2023 IEEE International Conference on Big Data (BigData) | 979-8-3503-2445-7/23/$31.00 ©2023 IEEE | DOI: 10.1109/BigData59044.2023.10386925

2023 IEEE International Conference on Big Data (BigData)

Robust Fraud Detection via Supervised Contrastive
Learning

Vinay M.S.
University of Arkansas
Fayetteville, AR 72701, USA
vmadanbh @uark.edu

Abstract—Deep learning models have recently become popular
for detecting malicious user activity sessions in computing plat-
forms. In many real-world scenarios, only a few labeled malicious,
and a large amount of normal sessions are available. These few
labeled malicious sessions usually do not cover the entire diversity
of all possible malicious sessions. In many scenarios, possible ma-
licious sessions can be highly diverse. As a consequence, learned
session representations of deep learning models can become
ineffective in achieving a good generalization performance for
unseen malicious sessions. To tackle this open-set fraud detection
challenge, we propose a robust supervised contrastive learning
based framework called ConRo, which specifically operates in
the scenario where only a few malicious sessions having limited
diversity is available. ConRo applies an effective data augmen-
tation strategy to generate diverse potential malicious sessions.
By employing these generated and available training set sessions,
ConRo derives separable representations w.r.t the open-set fraud
detection task by leveraging supervised contrastive learning. We
empirically evaluate our ConRo framework and other state-of-
the-art baselines on benchmark datasets. Qur ConRo framework
demonstrates noticeable performance improvement over state-of-
the-art baselines.

Index Terms—fraud detection; contrastive learning; open-set;
augmentation.

I. INTRODUCTION

Computing platforms such as social networking sites and
cloud systems, experience large volumes of malicious or
fraudulent activities due to the anonymity and openness of the
Internet. It is critical to identify such malicious activities in
order to protect legitimate users. In practice, the activities of an
user are usually modeled as an activity session. For example,
in a computer system, an activity session is a sequence
of user activities starting with log-in and ending with log-
out. A popular approach for detecting malicious sessions is
through deep learning models [1]. The main idea is to derive
session representations by making normal sessions deviate
from malicious ones in the representation space for deriving
anomaly scores.

In many real-world fraud detection scenarios, only a few
labeled malicious and an abundance of normal sessions are
available [1], [2]. These few available malicious sessions usu-
ally do not sufficiently cover the entire diversity of all possible
malicious sessions. It is well known that malicious sessions
can be highly diverse [1]. Many attackers keep evolving their
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activity patterns to avoid detection. Such malicious sessions
are usually not available for training a deep learning model.
Suppose a deep learning model is trained by utilizing a few
available malicious sessions. Now in the testing phase, due
to the large diversity in the possible malicious sessions, the
test set distribution might be different from the training set
distribution. For example, the training set might contain only a
few types of malicious sessions, and the test set might include
other types of malicious sessions that are not observed in
the training set. Hence, the learned session representations by
using these few malicious sessions in the training set might
not be discriminative enough to achieve good generalization
on detecting unseen malicious sessions. Clearly, the fraud
detection task is essentially an open-set detection task.

The existing deep anomaly detection approaches which
operate on the setting of a few available anomalous samples,
employ metric learning [3], [4] or deviation loss based learn-
ing [5], [6]. These approaches attempt to obtain a decision
boundary by using a few available anomalies. However, these
approaches can easily overfit w.r.t seen anomalies, and can
suffer from poor generalization performance if anomalies
encountered during the testing stage deviate from the training
set anomalies [7]. To address this challenge, Ding et al. [7]
recently presented a novel open-set deep anomaly detection
approach. They train their model to detect unseen anomalies
by jointly employing: (1) a data augmentation strategy through
which they generate augmented samples that can closely
resemble some unseen anomalies and (2) learning in the latent
residual representation space. However, their approach has
been specifically designed to operate on image data. In the
fraud detection domain, we have additional challenges when
compared to the image domain. For example in image data, the
normal samples are assumed to have shared features. However,
in the fraud detection domain, even normal sessions can also
exhibit large diversity. Therefore, learning separable represen-
tations for the open-set fraud detection task is challenging.

We address these challenges by leveraging contrastive learn-
ing. The vanilla contrastive learning model operates in a
self-supervised format. The main goal is to push a sample
and its augmented versions closer and contrast with other
samples and their corresponding augmented versions in the
representation space. However, the employed augmentation
strategies are constrained to produce augmented samples that
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are closely similar to their original versions. Due to this
constraint, we cannot employ strong augmentation strategies
to generate diverse malicious sessions. Recently, Khosla et
al. [8] presented a supervised contrastive learning model
which extends contrastive learning to the supervised setting.
The main goal is to push samples belonging to the same
class together and contrast with other class samples in the
representation space. Due to this class-specific clustering effect
in the representation space, the session diversity challenge in
our fraud detection task can be effectively addressed. Hence,
we leverage this supervised contrastive learning model to build
our new robust fraud detection framework called ConRo.
However, the challenge here is to generate those augmented
sessions which are similar and can be effective replacements
for unseen malicious sessions. ConRo addresses this challenge
by employing a two-stage training framework. In the first
stage, ConRo trains the session encoder by using the available
training set which contains a few malicious and a large amount
of normal sessions. Specifically, it performs first stage training
by employing a combination of both supervised contrastive
and Deep Support Vector Data Description (DeepSVDD) [3]
losses. Through the supervised contrastive loss, ConRo learns
shared features for normal sessions in the representation space,
and through DeepSVDD loss, it pushes normal sessions in a
minimum volume hyper-sphere in the representation space. Af-
ter this stage, ConRo creates a representation space with suit-
able topological properties which aid in generating potentially
diverse malicious sessions. In the second stage, by employing
suitable augmentation strategies, ConRo generates diverse
potential malicious sessions in the representation space, filters
those generated sessions which are false positives/normal,
and further trains the encoder through supervised contrastive
loss by employing available and generated potential malicious
sessions. We summarize our main contributions below:

o We propose a novel framework called ConRo which is
specifically designed for the open-set fraud detection task.
Our ConRo framework operates in a scenario where only
a few malicious and a large amount of normal sessions
are available.

