately for each Landsat 8 and Landsat 9 image in this study. Since the training
and test samples for classification were collected separately for each image using the
reference data preparation method (refer to Section 3.1.2), the samples are independent
from each other for each image. Therefore, it is difficult to apply statistical tests to
compare the performance of SVM and RF and draw consistent or comparable conclusions.
However, we strongly recommend applying rigorous statistical tests to compare the
performance of classifiers, such as the nonparametric McNemar test, when generating
thematic classification maps containing extended timescale information in the future,
thus avoiding accuracy metric errors caused by classification methods (Diao and Wang
20164, 2018; Foody 2004; Park et al. 2018; Phan, Kuch, and Lehnert 2020; Schmidt et al.
2014).

5.3. Important bands for saltcedar classification

The shortwave infrared band (SWIR) played an important role in saltcedar classification.
The extensive spread of biocontrol agents is probably the major reason for the prominent
contribution of the shortwave infrared band. Saltcedar tends to form a continuous dense
cover on the riparian corridor. The intra-annual saltcedar defoliation events can be
induced due to the release of saltcedar leaf beetles (Nagler et al. 2021). This can lead to
the frequent presence of non-photosynthetic material in saltcedar habitats, allowing for
a corresponding spectral response in the shortwave infrared bands, leading to
a prominent contribution of this feature in the classification. Previous studies have
revealed that the SWIR sensing capabilities of WorldView-3 increase the classification
accuracy of tropical tree species by allowing the detection of canopy non-photosynthetic
materials (Ferreira et al. 2016). The defoliation of the species favoured the detection of
non-photosynthetic material (branches and litter), which produced variations in the SWIR
reflectance (Ferreira et al. 2019). In other words, SWIR potentially carries important
information indicating the ecological impact of existing saltcedar control strategies,
which needs further investigation. In addition, NDVI and NDWI bands did not significantly
enhance the classification results. Exploiting phenological information to guide the con-
struction of classification features may be an effective approach to improve classification
performance further. For example, The detection strategy based on the phenological
bands can carry rich phenological and spectral information of plants throughout the
growing season and significantly improve the plant identification capability of Landsat
products (Diao and Wang 2016a).

5.4. Optimal time window for saltcedar classification

In addition to November and December, which are consistent with the results of
previous studies, we found that July is also an effective time window for saltcedar
classification in the study area. Both classifiers produced robust classification results
in July. All the Kappa coefficients obtained by SVM exceeded 0.90 in July, with the
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most concentrated distribution. The RF algorithm produced the best classification
results in July throughout the year. This new finding can be associated with the
discussion in Section 5.3. Studies have demonstrated that saltcedar leaf beetles
remain active in the late growing season of saltcedar and that their populations
will have more time to increase in size from midsummer to late summer, resulting in
more frequent saltcedar defoliation (Bean, Dalin, and Dudley 2012). The defoliation
events have altered the original phenological patterns of saltcedar and might lead to
the generation of new spectral information that facilitates the classification. We
admitted that there are limitations in analysing the optimal time window for salt-
cedar classification in monthly terms. Our results indicated that the peak colouration
of saltcedar in the study area probably occurs between November and December.
Under these circumstances, further identification of the time interval in which the
saltcedar phenological stage changes could help to improve the classification
performance.

6. Conclusion

The incorporation of new data to support accurate and timely monitoring of saltcedar is
urgently needed to re-evaluate the ecological impacts of exotic saltcedar in riparian
habitats. In this study, we compared the performance of Landsat 8 and Landsat 9 for intra-
annual saltcedar classification with two effective machine learning algorithms. Our results
indicated no significant difference in the performance between Landsat 9 and Landsat 8
for intra-annual saltcedar classification in the study area. Landsat 8 & 9 constellation has
the potential to refine saltcedar mapping because it can construct more intensive time
series without the necessity of complex data pre-processing. The individual band con-
tribution in saltcedar classification was also explored and we found that the shortwave
infrared band plays a vital role in both Landsat 8 and Landsat 9. This could be associated
with the intra-annual multiple defoliation events in saltcedar due to the release of
biocontrol agents, which needs further investigation. In addition, we identified July as
a novel month suitable for saltcedar classification besides November and December. In
general, Landsat 9 imagery provides an unprecedented opportunity to facilitate the
classification and timely monitoring of saltcedar at larger spatial and temporal scales,
providing fundamental knowledge for understanding large-scale biological invasions and
their response to climate change.
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