2023 IEEE Intemational Conference on Big Data (BigData) | 979-8-3503-2445-7/23/$31.00 ©2023 IEEE | DOI: 10.1109/BigData59044.2023.10386543

2023 IEEE International Conference on Big Data (BigData)

LogGPT: Log Anomaly Detection via GPT

Xiao Han
Utah State University
Logan, UT, USA
xiao.han@usu.edu

Abstract—Detecting system anomalies based on log data is
important for ensuring the security and reliability of computer
systems. Recently, deep learning models have been widely used
for log anomaly detection. The core idea is to model the log
sequences as natural language and adopt deep sequential models,
such as LSTM or Transformer, to encode the normal patterns
in log sequences via language modeling. However, there is a
gap between language modeling and anomaly detection as the
objective of training a sequential model via a language modeling
loss is not directly related to anomaly detection. To fill up the
gap, we propose LogGPT, a novel framework that employs
GPT for log anomaly detection. LogGPT is first trained to
predict the next log entry based on the preceding sequence. To
further enhance the performance of LogGPT, we propose a novel
reinforcement learning strategy to finetune the model specifically
for the log anomaly detection task. The experimental results
on three datasets show that LogGPT significantly outperforms
existing state-of-the-art approaches.

Index Terms—anomaly detection, log data, generative language
model

I. INTRODUCTION

Effectively detecting abnormal events in online computer
systems is critical to maintaining the security and reliability
of the systems. Logs, which are a fundamental component of
modern computer systems, serve as a critical source of in-
formation for system monitoring and security auditing as they
record the system status, offering valuable insights into system
performance and potential issues. Anomalies in log data often
signify system faults, security breaches, or operational failures,
making their detection a crucial task [1]-[4].

However, the task of anomaly detection in log data is chal-
lenging due to the nature of high dimensionality, large volume,
and complex structure. Recently, deep learning models have
emerged for log anomaly detection, such as LSTM-based
models like DeepLog [1], LogAnomaly [5], and OC4Seq [6],
and BERT-based models like LogBERT [2]. One commonly
used strategy is to borrow the idea of language modeling in
the natural language processing field to capture the sequential
pattern of log data. In this paper, we call this group of
log anomaly detection models log language model-based
approaches. Particularly, the log language model is first trained
to predict the next or masked log entries given the normal
sequences. Then, the anomalies can be detected if the observed
log entry is not in the Top-K list predicted by the log language
model. The rationale is that if a log sequence follows normal

979-8-3503-2445-7/23/$31.00 ©2023 IEEE 1117

Shuhan Yuan
Utah State University
Logan, UT,
Shuhan. Yuan @usu.edu

Mohamed Trabelsi
Nokia Bell Labs
Murray Hill, NJ, USA
mohamed.trabelsi @nokia-
bell-labs.com

USA

patterns, the log language model should be able to predict the
next or masked log entries. Therefore, when an observed log
entry is not in the Top-K list predicted by the log language
model, it means that the log entry has a low ratio to be in this
specific position given the context, indicating the abnormality.

Although empirical studies have demonstrated the effective-
ness of leveraging language models for log anomaly detection,
the current models still face some limitations. The traditional
LSTM-based log language models, such as DeepLog, often
fail to fully capture long-term dependencies in log sequences.
Therefore, the recently developed models usually adopt the
Transformer structure [7] to model the long log sequences,
such as LogBERT [2]. However, the masked log language
model may not be able to capture the natural flow in log
sequences. More importantly, there is a gap between log
language modeling and anomaly detection. Technically, the
log language model is usually trained to correctly predict the
next log entry, while the current log anomaly detection models
label the anomalies if the observed log entry is not in the Top-
K list predicted by the log language model. In other words,
there is a gap in the objective between the training phase and
the testing phase for log anomaly detection.