o We propose a Long-Short Term Memory (LSTM) based
session encoder which is trained by employing both
supervised contrastive and DeepSVDD losses.

o We propose a data augmentation strategy to generate
diverse potential malicious sessions in the representation
space. We propose a strategy to filter generated false
positive sessions.

o We theoretically analyze the generalization performance
of our ConRo framework and highlight important fac-
tors influencing its performance. We present an empir-
ical study on three benchmark fraud detection datasets:
CERT [9], UMD-Wikipedia [10], and Open-stack [11]
in which, we show superior performance of our ConRo
framework over state-of-the-art baselines.

II. RELATED WORK

Anomaly Detection. Anomaly detection is to detect data that
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significantly deviate from the majority of data [12]. Recently,
many deep anomaly detection approaches are developed by
leveraging deep neural networks to learn representations of
data so that anomalies can be easily differentiated from the
normal samples [12], [13]. One common setting of anomaly
detection assumes the availability of normal samples and
aims to learn a decision boundary based on the normal data
distribution [3], [4], [14]. Pang et al. [5], [6] proposed an end-
to-end anomaly detection framework called deviation network
which combines representation learning with anomaly scoring.
However, all these deep learning-based anomaly detection
approaches have been designed for the closed-set anomaly
detection task. In our empirical analysis study, we select some
of these approaches [3]-[6] as baselines, and show that they
fail to deliver noticeable results on the open-set fraud detection
task.

Insider Threat Detection. It is a specific case of fraud detec-
tion wherein, the frauds are committed by organizational insid-
ers. Deep learning based approaches have become popular in
detecting insider threats. We direct the interested readers to [1]
for a comprehensive survey on deep learning based insider
threat detection approaches. All these deep learning based
approaches have not specifically addressed the dataset imbal-
ance challenge in detecting insider threats. Recently, many
deep learning based insider threat detection approaches [2],
[15]-[18] have specifically addressed the dataset imbalance
challenge. However, all these approaches address the closed-
set fraud detection task.

Open-Set Recognition (OSR). Salehi et al. [19] have exten-
sively discussed about contemporary OSR approaches. Pang
et al. [20] have addressed anomaly detection in the OSR sce-
nario by employing unlabelled samples. Hendrycks et al. [21]
trained their model by exposing it to a small set of unseen
class samples. However, in our fraud detection task, we do
not utilize unlabelled [20] or unseen [21] malicious sessions
for learning. Ding et al. [7] proposed an open-set anomaly
detection framework that learns disentangled representations
for different groups of anomalies. In our empirical study,
we select this open-set anomaly detection approach [7] as a
baseline, and show that it under-performs on open-set fraud
detection task. Recently, Pang et al. [22] proposed an open-
set anomaly detection framework which operates in the semi-
supervised setting. However, our fraud detection task does not
operate in the semi-supervised setting.

Contrastive Learning. Jaiswal et al. [23] presented an in-
depth discussions on applications of self-supervised con-
trastive learning on computer vision and NLP domains. In
the literature, there is no work studying benefits of supervised
contrastive learning for the open-set fraud detection task.

III. CoNRO FRAMEWORK

The user activities are modeled through activity sessions.
Each session can consist of 7" user activities. Let e;, (1 < ¢ <
T) denote the #" activity of the 7*" session. Each activity in
a session is represented by an embedding vector, which can
be trained based on the word-to-vector model. Let x;, € R?
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denote the word-to-vector representation of activity e;,, where
d denotes the number of representation dimensions. Here,
x; = {x;,}L, denotes the raw representation of the ‘"
session. Let X and ) denote the raw representation space
of sessions and label set, respectively. Here, ) = {0,1}
where vy 0 and y 1 denote normal and malicious
sessions, respectively. Let D denote the test set distribution
over X x ) wherein, the test samples are drawn from D. The
training set 7 contains a large amount of normal and a few
malicious sessions. Let 79 and 7 denote sets of normal and
malicious sessions in 7, respectively. The malicious sessions
sampled from D will also contain those unseen malicious
sessions which are not present in 7. Our ConRo framework
has an encoder network that maps a session from its raw
representation x to an encoded representation vector z. We
adopt LSTM as the foundation of our encoder to derive
the encoded session representations'. Our encoder consists
of two hidden layers with the same dimensions. The hidden
representations derived from the top layer of LSTM for the
activities in the session x; are denoted as {h;,}. ;. Here,
h;, € R<. Then, the encoded session representation z; € R4
is computed as z; = + Zthl h;,.

The main challenge which we are addressing is to design
a procedure to obtain malicious sessions which are sampled
from the test set distribution D. To address this challenge, we
construct potential malicious sessions which can be similar
to malicious sessions sampled from D. There are two main
objectives for generating these potential malicious sessions:

1) MOL1. Malicious sessions usually form multiple clusters
in the encoded representation space [25]. Malicious
sessions belonging to the same cluster usually share
close similarities. Hence, we need to generate potential
malicious sessions which are similar to a seen malicious
session x; € Tt
MO2. Suppose there are K malicious session clusters.
However, the training set 7 might only contain N (N <
K) session clusters, and sessions belonging to remaining
K — N clusters are not present in 7. Note that the
malicious sessions from these K — N unseen clusters
can diverge significantly from seen malicious sessions.
We need to generate potential malicious sessions which
belong to those K — N clusters to effectively train our
encoder.

