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ARTICLE INFO ABSTRACT

Edited by Marie Weiss Forest fragmentation has been increasingly exacerbated by deforestation, urbanization, and agricultural

expansion. Monitoring the forest fragments via the lens of tree-crown scale leaf phenology is critical to under-

Keywords: stand tree species phenological responses to climate change and identify the fragment species vulnerable to
Ei’re“sﬁagmem environmental disturbance. Despite advances in remote sensing for phenology monitoring, detecting tree-crown
anetScope

scale leaf phenology in fragmented forests remains challenging. Simultaneous tracking of key spring pheno-
logical events that are crucial to ecosystem functions and climate change responses is also neglected. To address
these challenges, we develop a novel tree-crown scale remote sensing phenological monitoring framework to
characterize all the critical spring phenological events of individual trees of deciduous forest fragments, with
Trelease Woods in Champaign, Illinois as a case study. The novel framework comprises four components: 1)
generate high spatiotemporal resolution fusion imagery from multi-scale satellite time series with a hybrid deep
learning fusion model; 2) calibrate PlanetScope imagery time series with fusion data using histogram matching;
3) model tree-crown scale phenology trajectory with a Beck logistic-based method; 4) detect a diversity of tree-
crown scale phenological events using several phenological metric extraction methods (i.e., threshold- and curve
feature-based methods). Combined with weekly in-situ phenological observations of 123 individual trees across
12 broadleaf species from 2017 to 2020, the framework effectively bridges the satellite- and field-based
phenological measures for the key spring phenological events (i.e., budswell, budburst, leaf expansion, and
leaf maturity events) at the tree-crown scale, particularly for large individuals (RMSE <1 week for most events).
Calibration of PlanetScope imagery using multi-scale satellite fusion data in consideration of landscape frag-
mentation is critical for monitoring tree phenology of forest fragments. Compared to curve feature-based
methods, threshold-based phenometric extraction methods demonstrate enhanced capability in detecting
spring leaf phenological dynamics of individual trees. Among the phenological events, full leaf out and early leaf
expansion events are retrieved with high accuracy using calibrated PlanetScope time series (RMSE from 3 to 5
days and R-squared higher than 0.8). With both intensive satellite and field phenological efforts, this novel
framework is at the forefront of interpreting tree-crown scale remotely sensed phenological metrics in the context
of biologically meaningful field phenological events in fragmented forest setting.

Multi-scale satellite time series
Spring leaf phenology
Field observations

1. Introduction relatively small, isolated area of forest that is surrounded by a matrix of

other land uses (e.g., agricultural fields and pastures) (Bryan-Brown

In recent decades, forest loss has increased substantially with the
continuing urban growth, cropland expansion, community-driven
deforestation, and more frequent wildfire (Curtis et al., 2018; van
Vliet, 2019; van Wees et al., 2021). Forest loss is usually concomitant
with fragmentation, in which a large patch of forest is separated into
many small fragments by farmlands or settlements. A forest fragment,
also known as a forest remnant or patch, is generally defined as a
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et al., 2020; Gibson et al., 2013; Taubert et al., 2018). Forest fragments,
despite their sizes being much smaller than those of large forests, play an
important role as the shelter for wildlife, the travelling corridor of
migrant animals, and the recreational areas for human beings (Aguilar-
Melo et al., 2013; Amaya-Espinel and Hostetler, 2019; dos Santos et al.,
2020). Given the increasing difficulty of maintaining large, contiguous
forests, it becomes more critical to protect and closely monitor the
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remaining forest fragments, particularly their responses to environ-
mental disturbances. Such responses of forest fragments can be moni-
tored via multiple metrics, including plant richness, forest biomass, and
tree leaf phenology. Among those metrics, leaf phenology is the study of
periodic life phases (e.g., budswell, budburst, and leaf expansion) of
plant leaves. The timing of these events is affected by a combination of
environmental factors (e.g., temperature, precipitation, and photope-
riod) (Dai et al., 2014; Morin et al., 2010; Xie et al., 2018; Zhang et al.,
2003). Compared to contiguous forests, forest fragments often exhibit
altered leaf phenology, largely due to differences in microclimate, edge
effects, and species composition (Fernando et al., 2015; Hofmeister
etal., 2019; Meier and Leuschner, 2008). Monitoring the leaf phenology
of forest fragments also facilitates the quantification of the magnitude,
timing, and phase of net ecosystem exchange of CO5 between plants and
the atmosphere, thus enhancing our understanding of how climate
change influences ecosystem functions of fragmented forests through
affecting carbon, nutrient, and water cycles (Ahrends et al., 2009).

Leaf phenology among individual trees within a forest fragment (or
community) is usually not synchronous and shows high interspecific and
intraspecific variation (Donnelly et al., 2017; Liu et al., 2011; Sun et al.,
2006). The tree phenology variation in spring, caused by a combination
of environmental factors (e.g., winter chill, spring temperature, and
photoperiod), results in staggering and asynchronous phenological
development among individual trees within a forest fragment. Given the
different phenological responses of tree species to climate change, a
forest fragment may be subject to species invasion if the tree phenology
of species and individuals in the fragment is shifted to similar timing
under future climate (Willis et al., 2010; Wolkovich et al., 2013).
Increased phenological synchronization may offer periods of resource
surplus, which invasive species with flexible growth strategies may
exploit to gain a foothold. Monitoring the tree-crown scale leaf
phenology of a fragmented forest facilitates the understanding of species
phenological responses to environmental and climate change, aiding in
forest and invasive species management under such change. It can also
help identify the tree species that are vulnerable to environmental dis-
turbances (e.g., disease, pest infestation, and drought). The changes in
leaf phenology patterns (e.g., delayed leafing or reduced phenological
development rate) may provide early warning signs of stress in indi-
vidual trees caused by the disturbances (Chen et al., 2017; Evans et al.,
2012). Monitoring the tree-crown scale leaf phenology can further help
infer the potential shifts in species distributions under climate change, as
altered leaf phenology (e.g., earlier leaf emergence) caused by the
change of climate conditions (e.g., temperature) may enable species to
expand their distribution into areas where climate becomes favorable, or
species may face challenges if the phenological changes (e.g., relatively
delayed leaf development) are disadvantageous (Donnelly et al., 2017;
Oztiirk et al., 2015; Willis et al., 2010; Wolkovich et al., 2013).

Tree leaf phenology can be monitored via both intensive in situ
phenological observations and the collection of time series of remote
sensing imagery. In situ observations provide accurate timing of tree
phenological events, but they are time- and resource-consuming and
usually require much field experience. In recent years, remote sensing
has been utilized increasingly to monitor leaf phenology from local to
global scales (Bolton et al., 2020; Diao, 2019; Dronova and Taddeo,
2022; Fawcett et al., 2021; Matongera et al., 2021). Remote monitoring
of leaf phenology typically involves three main steps (Berra and Gaul-
ton, 2021; Diao, 2020; Zeng et al., 2020). The first step is to mitigate the
negative effects of sensing noises and outliers (e.g., abnormal values
caused by cloud, snow, and/or soil background) through pre-processing
of the remote sensing time series, which includes the use of maximum
value composite (MVC) method and filtering methods (e.g., night filter
and spline filter) (Berra and Gaulton, 2021; Filippa et al., 2016). The
second step is to model the leaf phenological development trajectory via
phenological curve fitting to the pre-processed remote sensing time se-
ries. The phenological curve fitting functions include double logistic
function (Beck et al., 2006; Cao et al., 2015; Elmore et al., 2012),
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quadratic function (de Beurs and Henebry, 2004), asymmetric Gaussian
function (Jonsson and Eklundh, 2004), and Savitzky-Golay function
(Chen et al., 2004). The third step is to characterize the leaf phenological
events via the retrieval of phenological metrics from the fitted time se-
ries. The phenological metric extraction methods can generally be
grouped into two categories, namely threshold-based methods (e.g.,
absolute and relative thresholds) and curve feature-based methods (e.g.,
derivative and curvature change rate methods) (Berra and Gaulton,
2021; Zeng et al., 2020). Tree-crown scale leaf phenology, with its fine
spatial resolution requirements, may be monitored using drone, phe-
nocam, or high-resolution satellite time series. However, the
labor-intensive nature of drone imagery collection and the limited
number of individual trees included in the view of phenocams make the
use of these two sources in tree phenology monitoring difficult at large
scales. The newly launched PlanetScope satellites, with their global
coverage data of an approximate 3-m spatial resolution and near daily
temporal resolution, open up unique opportunities to capture diverse
plant phenological development trajectories at the tree-crown scale.
Such potential is still underexplored, given the challenges of simulta-
neously acquiring systematic high-quality satellite and field phenolog-
ical measures of individual trees, in combination with the radiometric
inconsistency among the PlanetScope sensors.

