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A comparative study on intra-annual classification of invasive 
saltcedar with Landsat 8 and Landsat 9
Ruixuan Li, Le Wang and Ying Lu

Department of Geography, University at Buffalo, Buffalo, NY, USA

ABSTRACT
The rapid expansion of exotic saltcedar along riparian corridors has 
dramatically altered the landscape structure and ecological func
tion of riparian habitats in the western United States. The develop
ment of accurate and reproducible mapping methods with remote 
sensing plays an indispensable role in the timely monitoring of 
saltcedar, re-evaluating its ecological functions, and establishing 
effective control measures. The utmost challenge for achieving 
this goal is manifested as the lack of time series of remote sensing 
images to capture the saltcedar phenology adequately. To this end, 
the newly available Landsat 9 images, combined with its counter
part of Landsat 8, offer a precious opportunity to compensate for 
the temporal image shortage. To understand Landsat 9 in the salt
cedar classification and to discover helpful information for its appli
cation, this study presents the first attempt to classify saltcedar 
using intra-annual Landsat 8 and Landsat 9 images. We adopted 
two machine learning algorithms, support vector machine (SVM) 
and random forest (RF), to compare the performance of Landsat 9 
and Landsat 8 for intra-annual saltcedar classification. In addition, 
we investigated the respective contribution of each spectral band 
to the overall performance and identified the optimal time window 
for saltcedar classification. The results indicated that the difference 
in classification performance between Landsat 9 and Landsat 8 was 
insignificant. The shortwave infrared bands associated with both 
Landsat 8 & 9 have contributed most to the process of saltcedar 
identification. Image acquired in July, November, and December 
yielded better results than other months for saltcedar classification. 
It is concluded that Landsat 8 & 9 constellation has the potential to 
refine saltcedar classification accuracy on larger spatial and tem
poral scales.
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1. Introduction

Saltcedar (Tamarix spp.), an exotic woody shrub introduced to the U.S. in the mid-1800s, 
has actively invaded the southwestern US by alternating the riparian zone vegetation 
composition, depleting water resources, changing the associated wildlife habitat, and 
decreasing biodiversity (Di Tomaso 1998; Friedman et al. 2005; Nagler et al. 2011, 2021). 
Since its first cultivation in California in 1856, this aggressive plant has expanded along the 
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riparian corridor at a rate of 20 km per river reach per year (Graf 1978). It has not only 
significantly destructed the native vegetation but also profoundly altered the riparian 
ecosystem (Nagler et al. 2011). Along with the alternation, the remarkable water- 
consuming capability of saltcedar has exhausted the water resources, increased the 
salinity of the soil, and finally degraded the wildlife habitat quality where the saltcedar 
colonized (Di Tomaso 1998; Hart et al. 2005). Consequently, 93% of riparian wetland 
habitat has declined along the Rio Grande river compared to 1918, resulting in 
a significant decrease in populations of multiple riparian obligate species (Friggens and 
Finch 2015). Thus, to guide the effective control of this invasive species, a detailed map of 
saltcedar is not enough. Timely continuous monitoring of saltcedar is urgently required to 
track its distribution variation.

Remote sensing has greatly succeeded in monitoring the distribution of saltcedar in 
the past 30 years. The application of remote sensing to saltcedar research continues to 
evolve with the development of data. Aerial photographs were first applied to detect 
invasion patterns and spectral characteristics of saltcedar (Everitt and Deloach 1990; 
Everitt et al. 1996). Subsequently, the development of high-resolution aerial and satellite 
imagery has led to more accurate saltcedar distribution mapping for a single time (Diao 
and Wang 2014; Ji and Wang 2015; Silván-Cárdenas and Wang 2010; Wang and Zhang  
2014; Yang, Everitt, and Fletcher 2013). However, due to limited spatial coverage and 
expensive acquisition costs, aerial and high-resolution images are difficult to achieve 
effective regional-scale saltcedar monitoring. Free and easily accessible moderate- 
resolution images provide an effective way to address this problem. The broad spatial 
and temporal coverage of the moderate resolution imagery allows mapping of saltcedar 
distribution and abundance over a larger area (Evangelista et al. 2009; Maruthi Sridhar 
et al. 2010) while quantifying changes in saltcedar evapotranspiration and leaf phenology 
due to the release of the biocontrol agent: saltcedar leaf beetles (Diorhabda carinulata) 
(Bateman, Nagler, and Glenn 2013; Ji, Wang, and Knutson 2017; Nagler et al. 2012). 
However, detecting the distribution of saltcedar by using single-scene Landsat images 
acquired at a specific time still faces challenges. Plants of different phenological stages 
may exist in a single image. The essential phenological features that facilitate the differ
entiation of saltcedar cannot be completely captured in a single observation (Diao and 
Wang 2016a). The development of timely monitoring methods based on long-time scale 
observations to fully utilize the information of phenological dynamics is an important 
approach to improve the accuracy of saltcedar distribution mapping.

The time series of Landsat imagery is suitable for capturing the phenological dynamics 
of invasive plants (Bradley 2014). The phenological bands detection strategy based on the 
Landsat monthly time series was proposed to adapt to the intra-annual phenological 
variation of saltcedar (Diao and Wang 2016a). Compared to the commonly used single- 
scene detection strategy, incorporating phenological bands largely increased the detec
tion accuracy. The overall classification accuracy increased from 83.35% to 88.54%, and 
the Kappa coefficient rose from 0.71 to 0.80. The late autumn and early winter periods 
(October, November, and December) were discovered to be critical for riparian vegetation 
differentiation. In addition to intra-annual phenological change information, inter-annual 
leaf senescence of saltcedar can be predicted by the multiyear spectral angle clustering 
(MSAC) model (Diao and Wang 2018), which can guide the construction of synthetic 
images of Landsat surface reflectance products. Compared to the accuracies of the single- 
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date. image, the user’s accuracy of the saltcedar increased by about 3% and the produ
cer’s accuracy of the saltcedar increased by 9% through using the composite image. On 
the other hand, to address the possible variation in phenological characteristics within 
saltcedar populations in single-date. images, the saltcedar colouration model was dis
covered (Ji and Wang 2016). The timing of saltcedar peak colouration is linearly correlated 
with the timing of leaf drop. This relationship can be modelled by the MODIS end-of- 
season time product (EoST) with Landsat images through a simple linear equation as 
a guide to determine the optimal date for each pixel to obtain Landsat images for 
saltcedar mapping. The result shows that the composite image based on phenology is 
more beneficial for saltcedar distinction than a single-scene image. However, the rela
tively coarse temporal resolution of previous Landsat products makes it difficult to obtain 
sufficient cloud-free imagery to develop a phenology-based detection strategy (Diao and 
Wang 2016a). The highly dynamic properties of saltcedar invasion may cause synthetic 
images generated under the guidance of the saltcedar colouration model or MSAC model 
to fail to produce robust classification results (Diao and Wang 2018; Ji and Wang 2016). 
There is an urgent need to incorporate new data to make the time series more intensive to 
satisfy the requirement for more effective and accurate timely monitoring of saltcedar and 
its co-occurring vegetation (Diao and Wang 2016a, 2018; Ji and Wang 2016).