ConRo achieves these main objectives by employing a
two stage encoder training procedure. An illustration of this
training procedure is shown in Figure 1. We provide detailed
descriptions of both these stages below.

2)

A. First Stage

In the first stage, our encoder achieves two goals: (1)
It learns shared features for normal sessions and learns to

'We can relate session representation learning to sentence representation
learning wherein, an activity and a session correspond to a word and
a sentence, respectively [15]. Any sequence model can be effective for
learning sentence representations using contrastive learning [24]. Hence, we
have adopted LSTM based session encoder to derive the encoded session
representations.
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contrast normal sessions with seen malicious sessions in
the encoded representation space. As a consequence, our
encoder learns separable representations w.r.t normal and
seen malicious sessions. (2) It compresses normal session
representations inside a minimum volume hyper-sphere in the
encoded representation space. To achieve the first goal, we
leverage the idea of supervised contrastive learning, which can
learn separable representations w.r.t normal and seen malicious
sessions. Then, to achieve the second goal, we leverage the
DeepSVDD loss [3], which pushes the normal samples inside
a minimum volume hyper-sphere.

Supervised contrastive loss. We construct a training batch
denoted as S = {x;}2, by obtaining R random samples
from 7. Since ConRo is specifically designed to operate on
imbalanced training data, in order to effectively contrast ma-
licious sessions with normal sessions, for each training batch
S, we create a corresponding auxiliary batch S* = {x}}M,
by randomly sampling M malicious sessions from 7. We
leverage a supervised contrastive loss function similar to the
one presented by Khosla et al. [8], which is given by:

ESup _ Z

xpEBO(x;)

1 & 1
Z(l_yi) B (2, 2p, A(xi))

=

(1

Here, the set A(x;) is defined as (S U S') — {x;}, and the

set BY(x;) = {x, € A(x;)|y, = 0} indicates samples x, in

A(x;) with labels y, = 0. The individual loss  (z;, z,, A(x;))
between the pair (x;,x,) is defined as:

exp(cos (z; - zp) /)
ZXj €A(%x;) eﬂjp(COS (Zi ' Zj)/Oé)
2

1(2i,2p, A(x3)) log

b

where « denotes the temperature parameter.

DeepSVDD loss. We leverage a DeepSVDD loss function
which is similar to the one presented by Ruff et al. [3].
Let vo = R%) Zf:l(l — y;)z; denote the estimated center
of normal sessions in the encoded representation space and
Ry = Zilﬂ(yi = 0), where I(-) is an indicator function.
This loss function is given by:

R
1
LoV = EZ(l_yi)(Hzi_VUHZ) 3)
i=1
The loss function for the first stage is given by:
Ly = L5 4 L5V (4)

To effectively address the session diversity challenge, we
employ an alternating approach to optimize our encoder
through L£;, instead of joint optimization. In our ablation
analysis study described in the Section IV-BS5, we show that
the alternating optimization approach provides significant per-
formance improvement over the joint optimization approach.

For each training batch S = {x;}[ |, we first train our encoder
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through L£54P As a result, we force the encoder to learn shared
features for normal sessions, and contrast with seen malicious
sessions in the encoded representation space (goal 1). Then,
by using the same batch S, we train the encoder through
£5V, which forces the encoder to compress normal session
representations inside a minimum volume hyper-sphere in the
encoded representation space (goal 2).

After the first stage, an encoded representation space having
certain topological properties is created (refer to Figures la
and 1b). For example, in the encoded representation space,
most of the normal sessions are pushed inside a minimum
volume hyper-sphere. The seen malicious sessions are found
outside this hyper-sphere in multiple clusters and pulled apart
from the normal session hyper-sphere. An attractive option
now is to directly deploy our first stage trained encoder for
test case inference wherein, a test case session x is predicted
as malicious if ||z — vo|| > r where r is the radius of the
normal session hyper-sphere. Otherwise, it is predicted as
normal. Note that after the first stage, normal sessions have
been contrasted with only seen malicious sessions belonging
to 7!, and not unseen malicious sessions. Thus, it is possible
that many unseen malicious session clusters overlap with the
normal session hyper-sphere, especially those which are simi-
lar to normal sessions (refer to Figure 1b). Hence, by directly
deploying the first stage trained encoder for test case inference
might negatively affect generalization performance. In our
ablation analysis study, we show that this option provides
sub-optimal results. Hence, we require a strategy to generate
diverse potential malicious sessions which can be similar
to unseen malicious sessions in the encoded representation
space, further train our encoder by employing these sessions,
and learn separable representations w.r.t the open-set fraud
detection task.

B. Second Stage

In the second stage, for each seen malicious session x; €
T, we achieve the first main objective (MO1) by generating
potential/augmented malicious sessions closely resembling x;.
The MOI1 can be achieved by leveraging existing augmen-
tation techniques [26]. However, the second main objective
(MQ2) cannot be achieved straightforwardly due to the lack
of required augmentation strategies in the literature [23]. We
achieve the MO2 by using an effective augmentation strategy
to generate a large amount of potential malicious sessions that
span diverse regions of the encoded representation space (refer
to Figure Ic). Note that many of these generated sessions
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representation space for ConRo.

might fall inside the normal session hyper-sphere. In such sce-
nario, we have two choices: (1) a pessimistic choice where we
consider such sessions as potential malicious sessions, and (2)
an optimistic choice where we consider such sessions as false
positives, and filter these sessions. Since deep learning models
are sensitive to label noise, choosing the pessimistic choice
could result in reduced generalization performance. Hence, we
opt for the optimistic choice. In our ablation analysis study,
we show that making the pessimistic choice yields sub-optimal
results. We design a session filtering mechanism to filter such
generated sessions which fall inside the normal session hyper-
sphere. Since we generate a large amount of diverse potential
malicious sessions, many of them can be located just outside
the boundary of the normal session hyper-sphere, which could
partially cover unseen malicious session clusters that overlap
this hyper-sphere, and aid in learning separable representations
w.r.t the open-set fraud detection task. We do not individually
train our encoder by considering normal sessions from 7 to
avoid over-fitting.