Inspired by the training strategy for large language models,
to fill up the gap, we introduce LogGPT, a novel framework
for log anomaly detection that leverages the Generative Pre-
trained Transformer (GPT) model. LogGPT still harnesses
the power of generative log language models to capture the
intricate patterns in log data. Specifically, LogGPT is pre-
trained to predict the next log entry given the preceding
sequence (prompt). More importantly, we further fine-tune
LogGPT via reinforcement learning. LogGPT employs a novel
reward mechanism based on whether the observed log entry is
within the Top-K predicted log entries from the log language
model. If the observed log entry is found within the Top-K
predictions, LogGPT will receive a positive reward; otherwise,
it will receive a negative reward. Reinforced by this reward
signal, we expect that for the normal sequences, LogGPT can
ensure the log entry is within the Top-K predictions.

The contributions of this paper are threefold. First, we
propose LogGPT, a novel framework for anomaly detection in
log data, which utilizes the generative log language model to
capture the patterns of normal log sequences by training to pre-
dict the next log key given the previous sequence. Second, we
introduce a Top-K reward metric specifically designed for fine-

Authonzed licensed use limited to: Utah State University. Downloaded on January 29,2024 at 20:28:23 UTC from IEEE Xplore. Restrictions apply.



tuning the log language model for anomaly detection. Third,
we conduct extensive experiments to validate the effectiveness
of LogGPT in detecting anomalies in log data. Experimental
results demonstrate that LogGPT outperforms state-of-the-art
methods, underscoring its potential as a powerful tool for
anomaly detection in log data.

I1. RELATED WORK

Log anomaly detection, a critical task for ensuring sys-
tem security and reliability, has received extensive research.
Recently, advanced deep learning models have significantly
improved the performance of log anomaly detection. In par-
ticular, Long Short-Term Memory Networks (LSTMs) have
proven to be effective for log anomaly detection, such as
DeepLog [1] and LogAnomaly [5]. However, a primary chal-
lenge with LSTM is that the recurrent architecture struggles
to encode very long or complex sequences due to its relatively
simple structure.

To address the limitations of LSTM-based models, re-
searchers have turned to the use of Transformer [8], which is a
more powerful model to capture the long-term dependencies in
the sequences, such as LogBERT [2] or CAT [9]. LogBERT is
a self-supervised framework that learns the patterns of normal
log sequences based on BERT [8]. Specifically, LogBERT
takes normal log sequences with random masks as inputs and
is trained to predict the randomly masked log entries. After
training, LogBERT can encode the patterns of normal log se-
quences. One limitation is that the masked log language model
may not always capture the natural flow of log sequences
in some contexts. Moreover, the performance of LogBERT
is sensitive to the mask ratio, a hyperparameter controlling
how many tokens will be replaced with MASK tokens during
both the training and testing phases. In this work, we propose
LogGPT, which leverages the GPT model to learn patterns in
normal log sequences by predicting the next log entries in a
sequence and further proposes a novel reinforcement learning
mechanism to enhance the performance for anomaly detection.

IT11. PRELIMINARY
A. Log Sequence Preprocessing

The first step of log anomaly detection is to preprocess
the log messages. The major line of research in log anomaly
detection is to first adopt a log parser, such as Drain [10], to
extract the template from the log messages, as shown in Figure
1. Each template usually indicates one type of log message,
called a log key.

After getting the log keys, the sequence of raw log messages
can be transformed into a sequence of log keys. In this case,
the log keys are similar to the vocabulary in natural language,
while the sequence is like a sentence consisting of a sequence
of log keys. Therefore, a language model can be leveraged to
model the log sequences.

Formally, after preprocessing, the log messages with the
same template are represented by a log key k € K, where K
indicates the set of log keys extracted from the log messages.
Then, a log sequence is organized as ordered log keys, denoted

1118

Log Messages
081109 203615 148 INFO gis,
| blk_38865045064139660 terminating
081109 203807 222 INFO dfs. P! P r 0 for block -
487 inati
081109 204005 35 INFO dfs FSN ; * Nam It k
:10.251.73.220: is lk_7 77 i
081109 204015 308 INFO gfs. 3 f
bik_8229193803249955061 terminating
081109 204106 329 INFO df: IVl PacketR nder: P nder r block blk_-

| B670I58622368987350 terminating

‘ Log Parsing

1. dfs.DataNode$PacketResponder: PacketResponder <*> for
block blk_<*=> terminating

x=
[RU ERE

2. dfs.FSNamesystem: BLOCK™ NameSystem.addStoredBlock: k4:
blockMap updated: <*>:<*=> is added to bik_<*> size <*> ks
Log Template Log Key Sequence

Fig. 1: Log key extraction from HDFS dataset messages via
Log Parser. The message with a red/blue underscore indicates
the detailed computational event for each log key separately.

as S = {ki, ..., k¢, ..., bz}, where T indicates the length of the
log sequence.