Apart from the difficulty in monitoring tree-crown scale leaf
phenology using remote sensing, the leaf phenological events charac-
terized by remotely sensed phenological metrics are also quite limited.
During the spring season, the remotely sensed phenological metrics are
typically utilized to approximate the timing of budburst (leaf out), a
phenological event indicative of the start of the growing season (Berra
and Gaulton, 2021; Bornez et al., 2020; Zhang et al., 2020). However,
each component of spring tree phenology events (e.g., onset and
completion of budswell, budburst, leaf expansion, and leaf maturity
phases) should be closely monitored as each has important ecosystem
functions and responds differently to climate change. For example, the
timing of tree budburst (leaf out) is closely related to the onset of carbon
sequestration, biomass accumulation and timber production, and is
usually advanced by warm spring and delayed by warm winter (Don-
nelly et al., 2017; Fridley, 2012; Keenan et al., 2014a, 2014b; Panchen
et al., 2014; Richardson et al., 2018a, 2018b; Song et al., 2020). The
timing of leaf expansion, which is sensitive to air and soil temperature,
affects the maximum leaf area a tree crown can reach in spring, thus
influencing forest canopy light interception, evapotranspiration, and
summer canopy shade sizes (Chang, 2006; Oztiirk et al., 2015;
Tyrvainen et al., 2005). The monitoring of all critical spring phenolog-
ical events can also facilitate more comprehensive assessment of the
influence of environmental disturbances on a forest fragment. The
altered spring phenological patterns caused by environmental distur-
bances may provide critical signs of species stress as well as changes in
species interactions (e.g., species competition for resources), further
affecting forest species composition and functions (e.g., carbon seques-
tration) (Flynn and Wolkovich, 2018; Smith, 2013; Willis et al., 2010;
Wolkovich et al., 2013). During the spring season, the limited remotely
sensed phenological characterization is mainly attributable to the
challenge in bridging phenological metrics detected from satellite im-
agery with phenological events observed in situ. On the one hand,
remotely sensed phenological metrics for characterizing the same field
phenological event may vary with the use of different phenological
metric extraction methods. For example, both threshold-based (e.g.,
20-30% increase of vegetation index) and curve feature-based (e.g.,
local maximum in the curvature change rate) metric extraction methods
have been employed for characterizing the leaf out event, with varying
accuracies achieved (Gao et al., 2017; Jonsson and Eklundh, 2004; Kang
et al., 2003; Klosterman et al., 2014; Tan et al., 2010; Vrieling et al.,
2017, 2018). On the other hand, bridging of all critical leaf phenological
events requires intensively systematic and consistent field phenological
observations of a large number of trees throughout the entire spring
season. Such intensive observations of all critical phenological events of
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individual trees are not commonly made, but are crucial in connecting
the satellite-based phenological metrics with the field-based ones for
more comprehensive phenological characterization.

The goal of this study is to develop a tree-crown scale remote sensing
phenological monitoring framework to characterize all the critical
spring phenological events of individual trees in the fragmented forest
setting. Using Trelease Woods in east-central Illinois, USA, (a temperate
deciduous forest fragment located in heterogeneous landscapes) as a
case study, the specific objectives are to: 1) calibrate the PlanetScope
imagery time series with the fusion of multi-scale remote sensing data
for extracting a wide range of phenological metrics at the tree-crown
scale; 2) conduct intensive in-situ phenological observations that
cover all the critical spring phenological events of a large number of
individual trees of diverse species; 3) bridge the satellite- and field-based
phenological measures of individual trees for characterizing remotely a
diverse set of spring phenological events at the tree-crown scale.

2. Study site and data
2.1. Study site

This study is conducted in the north half of Trelease Woods (here-
after ‘Trelease Woods’) (Fig. 1). This 0.21 km? fragment of temperate
deciduous forest is located in the northeast of Champaign County, Illi-
nois, USA. Historically, Trelease Woods was part of the ‘Big Grove’, a
large forest located to the northeast of Urbana prior to European set-
tlement, and was occasionally disturbed by fires before the 1830s. In
1917, Trelease Woods was purchased by the University of Illinois and
currently is one of only three remaining fragments of the Big Grove
Forest. Historically, Trelease Woods was primarily a mature oak-hickory
forest, but sugar maple (Acer saccharum) and elm (Ulmus spp.) species
became the dominant tree species in the 20th century, presumably
because of the decreasing fire frequency. Trelease Woods currently has
moderately dense understory and a tall closed canopy with dead trees
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remaining standing. As a remnant of a large forest, now surrounded by
urban settlements and agricultural fields, Trelease Woods is an excellent
site for studying leaf phenology of individual trees in a fragmented forest
setting. Tree phenology in both spring and autumn has been observed
weekly by the same individual following the same monitoring protocol
using binoculars in Trelease Woods from 1993 to 2022 (Augspurger and
Zaya, 2022). These observations provide a wealth of ground-truth data
for validating the phenological metrics detected using the corresponding
remote sensing data, and ensure observation consistency for intra- and
inter-specific phenological comparisons. In consideration of the Plan-
etScope data availability and drone imagery acquisition timing, we
select the observations from 2017 to 2020 for all critical spring leaf
phenological events of 12 deciduous tree species, with a total of 123
trees (Table 1).

Table 1
Summary of the study’s tree species, number of individuals in each species, and
number of large individuals (> 90 m?) in each species.

Species Number of Number of Large
Trees Trees
Ulmus americana (American Elm - AE) 2 0
Carya cordiformis (Bitternut Hickory —-BH) 2 2
Quercus macrocarpa (Bur Oak — BO) 14 14
Celtis occidentalis (Common Hackberry — 15 7
HB)
Gymnocladus dioicus (Kentucky Coffeetree 8 0
- KCT)
Tilia americana (American Basswood — 16 3
AB)
Aesculus glabra (Ohio Buckeye - OB) 12 0
Quercus rubra (Red Oak — RO) 11 11
Ulmus rubra (Slippery Elm — SE) 2 0
Carya laciniosa (Shellbark Hickory — SH) 12 7
Acer saccharum (Sugar Maple — SM) 11 5
Juglans nigra (Black Walnut - BW) 18 3

Species (Number)
B AB (16)

B AE (2)

BN BH (2)

I BO (14)

I BW (18)

B HB (15)

. KCT (8)

B 0B (12)

RO (11)

B SE (2)

BN SH (12)

. SM (11)

r_" Study Site: North TW

o e e e | T T
(b) 0 05 1 2km © (') 100

T 1
200 400 m

Fig. 1. (a) The location of the Trelease Woods study site. (b) The surrounding environment of Trelease Woods. (c) The tree crown boundaries of selected trees studied
in Trelease Woods. The red dashed rectangle in (b) and (c) represents the study plot. Each polygon in (c) represents a tree crown with its boundary delineated using
the drone imagery and visual interpretation. The scientific name of each species’ abbreviation is in Table 1. In this study, we observe a total of 123 trees across 12
species: AB - Tilia americana, AE - Ulmus americana, BH - Carya cordiformis, BO - Quercus macrocarpa, BW - Juglans nigra, HB - Celtis occidentalis, KCT - Gymnocladus
dioicus, OB - Aesculus glabra, RO - Quercus rubra, SE - Ulmus rubra, SH - Carya laciniosa, and SM - Acer saccharum. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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2.2. Data

In this study we acquire five types of data, including field pheno-
logical observation data, drone data, PlanetScope surface reflectance
products, Harmonized Landsat Sentinel-2 (HLS) data, and Moderate
Resolution Imaging Spectroradiometer (MODIS) surface reflectance
products.

Our field data consist of day of year (DOY) of 10 field-collected
spring phenological events (hereafter ‘field events’) of four phenolog-
ical phases, namely budswell, budburst (or leaf out), leaf expansion, and
mature phases. Budswell is the phase when the buds of a tree crown
expand and reveal underlying parts of bud scales, typically changing to
more distinct colors like green or reddish-brown. Though the tip of bud
may show green, there is no shoot or leaf emergence at this phase.
Budburst (or leaf out) corresponds to the phase when the buds of a tree
crown open, and shoots or leaves start growth. Leaf expansion is the
phase when the unfolded leaf blades of a crown expand until the full
length. Leaf maturity corresponds to the date when leaves have ‘hard-
ened’ and cease changing color, reaching their final green color. Except
the mature phenological phase, each phase is characterized by three
field events. Thus, the 10 field events collected include budswell 1, 2,
and 3 (BS1, BS2, and BS3), budburst (or leaf out) 1, 2, and 3 (BB1, BB2,
and BB3), leaf expansion 1, 2, and 3 (FE1, FE2, and FE3), and mature
(MAT) events (Table 2). The 1, 2, and 3 events of a phase represent the
completion of 1/3, 2/3, and all of the development phase, respectively.
On a given census date, the phenological event documented represents
the tree crown assessed as a whole (i.e., the dominant phenological state
of all newly developing vegetative units across the entire crown). When
a phenological event was not directly observed due to fluctuations in
development speed, we estimated the date for each non-observed event
using linear interpolation between dates with direct observations.

The 123 individuals observed in this study were randomly selected
from the 12 most common and representative deciduous tree species in
Trelease Woods (Fig. 1(c)). For example, bur oak (Quercus macrocarpa)
and red oak (Quercus rubra) were observed as they have the largest and
oldest trees of Trelease Woods, and sugar maple (A. saccharum) was
observed because it is now the most dominant species. Selection of trees
was designed for monitoring leaf phenology across the sizes of important
species in Trelease Woods. In this study, tree crown sizes of 123 in-
dividuals range from 7.6 to 431.6 m2. About 42% of individuals have
relatively large tree crown sizes (i.e., > 90 m?); most large trees are from
the dominant species (e.g., Q. macrocarpa and Q. rubra) (Table 1).

The drone images collected with DJI Matrice 100 in 2018 and 2019
are used as the reference for tree crown delineation. The drone images

Table 2
Description of phenological events for each phenophase.

Code  Phase Event  Description of Event (based on the status of the
majority of buds or leaves of the tree crown)
BS Budswell 1 Majority of buds are in 1/3 of their final sizes

before bursting
2 Majority of buds are in 2/3 of their final sizes
before bursting
Majority of buds are fully swollen (at final sizes)
Budburst; for majority of buds, first leaf tips are
visible beyond bud scales
2 Majority of leaves/shoots emerge well beyond
bud scales, but leaves are not yet unfolding and
entire petioles are not visible
3 Majority of individual leaf blades and petioles
are visible; majority of leaves are unfolded but
not expanded
Majority of leaves are in 1/3 of their final sizes
Majority of leaves are in 2/3 of their final sizes
3 Majority of leaves are in their final sizes but not
in final green color
Majority of leaves are in their final green color
and appear thick and ‘tough’

BB Budburst/ 1
Leaf out

FE Leaf 1
expansion

MAT Leaf maturity 1
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have three bands (i.e., Red, Green, and Blue bands) with a spatial res-
olution of 5 cm. The drone images were collected in 2018 on October 11,
October 25, and November 2, and in 2019 on May 6, June 2, September
17, and November 4. All drone images first are aligned based on their
GPS locations and orientations. The dense point cloud then is generated
with the depth information from images collected by drone, and the
digital elevation model (DEM) is built with the dense cloud points for
generating orthomosaic images that are photogrammetrically orthor-
ectified, color balanced, and seamless. The orthomosaic images on those
observation dates are used as the reference for the further tree crown
delineation process. All drone image processing steps, including drone
image alignment, point cloud building, and orthomosaic image gener-
ation, are completed in Agisoft Metashape Professional.