The release of Landsat 9 provides new opportunities for constructing more intensive 
time series for saltcedar studies. Landsat 9 carries the Operational Land Imager-2 (OLI-2), 
which provides calibrated images, including solar reflectance wavelengths almost equiva
lent to the Landsat 8 OLI (Masek et al., 2020). The combined Landsat 8/9 constellation will 
provide an 8-day observation of the Earth. There have been numerous studies demon
strating that heterogenous image fusion can break through the limitations of the tem
poral resolution of a single data source (Bolton et al. 2020; Liu et al. 2020; Moon, 
Richardson, and Friedl 2021; Pan et al. 2021; Shen et al. 2021; Wang et al. 2020; Zhang 
et al. 2022). However, due to the differences in the sensors in orbit, space, and spectral 
configuration, the physical measurement value and radiation properties of the images will 
be affected. It is often necessary to select compatible bands in different datasets and 
perform appropriate coefficient transformations and resampling to unify remote sensing 
data to obtain comparable results (Graf 1978; Liu et al. 2020; Wang et al. 2020; Zhang et al.  
2022). The same spatial resolution and similar band design of Landsat 9 and Landsat 8 
make it possible to build a more intensive Earth observation system together without the 
need for complex data pre-processing. Landsat 9 has proven to produce outstanding 
results in land use and land cover classification, plant phenology estimation, and water 
quality retrieval (Guo et al. 2022; Niroumand-Jadidi et al. 2022; Shahfahad et al. 2022; You 
et al. 2022). However, the applicability of Landsat 9 data to saltcedar-related studies has 
not been investigated. The differences in performance between Landsat 9 and Landsat 8 
for saltcedar classification need to be scientifically compared. The role played by different 
bands in saltcedar identification using OLI series sensors is unclear. More intensive time 
series may also bring new knowledge of the critical period for saltcedar classification. 
These issues need to be addressed for our in-depth understanding of the utilization of 
Landsat 8 & 9 constellation for accurate timely monitoring of saltcedar invasion and re- 
evaluation of its ecological functions in the future.

The overall objective of this study was to understand Landsat 9 in saltcedar 
classification. Specifically, we set up three objectives: (1) to compare the performance 
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of Landsat 9 V.S. Landsat 8 for intra-annual saltcedar classification; (2) to quantify the 
individual band contribution of Landsat 8 and Landsat 9; (3) to identify the intra- 
annual optimal time window for combining Landsat 8 and 9. We expect the results to 
provide a scientific foundation for data selection for the saltcedar remote monitoring 
while possessing the potential for generalization and replication to larger spatial and 
temporal scales.

2. Study site

The Rio Grande River originates from southern Colorado’s San Juan Mountains and 
travels south to the Gulf of Mexico. It is one of the most regulated rivers in the 
southwestern US. The study site is near the town of San Antonio, New Mexico (33° 
48′18″ N, 106°53′26″ W, 1375 m elev.), at the Middle Rio Grande River (Figure 1). 
The width of the riparian corridor is about 2 km. According to the description 
provided in earlier research, the climate at this study location is classified as dry to 
the south and semiarid to the north. Dense, single-species saltcedar dominates the 
riverbank.

3. Methods

Four major steps were followed in this research as summarized in Figure 2: (i) reference 
data preparation and image pre-processing, (ii) intra-annual saltcedar classification with 
Landsat 8 & 9, (iii) individual band contribution quantification, (iv) intra-annual optimal 
time window identification.

Figure 1. The geographic location of the study site with the preview of the false-colour composite of 
Landsat imagery on the right side.
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3.1. Image pre-processing and reference data preparation

3.1.1. Landsat time series data
To compare the performance of Landsat 9 and Landsat 8 for intra-annual saltcedar 
classification, all the LSR images from Nov.1, 2021, to Nov.1, 2022, were collected 
for Landsat 9 and Landsat 8, respectively. Initially, we acquired 66 Landsat 8 
images and 65 Landsat 9 images that completely covered the study site. The de- 
clouding mask was then established in Google Earth Engine (GEE) for all LSR 
images in both Landsat 8 and Landsat 9 datasets. We excluded the images with 
more than 20% of cloud coverage. Finally, the remaining 59 Landsat 8 images and 
57 Landsat 9 images were collected (Table 1). In addition, two typical vegetation 
indices, the normalized difference vegetation index (NDVI) and normalized differ
ence water index (NDWI) (Diao and Wang 2016a; Gao 1996; Huang et al. 2021; 

Figure 2. Flowchart of the methodology.
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Pettorelli et al. 2005), were calculated for each image and involved them as 
candidate features for saltcedar classification.

3.1.2. Saltcedar reference data preparation
The saltcedar reference data, including training and validation samples, were pre
pared by resampling the classification result of an aerial image produced by the 
National Agriculture Image Program (NAIP). Since no NAIP image was available in 
2021 and 2022, we selected the one acquired at the closest date, 2020, for this study. 
This NAIP image, at 0.6 m resolution with four spectral bands: blue, green, red, and 
near-infrared, was downloaded from the New Mexico Resource Geographic 
Information System (RGIS, http://rgis.unm.edu/). It was ready to use with image 
orthorectification.

The spectral angle mapper (SAM) was utilized to classify the NAIP image since it 
has been proven effective in saltcedar classification with high spatial resolution 
images (Narumalani et al. 2006). Thus, we believe SAM can help acquire reliable 
ground truth of saltcedar from the NAIP image. SAM identifies the similarity of the 
image spectra to the reference spectra in the spectral library by treating them as 
vectors in n-dimensional space and calculating the angle. The image spectra forming 
the smallest spectral angle are assigned to the corresponding category (Kruse et al.  
1993). This technique is relatively insensitive to the effects of illumination and 
albedo when used for calibrated reflectance data. Additionally, in order to eliminate 
the errors caused by the time mismatch between the Landsat images and the NAIP 
image, high-resolution images in 2020, 2021, and 2022 on Google earth pro were 
used as references.

Then, the classification result of NAIP was resampled from 0.6 m to 30 m resolution 
using zonal statistics in order to produce reference data for the 30 m spatial resolution 
Landsat images. First, we used a 30 m grid to perform zonal statistics on the classification 
result. Then, 50% was set as the threshold to label each 30 m-by-30 m pixel as saltcedar 
(>50%) or non-saltcedar (<50%). At last, a total of 663 30 m-by-30 m pixels were labelled 
as saltcedar. A zoom-in view of the resultant reference data can be found in Figure 3. 
However, pixels with no saltcedar in their 3-by-3 neighbouring pixels were considered as 
salt and pepper errors since they have a high probability of being misclassified. After 
removing the salt and pepper errors, a total of 350 pixels were collected as saltcedar 
reference data. These reference data were randomly split into two parts: 80% were used to 
generate training samples, and the other 20% were used as validation samples for 
subsequent accuracy assessment of Landsat classification results.

Table 1. Summary of LSR image data used in this study. The 
number in brackets represents the total number of scenes in 
the data series.

Satellite Path and Row Number of scenes

Landsat 8 (59) p33r37 21
p34r36 19
p34r37 19

Landsat 9 (57) p33r37 18
p34r36 19
p34r37 20
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3.2. Intra-annual saltcedar classification with Landsat 8 & 9

To compare the performance of Landsat 9 and Landsat 8 on intra-annual saltcedar 
classification, we employed two machine learning algorithms that have been proven to 
achieve favourable results in both saltcedar classification and the classification of other 
land use and land cover types (Sheykhmousa et al. 2020): support vector machine (SVM) 
(Fletcher, Everitt, and Yang 2011; Ji and Wang 2015; Tai and Wang 2014; Wang and Zhang  
2014; Xun and Wang 2015) and random forest (RF) (Diao and Wang 2016a, 2018). 
However, another algorithm commonly used in saltcedar classification: the spectral 
angle mapper (SAM) (Diao and Wang 2018; Silván-Cárdenas and Wang 2010), was not 
applied and discussed in this study due to the inability to conduct ground surveys to 
obtain sufficient information about the co-occurring species and their spectra. In addition, 
the performance of Landsat 8 and Landsat 9 with the two algorithms was investigated by 
evaluating the classification accuracy using confusion matrices.