B. Log Language Model

We use DeepLog [1] to illustrate the concept of the log lan-
guage model. DeepLog leverages Long Short-Term Memory
networks (LSTMs) for log language modeling. The primary
objective of DeepLog is to learn a probabilistic model of
normal execution from log data and then detect anomalies as
significant deviations from normal patterns.

DeepLog is trained on D = {S°}Y, consisting of N
normal log sequences. The LSTM in DeepLog is trained to
predict the next log key in a sequence based on the preceding
sequence. Formally, given a sequence of log keys Si.r =
{k1, .-, kt, ..., kT }, where k; indicates the log key at the ¢-th
position. DeepLog trains an LSTM to model the conditional
probabilliy p(kt+m+1|.5't;;+m) for t = 1,2,...,T —m — 1,
where m indicates the window size. In other words, DeepLog
adopts a sliding window with size m to split the sequences
into a set of small windows and predict the next log key given
the previous m log keys. The LSTM is trained to maximize the
likelihood of the next log key given the preceding sequence,
which can be formulated as the following objective function:

N T—m-—1
1 ; .
£(9) = _ﬁ Z Zl Ing(k:+m+1|S::t+m)1 (1)
i=1 t=

where 8 denotes the parameters of LSTM.

During the anomaly detection phase, given a new sequence,
DeepLog still splits the sequences into small windows and
employs the trained LSTM model to predict the next log key.
The LSTM model predicts a probability distribution over all
possible log keys in K, ranking them based on their likelihood
of being the next key in the sequence. Then, a sequence will
be labeled as abnormal if the observed log key does not appear
in the Top-K prediction list multiple times across all sliding
windows in that sequence.

Authonzed licensed use limited to: Utah State University. Downloaded on January 29,2024 at 20:28:23 UTC from IEEE Xplore. Restrictions apply.



Grownd Truth T
Mext Log Keys B

tlegative Log Likeood

—
| |

I I I [T |

lllllll

GPT 2

|' - Taeeenandnnmmammheddnz

Training
sample
LE

Output

(a) Pre-training

Comaute i )

n i

1 -

OS] 0l

Decoder Block

Decoder Block

‘Compute the Reward by
Checking Whether the Observed
Next Log Key s within the Top-3.
Fe=d rotward Nelral Networ

Masked Seif-Attantion

I T 1T T T T

Token and Positional Embedding

(b) Fine-tuning

Fig. 2: Framework of LogGPT.

IV. LOGGPT

In this section, we introduce LogGPT, a novel log anomaly
detection model based on GPT. Similar to DeepLog, LogGPT
detects the log anomaly by examining whether the observed
log key is in the Top-K prediction list. Because GPT is a
more powerful structure compared to LSTM used by DeepLog,
LogGPT does not need to further split the sequence into
multiple small windows. Instead, LogGPT is trained to predict
the next log key given the previous sequence, which intrinsi-
cally can capture the long-term dependence of log sequences.
Moreover, besides leveraging the powerful GPT structure, we
also propose a novel reinforcement learning strategy to further
improve the performance of log anomaly detection.

The design of LogGPT is inspired by the training process
of large language models, where the training process consists
of two primary stages: pre-training and fine-tuning.

In the pre-training stage (Figure 2a), a generative log
language model fp(-) is trained on a corpus of normal log
sequences D, which allows the model to learn the underlying
patterns and structures of normal system behavior. After pre-
training, LogGPT is capable of generating log sequences based
on a given part of the log sequences.

The fine-tuning stage (Figure 2b) is designed to further
refine the model’s ability to distinguish between normal and
abnormal log sequences. In this stage, we employ reinforce-
ment learning techniques to finetune the pre-trained LogGPT.
Borrowing the terminology from the large language model,
we define a set of prompts P = {S1,,}¥ ,, where Si., C Si..
and Si.. € D. These prompts are fed into the LogGPT to
generate the following sequence .S‘t . step by step. We propose
a novel reward, called the Top-K metric, to fine-tune LogGPT
for anomaly detection.