Session augmentation strategy for achieving the MO1. We
generate similar potential malicious sessions which are similar
to a seen malicious session x; € 7. Recently, Verma et al.
[26] proposed a mix-up based data augmentation strategy for
sequential data. Their augmentation strategy is inspired by the
concept of convex sets and generates augmented samples that
are similar to their original version. Specifically, they gen-
erate augmented samples by performing a mix-up operation
on the encoded representations of original samples. Hence,
we leverage a mix-up based augmentation strategy which is
similar to the one presented by Verma et al. [26] for generating
similar potential malicious sessions, which are similar to a
seen malicious session x; € 7.

Let @l(xi) denote this set of generated similar potential
malicious sessions. The set G!(x;) is defined as G (x;)
{z|z = \z; + (1 — \1)z; }. Here, z denotes the encoded rep-
resentation of a generated similar potential malicious session,
x; € B'(x;) = {x, € A(x;)|y, = 1} indicates samples x,, in
A(x;) with labels y, = 1, Ay is sampled from the Uniform
distribution U(S;,1) where 81 € [0, 1], and (3 is set closer
to 1 to ensure that generated potential malicious sessions have
close similarities with x;.

Intuitions behind the design of al(xi). Since 5 € [0,1]
and B is closer to 1, and A; is sampled from the Uniform
distribution U(f1,1), by using \1z;, we get a potential ma-
licious session which is similar to and in the same direction

Authorized licensed use limited to: Utah State University. Downloaded on January 29,2024 at 20:29:19 UTC from IEEE Xplore. Restrictions apply.



of z;. Now, we want to generate potential malicious sessions
which are not just confined to the same direction of z;, and
are surrounding z; in different directions. Thus, the operation
Zz = \z;+(1—X\1)z;, aids in achieving this goal. Additionally,
performing mix-up with malicious session x; will aid in
learning separable representations.

Session augmentation strategy for achieving the MO2.
We generate diverse potential malicious sessions which can
diverge significantly from a seen malicious session x; € T
Let G'(x;) denote this set of generated diverse potential ma-
licious sessions. Our session augmentation strategy is inspired
by the concept of affine sets. The set G*(x;) is defined as
G'(x;) = {z]z = Xoz; + (1 — X2)zj, fp(z) = 0}. Here,
z denotes the encoded representation of a generated diverse
potential malicious session, Ay ~ U(—pfs2, 32), and 35 € R.
We treat (5 as a hyper-parameter in our empirical studies. We
filter a false positive through the function fp(-) as:

f0(@) = {1’

if [[7 — vol|z <
if ||z —wvoll2 <r 5)

0, otherwise

Intuitions behind the design of G'(x;). We describe our
intuitions by using the CERT insider threat dataset. In this
dataset, there are five types of malicious sessions. For the ease
of description, we consider only three types. Type-1 sessions
are related to frauds involving stealing sensitive information
and emailing it to a malicious agent. Type-2 sessions are
related to devising frauds which involve misusing hardware
devices such as removable drives. Type-3 sessions are related
to visiting unethical websites such as job-portals with an
intent to abandon the current organization. Consider two seen
malicious sessions x; and x; which belong to type-1 and type-
2, respectively. These sessions are illustrated in Figure 2. Note
that both x; and x; follow a similar activity sequence pattern
wherein, normal activities are followed by malicious activities,
and finally again followed by normal activities.

For the malicious session x;, we can express z; as z; = z?U
z} where z) and z] denote encoded representation feature sets
corresponding to normal and malicious activities, respectively.
Let zg c R™, z} € R™, and n + m = d. Since sessions
x; and x; follow a similar activity sequence pattern, we can
hypothesize that z; = z)Uz} with z] € R” and z} € R™. Due
to the effect of first stage training, normal activity features are
tightly clustered in the encoded representation space. Hence,
we can infer that z) =~ zg-). Consider an unseen malicious
session x;, belonging to type-3 which is not present in 7.
This session xy, is shown in Figure 2. Clearly, xj, also follows
a similar activity sequence pattern as x; and x;. Assume that
T! does not contain any type-3 malicious sessions. Now we
will describe how G'(x;) can aid in approximating unseen
malicious sessions such as xj. Since xj; follows a similar
activity sequence pattern as X; and x;, we can hypothesize
that zj, = z{ Uz} with z{ € R" and z} € R™. We can infer
the result: z? =~ z? ~ z%. Then for any A\ € R, we have that:
z) ~ \oz) + (1 — )\g)z(;. Note that x;, x;, and x, belong to
different malicious session types and hence, z;, zjl-, and z;, can
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diverge significantly from each other. By sampling a suitable
value for Ay ~ U(—/32,02), we employ Ay as a coefficient,
and aim to obtain the result: z, ~ Aoz} + (1 — )\g)z}.
Second stage loss. We again leverage supervised contrastive
loss to design our stage 2 loss function which is given by:

R

@:%Z

i=1

1
|l T V| l Z;, Zyp, X 6
_Here, C(x;) = A(x;)UG" (x;) UG (x;), D(x;) = B'(x;)U
G!(x;) UG (x;), and [ (z;, z,, C(x;)) denotes the individual
loss between the pair (x;,x,) corresponding to the malicious
sessions defined as:

exp(cos (z; - zp) /)

x;€C(x;) el'p(COS (Z’i : Zj)/()()
7)

1(zi,2p, C(x;)) = —log (Z

We show the ConRo training procedure in Algorithm 1.