3.2.1. Classification algorithms
SVM has been proven to be effective with a small amount of training samples and high- 
dimensional images (Pal and Mather 2005). It strives to find an optimal hyperplane that 
maximizes the margin between two classes based on the support vectors, defined as each 
class’s nearest vector to the hyperplane. The initial linear SVM assumes that the multi
dimensional data are linearly separable, but the sample data often overlap in practice. 
Therefore, a kernel function is introduced to project the input data into a higher dimen
sional space to construct the hyperplane. We used the radial basis function (RBF) as the 

Figure 3. A zoom-in view of pixels with more than 50% coverage by saltcedar in zonal statistics. Pixels 
in the red box were selected as saltcedar reference data. The base image is an LSR product.
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kernel function because it is the most commonly used kernel function for classifying 
remote sensing images and has the best performance in saltcedar classification (Ji and 
Wang 2015; Tai and Wang 2014; Wang and Zhang 2014; Xun and Wang 2015). When using 
RBF as the kernel function, it is inevitable to define two critical parameters, γ and C. Where 
γ represents the range of influence of a particular training sample in the high-dimensional 
space and C indicates the tolerance of the model to misclassification. Referring to the 
previous study on saltcedar classification with SVM (Wang and Zhang 2014), the grid 
search method was applied to determine the optimal γ and C (Hsu, Chang, and Lin 2003). 
We first defined the lower bounds for γ and C and independently increased them at each 
step up to the upper bounds at an exponential pace (γ ∈ [2−5, 23], C ∈ [2−3, 25], 
specifically). Then we compared the overall accuracies obtained by SVM with different 
combinations of γ and C for a total of eight test images (four for Landsat 8 and four for 
Landsat 9, acquired at close dates in March, June, September, and December, respec
tively). The results suggested that the highest overall classification accuracy could be 
achieved when γ = 8, C = 32 for all test images. Therefore, we applied the SVM constructed 
with γ = 8, C = 32 to classify all Landsat images acquired in this study.

A random forest (RF) is an ensemble of a number of decision trees. The construction of 
each decision tree is based on randomly selected features of the training samples 
(Breiman 2001). As an ensemble method, RF is robust to small changes in the input 
data and insensitive to noise. In addition, RF is able to process thousands of candidate 
features simultaneously and measure the importance of each candidate feature since it 
does not require dimensionality reduction of the data, making it one of the ideal 
classification methods for saltcedar classification (Diao and Wang 2016a). The ability of 
the random forest to evaluate the variable importance measures (VIMs) is also an impor
tant reason for choosing it as one of our classification algorithms, which can provide the 
basis for the subsequent quantification of individual band contribution. To run the RF 
model, two parameters must be set: the number of randomly selected features (Mtry) and 
the number of trees (Ntree). In this study, Mtry was set to the square root of the total 
number of features, which is the most recommended value (Sheykhmousa et al. 2020). 
The number of decision trees (Ntree) for RF was set to 100. This number was derived by 
the following two steps: we first trained the RF model consisting of 50 decision trees using 
training samples, then used this model to pre-classify the Landsat 8 and Landsat 9 
datasets. Images with the highest overall classification accuracy of both datasets were 
extracted for testing the effect of the number of decision trees in the interval from 5 to 
200 with a step size of 5. The result indicated that two images achieved the highest overall 
accuracy when the number of decision trees was 100. Therefore, all images were reclassi
fied using an RF model containing 100 decision trees.

3.2.2. Accuracy assessment
The confusion matrix was constructed for each classification result with validation sam
ples. Four accuracy metrics: overall Accuracy (OA), Kappa coefficients, producer’s accuracy 
(PA), user’s accuracy (UA), and F-1 score, were calculated from the confusion matrix. 
Among them, the saltcedar producer’s accuracy, the saltcedar user’s accuracy, and 
Kappa coefficients are the most frequently used metrics in the subsequent analysis 
because the saltcedar producer’s accuracy and the saltcedar user’s accuracy are intuitive 
representations of saltcedar classification results (Diao and Wang 2016a, 2016b; Ji and 
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Wang 2016; Ji, Wang, and Knutson 2017; Wang et al. 2013), while the kappa coefficient 
considers all elements of the confusion matrix and better reflects the consistency of 
classification results with the reality than overall accuracy (Fung and LeDrew 1988). The 
F-1 score was also calculated to compare the comprehensive performance of the two 
datasets in saltcedar classification. In addition, since the LSR images of path 34 row 36 and 
path 34 row 37 covered the whole study area and were acquired at the same time, we 
selected the images with relatively higher saltcedar user’s accuracy for the subsequent 
analysis.

3.3. Individual band contribution quantification

The individual band contribution for saltcedar classification was quantified by the feature 
important analysis with variable importance measurement (VIM) carried by the RF classi
fication algorithm. The RF classification results with the highest overall accuracy were 
selected for VIM in Landsat 8 and Landsat 9, respectively. The VIM was accomplished by 
the ‘ee. Classifier. explain’ function in GEE. This function uses the mean decrease in Gini 
(MDG) to quantify the importance of different variables, defined as the total decrease in 
node impurities from splitting on the variable, averaged over all trees (Han, Guo, and Yu  
2016). If a variable is important to the classification result, it tends to split mixed labelled 
nodes into pure single-class nodes. The higher quantity of pure nodes produced after 
splitting, the greater the total impurities reduction and the corresponding MDG. For each 
variable, i.e. the individual band used for the classification, the higher this mean value was, 
the greater the impact on classification accuracy when this band was changed, as well as 
the higher importance.

It should be noted that only the RF was used for feature importance analysis in this 
study. This is because the classification performance of SVM can benefit from feature 
importance derived by RF (Löw et al. 2013). The feature importance ranking generated by 
RF can guide the input feature selection of the SVM algorithm, thus improving the overall 
accuracy of the SVM based on the reduction of feature redundancy. In addition, the RF- 
based feature selection technique has the advantage of less training time while providing 
comparable performance to the SVM-based feature selection technique (Pal 2006). 
Therefore, we believe that feature importance analysis using RF to quantify the contribu
tion of the individual band in saltcedar classification is representative and generalizable.

3.4. Intra-annual optimal time window identification

The classification results of Landsat 8 and Landsat 9 images after accuracy assessment in 
Section 3.2.2 were arranged and integrated in order of image acquisition time for the 
whole year to identify the intra-annual optimal time window for saltcedar classification. 
The Kappa coefficients for the classification results in this dataset were then aggregated 
month by month. In addition, their medians were calculated for each month. Larger 
Kappa coefficients and medians represent higher classification accuracy of LSR images 
obtained in that month. Thus this month was defined as the best time window. Although 
in previous studies, late fall and early winter were considered the optimal time window 
because saltcedar at this stage has a characteristic orange-yellow colour that better 
distinguishes it from co-occurring vegetation (Diao and Wang 2016a; Evangelista et al.  
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2009; Ji and Wang 2016; Narumalani et al. 2006; Silván-Cárdenas and Wang 2010; Wang 
et al. 2013; Yang, Everitt, and Fletcher 2013). However, a more intensive time series 
consisting of Landsat 8 and Landsat 9 together may bring new knowledge on the optimal 
time window for saltcedar classification and provide more options in terms of data 
acquisition time. In addition, the distribution of kappa coefficients for each month can 
describe the robustness of saltcedar classification with different algorithms in different 
periods.

4. Results

4.1. Comparison of Landsat 8 & 9 in intra-annual saltcedar classification

The performance of Landsat 9 and Landsat 8 for intra-annual saltcedar classification was 
first compared by averaging five accuracy metrics of all classification results (Figure 4). For 
Landsat 9, the average overall classification accuracy obtained with the SVM classification 
algorithm was 0.92, the average Kappa coefficient was 0.89, and the corresponding 
average producer’s accuracy, user’s accuracy, and F-1 score of saltcedar were 0.86, 0.98, 
and 0.91, respectively. The average overall accuracy, average saltcedar producer’s accu
racy, average kappa coefficient, and average F-1 score obtained with RF classification 
algorithm are higher than those of SVM, which are 0.93, 0.90, 0.91, and 0.93, respectively. 
However, the average saltcedar user’s accuracy yielded from the RF classification algo
rithm (0.97) is lower than that of SVM (0.98). The classification results of Landsat 8 exhibit 
similar patterns among the five average accuracy metrics. Regardless of the classification 
algorithm used, the difference between the average of the five metrics for Landsat 9 and 
Landsat 8 was insignificant (maximum difference of 0.01). Our results indicated that 
Landsat 9 performs consistently with Landsat 8 for intra-annual saltcedar classification 
and is independent of the choice of the classification algorithm.