A. Generative Log Language Model

LogGPT utilizes GPT-2 [11] for modeling the log se-
quences, which is based on Transformer decoder [7]. LogGPT
is trained to predict the next log key given the preceding log

1119

keys. The objective function for pretraining the LogGPT is
defined as follows:

IV
_EZZ og p( t+l|Slt)

where 6 denotes the parameters of LogGPT, N is the number
of log sequences and T is the length of each sequence,
p(k},1|Sf.;) indicates the probability of log key at the ¢+ 1-th
position predicted by LogGPT given the sequence S?.,.

Specifically, to derive p(k}, ;|5%.;), the structure of LogGPT
can be defined as:

(2)

= Transformer_Decoder(S:.,)
p(ki11151.) = Softmax(h; W),

(3a)
(3b)

where hi € R indicates the hidden representation, and W €
R2*IX| is the parameter of the log language model head that
maps the hidden representation to a probability distribution of
all log keys in K.

After pre-training, GPT-2 is capable of generating a log
sequence St-‘,—lT = {kt-i-l: ..., k%.} based on a given part of
the log sequence S?,. This capability is crucial for the subse-
quent fine-tuning stage, where the model is further refined to
distinguish between normal and anomalous log sequences.

B. Reinforcement Learning for Log Anomaly Detection

We employ reinforcement learning to fine-tune the pre-
trained GPT-2 model for log anomaly detection. In the context
of our framework, we define the following elements.

State: The state, denoted as S}., = S}.,, is initially defined as
the given part of a log sequence. As the model generates the
log sequence S 1.7 based on the given part, the state evolves
dynamically. Specifically, for each step 7 where t 41 < j <
T — 1, the state 5"‘ becomes the concatenation of the given
part of the log sequence Si., and the generated part of the
log sequence S§+1 j» denoted as S = {8t z=5t+1;,-} The
sequence St .; is further transformed to a hidden representation

hj by the Transformer decoder shown in Equation 3a.

Authonzed licensed use limited to: Utah State University. Downloaded on January 29,2024 at 20:28:23 UTC from IEEE Xplore. Restrictions apply.



Action: An action is defined as sampling a log key from the K
log keys with the highest probabilities predicted by LogGPT,
denoted as a}, ; ~ Top-K(p(k},]S7.;))-

Policy: A policy takes the form of LogGPT and is defined by
its parameters. Specifically, given the current part of the se-
quence until the j-th position, the policy outputs a probability
distribution over the action space, represented as 7g(a? , ;|h}),
where @ indicates the parameters of LogGPT.

Reward: The reward function provides feedback to the policy
based on the quality of its actions. We propose a novel
reward function to evaluate the predicted log key for anomaly
detection, called the Top-K metric.

At each step, the Top-K metric checks whether the observed
next log key is within the Top-K predicted log keys. If this
is the case, the model receives a reward of 1: otherwise, it
receives a reward of -1. Given a part of log sequence Si.,,
after an action is taken, the reward function is formulated as:

if kt-{—l € TOP K(p('!"j—i-llsi 3))

1,
'l"'+]_ = i .
? {_1: if kj—i-l ¢ Top- K(P(F“j+lls§:j))

Here, k} ,; refers to the actual next log key, and p( ;+1|.§'§:j)
denotes the probability distribution predicted by LogGPT over
the action space given the current state.

The Top-K metric promotes better generalization and ro-
bustness of LogGPT in anomaly detection. By encouraging
the model to predict a set of likely next log keys rather than
a single most likely log key, the Top-K metric helps LogGPT
learn a more nuanced representation of the normal log patterns.
This approach recognizes that log data may contain inherent
variability even for the normal log sequences, and a broader
range of acceptable candidates can still reflect normal system
behavior. The Top-K metric, therefore, enhances the precision
of anomaly detection by aligning the model’s predictions with
the complex nature of log data.