The atmospherically corrected PlanetScope 4-band surface reflec-
tance product with an approximate 3-m spatial resolution and a near-
daily temporal resolution is used in this study. Its four bands are the
Blue, Green, Red, and Near-infrared (NIR) bands. We acquire all avail-
able PlanetScope images with cloud covers lower than 40% before DOY
250 from 2017 to 2020. The DOY 250 is used as the cutoff date to cover
the spring season (usually from DOY 85-160), as well as ensure the
sufficient time span for tree crown-scale phenology modeling. To ensure
the quality of PlanetScope data, the pixels contaminated by snow cover,
cloud, cloud shadow, and haze are masked with the corresponding
quality assurance layer (e.g., usable data mask [udm2]). In total, there
are 18, 50, 55, and 70 cloud-free images of the study site from 2017 to
2020, respectively (Fig. 2). It is noted that the number of images
available for target trees may be larger and varying after the masking.
For example, the additional PlanetScope images of a multitude of days
(e.g., DOY 13, 36, 48, 68, 105, and 116) are available for a range of
target trees in 2017 besides the cloud-free images in Fig. 2. Since the
PlanetScope constellation consists of >130 sensors, the PlanetScope
images across sensors may suffer from radiometric inconsistency and are
further calibrated in this study.

To decrease the radiometric inconsistency among the images
collected by different PlanetScope sensors, the PlanetScope surface
reflectance data are further calibrated using the MODIS and HLS fusion
data. To generate the fusion data, we obtain all the HLS imagery of the
study site (tile 16TCK) during the period of DOY 1-250 from 2017 to
2020. The HLS imagery is produced through the harmonization of
Landsat 8, Sentinel-2A, and Sentinel-2B, which encompasses the atmo-
spheric correction and cloud masking, spatial co-registration, Bidirec-
tional Reflectance Distribution Function (BRDF) normalization, band
pass adjustment, and temporal compositing (Claverie et al., 2018). The
HLS imagery has a spatial resolution of 30-m and a temporal resolution
of 2-3 days. To ensure the quality of the fusion data, the number of clear
pixels within an HLS image is calculated with the quality assessment
layer and only the images with the fraction of clear pixels >90% are
selected for data fusion. In total, there are 7, 4, 5 and 7 HLS images
selected from 2017 to 2020, respectively (Table 3).

We also collect all the MODIS Nadir BRDF-Adjusted Reflectance
(NBAR) images (MCD43A4 h11v04 and h11v05, version 6) of the
footprint of the HLS tile 16TCK for the same period (DOY 1-250) from
2017 to 2020 for generating the fusion data. The MODIS MCD43A4
imagery has a daily temporal resolution and 500-m spatial resolution.
The reflectance at each date is generated by weighting all observations
from Terra and Aqua sensors during the 16-day retrieval period in terms
of image quality, observation coverage, and temporal distance to miti-
gate the influence of atmospheric interference and noise. With a kernel-
driven semi-empirical BRDF model, the MCD43A4 accommodates the
viewing angle effects to model the surface reflectance under a nadir
view. This NBAR product can reduce the influence of BRDF on the leaf
phenology monitoring (Wang et al., 2020). We further leverage the
Terra Snow Cover Daily Global 500 m product (MOD10A1) to mask the
corresponding snow pixels in MCD43A4. After masking the snow pixels,
we re-sample the MODIS images to 30-m resolution of HLS using the
bilinear interpolation and spatially align the re-sampled MODIS images
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PlanetScope Data Availability
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Fig. 2. The distribution of cloud-free PlanetScope data of DOY 1 to 250 from 2017 to 2020 in the study site.

Table 3
The day of year (source) of HLS images selected for generating the fusion data.

Year Day of year (Source) of selected HLS images

2017 66(L30), 130(L30), 162(L30), 178(L30), 206(S30), 210(L30), 226(L30)
2018 101(L30), 117(L30), 206(S30), 213(L30)

2019 56(L30), 161(S30), 176(S30), 206(S30), 216(S30)

2020 1(S30), 123(L30), 166(S30), 187(L30), 211(S30), 219(L30), 231(S30)

with the HLS ones. Four bands (i.e., Blue, Green, Red, and NIR bands) of
MODIS and HLS images are considered in the fusion process.

By fusing the HLS and corresponding MODIS data, we generate the
MODIS-HLS fusion data with a spatial resolution of 30-m and daily
temporal resolution. This fusion imagery of relatively high spatial and
temporal resolutions is critical for calibrating the PlanetScope imagery
of our study site, particularly in consideration of forest fragmentation,
which otherwise cannot be achieved with the use of either MODIS or
HLS data.

3. Methods

To monitor all the critical spring phenological events of individual
trees in the fragmented forest setting, the framework proposed in this
study includes four components: 1) generate high spatiotemporal reso-
lution fusion imagery with multi-scale satellite time series, 2) calibrate
PlanetScope imagery time series with the high spatiotemporal resolution
fusion imagery, 3) model spring leaf phenology trajectory at the tree-
crown scale using two-band Enhanced Vegetation Index (EVI2) time
series of calibrated PlanetScope data, and 4) retrieve a multitude of tree-
crown scale spring phenological events from modeled EVI2 time series
(hereafter ‘satellite events’) and assess the retrieval accuracy with field
events (Fig. 3).

3.1. Fusion of HLS and MODIS data with hybrid deep learning model

The hybrid deep learning model is employed to fuse MODIS and HLS
images for generating the fusion image of 30-m spatial resolution and
daily temporal resolution (Yang et al., 2021). For each prediction date, it
generates the fusion image using the MODIS image on that date and two
MODIS-HLS image pairs of surrounding dates. The image pair denotes
the pair of MODIS and HLS images acquired on the same date. This
hybrid deep learning model is selected for conducting the spatiotem-
poral image fusion owing to its robust performance in predicting varying
levels of phenological changes among the imagery in heterogeneous
landscapes. The fusion model hybridizes two types of deep learning
modeling architectures, namely super-resolution convolutional neural
network (SRCNN) and long short-term memory (LSTM). The SRCNN
model extracts critical spatial features from the MODIS images and maps
the extracted features to the HLS scale for reconstructing the corre-
sponding super-resolution (SR) images. With the MODIS-HLS image
pairs serving as the training dataset, the SRCNN model can register the

reflectance of the MODIS and corresponding HLS images, as well as
restore the degraded spatial details of the MODIS images in the derived
SR images. The LSTM model learns the temporal reflectance changing
patterns from the sequence of SR images derived from the SRCNN
model. With the learned temporal patterns, it generates the final fusion
image on the prediction date using the corresponding HLS images. The
hybrid deep learning model is able to retrieve both the spatial rela-
tionship of the MODIS-HLS image pairs and the temporal changing
patterns of the surface reflectance embedded in the time series images.
Its ability to robustly model temporal changes among the imagery in
heterogeneous landscapes makes this model especially suitable for
generating the images for our fragmented forest site during the spring
season when tree phenology undergoes rapid changes.

Specifically, the workflow of the hybrid deep learning model is
shown in Fig. 4. Suppose that there are MODIS images M1, My, and Mg 1
collected on dates t-1, t, and t + 1, respectively, and HLS images H;.; and
H¢, collected on dates t-1 and t + 1, respectively. With all these images,
the hybrid model will estimate the fusion image on date t using the
integration of SRCNN and LSTM. In the training process, the SRCNN
model first takes the image pairs My ~ Hg; and M1 ~ Hgg for
learning the spatial relationship between MODIS and HLS images,
aiming to reconstruct HLS-wise SR images from the MODIS images. With
the trained SRCNN model, the SR images on dates t-1, tand t + 1 (i.e.,
SRt.1, SRy, and SRy,1) are estimated from M, M, and M, 1, respec-
tively. The LSTM model then is trained to learn the temporal changing
pattens from the image sequence of SR;.; and SRy, to estimate SR;. With
the trained LSTM, the fusion image on date t can be generated using the
HLS image sequence of H.; and H 1.

The structures of the SRCNN and LSTM models are shown in Fig. 5.
Specifically, the SRCNN model consists of three convolutional compo-
nents: feature extraction, non-linear mapping, and reconstruction. The
feature extraction component is a convolutional operation that learns
critical features from MODIS images and outputs the first hidden layer,
namely the MODIS feature maps. The non-linear mapping component
maps the spatial features of MODIS data to corresponding features in
HLS and outputs the HLS feature maps. During this process, the sensor-
induced reflectance difference can also be accommodated. The recon-
struction component recovers the spatial details in the MODIS images
and reconstructs the SR images at the HLS scale. The LSTM model em-
ploys two LSTM layers, each consisting of 100 LSTM cells to learn the
temporal evolving patterns from the image sequence for fusion image
prediction. LSTM cells encompass cell states and gating structures (i.e.,
input gates, forget gates, and output gates) to control the learning pro-
cess. With the regulation of these gates, the memory information stored
in the cell state is selectively preserved or discarded over time. The
hyperparameters (e.g., number and size of convolutional filters) of
SRCNN and LSTM are set in reference to our previous study (Yang et al.,
2021), and the model parameters (e.g., weights and biases) are opti-
mized to minimize the loss using the Adam method, which has an
adaptive learning rate and can balance between the computational cost
and training accuracy. The loss function of the model is the mean square
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error between the predicted and reference reflectance values of the
training samples. The hybrid deep learning model is built up using Keras
with a TensorFlow backend in Python. Both the SRCNN and LSTM are
trained for 100 epochs to converge. Each epoch for the SRCNN and
LSTM model costs about 3 s and 35 s, respectively, using the NVIDIA
GK110 “Kepler” K20X GPU accelerator. More information about the
structure and parameters of the hybrid deep learning model can be
found in our previous study (Yang et al., 2021). With the hybrid deep
learning model, we generate the daily 30-m fusion imagery of the study
site from DOY 1-250 for the years 2017-2020.