The line graphs generated chronologically from image-by-image revealed the 
reasons for the similar average accuracy metrics achieved by Landsat 9 and 
Landsat 8 across the year (Figure 5). Regardless of which classification algorithm 
was used, the classification results obtained by Landsat 9 and Landsat 8 presented 
a high degree of overlap and similar trends on the time scale, especially on the 

Figure 4. Average accuracy metrics of Landsat 8 & 9 classification results.
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saltcedar user’s accuracies and Kappa coefficients. In addition, RF outperformed 
SVM in terms of saltcedar producer’s accuracy and Kappa coefficients for both 
datasets. In contrast, more than 54% of the saltcedar user’s accuracies produced by 
SVM were higher than those of RF (Figure 6). This indicated that using RF for 
classification can better avoid the omission of saltcedar pixels, while using SVM can 
reduce the probability of saltcedar pixels being misclassified as other land cover 
types.

4.2. Contribution of individual band to saltcedar classification

Two shortwave infrared bands (SR_B6 and SR_B7) contribute more to the saltcedar 
classification. The importance of the sixth band (SR_B6, SWIR 1, wavelength 1.57–1.65  
µm) is the most prominent, 43.5% higher than the green band, which has the lowest 
contribution. The contribution of the same individual bands in the saltcedar classification 
of Landsat 9 is identical to that of Landsat 8. Different bands contribute to the saltcedar 
classification at different levels (Figure 7). Each band of the Landsat 8 and Landsat 9 
products contains valuable information for saltcedar classification.

Figure 5. Three accuracy metrics for classification results produced by using the same algorithm for 
different datasets: (a) saltcedar producer’s accuracy by SVM; (b) saltcedar producer’s accuracy by RF; (c) 
saltcedar user’s accuracy by SVM; (d) saltcedar user’s accuracy by RF; (e) Kappa coefficient by SVM; (f) 
Kappa coefficient by RF.
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It should be noted that NDVI and NDWI bands contribute more to the saltcedar 
classification than the visible and near-infrared bands. As a result, the incorporation of 
NDVI and NDWI bands for classification improved the annual average of all accuracy 
metrics for RF classification results (Figure 8), but the maximum improvement was 
only 0.02.

Figure 6. Three accuracy metrics for classification results produced by using different algorithms for 
the same dataset: (a) saltcedar producer’s accuracy of Landsat 8; (b) saltcedar producer’s accuracy of 
Landsat 9; (c) saltcedar user’s accuracy of Landsat 8; (d) saltcedar user’s accuracy of Landsat 9; (e) 
Kappa coefficient of Landsat 8; (f) Kappa coefficient of Landsat 9.

Figure 7. Variable importance of RF classification in Landsat 8 and Landsat 9 datasets.
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4.3. Optimal months for saltcedar classification

The optimal time window for saltcedar classification was investigated by summarizing the 
Kappa coefficients from the classification results of SVM and RF month by month. Our results 
indicated that the SVM-based saltcedar classification exhibits considerable monthly differ
ences. November to December is the optimal time window for saltcedar classification with 
SVM in the study area. The median values of Kappa coefficients for these two months are the 
highest at 0.91, which is 0.05 higher than the lowest month (January, 0.86) (Figure 9). In 
addition to January, the classification results for March and April are also unfavourable. The 

Figure 8. Comparison of RF classification results with and without the inclusion of NDVI and NDWI as 
classification features.

Figure 9. Individual value plots of Kappa coefficients based on SVM classification results. The black 
spots stand for the median value of each month.
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median values of the Kappa coefficients of these two months are relatively low and the intra- 
month distribution of them is also dispersed with a maximum variation of 0.09, indicating that 
the classification results of the images acquired in these two months are inconstant. The RF- 
based classification results are less affected by the image acquisition time. July is the optimal 
time window for saltcedar classification with RF in the study area, with a median Kappa 
coefficient of 0.93. Both intra-month and inter-month classification results exhibit robustness. 
The maximum difference between Kappa coefficients within the same month is 0.07. The 
median values of monthly Kappa coefficients are all above 0.90, and the difference between 
the maximum and the minimum median values is 0.03. The maximum difference in median 
values between the two adjacent months was even more negligible (0.02) (Figure 10).

Although the optimal months for the two classification algorithms, SVM and RF, to be used 
for saltcedar classification are different, this does not indicate that the optimal time windows 
for the different classification algorithms are entirely independent. For example, July is the 
only month which all the Kappa coefficients produced by the SVM exceeded 0.90. This 
indicated that it is feasible to obtain accurate results for saltcedar classification using SVM in 
July. In addition, both SVM and RF yielded the best Kappa coefficient (0.96) on 
4 December 2021. This implied that the best saltcedar classification results could be obtained 
for images acquired in early December. In conclusion, our results revealed that July, 
November, and December are crucial months for saltcedar classification using the Landsat 
time series and can be used as optimal time windows.

5. Discussion

The newly available Landsat 9 images, combined with its counterpart of Landsat 8, 
offer a precious opportunity to compensate for the temporal image shortage. In 

Figure 10. Individual value plots of Kappa coefficients based on RF classification results. The black 
spots stand for the median value of each month.
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this study, we compared the intra-annual classification performance of Landsat 9 
and Landsat 8 by adopting SVM and RF. The results indicated that there is no 
significant difference in the performance of Landsat 9 in intra-annual saltcedar 
classification compared to Landsat 8. The comparison of the classification results 
also revealed differences in the performance of the two algorithms. In addition, we 
quantified the contribution of the individual band to saltcedar classification and 
identified the optimal time window for intra-annual saltcedar classification using 
Landsat 8 & 9 constellation. Our findings suggested that the more intensive time 
series constructed by combining Landsat 8 & 9 has the potential to improve the 
accuracy of saltcedar classification further. To our knowledge, this study presented 
the first attempt at classifying saltcedar over the course of an entire year with 
Landsat 9 images.

5.1. Merits of saltcedar classification with Landsat 9

Landsat 9 images, while obtaining promising single-scene saltcedar classification accu
racy, can be combined with Landsat 8 to construct a more intensive time series to improve 
the timely monitoring efficiency of saltcedar and capture more comprehensive informa
tion on saltcedar dynamics in the future.

The results of our study indicated that the classification performance of Landsat 8 & 9 
for saltcedar is largely identical. This finding is consistent with the conclusions of studies 
on land use and land cover classification with Landsat 9 (Shahfahad et al. 2022; You et al.  
2022). Regardless of the classification algorithm used, Landsat 8 and Landsat 9 yielded 
similar classification results. This can be attributed to the fact that Landsat 9 is equipped 
with an almost equivalent OLI-2 sensor as the Landsat 8 OLI (Masek et al., 2020). Therefore, 
the constellation system of Landsat 8 & 9 can be employed as a comprehensive, 30-metre 
spatial resolution and 8-day temporal resolution data source to construct a more intensive 
time series, doubling the amount of available data. The increase in the number of 
available images will promote the construction of a more intensive time series, enabling 
remote observations to more easily locate characteristic phenology information that is 
conducive to distinguishing saltcedar and thus improving classification accuracy (Diao 
and Wang 2016a, 2016b, 2018; Ji and Wang 2016). For example, the saltcedar peak 
colouration model proposed by Ji and Wang (2016) is based on the principle of selecting 
the Landsat image closest to the characteristic saltcedar phenology for each pixel, thus 
improving the discrimination of saltcedar. It can be envisaged that as the time series 
become more intensive, we will have more images available of specific areas, which may 
enable our approaching or covering the distinct phenological periods of saltcedar.

More intensive time series will also contribute to our ability to track and identify 
phenological changes in specific vegetation. The 16-day temporal resolution of the 
previous Landsat products has been argued to be unable to fully exploit the potential 
of some vegetation indices (e.g. NDVI) in describing plant phenology (Diao and Wang  
2016a). More intensive observations make it possible to map phenology at a finer spatial 
scale and over a larger area (Gao and Zhang 2021) and determine the optimal vegetation 
indices for vegetation mapping at different phenophases (Guo et al. 2022). For example, 
in another study by Diao and Wang (2016b), the phenological process of saltcedar from 
leaf growth to leaf drop (i.e. leaf senescence process) was simulated using multi-temporal 
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spectral features. This multi-temporal spectral feature will become more accurate with the 
densification of time series.