“4)

C. Policy Update

We adopt Proximal Policy Optimization (PPO) [12] for
the policy update. PPO is a type of policy gradient method
that optimizes the policy directly by maximizing the expected
reward and can further maintain the stability of the learning
process and prevent harmful updates. The objective function
of PPO is defined as follows:

N T-1

Ero 2D

i=1 j=t

?Tg 3+1|h ) .

J(8) = r ;
©) Toua (@l 1) TH1

(5)

where g is the new policy, mg,, is the old policy, and 741
is the reward for an action.
The policy 7 is updated by performing gradient ascent on

the objective function J(#):
0+ 0+ aVelJ(6), (6)

where « is the learning rate.
The policy update process is repeated for a number of
iterations until the policy converges or a maximum number

1120

TABLE 1. Statistics of the Datasets. The number in the
parentheses indicates the unique log keys in the training set.

D i # of Unique | #of Log | Avg. Seq. | Training Testing Dma
Log Keys Seq Length Data Normal | A
HDFS 48 (15) 575,061 19 5,000 553273 16,838
BGL 306 (160) 36,927 58 5,000 28,631 3,296
Thunderbi 7,703 (504) 112,959 166 5,000 67,039 40,920

of iterations is reached. The Top-K metric encourages the
model to recognize the inherent variability in normal log data
by rewarding predictions that include the actual next log key
within a broader set.

D. Anomaly Detection

After fine-tuning, LogGPT is deployed to detect abnormal
log sequences. Given a new log sequence Si.r, LogGPT
iteratively predicts the next log key k;,1 given the preceding
subsequence Sy for 1 <¢<T —1.

For each predicted log key, the model generates a set of Top-
K predicted log keys. This set represents the K most likely log
keys at the current position. The actual next log key is then
compared to this set. As long as one actual log key is not in
the set of Top-K predicted log keys, the whole log sequence
will be flagged as anomalous.

V. EXPERIMENTS
A. Experimental Setup

Datasets. We evaluate LogGPT on three system log datasets:
1) HDFS (Hadoop Distributed File System) [13] consists
of 575,061 log sequences, out of which 16,838 have been
labeled as anomalous; 2) BGL (BlueGene/L. Supercomputer
System) [14] contains 36,927 log sequences, with 3,296 of
them classified as anomalous; 3) Thunderbird [14] 112,959
log sequences, with 40,920 of them marked as anomalous.
Table 1 shows the statistics of three datasets. For all the
datasets, we randomly select 5000 normal log sequences as
the training dataset.
Baselines. We compare LogGPT with a variety of baseline
methods, consisting of both traditional machine learning mod-
els and deep learning models: 1) PCA (Principal Component
Analysis) [15], which reduces the dimension of a counting
matrix based on the frequency of log key sequences to identify
anomalies; 2) iForest (Isolation Forest) [16], which detects
anomalies as instances with short average path lengths on
the constructed isolation trees; 3) OCSVM (One-Class Support
Vector Machine) [17], which is a variant of the Support Vector
Machine algorithm that is designed for anomaly detection
tasks; 4) LogCluster [18], which detects anomalies that are
not in any clusters; 5) DeepLog [1], which is a log language
model-based approach for anomaly detection; 6) LogAnomaly
[5], which can detect both sequential and quantitative log
anomalies simultaneously; 7) OC4Seq (Multi-Scale One-Class
Recurrent Neural Networks) [6], which detect anomalies based
on the idea of the deep one-class classification model; 8)
LogBERT [2], which is another log language model-based
approach based on BERT architecture; 9) CAT (Content-Aware
Transformer) [9], which is a self-attentive encoder-decoder

Authonzed licensed use limited to: Utah State University. Downloaded on January 29,2024 at 20:28:23 UTC from IEEE Xplore. Restrictions apply.



TABLE II: Experimental Results on HDFS, BGL, and Thunderbird Datasets.