3.2. Calibration of PlanetScope imagery

Though the PlanetScope surface reflectance data have been atmo-
spherically corrected, the additional calibration of PlanetScope imagery
is needed due to cross-sensor radiometric inconsistency (Planet Labs,
2020). In spite of high spatial and temporal resolutions, the radiometric
quality of PlanetScope data is not equivalent to that of rigorously cali-
brated conventional satellites (e.g., HLS and MODIS) (Houborg and
McCabe, 2018). The satellites of PlanetScope have different orbital
configurations and spectral response functions, leading to variations and

inconsistency in radiometric quality of PlanetScope data. Besides, the
PlanetScope surface reflectance data, despite rigorous geometric and
atmospheric correction, are still subject to the BRDF effect (Planet Labs,
2020). The BRDF effect associated with sun-sensor geometry has been
found to affect satellite-based leaf phenology monitoring (Galvao et al.,
2011; Morton et al., 2014; Saleska et al., 2016). The PlanetScope im-
agery is acquired by the satellites with varying illumination geometry (i.
e., sun azimuth and elevation), giving rise to noisy and biased reflec-
tance values across sensors throughout the season. The cross-sensor
radiometric calibration can be conducted via the wuse of
pseudo-invariant spectral features to build linear transformations of
spectral data between images, or via the use of high quality reference
data (e.g., coarser resolution HLS and MODIS) to normalize the Plan-
etScope images of same acquisition dates (Frazier and Hemingway,
2021; Houborg and McCabe, 2018). As a reference-based calibration
method, histogram transformation does not rely on identification of
spectral invariant features and can be utilized to calibrate multi-satellite
data into a consistent standard for enhanced sensor interoperability, and
is thus adopted in this study.

To reduce the radiometric inconsistency among the PlanetScope
data, we calibrate all the PlanetScope data with the corresponding
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MODIS-HLS fused data using histogram matching. As both HLS and
MODIS data are BRDF normalized, the calibration will also substantially
reduce the BRDF effect on the PlanetScope data. Considering the land-
scape fragmentation of the study site, the original PlanetScope data and
the fused data first are subset to the entire Trelease Woods area. To
ensure the quality of histogram matching, the original PlanetScope data
are masked with the quality assurance layer and only clear pixels that
are not contaminated by cloud, cloud shadow, haze, and snow are
included for the following analysis. Then the reflectance histograms of
the Blue, Green, Red and NIR bands of masked original PlanetScope data
are matched to the histograms of the corresponding bands of the MODIS-
HLS fused data for each image acquisition date. Specifically, for each
band, we obtain the cumulative distribution functions (CDFs) of both
PlanetScope and fused data based on the reflectance histograms. We
then calibrate the PlanetScope imagery by mapping its reflectance to the
corresponding reflectance of the fused data of the same cumulative
probability (Eq. 1).

y = cdf, ™ (cdf ,(x) ) €h)

where, for each spectral band, y is the calibrated reflectance of the
PlanetScope data, and x is the reflectance of the original PlanetScope
data. cdf; and cdf,, represent the CDFs of the fused data and the original
PlanetScope data, respectively. The histogram matching is conducted
using the Skimage package in Python. By calibrating the PlanetScope
data with the same reference (i.e., MODIS-HLS fusion data), this histo-
gram matching process largely resolves the issue of radiometric incon-
sistency across the sensors of PlanetScope constellation. With more
consistent cross-sensor reflectance, the calibrated PlanetScope imagery
is utilized for the subsequent tree-crown scale phenology modeling and
event extraction.

To further demonstrate the role of the MODIS-HLS fusion data in
calibrating the PlanetScope data of our fragmented forest site, we also
calibrate the masked PlanetScope data to the daily temporal resolution
MODIS MCD43A4 data using histogram matching for each image
acquisition date. Despite the daily temporal resolution of the MODIS
data, the 500-m spatial resolution makes the size of a MODIS pixel larger
than the area of our study site. We thus consider the 10-km x 10-km
study site-centered area for generating the reflectance histograms for
both MODIS and PlanetScope data. To eliminate the influence of
dramatically different reflectance of urban impervious surface, an urban
mask is applied to remove urbanization areas. The reflectance of all
masked original PlanetScope pixels located within the 10-km x 10-km
area then is calibrated via the histogram matching using the corre-
sponding MODIS reflectance data. The PlanetScope calibration results
from the MODIS data then are compared to the calibration results from
the MODIS-HLS fusion data of our study site for all the years
(2017-2020).

3.3. Delineation of tree-crown boundaries

The tree-crown boundaries are delineated manually on the ortho-
mosaic drone images with the assistant of field observations and field-

Oct 25, 2018 May 6, 2019

Jun 2, 2019
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collected GPS location of each tree crown (Fig. 6). To delineate the
tree crowns, we first refer to the drone image collected on October 25 in
2018, because that image has a more distinct color tone difference
among tree crowns during the fall coloration period. For those tree
crowns (e.g., clumping or touching tree crowns) that are difficult to
identify on this drone image due to the delayed leaf coloration timing,
we further leverage the orthomosaic drone images on October 11 and
November 2, 2018, as well as the images on May 6, June 2, September
17, and November 4 in 2019 for the crown boundary delineation and
adjustment. The drone images collected on multiple dates across seasons
document the tree phenological progress and leaf color change. Given
the intra- and inter-specific variation in tree phenology, these drone
images largely facilitate the identification of the 123 tree crowns and
delineation of corresponding crown boundaries. To delineate a tree
crown’s boundary, we mainly leverage the tree color tone, texture,
spatial structure, morphology, as well as tree field measures (e.g., tree
diameter at breast height [DBH] and basal area) and field observations
(e.g., tree phenological stages on the drone imagery acquisition dates).
Tree crowns are first located based on the GPS information as well as the
tree morphology and field phenological observations. The adjoining
drone image pixels that maintain similar color tone and texture then are
grouped into the same tree crown. Different tree crowns are usually
separated by a ‘gap’, where understory or ground is exposed, especially
in the drone images collected in autumn. The sizes and boundaries of
tree crowns are further adjusted with consideration of tree species’ field
measures, such as basal area, particularly for clumping and touching
crowns. The manual delineation process of the 123 tree crown bound-
aries with consideration of a diverse set of tree characteristics is crucial
for locating accurately individual trees on the PlanetScope imagery
across crown sizes, which otherwise may be compromised by more
automatic image segmentation methods.

3.4. Model tree-crown scale phenology and retrieve satellite events

For each individual tree with field-collected phenological data, the
median EVI2 of all the pixels located totally within the crown boundary
is calculated from each calibrated PlanetScope image to generate the
time series for phenological modeling. As a widely used vegetation
index, EVI2 is selected in this study owing to its reduced sensitivity to
the noise of the blue band which is more subject to the influence of at-
mospheric interference (Jiang et al., 2008). EVI2 is also functionally
equivalent to EVI which can eliminate atmospheric and canopy back-
ground noises, as well as remain sensitive to canopy change when leaf
area index is high (Huete et al., 2002; Reed et al., 2009). The EVI2 time
series first is pre-processed using the night and spline filters to reduce
the influence of sensing noises and outliers. With the night filter, the
PlanetScope observations collected under scarce illumination conditions
with abnormally low EVI2 values are removed. The spline filter, based
on recursive spline smoothing and residual computation, removes the
outliers falling outside a defined residual envelope. Specifically, we fit
the cubic smoothing spline to the EVI2 time series, with the residuals
calculated between fitted and observed values. The observations with

ep 17, 2019 Nov 4, 2019

Fig. 6. Tree crown boundary of one Q. macrocarpa (BO), one T. americana (AB), and two C. occidentalis (HB) in five drone images. The color tone difference of tree

crowns on different dates aids the crown delineation and adjustment.
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the residuals outside the envelope of p + 36 (p and o represent the mean
and standard deviation of the residuals, respectively) are taken as out-
liers and thus are removed. This spline smoothing and outlier removal
process is repeated until no outliers are detected with this filter. After
removing the abnormal observations, we then fill in the missing values
of the EVI2 time series using linear interpolation.

With the pre-processed EVI2 time series, we employ the Beck
logistic-based phenological curve fitting function to model the leaf
phenological development of tree crowns during the spring season (Eq.
(2)) (Beck et al., 2006).

1

TH s @

f(t) = mn+ (mx —mn) e

Here, f(t) is the logistic-fitted EVI2 value at time t. mn and mx
represent the off-season EVI2 value and maximum EVI2 value, respec-
tively. S denotes the inflection point of the fitted curve in spring and rsp
is the rate of increase of the fitted curve at the inflection point S. The off-
season is defined as the plant dormant period before the season starts in
the study site, and the off-season EVI2 value is calculated as the median
EVI2 of clear observations during this period. The observation values
lower than the off-season EVI2 then are replaced with the off-season
EVI2 to mitigate the impact of spurious observations, particularly
caused by snow and ice, similar to Beck et al. (2006). The other pa-
rameters are estimated using the iterative non-linear least square opti-
mization method.