It should be noted that the reason why the higher radiometric resolution of Landsat 9 
than Landsat 8 was not outstanding in the saltcedar classification of this study is unclear. 
Landsat 9 can differentiate 16,384 shades of a given wavelength with the higher radio
metric resolution. In comparison, Landsat 8 provides 12-bit data and 4,096 shades (Masek 
et al., 2020). The advanced design for radiation information acquisition makes Landsat 9 
spacecraft could downlink the full 14 bits-per-pixel from OLI-2, rather than the 12 bits 
currently downlinked by Landsat 8, allowing sensors to detect more subtle differences, 
especially over darker areas such as water or dense forests. We assume that because the 
study site is a mixed stand of woody species dominated by saltcedar (Hamilton et al.  
2019), the absence of dense canopy shade prevents Landsat 9 from fully exploiting its 
advantage of providing information in the dark area. On the other hand, it has been 
proven that there is a sizable intra-scene variation in the phenology of saltcedar. With the 
change in environmental conditions, such as latitude and the distance to water resources, 
the saltcedar in the same region may be in different phenological stages at the same time 
(Ji and Wang 2016). The impact of this intra-scene variation on the classification perfor
mance of Landsat 9 needs to be further investigated in the future.

5.2. Selection of the classification algorithm

The pixel-level classification performance of two machine learning algorithms that have 
proven to have outstanding capabilities in saltcedar monitoring: SVM and RF, were 
compared in this study. Although both algorithms obtain remarkable classification accu
racy for the same images, the results show the advantages and disadvantages of each 
algorithm. For example, RF outperforms SVM in saltcedar producer’s accuracy, while SVM 
is superior in saltcedar user’s accuracy. In other words, RF would be a better choice if the 
objective is to avoid missing pixels of saltcedar, while SVM can better satisfy the require
ment of preventing saltcedar from being misclassified as other land cover types and 
improving the accuracy in fieldwork.

Differences between the classification performance of SVM and RF affected by image 
acquisition time were observed on long-time scales. Although the input candidate 
features are the same for both classification models, the randomness of the features 
and samples of RF makes it insensitive to spectral differences in the same land cover type 
due to the different times of image acquisition. This can also be reflected in the more 
concentrated Kappa distribution of multiple images acquired within the same month 
using the RF classifier. SVM emphasizes the linear differentiability between each feature. 
When the spectral difference between saltcedar and co-occurring vegetation is relatively 
small (e.g. they have completely defoliated), the classification accuracy will be reduced 
accordingly. At the same time, the variation trend exhibited by SVM classification results 
can reflect the change of vegetation phenology in the study area to some extent. For 
example, the better classification results obtained by SVM in November may be due to the 
completion of the peak colouration of the saltcedar in the study area, turning it into 
a distinctive orange-yellow colour that allows it to be better distinguished from the co- 
occurring vegetation. Therefore, we suggest observing the distinct stages of plant life- 
cycle using SVM when conducting a study under phenological guidance is easier. On the 
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other hand, the robustness of RF makes it possible to identify saltcedar at any period 
without worrying about excessive degradation of classification accuracy due to the 
limitation of data acquisition time.

It should be emphasized that the classification and accuracy comparisons were per
formed separately for each Landsat 8 and Landsat 9 image in this study. Since the training 
and test samples for classification were collected separately for each image using the 
reference data preparation method (refer to Section 3.1.2), the samples are independent 
from each other for each image. Therefore, it is difficult to apply statistical tests to 
compare the performance of SVM and RF and draw consistent or comparable conclusions. 
However, we strongly recommend applying rigorous statistical tests to compare the 
performance of classifiers, such as the nonparametric McNemar test, when generating 
thematic classification maps containing extended timescale information in the future, 
thus avoiding accuracy metric errors caused by classification methods (Diao and Wang  
2016a, 2018; Foody 2004; Park et al. 2018; Phan, Kuch, and Lehnert 2020; Schmidt et al.  
2014).

5.3. Important bands for saltcedar classification

The shortwave infrared band (SWIR) played an important role in saltcedar classification. 
The extensive spread of biocontrol agents is probably the major reason for the prominent 
contribution of the shortwave infrared band. Saltcedar tends to form a continuous dense 
cover on the riparian corridor. The intra-annual saltcedar defoliation events can be 
induced due to the release of saltcedar leaf beetles (Nagler et al. 2021). This can lead to 
the frequent presence of non-photosynthetic material in saltcedar habitats, allowing for 
a corresponding spectral response in the shortwave infrared bands, leading to 
a prominent contribution of this feature in the classification. Previous studies have 
revealed that the SWIR sensing capabilities of WorldView-3 increase the classification 
accuracy of tropical tree species by allowing the detection of canopy non-photosynthetic 
materials (Ferreira et al. 2016). The defoliation of the species favoured the detection of 
non-photosynthetic material (branches and litter), which produced variations in the SWIR 
reflectance (Ferreira et al. 2019). In other words, SWIR potentially carries important 
information indicating the ecological impact of existing saltcedar control strategies, 
which needs further investigation. In addition, NDVI and NDWI bands did not significantly 
enhance the classification results. Exploiting phenological information to guide the con
struction of classification features may be an effective approach to improve classification 
performance further. For example, The detection strategy based on the phenological 
bands can carry rich phenological and spectral information of plants throughout the 
growing season and significantly improve the plant identification capability of Landsat 
products (Diao and Wang 2016a).

5.4. Optimal time window for saltcedar classification

In addition to November and December, which are consistent with the results of 
previous studies, we found that July is also an effective time window for saltcedar 
classification in the study area. Both classifiers produced robust classification results 
in July. All the Kappa coefficients obtained by SVM exceeded 0.90 in July, with the 
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most concentrated distribution. The RF algorithm produced the best classification 
results in July throughout the year. This new finding can be associated with the 
discussion in Section 5.3. Studies have demonstrated that saltcedar leaf beetles 
remain active in the late growing season of saltcedar and that their populations 
will have more time to increase in size from midsummer to late summer, resulting in 
more frequent saltcedar defoliation (Bean, Dalin, and Dudley 2012). The defoliation 
events have altered the original phenological patterns of saltcedar and might lead to 
the generation of new spectral information that facilitates the classification. We 
admitted that there are limitations in analysing the optimal time window for salt
cedar classification in monthly terms. Our results indicated that the peak colouration 
of saltcedar in the study area probably occurs between November and December. 
Under these circumstances, further identification of the time interval in which the 
saltcedar phenological stage changes could help to improve the classification 
performance.

6. Conclusion

The incorporation of new data to support accurate and timely monitoring of saltcedar is 
urgently needed to re-evaluate the ecological impacts of exotic saltcedar in riparian 
habitats. In this study, we compared the performance of Landsat 8 and Landsat 9 for intra- 
annual saltcedar classification with two effective machine learning algorithms. Our results 
indicated no significant difference in the performance between Landsat 9 and Landsat 8 
for intra-annual saltcedar classification in the study area. Landsat 8 & 9 constellation has 
the potential to refine saltcedar mapping because it can construct more intensive time 
series without the necessity of complex data pre-processing. The individual band con
tribution in saltcedar classification was also explored and we found that the shortwave 
infrared band plays a vital role in both Landsat 8 and Landsat 9. This could be associated 
with the intra-annual multiple defoliation events in saltcedar due to the release of 
biocontrol agents, which needs further investigation. In addition, we identified July as 
a novel month suitable for saltcedar classification besides November and December. In 
general, Landsat 9 imagery provides an unprecedented opportunity to facilitate the 
classification and timely monitoring of saltcedar at larger spatial and temporal scales, 
providing fundamental knowledge for understanding large-scale biological invasions and 
their response to climate change.

Acknowledgements

This work is supported by the National Science Foundation (Award # 1951657).

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The work was supported by the National Science Foundation [1951657]

2110 R. LI ET AL.



Data availability statement

The code and data that support the findings are available on Google Earth Engine with the following 
URLs: https://code.earthengine.google.com/24e8fd76b97cc26c4ef0da802522aa58 (SVM); https:// 
code.earthengine.google.com/01ff46032bf5f4ca4dad9d91b8b7c5b2 (Random Forest).