Algorithm 1 Training procedure for ConRo.

Imputs: 7 =7'U7T°, R, M, 51, 32, and our untrained
encoder.
Output: well trained encoder.
1: generate raw representations for all sessions in T
[First Stage]
2: for each training batch S = {x;}*, generated from T
do
create the auxiliary batch S* = {x!}M, from T!;
for each normal session (x;,y; = 0) € S do
construct A(x;) = (SUS?) — {x;};
construct BY(x;) = {x, € A(x;)|y, = 0};
calculate £5"P by using Eq 1 and train the encoder;
calculate £°V by using Eq 3 and train the encoder;
[Second Stage]

9: for each training batch S = {x;}2, generated from T
do

A A

10:  create the auxiliary batch S* = {x}}M, from 7;

11: for each malicious session (x;,y; =1) € S do

12: construct A(x;) = (SUS?) — {x;};

13: construct B! (x;) = {x, € A(x;)|yp, = 1};

14: construct Gl(x;) = {Z=A\z+(1— A)z;}
where A\; ~ U(f1,1.0) and x; ~ B'(x;);

15: construct Gl(x;) = {2z = Xz + (1 —

A2)zj, fp(z) = 0} where Ay ~ U(—f2,(2) and fp(z)
is shown in Eq 5;

16: construct C'(x;) = A(x;) U éi(xt) UG (x);

17: construct D(x;) = B(x;) UG (x;) UG (x;);

18: calculate [(z;,2,,C(x;)) for each session x, €
D(x;) by using Eq 7,

19: calculate £o by using Eq 6 and train the encoder;

20: return well trained encoder;

Time complexity analysis. We analyze the time complexity
of our ConRo training procedure by considering the forward
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pass and the number of times the individual loss I(-,-, ) is
invoked in both stages. This time complexity is given by:

O (ITO1R+ T (M + |G (x:)] + G (xs)]) ).
Inference. After the second stage training, our encoder has
learnt to push seen malicious sessions, similar and diverse
potential malicious sessions closer in the encoded represen-
tation space, and as a consequence, all these sessions form
a tight cluster in the encoded representation space (refer to
Figure 1d). Normal sessions are also tightly clustered in the
encoded representation space due to the effect of first stage
training. Hence, we design our inference strategy by analyzing
the proximities of a test case session to the centers of normal
and malicious sessions in the encoded representation space.
Let vy denote the estimated center of malicious sessions in
the encoded representation space, which is given by v; =
LM 2l where {x!}M, denotes M randomly sampled
malicious sessions from 7. For any test case session X,
ConRo predicts its label as:

label(x): 1 if ||ZfV1||2<||Z—VOH2
0 otherwise

C. Theoretical Analysis

We present a theoretical analysis study to highlight the im-
portant factors which influence the generalization performance
of our ConRo framework. We introduce a set definition called
e-span(x;) for a session x; which is defined as:

llzk = 2jll2 < €,
j

[y = zjll2 < [lviey —Zj|2> = 1}

®)

Here, y = {0,1}, e-span(x;) contains those sessions xj
such that ||z — z;||2 < € for some € > 0, and our encoder
has similar session projection action w.r.t proximities between
vo and vy for both x; and x;, which is as shown in the right
hand side second term of Equation 8. We extend the definition
of e-span(x;) to a set of sessions S called e-span(S). This
set definition is given by:

e-span(x;) = {xk

P(Iw = zkll2 < [[viey — 2ll2

HX]' € S,HZk 7Z]‘H2 <e,

[[vy = 2zill2 < [[viy —Zj|2> = 1}

Here, e-span(S) contains those sessions xj, such that there
exists some session x; € S where ||z — z;|[2 < € for
some € > 0, and our encoder has similar session projection
action w.r.t proximities between vy and v; for both x; and
x;. For our theoretical analysis, we assume an existence of a
hypothetical oracle version of our encoder which is trained by
using the labeled sessions sampled from the test distribution D
and supervised contrastive loss function. Let v and v{ denote
the centers of normal and malicious sessions in the encoded
representation space corresponding to this oracle encoder,
respectively. For a test case session x, the oracle encoder has
the following property:

e-span(S) = < xi,

Pllvy = zllz <[lviey — zll

1, ify=1

P(||ve =zl < ||V8 —zl||2) =
([ve ll2 < [|v§ [I2) 0, otherwise

Theorem 1. For any test case session x which is sampled
from D, the following bound holds:

P (|vy e < |Iviey — alla| IV — 2l < VS, z||2)

>Plxe U €-span ((A?l(xl) u xi) U e-span (él(xz)>

x; €T
We show our proof sketch of Theorem 1 in
the Appendix A. Theorem 1 outlines a formal
explanation on the generalization performance of
ConRo. Clearly, this performance is influenced by

P (x € Uy, e €-span (él (x;) U xz-) U e-span g@l (xi)) ).
This probability value can be increased by: (1) setting a
suitable value for (3, based on empirical analysis and (2)
setting a large value for |G'(x;)|. Both these steps ensure
that generated diverse potential malicious sessions can span
diverse regions of the encoded representation space.
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IV. EXPERIMENTS

We describe our experimental setup including datasets and
baselines used in this paper and then discuss our experimen-
tal results including hyper-parameter sensitivity, visualization,
training latency, and ablation analysis results.