The logistic-based phenological curve fitting function has been
widely utilized to model plant seasonal phenological dynamics under
varying environmental conditions. It has been found to outperform
several other phenological curve fitting functions (e.g., asymmetric
Gaussian function and polynomial function) in monitoring phenological
change of deciduous forests (Berra and Gaulton, 2021; Zhang et al.,
2003; Zhu et al., 2011). The logistic-based function can capture abrupt
changes in the EVI2 time series at the beginning of the season, and is also
advantageous with the phenological implications of its function pa-
rameters (e.g., mn, mx, rsp, and S) and function flexibility to adapt to a
range of plant growth scenarios (Beck et al., 2006; Diao, 2020; Diao and
Li, 2022).

With the logistic-fitted phenological curve, four phenological metric
extraction methods, namely derivative-based, curvature-based, Gu-
based, and threshold-based methods, are employed to retrieve pheno-
logical metrics of various satellite events (Beck et al., 2006; Gu et al.,
2009; Klosterman et al., 2014; White et al., 1997). Specifically, the
derivative-based method is utilized to extract the start of season (SOS)
satellite event via the local maximum of the curve first derivative during
the spring season. The curvature-based method is used to extract two
satellite events (i.e., greenup and maturity) via the rate of change in
curvature during spring. The greenup and maturity satellite events
correspond to the timing of first and second local maxima of the cur-
vature change rate, respectively. As regards the Gu-based method, two
satellite events (i.e., upturn and stabilization) are retrieved via the in-
tersections of the recovery line and the boundary lines (i.e., baseline and
maxline). The recovery line is the line tangent to the fitted curve at the
point of the curve maximum first derivative. The baseline and maxline
are the horizontal lines of the off-season EVI2 and maximum EVI2,
respectively. The upturn satellite event corresponds to the timing of the
intersection between the recovery line and the baseline, while the sta-
bilization event corresponds to the timing of the intersection between
the recovery line and the maxline. In total, we extract five curve feature-
based satellite events (i.e., SOS, greenup, maturity, upturn, and stabili-
zation). These diverse set of events characterize the timing of pheno-
logical changes in terms of leaf biophysical and biochemical content
with distinct curve properties (Berra and Gaulton, 2021; Filippa et al.,
2016; Zeng et al., 2020).

Besides the curve feature-based methods, we also employ the
threshold-based method to extract satellite events via the percent of
EVI2 amplitude. Specifically, the percent thresholds ranging from 10%
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to 90% with an interval of 10% are utilized to extract a multitude of
threshold-based satellite events during the spring season. The pheno-
logical curve fitting and phenological metric extraction processes are
conducted in R with Phenopix and Greenbrown packages.

3.5. Accuracy assessment

For the MODIS-HLS fusion images generated with the hybrid deep
learning model, we evaluate the fusion results using the root-mean-
square-error (RMSE) of each band, erreur relative global adi-
mensionnelle de synthese (ERGAS) and spectral angle mapper (SAM)
(Chaithra et al., 2018). ERGAS, in terms of the normalized RMSE across
bands, measures the spectral difference between the fused and reference
HLS images (Eq. 3). ERGAS takes into account the differences in the
reflectance values across bands and the extent of the resolution differ-
ence between HLS and MODIS images. A lower ERGAS value indicates
that the fused image is more similar to the reference image (i.e., HLS
image).

ERGAS = 100% 3

Here, h and 1 are the spatial resolutions of HLS and MODIS images,
respectively; M is the number of bands. As Red and NIR bands are uti-
lized for calculating EVI2, M is equal to 2 in this study. L, denotes the
estimated reflectance value of band b, while g, represents the mean
reflectance of band b.

SAM measures the spectral similarity between the fused image and
the reference HLS image across bands (Eq. 4). For each pixel, the spectral
reflectance information can be denoted as an N-dimensional spectral
vector, where N equals the number of bands. SAM can be calculated as
the mean of angles between the estimated and reference spectral
reflectance of all pixels in the N-dimensional space. A smaller SAM value
indicates that the spectral distortion is lower in the fused image.

N Mo (7hr
SAM = % Z arccos Z”j’ (f“L") -
TSI )

where, N denotes the number of pixels in the fused or reference image.

4

ZZ and LY represent the spectral reflectance of pixel n in band b of the
fused and reference images, respectively.

The dates of satellite events extracted from the calibrated Planet-
Scope data are validated with those of the field events. Specifically, the
coefficients of determination (R?), p-value of coefficients, bias, and
RMSE are calculated between the DOY of each field event and the DOY
of corresponding relevant satellite events. The R2, p-value of co-
efficients, bias, and RMSE denote the proportion of the variation in the
DOY of field events explained by that of corresponding satellite events,
as well as the significance of the regression coefficient, the mean DOY
difference, and the extent of DOY difference between the timing of field
and satellite events, respectively.

To further explore the effect of tree-crown size on the accuracy of
spring phenological events detection, the differences in DOYs between
the field events and corresponding satellite events are calculated for all
123 trees. Then, the DOY differences between field and satellite events
are aggregated by species and year, and are analyzed across tree-crown
sizes at the species level.

4. Results
4.1. Tree-crown area distribution
The boundary of a tree crown is delineated based on the drone im-

agery collected in 2018 and 2019 and its crown area is calculated from
the manually delineated tree-crown boundary in ArcGIS Pro. The area of
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tree crowns ranges from 7.6 to 431.6 m?, with an average of 112.8 m2.
Among species, Q. macrocarpa (BO) has the largest tree crown area
(305.7 + 81.6 m?) (mean =+ 1 SD) and U. rubra (SE) has the smallest area
(42.0 + 1.3 m?). Large variation in crown sizes also exists among in-
dividuals within a species. The greatest variation in intraspecific sizes is
in Q. rubra (RO) (233.5 & 87.9 mz). Individuals with tree crown sizes
>90m?> (usually covering >10 calibrated PlanetScope pixels) are
designated as ‘large individuals’; these individuals are mostly from
dominant species of Trelease Woods. In total 42% of the 123 individual
trees exceed the 90-m? threshold of large trees (Fig. 7 (a)). With this
threshold, the large trees include almost all individuals of Q. macrocarpa
(BO) and Q. rubra (RO), two original dominant tree species, and some
individuals of Acer saccharum (SM), Carya laciniosa (SH), and Celtis
occidentalis (HB) — the more recent dominant species (Fig. 7 (b)). The
selected threshold successfully differentiates small trees from large
trees, both interspecifically and intraspecifically, and helps include a
large enough number of pixels to ensure that the median EVI2 of each
crown is robust to extreme values.

4.2. Field-collected phenological events

With field phenological observations, we summarize the timing for
10 field phenological events of five species using corresponding large
individuals from 2017 to 2020 (Fig. 8 and Table S1). All species have
contrasting phenology timing among the four years (Fig. 8) and the
significance of interannual differences for 10 field phenological events
of all five species is further evaluated using Analysis of Variance
(ANOVA) (Table S2). For all the tree species, the interannual differences
are statistically (or marginally) significant for most phenological events.
Across years, the species tend to enter all the phenophases relatively
early in 2017, but have delayed timing in 2018 for budswell and bud-
burst phases, and in 2020 for leaf expansion and mature phases. For each
year, we also test the significance of interspecific differences for 10 field
phenological events using ANOVA, and the interspecific differences for
almost all the events are statistically significant (Table S3). The three
budswell events, three budburst events, and leaf expansion 1 and 2
phenological events have the largest interspecific differences in 2020
and smallest differences in 2018 (Fig. S1). The leaf expansion 3 and
mature events also have the largest interspecific differences in 2020, yet
with similar levels of interspecific differences for the other three years.
The species exhibit diverse and heterogenous inter-annual patterns for
the field phenological events across phenophases. Among the species,
A. saccharum tends to reach all the phenophases relatively early during
the study period, while C. laciniosa has relatively delayed timing for
most phenological events. The intraspecific differences for 10 field
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phenological events of each species are not statistically significant using
ANOVA (Table S4).

Given the comparable inter- and intra-specific patterns of field
phenological events within a phenological phase, we focus mainly on six
field phenological events, namely BS1, BB1, BB3, FE1, FE3, and MAT,
throughout the spring leaf phenological development trajectory in this
study. These six field events represent the most critical phenological
events from initial budswell to final mature phases.

4.3. Fusion of MODIS and HLS data

In total, 250 fused images from DOY 1-250 are generated for each
year to facilitate subsequent phenological trajectory modeling and
phenological events detection. Fig. 9 shows the examples of the Trelease
Woods region of the MODIS, HLS, and corresponding predicted fusion
images in spring across four years (i.e., DOY 162 in 2017, DOY 117 in
2018, DOY 161 in 2019, and DOY 166 in 2020). We compare the spatial
patterns of color tone, texture, and land cover of predicted images (Fig. 9
(c)) with those of the reference images (Fig. 9(b)). The fused images do
capture well the rapid change of reflectance in MODIS images and
preserve the spatial characteristics of HLS images, particularly for the
fragmented forest. The overall color tone, texture, and distribution of
agricultural fields, vegetated areas, urban regions, and waterbodies in
fused images are similar to those in corresponding HLS images. While
images are generally cloud-free with proportions of contaminated pixels
<10%, a small number of pixels in the HLS images are masked out due to
cloud contamination or other noises, shown as the small black squares in
Fig. 9 (b and c).