Method HDFS BGL Thunderbird
Precision Recall F-1 score Precision Recall F-T score Precision Recall F-T score

PCA 0.166. 0,008 0.059 40 003 0.087 10002 0.117+p.023 0.03540.007 0.05440.010 0.95340.004 0.9804 0,005 0.966 10003
iForest 0.043+p.010 0.4221p.924 0.078 1p.021 0.491 40 364 0.037 +0.052 0.063+0.090 0.338 1 p.128 0.0154p.011 0.028 10,020
OCSVM 0.05840.012 | 0.9104p080 | 0.10810.021 0.073+0.003 0.34540.010 | 0.12140.004 | 0.55040.004 | 0.998ip000 | 0.709i0.003
LogCluster | 0.99610.008 | 0.36810.001 0.538 1 p.001 0.941 10,015 0.641 40,032 0.762 1 0.021 0.977+0.005 | 0.29110.063 0.445 1 oar
DeepLog 0.79310.002 [ 0.86310.011 082410060 | 0.79210.048 0.9461p.012 | 0.861tp.028 | 0.864d10.005 0.997 1.0.000 0.926 1 0.003
LogAnomaly | 0.907ipp17r | 0.3694p.014 | 0.52440.017 | 0.88410.002 0.85040.000 | 0.867ipopz | 0.87310.005 0.996 1.0.000 0.93140.003
OC4Seq 0.9224p050 | 0.7584p207 | 0.808ipisr | 0.441i0.045 0.35240.044 | 0.39110.0a1 0.901 10.048 0.82310.232 0.84540.177
LogBERT 0.75440.142 | 0.7494p037 | 0.745,0.082 0.917 4 0.008 0.89240006 | 0.905+0.005 | 0.962ip019 | 0.965i0.008 0.963 +0.007
CAT 0.1024 9,022 0.422 4 g 82 0.1641p.p34 0.17740.122 0.2104p.184 0.1904+0.148 0.75110.072 0.51640.124 0.607 10120
| LogGPT | 0.884 10.030 | 0.921 1 p.0e6 | 0.901% ; gag | 0.94050.010 | 0.977+0.018 | 0.958% ;011 | 0.97310.004 | 1.000 .10 000 | 0.986% j gga

The asterisk indicates that LogGPT significantly outperforms

transformer framework designed for anomaly detection in
event sequences.

Implementation Details. We first employ Drain [10] to parse
raw log messages into log keys. For the baseline models, we
utilize the Loglizer [19] package to evaluate PCA, OCSVM,
iForest, and LogCluster for anomaly detection. DeepLog and
LogAnomaly are evaluated using the Deep-loglizer [20] pack-
age. For OC48Seq', LogBERT?, and CAT>, we use the open-
source code provided by the authors separately.

As for LogGPT, we use a GPT model with 6 layers and 6
heads. The dimensions of the embeddings and hidden states
are set to 60. The learning rate is set to le-4 for the pre-training
phase and le-6 for the fine-tuning phase. To accommodate
different datasets, we set the K in Top-K to 50% of the training
log keys. It means during the test phase if an observed log key
is not in the top 50% of the prediction list from the GPT, the
sequence will be labeled as an anomaly. This allows us to
maintain a high level of flexibility when dealing with datasets
of varying sizes and characteristics. The batch size for the
pre-training phase is set to 16, and we train the model for 100
epochs. The episode is set to 20 with early stop criteria to
prevent overfitting and ensure efficient training.

B. Experimental Results

Performance on Log Anomaly Detection. Table II illustrates
the results and standard deviation of LogGPT and various
baselines over 10 runs on the HDFS, BGL, and Thunderbird
datasets. The asterisk in the table indicates that LogGPT
significantly outperforms the best baseline for each dataset at
the 0.05 level, according to the paired t-test.

First, we can observe that PCA, iForest, and OCSVM
perform poorly on the HDFS and BGL datasets, as indicated
by their low F-1 scores. However, PCA’s performance is
notably better on the Thunderbird dataset, achieving a high
F-1 score. This inconsistency in performance across datasets
highlights the sensitivity of PCA to datasets.

LogCluster, specifically designed for log anomaly detection,
shows improved performance over other traditional machine
learning models, i.e., PCA, iForest, and OCSVM, on the
HDFS and BGL datasets but is outperformed by PCA on

!https://github.com/KnowledgeDiscovery/OC4Seq
Zhttps://github.com/HelenGuohx/logbert
3https://github.com/mmichaelzhang/CAT

1121

the best baseline at the 0.05 level, according to the paired t-test.

the Thunderbird dataset. This pattern further emphasizes the
importance of dataset-specific characteristics in determining
the effectiveness of different methods.