References

Bateman, H., P. L. Nagler, and E. Glenn. 2013. “Plot-And Landscape-Level Changes in Climate and 
Vegetation Following Defoliation of Exotic Saltcedar (Tamarix Sp.) from the Biocontrol Agent 
Diorhabda Carinulata Along a Stream in the Mojave Desert (USA).” Journal of Arid Environments 
89: 16–20. doi:10.1016/j.jaridenv.2012.09.011.

Bean, D. W., P. Dalin, and T. L. Dudley. 2012. “Evolution of Critical Day Length for Diapause Induction 
Enables Range Expansion of Diorhabda Carinulata, a Biological Control Agent Against Tamarisk 
(Tamarix Spp.).” Evolutionary Applications 5 (5): 511–523. doi:10.1111/j.1752-4571.2012.00262.x.

Bolton, D. K., J. M. Gray, E. K. Melaas, M. Moon, L. Eklundh, and M. A. Friedl. 2020. “Continental-Scale 
Land Surface Phenology from Harmonized Landsat 8 and Sentinel-2 Imagery.” Remote Sensing of 
Environment 240: 111685. doi:10.1016/j.rse.2020.111685.

Bradley, B. A. 2014. “Remote Detection of Invasive Plants: A Review of Spectral, Textural and 
Phenological Approaches.” Biological Invasions 16 (7): 1411–1425. doi:10.1007/s10530-013- 
0578-9.

Breiman, L. 2001. “Random Forests.” Machine Learning 45 (1): 5–32. doi:10.1023/A:1010933404324.
Diao, C., and L. Wang. 2014. “Development of an Invasive Species Distribution Model with 

Fine-Resolution Remote Sensing.” International Journal of Applied Earth Observation and 
Geoinformation 30: 65–75. doi:10.1016/j.jag.2014.01.015.

Diao, C., and L. Wang. 2016a. “Incorporating Plant Phenological Trajectory in Exotic Saltcedar 
Detection with Monthly Time Series of Landsat Imagery.” Remote Sensing of Environment 182: 
60–71. doi:10.1016/j.rse.2016.04.029.

Diao, C., and L. Wang. 2016b. “Temporal Partial Unmixing of Exotic Salt Cedar Using Landsat Time 
Series.” Remote Sensing Letters 7 (5): 466–475. doi:10.1080/2150704X.2016.1149250.

Diao, C., and L. Wang. 2018. “Landsat Time Series-Based Multiyear Spectral Angle Clustering (MSAC) 
Model to Monitor the Inter-Annual Leaf Senescence of Exotic Saltcedar.” Remote Sensing of 
Environment 209: 581–593. doi:10.1016/j.rse.2018.02.036.

Di Tomaso, J. M. 1998. “Impact, Biology, and Ecology of Saltcedar (Tamarix Spp.) in the Southwestern 
United States.” Weed Technology 12 (2): 326–336. doi:10.1017/S0890037X00043906.

Evangelista, P. H., T. J. Stohlgren, J. T. Morisette, and S. Kumar. 2009. “Mapping Invasive Tamarisk 
(Tamarix): A Comparison of Single-Scene and Time-Series Analyses of Remotely Sensed Data.” 
Remote Sensing 1 (3): 519–533. doi:10.3390/rs1030519.

Everitt, J., and C. Deloach. 1990. “Remote Sensing of Chinese Tamarisk (Tamarix Chinensis) and 
Associated Vegetation.” Weed Science 38 (3): 273–278. doi:10.1017/S0043174500056526.

Everitt, J. H., D. E. Escobar, M. A. Alaniz, M. R. Davis, and J. V. Richerson. 1996. “Using Spatial 
Information Technologies to Map Chinese Tamarisk (Tamarix Chinensis) Infestations.” Weed 
Science 44 (1): 194–201. doi:10.1017/S0043174500093759.

Ferreira, M. P., F. H. Wagner, L. E. Aragão, Y. E. Shimabukuro, and C. R. de Souza Filho. 2019. “Tree 
Species Classification in Tropical Forests Using Visible to Shortwave Infrared WorldView-3 Images 
and Texture Analysis.” Isprs Journal of Photogrammetry and Remote Sensing 149: 119–131. doi:10. 
1016/j.isprsjprs.2019.01.019.

Ferreira, M. P., M. Zortea, D. C. Zanotta, Y. E. Shimabukuro, and C. R. de Souza Filho. 2016. “Mapping 
Tree Species in Tropical Seasonal Semi-Deciduous Forests with Hyperspectral and Multispectral 
Data.” Remote Sensing of Environment 179: 66–78. doi:10.1016/j.rse.2016.03.021.

Fletcher, R. S., J. H. Everitt, and C. Yang. 2011. “Identifying Saltcedar with Hyperspectral Data and 
Support Vectormachines.” Geocarto International 26 (3): 195–209. doi:10.1080/10106049.2010. 
551669.

INTERNATIONAL JOURNAL OF REMOTE SENSING 2111

https://code.earthengine.google.com/24e8fd76b97cc26c4ef0da802522aa58
https://code.earthengine.google.com/01ff46032bf5f4ca4dad9d91b8b7c5b2
https://code.earthengine.google.com/01ff46032bf5f4ca4dad9d91b8b7c5b2
https://doi.org/10.1016/j.jaridenv.2012.09.011
https://doi.org/10.1111/j.1752-4571.2012.00262.x
https://doi.org/10.1016/j.rse.2020.111685
https://doi.org/10.1007/s10530-013-0578-9
https://doi.org/10.1007/s10530-013-0578-9
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.jag.2014.01.015
https://doi.org/10.1016/j.rse.2016.04.029
https://doi.org/10.1080/2150704X.2016.1149250
https://doi.org/10.1016/j.rse.2018.02.036
https://doi.org/10.1017/S0890037X00043906
https://doi.org/10.3390/rs1030519
https://doi.org/10.1017/S0043174500056526
https://doi.org/10.1017/S0043174500093759
https://doi.org/10.1016/j.isprsjprs.2019.01.019
https://doi.org/10.1016/j.isprsjprs.2019.01.019
https://doi.org/10.1016/j.rse.2016.03.021
https://doi.org/10.1080/10106049.2010.551669
https://doi.org/10.1080/10106049.2010.551669


Foody, G. M. 2004. “Thematic Map Comparison: Evaluating the Statistical Significance of Differences 
in Classification Accuracy.” Photogrammetric Engineering and Remote Sensing 70 (5): 627–634. 
doi:10.14358/PERS.70.5.627.

Friedman, J. M., G. T. Auble, P. B. Shafroth, M. L. Scott, M. F. Merigliano, M. D. Freehling, and 
E. R. Griffin. 2005. “Dominance of Non-Native Riparian Trees in Western USA.” Biological 
Invasions 7 (4): 747–751. doi:10.1007/s10530-004-5849-z.

Friggens, M. M., and D. M. Finch. 2015. “Implications of Climate Change for Bird Conservation in the 
Southwestern US Under Three Alternative Futures.” Plos One 10 (12): e0144089. doi:10.1371/ 
journal.pone.0144089.

Fung, T., and E. LeDrew. 1988. “For Change Detection Using Various Accuracy.” Photogrammetric 
Engineering and Remote Sensing 54 (10): 1449–1454.

Gao, B. -C. 1996. “Ndwi—a Normalized Difference Water Index for Remote Sensing of Vegetation 
Liquid Water from Space.” Remote Sensing of Environment 58 (3): 257–266. doi:10.1016/S0034- 
4257(96)00067-3.

Gao, F., and X. Zhang. 2021. “Mapping Crop Phenology in Near Real-Time Using Satellite Remote 
Sensing: Challenges and Opportunities.” Journal of Remote Sensing. doi:10.34133/2021/8379391.

Graf, W. L. 1978. “Fluvial Adjustments to the Spread of Tamarisk in the Colorado Plateau Region.” 
GSA Bulletin 89 (10): 1491–1501. 10.1130/0016-7606197889<1491:Fattso>2.0.Co;2.

Guo, Y., H. Xia, X. Zhao, L. Qiao, and Y. Qin. 2022. “Estimate the Earliest Phenophase for Garlic 
Mapping Using Time Series Landsat 8/9 Images.” Remote Sensing 14 (18): 4476. doi:10.3390/ 
rs14184476.