ERGAS (Red and NIR bands), SAM (Red and NIR bands), RMSE of the
Red band, and RMSE of the NIR band are selected as the accuracy
metrics to assess the fusion model performance. The accuracy metrics
are calculated based on the reference masked HLS and corresponding
fusion images before DOY 200, as all trees observed in this study reach
the mature phenophase before DOY 200 in all four years. Only the pixels
with valid values in both HLS and fused images are included for accu-
racy assessment. Table 4 shows the mean and standard deviation of
ERGAS, SAM, RMSE:s of the red and NIR bands across years, using all the
reference HLS images (i.e., images of DOY 66, 130, 162 and 178 in 2017,
DOY 101 and 117 in 2018, DOY 56, 161, and 176 in 2019, and DOY 1,
123, 166, and 187 in 2020). The mean RMSE values for the Red and NIR
bands are mostly lower than 0.02, except for RMSE of NIR in 2017
(0.026) (Table 4). The mean ERGAS values range from 0.4 to 0.846, and
the mean SAM values are around 0.030 for all four years. The ERGAS
and SAM values also are low in comparison with existing literature
(Yang et al., 2021). Among the four years, 2017 and 2020 have slightly

C 1 1 1 1 1 1 1 1 1 1 1 1
AB AE BH BO BW HB KCT OB RO SE SH SM
Species

Fig. 7. Area distribution of tree crowns in Trelease Woods. (a) Histogram of crown areas across all 123 trees. (b) Tree crown area boxplot for each of 12 study species.
The red dashed line indicates the 90m? threshold separating large and small trees. Tree abbreviations are in Table 1. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Interannual variation of the dates (mean + SD) of ten field-collected phenological events for the large individuals of five species (BO — Q. macrocarpa, HB —

C. occidentalis, RO — Q. rubra, SH — C. laciniosa, SM - A. saccharum) from 2017 to 2020.
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DOY 161 2019 DOY 166 2020

Fig. 9. The comparison of resampled MODIS images (a), masked HLS images (b), and fused images (c) of DOY 162 in 2017, DOY 117 in 2018, DOY 161 in 2019, and
DOY 166 in 2020. The yellow solid square in each image represents the study site (i.e., north half of Trelease Woods). (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

Table 4
Mean and standard deviation of accuracy metrics SAM, ERGAS, and RMSE of
Red or NIR bands for fused images before DOY 200 from 2017 to 2020.

Year RMSE of Red RMSE of NIR ERGAS (2 band) SAM (2 Band)
2017 0.014 + 0.008 0.026 + 0.014 0.846 + 0.570 0.031 + 0.005
2018 0.007 + 0.001 0.013 + 0.002 0.400 + 0.049 0.032 + 0.001
2019 0.009 + 0.002 0.012 + 0.004 0.454 + 0.061 0.032 + 0.007
2020 0.012 + 0.008 0.022 + 0.015 0.763 + 0.482 0.030 + 0.011

higher RMSE and ERGAS values compared to the other two years, which
possibly may be due to the temporal distribution of available dates and
cloud contamination. Overall, all accuracy metrics suggest high agree-
ment between the fused images and the reference HLS images.

4.4. Histogram matching of original PlanetScope data

The histogram of the Blue, Green, Red or NIR band of all original
PlanetScope pixels located within the entire area of Trelease Woods is
matched to the reflectance histogram of the corresponding band of fused
data located within the same area. To examine the performance of his-
togram matching, we first compare the reflectance histograms of the red
(or NIR) band prior- and post-calibration (Fig. 10 as an example). After
histogram matching, the mean and standard deviation of calibrated
PlanetScope histogram are closer to those of the corresponding fusion
histogram. Compared to the original PlanetScope band histogram, the
shape (i.e., width, peak, and value distribution) of the calibrated
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PlanetScope band histogram is more comparable to that of the fusion
band histogram.

The mean and standard deviation of EVI2 time series of both un-
calibrated and calibrated PlanetScope images for the study site are
shown further in Fig. 11. The uncalibrated EVI2 values across Planet-
Scope images show more variation and fluctuation compared to cali-
brated ones. Upon comparison with the fused images, the mean EVI2
(gray points in Fig. 11) of calibrated PlanetScope data with histogram
matching is closer to that of fused data, with improved radiometric
consistency across the images. The standard deviation of EVI2 time se-
ries also decreases after the PlanetScope imagery calibration. Using
mean EVI2 of fused images as reference, the RMSE of original Planet-
Scope mean EVI2 (RMSE from 0.045 to 0.065) is larger than that of the
corresponding calibrated PlanetScope mean EVI2 (RMSE <0.01) for four
years. After the calibration with histogram matching, the radiometric
inconsistency across the PlanetScope data has largely been reduced. The
histogram matching also decreases the fluctuation of PlanetScope data
during the off-season (DOY 1-100) and near-peak greenness period
(DOY 150-250). In general, the histogram matching calibration adjusts
the reflectance of PlanetScope data with reference to the fused data,
decreases the reflectance difference across PlanetScope images, and
generates smoother time series for further phenological trajectory
modeling and phenological events detection.

We also evaluate the feasibility of calibrating the PlanetScope images
to the corresponding MODIS images using histogram matching (Fig. 12).
In general, this MODIS-based calibration also can adjust the distribution
of reflectance of the original PlanetScope data, but the EVI2 time series
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Fig. 10. Example histograms of Red and NIR bands of original PlanetScope data, calibrated PlanetScope data, and fusion data on May 31, 2020. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

of the PlanetScope data calibrated to MODIS data (hereafter ‘Planet —
MODIS’) is not appropriate for the following phenological events
detection and assessment process. The mean EVI2 time series of Planet —
MODIS in the study site is more comparable to that of surrounding
agriculture with delayed plant growth and shorter growing season
(Fig. 12). As our fragmented forest site (area less than that of one MODIS
pixel) is located in a mixed landscape, the cumulative histogram of
reference MODIS data used for calibrating original PlanetScope data is
constructed based on the reflectance mixture of Trelease Woods and
surrounding land covers. The portion of the forest pixels is small in the
reflectance histogram, which makes it difficult to characterize the pat-
terns of the histogram via forest pixels. The limited number of forest
pixels thus brings more uncertainties in histogram matching, leading to
a higher fluctuation in the EVI2 time series of the Planet - MODIS data.
The RMSE between the mean EVI2 of Planet — MODIS and that of fused
data ranges from 0.057 to 0.099, much larger than the RMSE between
the corresponding mean EVI2 of Planet — Fused HLS and that of fused
data. Because of the large area of agriculture, the EVI2 time series of
Planet — MODIS has a different shape from that of forest, indicating the
potential issue with MODIS as the calibration reference. The histogram
matching of PlanetScope to the fused HLS data is thus employed for the
subsequent analysis.

4.5. Bridge satellite events to field phenological events for large trees

For each large individual, the EVI2 time series of calibrated Planet-
Scope data each year is fitted using the Beck model. The mean and
standard deviation of RMSE between fitted and calibrated EVI2 of all
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large individuals are summarized in Table S5. The relatively small RMSE
(mean RMSE ranging from 0.03 to 0.06) indicates the feasibility of
modeling a tree’s phenological trajectory using the Beck.

With BS1, BB1, BB3, FE1, FE3, and MAT as the target field events,
each of these events is compared with all the satellite-based phenolog-
ical events (i.e., threshold 10% to 90%; derivative-based SOS; curvature-
based greenup and maturity; Gu-based upturn and stabilization) for each
large individual in the study site. The comparative analysis is summa-
rized per species (with >5 large individuals) and year with accuracy
metrics calculated (i.e., RMSE, Rz, and bias) (Fig. 13). For each target
field event, the corresponding satellite event then is identified using the
lowest RMSE with all the considered large individuals. In general, all
target field events of large individuals tend to be more accurately esti-
mated using the threshold-based method, possibly due to the compre-
hensive thresholds covering the tree spring phenological development
trajectory considered in this study (Fig. 13). The dates of satellite events
of large individuals extracted from calibrated PlanetScope data tend to
be closer to the dates of corresponding field events compared to original
PlanetScope data (Fig. 14).

With consideration of all satellite events, the field events BS1, BB1,
BB3, FE1, FE3, and MAT can be approximated more accurately using the
20%, 30%, 40%, 50%, 70%, and 80% thresholds, respectively (Fig. 13
and Fig. 14). With the calibrated PlanetScope data, the mean field event
timing aligns with the corresponding mean satellite event timing per
species and year along the 1:1 line, with R? from 0.391 to 0.901, RMSE
from 3.307 to 8.042 days, and bias from 1.564 to 4.272 days. Among the
target field events, BB1, BB3, and FEl can be identified with higher
accuracy (i.e., higher R? and lower RMSE) by their corresponding
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Fig. 11. Seasonal variation in EVI2 derived from original and calibrated PlanetScope data from 2017 to 2020. Vertical error bar represents one standard deviation
among all pixels located in the north half of Trelease Woods. Red dots denote the corresponding mean EVI2 values of the fused data. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

thresholds using both calibrated and original PlanetScope data, repre-
senting the stronger potential of satellite imagery in detecting remotely
the tree budburst, full leaf out, and early leaf expansion events in spring.
Variation in the mean phenological timing of these field events can be
captured well by that of corresponding satellite events. Particularly, the
mean DOY of BB3 per species and year aligns closely with the corre-
sponding mean DOY of threshold 40% of calibrated PlanetScope EVI2
time series, with R? of 0.901, RMSE of 3.307 days, and bias of 2.55 days
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(Fig. 13). The mean DOY of FE1 per species and year can be approxi-
mated by the corresponding mean DOY of calibrated EVI2 threshold
50% (R? being 0.81, RMSE being 5.03 days, and bias being 3.968 days).
In the early spring, the weak signal of budswell is more difficult to be
captured both in-situ and by the satellite imagery, and the detection of
early field events (e.g., BS1) also may be subject to the influence of
understory, soil background, and snow contamination. The detection
accuracy of BS1 thus decreases with R? of 0.391, RMSE of 8.042 days,
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and bias of 4.272 days. At the end of spring, the change of tree leaf status
(e.g., from leaf expansion to maturity) is more subtle than that during
the leaf out and early expansion phases, making it more difficult to
detect FE3 and MAT events using satellite imagery. Accordingly, vari-
ation in the timing of these two field events across species is harder to
characterize. Compared to original PlanetScope data, the calibrated data
achieve higher R? for most field phenological events, indicating that
more variation in field event timing across species and years can be
explained by the corresponding satellite event with the calibration of
PlanetScope imagery (Fig. 13 and Fig. 14).