A. Experimental Setup

1) Datasets: We use three benchmark fraud detection
datasets: CERT [9], UMD-Wikipedia [10], and Open-
Stack [11].

CERT [9]. The CERT dataset is a comprehensive dataset for
insider threat detection. There are 48 malicious and 1,581,358
normal sessions. The insider sessions are chronologically
recorded over 516 days. To avoid extreme training latency,
we randomly sample 10,000 normal sessions from the first
460 days, and include them in the training set 7. Similarly,
we randomly sample 500 normal sessions from 461 to 516
days to construct our test set. There are 5 types of malicious
sessions. (1) Logon: The insider logs on a computer during
weekends or on a weekday after work hours. (2) Email:
The insider sends/views unexpected emails to/from external
sources. (3) HTTP: The insider uploads/downloads organi-
zational information to/from external malicious websites. (4)
Device: The insider connects a device such as removable drives
during weekends or on a weekday after work hours. (5) File:
The insider manipulates organizational files with malicious
intentions. We construct an open-set learning scenario corre-
sponding to malicious sessions wherein, we include device,
email, and file malicious session types in the training set and
the remaining two types in the test set. Specifically, we include
30 and 18 malicious sessions in the training and test sets,
respectively.

UMD-Wikipedia [10]. This dataset consists of activity ses-
sions of a set of users who have edited the Wikipedia website.
In this dataset, there are 5486 normal and 4627 malicious
sessions. We randomly sample 1000 normal sessions to con-
struct the test set and include all the remaining 4486 normal
sessions in the training set. For the malicious sessions, in-
order to simulate open-set and imbalanced dataset scenario, we
construct the training set by leveraging and suitably adapting
the procedure utilized by Du et al. [27], which is described
below. We calculate the appropriate number of malicious
session clusters (K) in the available malicious sessions by
using silhouette coefficient analysis [28]. From our empirical
study, we get K = 3. Then, we randomly sample 70 and 10
malicious sessions from the first and second malicious session
clusters, respectively, and include them in the training set.
From the remaining malicious sessions, we randomly sample
similar number of malicious sessions from each of the 3
clusters to construct the test set which contains 500 malicious
sessions.

OpenStack [11]. This dataset records the activity sessions of
users who have used the OpenStack cloud services. In this
dataset, there are 244,908 normal and 18,434 malicious ses-
sions. We randomly sample 10,000 and 1000 normal sessions
and include them in our training and test sets, respectively. For
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the malicious sessions, through silhouette coefficient analysis
we get k 12 malicious session clusters. We randomly
sample 50 and 10 malicious sessions from the first and second
malicious session clusters, respectively, and include them in
the training set. From the remaining malicious sessions, we
construct a test set having 120 malicious sessions by randomly
sampling equal number of malicious sessions from each of the
12 malicious session clusters.

2) Training Details: By considering an user activity as a
word and an activity session as a sentence, we train the word-
to-vector model [29] to derive the session raw representation.
To effectively train our session encoder, we set the number
of dimensions of the activity and session representations as
d = 50. Since we generate encoded session representation by
averaging the output sequence of the LSTM model, we set the
hidden layer size of LSTM to 50. The temperature parameter «
shown in Equations 2 and 7 is set to its default value 1. We opt
for medium sized training batches in order to avoid extreme
memory requirements during encoder training. Specifically, we
use 100 sessions (R) in each training batch. We set the size of
the malicious session auxiliary batch (M) as 20. The sizes of
potential malicious session batches G (x;) and G*(x;) are set
as 20 and 200, respectively. For (31, we set its value as 0.92
because it is supposed to be closer to 1. For 85, we set its value
as 4 in order to generate potential malicious sessions which
are sufficiently diverse. Additionally, we perform a sensitivity
analysis study on By which is described in the Section IV-B2.
We use the Adam optimizer with a learning rate of 0.005 and
we use 10 training epochs for both stages. We utilize three
metrics to measure the fraud detection performance: F7, False
Positive Rate (FPR), and Area Under the Receiver Operating
Characteristics Curve (AUC-ROC). We report the mean and
standard deviation of performance scores after 5 times of
running.

3) Baselines: We compare our ConRo framework with
five state-of-the-art baselines: DeepSVDD [3], DeepSAD [4],
DevNet [5], [6], CLDet [15], and Swan [7]. All these baselines
operate in the setting where only a few anomalous samples is
available for model training. DeepSVDD, DeepSAD, and De-
vNet have been designed for the closed-set anomaly detection
whereas, Swan has been designed for the open-set anomaly de-
tection. CLDet is a self-supervised contrastive learning based
insider threat detection framework and is designed for the
closed-set fraud detection task. Except CLDet, the remaining
baselines originally operate on image datasets, and employ
neural networks for image data such as CNN [4], ResNet-
18 [7] etc. Hence, they cannot be directly applied for our fraud
detection task which operates on sequential data. We replace
their neural networks with our LSTM-based session encoder
and adapt these baselines to our fraud detection task. We
employ the same training set used for our ConRo to train all
these baselines. For Swan, the original augmentation technique
is image-specific. Hence, we replace it with the augmentation
technique proposed by Verma et al. [26]. Swan learns in a
residual representation space which is defined as vg — z.
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Fig. 3: Sensitivity analysis results w.r.t 85 on CERT (left
column) and UMD-Wikipedia (right column).