Deep learning-based approaches, such as DeepLog,
LogAnomaly, OC4seq, LogBERT, and CAT, outperform tra-
ditional methods across all three datasets, which shows the
advantages of utilizing deep learning to capture complex
patterns in log sequences.

Our proposed model, LogGPT, stands out by consistently
achieving the highest F-1 scores across all three datasets, with
significant margins over all baselines.

TABLE III: Performance of LogGPT with or without rein-
forcement learning.

Metric Approach HDFS BGL Thunderbird
Precision LogGPT wio RL | 0.9324p.015 | 0.93640.011 | 0.971410.004
LogGPT 0.88410.0a0 | 0.94040.010 | 0.97310.004

Recall LogGPT w/o RL | 0.7%040.101 | 0.9754+0.018 | 1.00040.000
LogGPT 0.92T 10086 | 0.97740.008 | 1.000+0.000

F-1 score LogGPT w/o RL | 0.85310.065 0.95540.010 0.985 4 p.002
LogGPT 0.901% 5 035 | 0-958+0.011 | 0.9867 g oo

Significantly outperforms LogGPT w/o RL at the 0.05 level (paired t-test).

Ablation Studies. To investigate the contribution of reinforce-
ment learning to the performance of LogGPT, we conduct an
ablation study, comparing the performance of LogGPT with
and without the RL component, shown in Table IIL.

First, on both HDFS and Thunderbird datasets, LogGPT
significantly outperforms LogGPT without the RL component,
which demonstrates that the RL component enhances the
overall performance of LogGPT. Especially, on the HDFS
dataset, by finetuning the GPT model with RL reward, the
recall achieved by LogGPT is improved by a large margin with
a little sacrifice on precision, leading to extensive improvement
in the F-1 score. It also shows that fine-tuning the log language
model with Top-K reward can identify more log anomalies.
Meanwhile, on the BGL dataset, we can also notice a slight
improvement in F-1 of LogGPT compared to the one without
the RL component. Another interesting finding is that even
the LogGPT without the RL component already outperforms
all baselines (shown in Table II) in three datasets, which also
shows the advantage of leveraging the GPT model to capture
the patterns of log sequences.

Parameter Analysis: Ratio of Top-K. LogGPT detects the
anomalies by examining whether the observed log key is in the
Top-K list predicted by GPT. We analyze the difference in the

Authonzed licensed use limited to: Utah State University. Downloaded on January 29,2024 at 20:28:23 UTC from IEEE Xplore. Restrictions apply.



1.00 & & i -— ——a—| 100 L i = 1.00 =« & & —& —k
= 0.98 S - ke ————
= ol . | T = 0.98 — I —
0.80 f _«\\ 0.05 //' /;j;- ""—7——_;\ il 1 A - = -
NN / e g kX ¥ / -
0.60 / i | 085 YN | 0944 /'/
- 0.90 * YA
0.40 f{ l:-.._._ﬁ 088 _| R / B
—=— Precision —®—  Precision 0.90 —=&— Precision
0.85 i
0.20 /' + Recall + Recall A, « Recall
{//' —— F-1score 083 —— F-1score z —+— F-1score
0.00 0.80 L 086
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09
Ratio of Top-K Ratio of Top-K Ratio of Top-K
(a) HDFS (b) BGL (c) Thunderbird
Fig. 3: Impact of the ratio of Top-K log keys.
performance by tuning K for anomaly detection. By default, ACKNOWLEDGMENT

K is set as 50% of unique log keys. It means if the next log
key falls into the top 50% of unique log keys predicted by
GPT, the sequence is normal.

The impact of different Top-K ratios on the precision, recall,
and F-1 score for the HDFS, BGL, and Thunderbird datasets
is illustrated in Figure 3. On both HDFS and BGL datasets,
we have similar observations. With the increasing of ratios as
normal log keys, the recall keeps decreasing when the ratio is
greater than a threshold. This happens because when we have
a large ratio, most of the keys are considered normal, leading
to a low recall. On the other hand, if the observed log key
is predicted with an extremely low probability, with a high
chance, this log key is abnormal. Therefore, we can observe
the increase in precision along with the increase in ratios.