With the increasing use of curve feature-based (i.e., derivative-,
curvature-, and Gu-based) phenological metric extraction methods in
phenological studies, we further evaluate the congruence between the
satellite events from those methods with the corresponding field events.

15

® BO e HB © RO ® SH e SM

Specifically, each satellite event (e.g., derivative-based SOS) is
compared with all field events for each large individual in the study site,
and the field event with the lowest RMSE is selected based on the
summarized comparative analysis per species (with >5 large in-
dividuals) and year (Fig. 15), similar to Fig. 13. The Gu-based upturn
and curvature-based greenup events approximate the field event BS1,
with RMSE around 7-9 days and R? around 0.45. These two satellite
events are negatively biased, with overall estimates earlier than the
beginning of tree budswell, possibly due to the earlier emergence of
understory species. The derivative-based SOS event has good congru-
ence with the field event FE2, achieving the R?0f 0.591, RMSE of 5 days,
and almost no bias. The Gu-based stabilization and curvature-based
maturity events can be aligned with the field event MAT, yet posi-
tively biased with R? around 0.4 and RMSE over one week. The delayed
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estimates from the stabilization and maturity events may partly be due
to the continued increase of leaf chlorophyll content after the visually
observed maturity status of tree leaves (Keenan et al., 2014a, 2014b).
Similar to threshold-based phenophase estimates, the curve feature-
based phenophase estimates using the calibrated PlanetScope data
yield consistently higher R? and mostly lower RMSE values than those
estimates from the original PlanetScope data (Fig. S2).

Among all five satellite events, the derivative-based SOS can be more
accurately used to estimate the corresponding field event (e.g., FE2),
showing the stronger potential of satellite imagery in remotely detecting
this leaf expansion event in spring. The derivative-based SOS can also be
connected with the field events BB3 and FE1 with R? >0.8, indicating
that variation in the mean phenological timing of leaf out and early leaf
expansion can be captured even more by that of the derivative-based
SOS, yet with larger RMSE and bias (Fig. S3). Similar to threshold-
based analysis, the leaf out and expansion events can be characterized
more accurately by the satellite event (i.e., derivative-based SOS) in
comparison with the budswell event in the early season or the maturity
event in the late spring. With a diversity of satellite events extracted
from the four phenological metric extraction methods, all target field
events throughout the spring tree leaf phenological development tra-
jectory can be estimated, yet with varying degrees of accuracy.

4.6. Effect of tree-crown size on phenological event detection

For each tree crown of all 123 individuals, we calculate the differ-
ence in DOY between the field events and the corresponding satellite
events (satellite-field event correspondence shown in Fig. 13 and
Fig. 15). The difference is aggregated by species across years with mean
and standard deviation calculated, which are further analyzed as a
function of the species’ mean tree-crown area (Fig. 16 and Fig. 17). For
the species consisting mainly of small trees with crown sizes <90 m2, the
difference between the timing of field and corresponding satellite events
varies widely, ranging from —20 to 20 days using the threshold-based
method (Fig. 16). However, for the species consisting mainly of large
trees (crown sizes >90 m?), the difference between the timing of field
and corresponding satellite events is closer to 0. With the increase of
tree-crown size, the satellite events achieve better congruence with
corresponding field events, leading to more consistent event-DOY dif-
ference with smaller fluctuations among species. The decreasing fluc-
tuations between the satellite- and field event-difference indicate the
potential of calibrated PlanetScope imagery in characterizing the crown-
scale leaf phenological dynamics of large individuals. However, the
detection of small tree-crown phenology is more uncertain, partly due to
the potential mixed tree crowns within a PlanetScope pixel and
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increased requirement of radiometric sensitivity of satellite sensor to the
spectral changes across tree crowns.

For the curve feature-based satellite events, similar patterns can be
found in the date difference between each satellite and corresponding
field events (Fig. 17). An increase in tree-crown size leads to more
consistent date difference with smaller variation across species. Similar
to Fig. 15, the Gu-based upturn and curvature-based greenup estimates
tend to be earlier than the beginning of tree budswell for most species.
The Gu-based stabilization and curvature-based maturity estimates
generally are later than the field-observed tree maturity timing (Fig. 17).
The PlanetScope-based tree leaf phenology detection accuracy varies
across tree-crown sizes, with more consistent and stable performance for
larger individuals.

4.7. Spatiotemporal variation of satellite events of the forest fragment

Three important field events (i.e., BB1, FE1, and MAT), representing
early budburst (leaf out), early leaf expansion, and maturity of a tree
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crown, are selected for the subsequent analysis. These field events are
most closely related to 30%, 50%, and 80% thresholds of the calibrated
EVI2 time series, respectively. Thus, we map the spatial distribution of
the satellite events of 30%, 50%, and 80% thresholds in our fragmented
forest site using the calibrated PlanetScope data from 2017 to 2020
(Fig. 18). All three satellite events exhibit spatial and temporal variation
across tree crowns in the study site, with relatively early event timing in
2017 and delayed timing in 2018. The northwest to the center of the
study site has relatively earlier timing of all three satellite events in 2017
and 2019. This area consists mainly of Q. macrocarpa, C. occidentalis,
Q. rubra, and A. saccharum that tend to go into the budburst, leaf
expansion, and mature phases relatively earlier in these two years. In
2017, several large trees (e.g., Q. macrocarpa and Q. rubra) in the
southwest of the study site enter the budburst and leaf expansion phases
early, which corresponds to the early detection of satellite events of
thresholds 30% and 50% in this area using the calibrated PlanetScope
imagery, respectively. We further calculate the mean and standard de-
viation of three satellite events of the study site, as well as their



Y. Zhao et al.

(a) TRS0.3

(b) TRS0.5 |

(c) TRSO.8

Remote Sensing of Environment 297 (2023) 113790

2020

136

128

120

12

104

144

136

128

120

12

170

160

150

140

130

120

Fig. 18. Spatial variation maps of satellite events of 30%, 50% and 80% thresholds of our fragmented forest site from 2017 to 2020 using the calibrated Planet-

Scope imagery.

corresponding field events via sampled trees (Fig. 19). The comparable
mean satellite-field event timing (the absolute difference of satellite and
field event timing ranges from O to 7 days) demonstrates the strong
potential of employing calibrated PlanetScope imagery in characterizing
the crown-scale spring phenological trajectory of a fragmented forest.
Among the four years, all satellite events have relatively earlier timing in
2017, in connection with the early start of field events BB1, FE1, and
MAT in this year (Fig. 19). The satellite events of thresholds 30% and
50% are relatively delayed in 2018 and 2020, corresponding to the late
start of field events BB1 and FE1 of those two years. The delayed satellite
event of threshold 80% in 2020 corresponds to the late tree maturity
event observed in the field.

5. Discussion

In this study, we propose a tree-crown scale remote sensing pheno-
logical monitoring framework to retrieve critical spring leaf phenolog-
ical events of individual trees in a forest fragment in heterogeneous
landscapes. This framework integrates the multi-scale MODIS and HLS
imagery for calibrating PlanetScope imagery, incorporates intensive
field phenological observations of individual trees and drone imagery-
delineated crown boundaries, as well as bridges the satellite- and
field-based phenological measures of individual trees for remotely
characterizing a diverse set of spring phenological events (e.g., bud-
swell, budburst, leaf expansion, and leaf maturity events) at the tree

150
Events
I BB1
> 100 B Trso03
Q ] FE1
B Trs05
50 [ ] maT
B TRsos
0

2019 2020

Year

2017 2018

Fig. 19. Mean and standard deviation of three satellite events (i.e., thresholds
30%, 50% and 80%) of the study site, as well as their corresponding field events
(i.e., BB1, FE1, and MAT) via sampled trees from 2017 to 2020.

crown scale.

The proposed phenological framework holds considerable signifi-
cance in advancing tree leaf phenology detection of forest fragments
using PlanetScope imagery. The limited area of fragmented forests re-
quires the novel and rigorous design of the calibration procedure of
PlanetScope imagery. Our framework integrates the hybrid deep
learning-based fusion model with histogram matching, providing an
innovative solution to the challenge of cross-sensor inconsistency in
PlanetScope data. By integrating the SRCNN and LSTM, the hybrid deep
learning-based fusion model is advantageous in predicting rapid
phenological changes among the imagery, a long-standing challenge in
spatiotemporal image fusion, particularly in heterogenous landscapes.
During the early spring, the images documenting the rapid change of
leaf greenness associated with the start of season are usually subject to
cloud contamination in the study site. The rapid phenological changes
due to the limited HLS images can be adequately accommodated in the
hybrid deep learning-based fusion model. The high agreements between
the MODIS-HLS fusion images and reference HLS images via accuracy
metrics further demonstrate the good performance of the fusion model.
With the fusion images of daily temporal resolution and 30-m spatial
resolution as the reference, all the PlanetScope images are calibrated
with histogram matching for the fragmented forest area to reduce the
radiometric inconsistency. The further comparative analysis between
the fusion and MODIS images as the calibration reference indicates the
importance of taking into account the landscape fragmentation in his-
togram construction, when the study site occupies only a small area in a
mixed landscape. The calibration of PlanetScope images using MODIS
images as the reference may work for monitoring the phenology of large
forests, as shown in previous studies (Wang et al., 2020; Wu et al., 2021).
However, in the fragmented forest setting, the inadequate selection of
reference images that contain a mixture of land covers negatively affects
the calibration results. The use of fusion reference images in this study
eliminates the influence of surrounding agriculture and ensures that the
PlanetScope data are calibrated based on only the reflectance informa-
tion of the same land cover type. The calibration technique devised for
PlanetScope data in our framework can potentially be utilized for a wide
range of fine-scale remote sensing applications beyond tree leaf
phenology detection, particularly in heterogeneous landscapes.