Hamilton, S. G., S. L. King, G. Dello Russo, and M. D. Kaller. 2019. “Effect of Hydrologic, Geomorphic, 
and Vegetative Conditions on Avian Communities in the Middle Rio Grande of New Mexico.” 
Wetlands 39 (5): 1029–1042. doi:10.1007/s13157-019-01156-9.

Han, H., X. Guo, and H. Yu 2016. “Variable Selection Using Mean Decrease Accuracy and Mean 
Decrease Gini Based on Random Forest.” 2016 7th ieee international conference on software 
engineering and service science (icsess), Beijing, China.

Hart, C. R., L. D. White, A. McDonald, and Z. Sheng. 2005. “Saltcedar Control and Water Salvage on 
the Pecos River, Texas, 1999–2003.” Journal of Environmental Management 75 (4): 399–409. doi:10. 
1016/j.jenvman.2004.11.023.

Hsu, C. -W., C. -C. Chang, and C. -J. Lin. 2003. A Practical Guide to Support Vector Classification. Taiwan: 
Taipei.

Huang, S., L. Tang, J. P. Hupy, Y. Wang, and G. Shao. 2021. “A Commentary Review on the Use of 
Normalized Difference Vegetation Index (NDVI) in the Era of Popular Remote Sensing.” Journal of 
Forestry Research 32 (1): 1–6. doi:10.1007/s11676-020-01155-1.

Ji, W., and L. Wang. 2015. “Discriminating Saltcedar (Tamarix Ramosissima) from Sparsely Distributed 
Cottonwood (Populus Euphratica) Using a Summer Season Satellite Image.” Photogrammetric 
Engineering & Remote Sensing 81 (10): 795–806. doi:10.14358/PERS.81.10.795.

Ji, W., and L. Wang. 2016. “Phenology-Guided Saltcedar (Tamarix Spp.) Mapping Using Landsat TM 
Images in Western US.” Remote Sensing of Environment 173: 29–38. doi:10.1016/j.rse.2015.11.017.

Ji, W., L. Wang, and A. E. Knutson. 2017. “Detection of the Spatiotemporal Patterns of Beetle-Induced 
Tamarisk (Tamarix Spp.) Defoliation Along the Lower Rio Grande Using Landsat TM Images.” 
Remote Sensing of Environment 193: 76–85. doi:10.1016/j.rse.2017.02.019.

Kruse, F. A., A. Lefkoff, J. Boardman, K. Heidebrecht, A. Shapiro, P. Barloon, and A. Goetz. 1993. “The 
Spectral Image Processing System (Sips)—interactive Visualization and Analysis of Imaging 
Spectrometer Data.” Remote Sensing of Environment 44 (2–3): 145–163. doi:10.1016/0034- 
4257(93)90013-N.

Liu, L., X. Xiao, Y. Qin, J. Wang, X. Xu, Y. Hu, and Z. Qiao. 2020. “Mapping Cropping Intensity in China 
Using Time Series Landsat and Sentinel-2 Images and Google Earth Engine.” Remote Sensing of 
Environment 239: 111624. doi:10.1016/j.rse.2019.111624.

Löw, F., U. Michel, S. Dech, and C. Conrad. 2013. “Impact of Feature Selection on the Accuracy and 
Spatial Uncertainty of Per-Field Crop Classification Using Support Vector Machines.” Isprs Journal 
of Photogrammetry and Remote Sensing 85: 102–119. doi:10.1016/j.isprsjprs.2013.08.007.

2112 R. LI ET AL.

https://doi.org/10.14358/PERS.70.5.627
https://doi.org/10.1007/s10530-004-5849-z
https://doi.org/10.1371/journal.pone.0144089
https://doi.org/10.1371/journal.pone.0144089
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.34133/2021/8379391
https://doi.org/10.1130/0016-7606197889%3C1491:Fattso%3E2.0.Co;2
https://doi.org/10.3390/rs14184476
https://doi.org/10.3390/rs14184476
https://doi.org/10.1007/s13157-019-01156-9
https://doi.org/10.1016/j.jenvman.2004.11.023
https://doi.org/10.1016/j.jenvman.2004.11.023
https://doi.org/10.1007/s11676-020-01155-1
https://doi.org/10.14358/PERS.81.10.795
https://doi.org/10.1016/j.rse.2015.11.017
https://doi.org/10.1016/j.rse.2017.02.019
https://doi.org/10.1016/0034-4257(93)90013-N
https://doi.org/10.1016/0034-4257(93)90013-N
https://doi.org/10.1016/j.rse.2019.111624
https://doi.org/10.1016/j.isprsjprs.2013.08.007


Maruthi Sridhar, B. B., R. K. Vincent, W. B. Clapham, S. I. Sritharan, J. Osterberg, C. M. Neale, and 
D. R. Watts. 2010. “Mapping Saltcedar (Tamarix Ramosissima) and Other Riparian and Agricultural 
Vegetation in the Lower Colorado River Region Using Multi-Spectral Landsat TM Imagery.” 
Geocarto International 25 (8): 649–662. doi:10.1080/10106049.2010.521857.

Masek, J. G., M. A. Wulder, B. Markham, J. McCorkel, C. J. Crawford, J. Storey, and D. T. Jenstrom. 2020. 
“Landsat 9: Empowering Open Science and Applications Through Continuity.” Remote Sensing of 
Environment 248: 111968.

Moon, M., A. D. Richardson, and M. A. Friedl. 2021. “Multiscale Assessment of Land Surface 
Phenology from Harmonized Landsat 8 and Sentinel-2, PlanetScope, and PhenoCam Imagery.” 
Remote Sensing of Environment 266: 112716. doi:10.1016/j.rse.2021.112716.

Nagler, P. L., T. Brown, K. R. Hultine, D. W. Bean, P. E. Dennison, R. S. Murray, E. P. Glenn, and 
E. P. Glenn. 2012. “Regional Scale Impacts of Tamarix Leaf Beetles (Diorhabda Carinulata) on the 
Water Availability of Western US Rivers as Determined by Multi-Scale Remote Sensing Methods.” 
Remote Sensing of Environment 118: 227–240. doi:10.1016/j.rse.2011.11.011.

Nagler, P. L., E. P. Glenn, C. S. Jarnevich, and P. B. Shafroth. 2011. “Distribution and Abundance of 
Saltcedar and Russian Olive in the Western United States.” Critical Reviews in Plant Sciences 30 (6): 
508–523. doi:10.1080/07352689.2011.615689.

Nagler, P. L., J. B. Hull, P. B. Shafroth, and C. B. Yackulic 2021. The Transformation of dryland rivers: The 
future of introduced tamarisk in the US (2327-6932).

Narumalani, S., D. R. Mishra, J. Burkholder, P. B. Merani, and G. Willson. 2006. “A Comparative 
Evaluation of ISODATA and Spectral Angle Mapping for the Detection of Saltcedar Using 
Airborne Hyperspectral Imagery.” Geocarto International 21 (2): 59–66. doi:10.1080/ 
10106040608542384.

Niroumand-Jadidi, M., F. Bovolo, M. Bresciani, P. Gege, and C. Giardino. 2022. “Water Quality 
Retrieval from Landsat-9 (OLI-2) Imagery and Comparison to Sentinel-2.” Remote Sensing 
14 (18): 4596. doi:10.3390/rs14184596.

Pal, M. 2006. “Support Vector Machine‐based Feature Selection for Land Cover Classification: A Case 
Study with DAIS Hyperspectral Data.” International Journal of Remote Sensing 27 (14): 2877–2894. 
doi:10.1080/01431160500242515.

Pal, M., and P. M. Mather. 2005. “Support Vector Machines for Classification in Remote Sensing.” 
International Journal of Remote Sensing 26 (5): 1007–1011. doi:10.1080/01431160512331314083.

Pan, L., H. Xia, X. Zhao, Y. Guo, and Y. Qin. 2021. “Mapping Winter Crops Using a Phenology 
Algorithm, Time-Series Sentinel-2 and Landsat-7/8 Images, and Google Earth Engine.” Remote 
Sensing 13 (13): 2510. doi:10.3390/rs13132510.