B. Experimental Results

1) Overall Comparison: The performance of our ConRo
framework and baselines for all datasets are shown in Table
I. Clearly, our ConRo outperforms all baselines? w.r.t most of
the performance metrics. These baselines do not learn effective
class-specific shared features in the encoded representation
space. Thus, due to the combined challenges of session
diversity, dataset imbalance, and biased malicious training
samples, they fail to provide noticeable results. However,
ConRo addresses all these challenges effectively. It addresses
the session diversity challenge through supervised contrastive
learning. It addresses challenges related to dataset imbalance
and biased malicious training samples by generating a large
amount of diverse potential malicious sessions.

For the UMD-Wikipedia dataset, Swan noticeably outper-
forms our ConRo w.r.t FPR score. Both ConRo and Swan
employ different mechanisms for learning about diverse un-
seen malicious sessions. Specifically, Swan employs residual
representation space (v — z) learning whereas, ConRo learns
by generating a large amount of diverse potential malicious
sessions. In UMD-Wikipedia dataset, many normal sessions
share close similarities with diverse unseen malicious sessions.
Therefore, ConRo identifies some of the test normal sessions
sharing close similarities with test malicious sessions as mali-
cious (false positive) which negatively impacts the FPR scores
of ConRo. However, Swan does not specifically address the
session diversity challenge in malicious sessions. Hence, Swan
under-performs against ConRo w.r.t F1 and AUC-ROC scores.

2) Sensitivity Analysis: For analyzing the sensitivity> of the
hyper-parameter (32, we first perform the first stage training
of our encoder. Then, by employing this first stage trained
encoder, we further perform the second stage training of our
encoder separately corresponding to different 3o values. Our
sensitivity analysis results are shown in Figure 3. Clearly,
ConRo is not highly sensitive to hyper-parameter (2. It only
suffers slightly when [, is low and performance values con-
verge for higher values. For example in the CERT dataset,
for By > 4, the performance values converge. o controls

2Since DevNet classifies all test sessions as normal, we have not shown
its performance scores. DevNet does not employ any augmented malicious
sessions for its training, so it cannot effectively address dataset imbalance
challenge.

3We don’t perform sensitivity analysis on 31 because it is constrained to
be set closer to 1 [26].
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Fig. 4: Visualization of the encoded session representations
generated by our encoder for the test set (CERT dataset). The
left and right columns denote the encoded session representa-
tion spaces after first and second stage training, respectively.
Blue and red dots denote normal and malicious sessions,
respectively. Blue and red stars denote v and v, respectively.

the diversity aspect of potential malicious sessions. The test
set malicious sessions are not extremely diverse from their
training set counterparts. Hence, generating extremely diverse
potential malicious sessions does not aid in improving the
generalization performance on the test set. In certain datasets,
where the test set malicious sessions are extremely diverse
when compared to their training set counterparts, we expect
that higher values of 35 can aid in improving the generalization
performance.

3) Visualization Analysis: We employ the tSNE tech-
nique [30] for visualization. Specifically, we separately visu-
alize the encoded session representation spaces after first and
second stage training. For the CERT dataset, we randomly
sample 70 normal sessions from the test set, and utilize all
test malicious sessions for visualization. The visualization
results for the CERT dataset* are shown in Figure 4. After
stage 1 training (refer to the left column), there are many
malicious sessions that overlap the normal session cluster.
Also, v; and v are closer to each other. The reason is
that during stage 1 training, our encoder does not get an
opportunity to contrast between unseen malicious and normal
sessions. After stage 2 training (refer to the right column), v
and vy get well separated. During stage 2 training, we train
our encoder by employing both similar and diverse potential
malicious sessions due to which, our encoder learns separable
representations w.r.t the open-set fraud detection task.

4) Training Latency Analysis: Due to space constraints,
we provide a brief summary on the training latency analysis
results*. All experiments are executed on AMD EPYC (2.3
GHz) CPU server with 26 GB RAM and 226 GB hard disk.
In general, ConRo incurs around 6 times more training cost
than CLDet, and 10 times more training cost than remaining
baselines. The reason being that ConRo employs supervised
contrastive loss which is the primary factor for this observed
high training costs. However, supervised contrastive learning
enables our encoder to learn class-specific shared features,
and effectively address the session diversity challenge. Hence,

“4Detailed visualization and training latency analysis results are available
in the preprint version of this article [31].
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TABLE I: Performances of our ConRo and baselines (meanz+std). The higher the better for F1 and AUC-ROC. The lower the

better for FPR. The best values are bold highlighted.

Models CERT UMD-Wikipedia Open-Stack
F1 FPR AUC-ROC F1 FPR AUC-ROC F1 FPR AUC-ROC
DeepSVDD | 14.67+4.1 | 14.30+1.8 | 62.29+4.8 | 33.23+x1.7 | 4490 +1.4 | 46.47+0.8 | 32.27+0.7 | 42.10£1.4 | 79.02+0.7
DeepSAD 24.71+7.5 | 20.53£7.1 | 84.17£3.6 | 56.88+2.9 | 13.30+0.2 68.35£1.7 | 67.43£3.1 9.70£1.3 94.12+0.1
CLDet 60.41+3.6 | 3.75+1.9 79.47+2.6 | 58.78+3.1 9.59+2.8 70.71+£2.4 | 61.71£29 | 6.18+2.1 83.98+1.8
Swan 59.31+2.2 0.0+0.0 72.12+0.1 | 57.02+0.9 0.0+0.0 69.89+0.5 | 62.93+4.2 0.0+0.0 73.10+2.3
ConRo 68.33+3.9 | 2.20+0.5 90.50+0.3 | 71.40+2.3 | 31.50+2.1 79.50+2.1 | 77.56+2.3 | 5.80+0.8 97.10+0.4

ConRo is able to deliver noticeably better performance than
other baselines.