For the Thunderbird dataset, the precision increases as
the Top-K ratio increases, while the recall remains almost
constant, with a slight decrease at higher Top-K ratios. The
F-1 score increases steadily, reaching a peak at a specific Top-
K ratio. The reason for this behavior is likely that the normal
data within the Thunderbird dataset has high variability, which
needs a broader range of acceptable continuations in the log
sequences to reduce the false positive. As the Top-K ratio
increases, LogGPT becomes more selective in flagging anoma-
lies, thereby increasing precision by reducing false positives.

Overall, a low Top-K ratio tends to have high recall but low
precision, while a high Top-K ratio leads to high precision but
potentially lower recall.

VI. CONCLUSION

In this work, we have developed LogGPT, a novel approach
to log anomaly detection that builds upon GPT models, fur-
ther enhanced by a reinforcement learning strategy. Through
modeling log sequences as natural language, LogGPT adapts
GPT for log anomaly detection. Recognizing the gap between
language modeling and anomaly detection, LogGPT integrates
a fine-tuning process guided by a Top-K reward metric for
anomaly detection. Extensive experiments conducted across
various datasets have demonstrated the effectiveness of Log-
GPT, showcasing significant improvements over existing state-
of-the-art methods.

1122

This work was supported in part by NSF 2103829.

REFERENCES

[1] M. Du, E. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in CCS, 2017.

[2] H. Guo, S. Yuan, and X. Wu, “Logbert: Log anomaly detection via bert,”
in LJCNN, 2021.

[3] G. Pang, C. Shen, L. Cao, and A. V. D. Hengel, “Deep learning for
anomaly detection: A review,” ACM computing surveys (CSUR), vol. 54,
no. 2, pp. 1-38, 2021.

[4] V-H. Le and H. Zhang, “Log-based anomaly detection with deep
learning: How far are we?” in ICSE, 2022.

[5] W. Meng, Y. Liu, Y. Zhu, 8. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang,
S. Tao, P. Sun et al., “Loganomaly: Unsupervised detection of sequential
and quantitative anomalies in unstructured logs.” in [JCAI, 2019.

[6] Z. Wang, Z. Chen, J. Ni, H. Liu, H. Chen, and J. Tang, “Multi-scale
one-class recurrent neural networks for discrete event sequence anomaly
detection,” in KDD, 2021.

[71 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and L. Polosukhin, “Attention is all you need,” NeurIPS, 2017.

[8] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[9] S. Zhang, Y. Liu, X. Zhang, W. Cheng, H. Chen, and H. Xiong, “Cat:
Beyond efficient transformer for content-aware anomaly detection in
event sequences,” in KDD, 2022.

[10] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in ICWS, 2017.

[11] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and L Sutskever,
“Language models are unsupervised multitask learners,” 2019.

[12] J. Schulman, E. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[13] W. Xu, L. Huang, A. Fox, D. Patterson, and M. 1. Jordan, “Detecting
large-scale system problems by mining console logs,” in SOSP, 2009.

[14] A. Oliner and J. Stearley, “What supercomputers say: A study of five
system logs,” in DSN, 2007.

[15] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan, “Largescale
system problem detection by mining console logs,” SOSP, 2009.

[16] E. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in JCDM,

2008.

B. Scholkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.

Williamson, “Estimating the support of a high-dimensional distribution,”

Neural computation, vol. 13, no. 7, pp. 14431471, 2001.

Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log cluster-

ing based problem identification for online service systems,” in ICSE

Companion, 2016.

S. He, I. Zhu, P. He, and M. R. Lyu, “Experience report: System log

analysis for anomaly detection,” in ISSRE, 2016.

[20] Z. Chen, J. Liu, W. Gu, Y. Su, and M. R. Lyu, “Experience report:
Deep learning-based system log analysis for anomaly detection,” arXiv
preprint arXiv:2107.05908, 2021.

[17]

[18]

[19]

Authonzed licensed use limited to: Utah State University. Downloaded on January 29,2024 at 20:28:23 UTC from IEEE Xplore. Restrictions apply.