Park, S., J. Im, S. Park, C. Yoo, H. Han, and J. Rhee. 2018. “Classification and Mapping of Paddy Rice by 
Combining Landsat and SAR Time Series Data.” Remote Sensing 10 (3): 447. doi:10.3390/ 
rs10030447.

Pettorelli, N., J. O. Vik, A. Mysterud, J. -M. Gaillard, C. J. Tucker, and N. C. Stenseth. 2005. “Using the 
Satellite-Derived NDVI to Assess Ecological Responses to Environmental Change.” Trends in 
Ecology & Evolution 20 (9): 503–510. doi:10.1016/j.tree.2005.05.011.

Phan, T. N., V. Kuch, and L. W. Lehnert. 2020. “Land Cover Classification Using Google Earth Engine 
and Random Forest Classifier—the Role of Image Composition.” Remote Sensing 12 (15): 2411. 
doi:10.3390/rs12152411.

Schmidt, T., C. Schuster, B. Kleinschmit, and M. Förster. 2014. “Evaluating an Intra-Annual Time Series 
for Grassland Classification—how Many Acquisitions and What Seasonal Origin are Optimal?” IEEE 
Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7 (8): 3428–3439. 
doi:10.1109/JSTARS.2014.2347203.

Shahfahad, T. S., M. W. Naikoo, A. Gagnon, A. Rahman, A. R. M. T. Islam, A. Mosavi, and A. Mosavi. 
2022. “Comparative Evaluation of Operational Land Imager Sensor on Board Landsat 8 and 
Landsat 9 for Land Use Land Cover Mapping Over a Heterogeneous Landscape.” Geocarto 
International 1–21. doi:10.1080/10106049.2022.2152496.

Shen, Y., X. Zhang, W. Wang, R. Nemani, Y. Ye, and J. Wang. 2021. “Fusing Geostationary Satellite 
Observations with Harmonized Landsat-8 and Sentinel-2 Time Series for Monitoring Field-Scale 
Land Surface Phenology.” Remote Sensing 13 (21): 4465. doi:10.3390/rs13214465.

INTERNATIONAL JOURNAL OF REMOTE SENSING 2113

https://doi.org/10.1080/10106049.2010.521857
https://doi.org/10.1016/j.rse.2021.112716
https://doi.org/10.1016/j.rse.2011.11.011
https://doi.org/10.1080/07352689.2011.615689
https://doi.org/10.1080/10106040608542384
https://doi.org/10.1080/10106040608542384
https://doi.org/10.3390/rs14184596
https://doi.org/10.1080/01431160500242515
https://doi.org/10.1080/01431160512331314083
https://doi.org/10.3390/rs13132510
https://doi.org/10.3390/rs10030447
https://doi.org/10.3390/rs10030447
https://doi.org/10.1016/j.tree.2005.05.011
https://doi.org/10.3390/rs12152411
https://doi.org/10.1109/JSTARS.2014.2347203
https://doi.org/10.1080/10106049.2022.2152496
https://doi.org/10.3390/rs13214465


Sheykhmousa, M., M. Mahdianpari, H. Ghanbari, F. Mohammadimanesh, P. Ghamisi, and 
S. Homayouni. 2020. “Support Vector Machine versus Random Forest for Remote Sensing 
Image Classification: A Meta-Analysis and Systematic Review.” IEEE Journal of Selected Topics in 
Applied Earth Observations and Remote Sensing 13: 6308–6325. doi:10.1109/JSTARS.2020.3026724.

Silván-Cárdenas, J., and L. Wang. 2010. “Retrieval of Subpixel Tamarix Canopy Cover from Landsat 
Data Along the Forgotten River Using Linear and Nonlinear Spectral Mixture Models.” Remote 
Sensing of Environment 114 (8): 1777–1790. doi:10.1016/j.rse.2010.04.003.

Tai, X., and L. Wang. 2014. “Develop an Ensemble Support Vector Data Description Method for 
Improving Invasive Tamarisk Mapping at Regional Scale.” International Journal of Remote Sensing 
35 (19): 7030–7045. doi:10.1080/01431161.2014.965283.

Wang, L., J. L. Silván-Cárdenas, J. Yang, and A. E. Frazier. 2013. “Invasive Saltcedar (Tamarisk Spp.) 
Distribution Mapping Using Multiresolution Remote Sensing Imagery.” The Professional 
Geographer 65 (1): 1–15. doi:10.1080/00330124.2012.679440.

Wang, J., X. Xiao, L. Liu, X. Wu, Y. Qin, J. L. Steiner, and J. Dong. 2020. “Mapping Sugarcane Plantation 
Dynamics in Guangxi, China, by Time Series Sentinel-1, Sentinel-2 and Landsat Images.” Remote 
Sensing of Environment 247: 111951. doi:10.1016/j.rse.2020.111951.

Wang, L., and S. Zhang. 2014. “Incorporation of Texture Information in a SVM Method for Classifying 
Salt Cedar in Western China.” Remote Sensing Letters 5 (6): 501–510. doi:10.1080/2150704X.2014. 
928422.

Xun, L., and L. Wang. 2015. “An Object-Based SVM Method Incorporating Optimal Segmentation 
Scale Estimation Using Bhattacharyya Distance for Mapping Salt Cedar (Tamarisk Spp.) with 
QuickBird Imagery.” GIScience & Remote Sensing 52 (3): 257–273. doi:10.1080/15481603.2015. 
1026049.

Yang, C., J. H. Everitt, and R. S. Fletcher. 2013. “Evaluating Airborne Hyperspectral Imagery for 
Mapping Saltcedar Infestations in West Texas.” Journal of Applied Remote Sensing 7 (1): 073556. 
doi:10.1117/1.JRS.7.073556.

You, H., X. Tang, W. Deng, H. Song, Y. Wang, and J. Chen. 2022. “A Study on the Difference of LULC 
Classification Results Based on Landsat 8 and Landsat 9 Data.” Sustainability 14 (21): 13730. doi:10. 
3390/su142113730.

Zhang, X., X. Xiao, S. Qiu, X. Xu, X. Wang, Q. Chang, J. Wu, and B. Li. 2022. “Quantifying Latitudinal 
Variation in Land Surface Phenology of Spartina Alterniflora Saltmarshes Across Coastal Wetlands 
in China by Landsat 7/8 and Sentinel-2 Images.” Remote Sensing of Environment 269: 112810. 
doi:10.1016/j.rse.2021.112810.

2114 R. LI ET AL.

https://doi.org/10.1109/JSTARS.2020.3026724
https://doi.org/10.1016/j.rse.2010.04.003
https://doi.org/10.1080/01431161.2014.965283
https://doi.org/10.1080/00330124.2012.679440
https://doi.org/10.1016/j.rse.2020.111951
https://doi.org/10.1080/2150704X.2014.928422
https://doi.org/10.1080/2150704X.2014.928422
https://doi.org/10.1080/15481603.2015.1026049
https://doi.org/10.1080/15481603.2015.1026049
https://doi.org/10.1117/1.JRS.7.073556
https://doi.org/10.3390/su142113730
https://doi.org/10.3390/su142113730
https://doi.org/10.1016/j.rse.2021.112810

	Abstract
	1. Introduction
	2. Study site
	3. Methods
	3.1. Image pre-processing and reference data preparation
	3.1.1. Landsat time series data
	3.1.2. Saltcedar reference data preparation

	3.2. Intra-annual saltcedar classification with Landsat 8 & 9
	3.2.1. Classification algorithms
	3.2.2. Accuracy assessment

	3.3. Individual band contribution quantification
	3.4. Intra-annual optimal time window identification

	4. Results
	4.1. Comparison of Landsat 8 & 9 in intra-annual saltcedar classification
	4.2. Contribution of individual band to saltcedar classification
	4.3. Optimal months for saltcedar classification

	5. Discussion
	5.1. Merits of saltcedar classification with Landsat 9
	5.2. Selection of the classification algorithm
	5.3. Important bands for saltcedar classification
	5.4. Optimal time window for saltcedar classification

	6. Conclusion
	Acknowledgements
	Disclosure statement
	Funding
	Data availability statement
	References