5) Ablation Analysis: We conduct the ablation analysis
study on our ConRo framework by ablating the following main
components: stage 1, £5“P, £5V Alternating Optimization
(AO), stage 2, fp(-) (optimistic choice), G'(-), and G*(-).
The ablation analysis results are shown in Table II.

W/o stage 1. Mean F1 scores drop to 18.33 (CERT), 40.23
(UMD-Wikipedia), and 14.92 (Open-Stack). Stage 1 ensures
that the encoder learns shared features for normal sessions.
Without learning these shared features, the encoder fails to
achieve tight class-specific clusters.

W/o L£5“?. Mean F1 scores drop to 5.28 (CERT), 53.16
(UMD-Wikipedia), and 15.12 (Open-Stack). Both normal and
malicious sessions typically exhibit large diversity and £5"7 is
essential to address this session diversity challenge. We can see
that there is a significant drop in F1 scores on CERT and Open-
Stack datasets but not in the case for UMD-Wikipedia dataset.
We can attribute the reason to the different characteristics of
these datasets. Addressing the session diversity challenge for
the normal sessions is much more critical in both CERT and
Open-Stack datasets than in the UMD-Wikipedia dataset.
W/o £5V. Mean F1 scores drop to 20.10 (CERT), 64.95
(UMD-Wikipedia), and 38.76 (Open-Stack). The DeepSVDD
loss (£5V) enables the encoder to push normal sessions in a
minimum volume hyper-sphere in the encoded representation
space. Without this topological effect, the efficacy of stage
2 reduces because the generated diverse potential malicious
sessions do not effectively cover unseen malicious sessions.
W/o AO . By employing the joint optimization approach, mean
F1 scores drop to 8.99 (CERT), 52.04 (UMD-Wikipedia), and
14.08 (Open-Stack). Optimizing DeepSVDD objective (£°")
can yield maximum benefits only when the input normal
sessions have considerable shared features in the encoded
representation space. Here, we jointly optimize both £%? and
£°V, and we do not specifically provide normal sessions hav-
ing considerable shared features in the encoded representation
space as inputs to the DeepSVDD objective.

W/o stage 2 . Mean F1 scores drop to 42.86 (CERT), 60.90
(UMD-Wikipedia), and 46.11 (Open-Stack). In stage 1, our
encoder learns to contrast normal sessions with few available
malicious sessions having limited diversity. Stage 2 generates
diverse potential malicious sessions which can be similar to
unseen malicious sessions w.r.t their encoded representations.
W/o fp(-). By employing the pessimistic choice, mean F1
scores drop to 31.32 (CERT), 59.38 (UMD-Wikipedia), and
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37.50 (Open-Stack). Without employing fp(-), the encoder
learns to push malicious sessions and those potential malicious
sessions which are false positives, closer in the encoded
representation space. Due to this improper learning effect, the
encoder fails to achieve separable representations.

W/o G1(-). Mean F1 scores drop to 55.92 (CERT), 65.58
(UMD-Wikipedia), and 67.57 (Open-Stack). Generating sim-
ilar potential malicious sessions which are similar to a seen
malicious session in the encoded representation space, aids the
encoder to learn more effective separable representations.
W/o G!(-). Mean F1 scores drop to 44.17 (CERT), 63.40
(UMD-Wikipedia), and 52.26 (Open-Stack). Generating di-
verse potential malicious sessions which can be similar to
unseen malicious sessions in the encoded representation space,
aids the encoder to effectively contrast normal sessions with
unseen malicious sessions.

V. CONCLUSION

In this work, we have developed a robust and open-set
fraud detection framework called ConRo, which is specifically
designed to operate in the scenario where only a few malicious
sessions having limited diversity is available for training. We
developed a training procedure for ConRo to learn separable
session representations by employing effective data augmen-
tation strategies and by the combined effect of supervised
contrastive and DeepSVDD losses. We presented a theoretical
analysis study to analyze the main factors influencing the
generalization performance of ConRo. The empirical study
on three benchmark datasets demonstrated that our ConRo
can outperform state-of-the-art baselines. In our future work,
we plan to extend ConRo to address specific distribution shift
scenarios such as sample selection bias.
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APPENDIX
A. Proof Sketch of Theorem 1

There are two cases when the label y = 1 and y = 0.
We will consider both these cases separately. Case when y =
1. In this case: P (||v{ —z||2 < ||v§ —z||2) = 1. Now our
encoder can either project x closer to v or vg. If it projects
closer to vy which means that ||v, —z||2 < ||vo — 2]||2. Then,
there are two scenarios. In the first scenario, we have that:
x € Uy, e71 €-span (@1()(1) U xi) U e-span (Gl(xi) . By
only considering the first scenario and by the definition of
e-span (S), we have the result:

P (Hvl ~ally < fIvo — 2l

[T —z||2)

=P|xe U e-span (él(xl) U xi) U e-span (él(xl)>

x; €T
In the alternate scenario, we have that: x ¢
Uy, e7 €-span (Gl (x;)U xi) U e-span (Gl(xi)). By
considering both these scenarios, we have the result:
P (Ilva = alle < l1vo = all[ v¢ - all < 5 - ol
>P|xe U €e-span <él(xl) U xZ-) U e-span (C:'l(xz)>
x, €T
Case when Y = 0. In this case,
P(||v§ —z|l2 <||v§ —z|]z) = 1. Since our encoder

amount of normal sessions
we can sufficiently cover
sessions, we have that:

is trained by using a large
in 7 and due to which,
the diversity in normal

P (1lvo - alls < |v1—z||2\||vs—z||2< ||vf—z|2) ~ 1.

Thus, the theorem immediately follows.
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