Under the devised framework, we conduct intensive field pheno-
logical observations of 123 representative individual trees of 12 decid-
uous tree species in Trelease Woods throughout the spring season over
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four years. For each individual tree, we record ten field phenological
events of four phenological phases, ranging from budswell to leaf
maturity phases, with a systematic and consistent in-situ phenological
monitoring protocol. The field phenological observations also cover
trees of varying crown sizes, with 42% being large individuals. We
further collect a multitude of drone images spanning the growing season
to delineate the tree crown boundary of each individual with the
consideration of its GPS location, tree color tone, texture, spatial
structure, morphology, as well as tree field measures and phenological
observations. The integration of drone imagery-delineated tree crown
boundaries and systematic in-situ phenological observations of indi-
vidual trees is a key and indispensable step to building a comprehensive
crown-scale ground phenological reference for validating satellite-
derived tree phenological measures. The relevant field efforts are still
rare in phenological studies, as most previous field efforts are limited by
the number of trees sampled or the number of phenological events
observed with a consistent protocol (Berra and Gaulton, 2021; Fisher
et al., 2006; Kowalski et al., 2020).

The framework successfully leverages the reflectance information in
MODIS, HLS and PlanetScope data, and generates high quality 3-m EVI2
time series for leaf phenology detection. Importantly, all the key field
events (i.e., BS1, BB1, BB3, FE1, FE3, and MAT) throughout the spring
season are successfully approximated by corresponding satellite events,
especially for large individuals. This comprehensive phenological
characterization notably expands the limited spring field event detected
by remote sensing in previous studies, which mostly focus on the field
event of budburst (leaf out) at the landscape level (Berra and Gaulton,
2021; Kang et al., 2003; Khare et al., 2019). Among the phenological
metric extraction methods, the threshold-based method demonstrates
enhanced capability to identify subtle leaf phenological changes in
spring, with BS1, BB1, BB3, FE1, FE3 and MAT field events bridged to
the 20%, 30%, 40%, 50%, 70% and 80% thresholds of EVI2 time series,
respectively. As for the curve feature-based satellite events, the Gu-
based upturn and curvature-based greenup events approximate the
field event BS1. The derivative-based SOS event corresponds with the
field event FE2. The Gu-based stabilization and curvature-based matu-
rity events are connected to the field event MAT. The field phenological
events of full leaf out and early leaf expansion (i.e., BB3 and FE1) can be
bridged to corresponding satellite events (i.e., 40% and 50% thresholds)
with high accuracy. In the early spring, the weak signal of budswell is
harder to be captured by the satellite imagery, and the detection of early
field events (e.g., BS1) is more subject to the influence of understory
phenology, soil background, and snow contamination. For example, the
mean emergence timing of understory herbs in the study site from 2017
to 2020 is about DOY 98 (standard deviation of 5.5 days), which is
around the budswell phase for tree crowns (Augspurger and Zaya,
2020). At the end of spring, the subtle phenological change from leaf
expansion to maturity makes the remote detection of corresponding
field events (i.e., FE3 and MAT) more difficult. With the comprehensive
analysis of both field and satellite events, the framework corroborates
not only the conventional limited, satellite-field event bridging rela-
tionship at the landscape level of previous studies (i.e., forest leaf out
onset timing approximated by 20-30% threshold of vegetation index
time series), but also successfully broadens the scope of phenological
detection from limited field events to a range of critical ones throughout
the tree spring phenological development trajectory (Bornez et al.,
2020; Klosterman et al., 2018; Kowalski et al., 2020; Xie and Wilson,
2020).

The framework enables the monitoring of the staggering phenolog-
ical development among individual trees within a forest fragment.
Among the trees of various crown sizes, the tree-crown scale leaf
phenology can be detected more accurately for large individuals using
the PlanetScope imagery. With those large individuals mostly from
dominant species, leaf phenology monitoring throughout the spring
season can further improve our understanding of how those species, as
well as the associated fragmented forest, respond to climate and
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environmental changes. Large trees and dominant species are vital to an
ecosystem, as large trees make up most of the above-ground biomass and
provide important habitats for animals, while dominant tree species
influence the diversity of herbivores and forest productivity (Kim and
Choi, 2021; Lutz et al., 2018). The phenological monitoring of those
trees and species helps to identify the ones sensitive to environmental
disturbances in a fragmented environment, as well as adapt the forest
management to climate change. Furthermore, the thorough detection of
a range of field phenological events enables the quantification of tree
spring phenological development rate and phase duration, as well as
helps to assess the influence of environmental changes on different
phenological phases (e.g., budswell, budburst, leaf expansion, and leaf
maturity phases), which usually have distinct ecological and biological
implications. The different spatiotemporal phenological variation pat-
terns of different satellite events in the study site (Fig. 18) also indicate
the importance and benefit of the phase-specific assessment.

Despite the valuable insights provided by our study in monitoring
tree leaf phenology of forest fragments, it also has limitations. One
limitation is associated with the use of PlanetScope imagery in detecting
small tree crown phenology, which may potentially bring uncertainties
due to the mixed tree crowns within a PlanetScope pixel and increased
requirement of radiometric sensitivity of satellite sensor to the spectral
changes across tree crowns. As a consequence, the spring leaf phenology
of large trees can be more accurately detected than that of small tree
crowns. The further integration of time series of drone imagery with the
calibrated PlanetScope imagery may help improve the accuracy of leaf
phenological change detection of small trees. Another limitation lies in
the scale of in-situ phenological data. While our systematic tree field
phenological observations are key to bridging a diversity of satellite-
field phenological events, the in-situ tree phenological observations at
our study site (i.e., Trelease Woods) may not well capture the diversity
of phenological responses across different habitat types and microcli-
mates. The in-situ and remotely sensed phenology also differs in
observation angles, with the in-situ phenology observed at the ground
level by looking upward into the canopy and the remotely sensed
phenology detected from satellite views above the canopy. In the future,
it would be valuable to explore the incorporation of phenological cam-
era networks (e.g., North American PhenoCam Network) distributed
across a wide range of habitats with more comparable phenological
views, despite the caveats concerning the limited trees recorded under
the camera field of view (Richardson et al., 2018a; Seyednasrollah et al.,
2019). Citizen science initiatives (e.g., US National Phenology Network)
and crowdsourcing platforms could also be utilized to expand the spatial
coverage of in-situ phenological data with consistent observing pro-
tocols (Peng et al., 2017a, 2017b). With the expanded in-situ data, the
framework can be tested further in forest fragments of various species
composition across habitats for evaluating the satellite-field event
bridging relationship at the tree-crown scale. To expand the scope of this
study to larger areas, manual delineation of crown boundaries may be
time-consuming and subject to the influence of observer delineation
experience and skills. Automatic image segmentation may be employed
to help reduce the amount of time required to delineate boundaries as
well as enhance consistency and repeatability of crown delineation.
Given the importance of tree crown boundaries in subsequent phenology
monitoring, the performance of automatic segmentation methods needs
to be evaluated, particularly in complex forests where tree crowns are
overlapping or irregular, or trees vary significantly in size, shape, and
species.

In general, the tree-crown scale phenological monitoring framework
proposed in this study enables the monitoring of a multitude of spring
leaf phenological events of individual trees in a forest fragment. In the
future, the framework can be tested further in forest fragments with a
lower density of herbs and/or saplings to explore the effects of under-
story on detecting the field events in the early spring. As the pheno-
logical change from leaf expansion to maturity is more subtle at the end
of spring, the characterization of these field events in the future might



Y. Zhao et al.

benefit from the further integration of other vegetation indices, such as
wide dynamic range vegetation index (WDRVI) and MERIS terrestrial
chlorophyll index (MTCI) (Dash and Curran, 2007; Gitelson, 2004).
These indices are sensitive to the change of chlorophyll content,
particularly in high chlorophyll values. The monitoring of all the key
spring phenological events at the tree-crown scale is critical for
enhancing our understanding of tree species phenological responses to
environmental disturbance and climate change, aiding in more effective
forest management and conservation.

6. Conclusions

Forest fragmentation has been continually exacerbated by the
expansion of urban and agricultural fields in recent years. Forest frag-
ments, despite limited sizes, have important ecosystem functions and are
more sensitive to environmental disturbances than intact forests. Tree
leaf phenology is an important indicator to monitor the influence of
climate or environmental changes on forest fragments. In this study, we
propose a tree-crown scale remote sensing phenological monitoring
framework to detect a diversity of spring phenological events of indi-
vidual trees of a forest fragment in heterogenous landscapes. This
framework consists of four components: high spatiotemporal resolution
fusion imagery generation with multi-scale satellite time series, Plan-
etScope imagery calibration with the fusion data, tree-crown scale
phenology trajectory modeling, and tree-crown scale phenological event
characterization and assessment. The results demonstrate that cali-
brating PlanetScope imagery with high-quality MODIS-HLS fusion data
can reduce effectively the cross-sensor radiometric inconsistency as well
as the fluctuations in EVI2 time series, thus improving the accuracy of
spring phenological event detection of individual trees. The further
comparative analysis between the fusion and MODIS images as the
calibration reference infers the importance of taking into account the
landscape fragmentation in PlanetScope imagery calibration, particu-
larly for fragmented forests in heterogeneous landscapes. The frame-
work successfully characterizes all the key spring phenological events (e.
g., budswell, budburst, leaf expansion, and leaf maturity events) of in-
dividual trees of our study site, with leaf out and early leaf expansion
events retrieved with high accuracy, particularly for large tree crowns.
The developed framework not only broadens the horizon of leaf
phenological monitoring from the landscape to tree-crown scales, but
also expands the scope of phenological detection from limited field
events to a range of critical ones throughout the tree spring phenological
development trajectory. The monitoring of all the key spring pheno-
logical events of individual trees will shed light on tree species pheno-
logical responses to environmental and climate change, further
facilitating the identification of species vulnerable to environmental
disturbances and assessment of potential shifts in species distributions
under climate change.
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