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Abstract—Sequential anomaly detection has received more
and more attention because of its wide applications in various
domains, such as debugging system failures via logs. Researchers
have recently proposed many deep learning-based approaches
for sequential anomaly detection. However, these approaches
work as black-boxed models, not providing explanations for
detected anomalies. On the other hand, explainability is a
critical requirement to build trustworthiness in detection results.
Moreover, domain experts would like to learn why a sequence is
labeled as an anomaly. To overcome this challenge, in this paper,
we propose a framework for Explainable Sequential Anomaly
Detection (ESAD) in a semi-supervised setting. As there are
various normal and abnormal behaviors in sequential data,
ESAD derives multiple prototypes to describe diverse normal
and abnormal sequences. Each prototype can encode one type
of normal or abnormal behavior. Given a new sequence, if the
sequence is similar to an abnormal prototype, the sequence
will be detected as abnormal. After decoding the abnormal
prototype as a prototypical sequence, domain experts can further
understand the newly detected abnormal sequence by examining
the prototypical sequence. We conduct experiments on one log
dataset and two text datasets. Experimental results including
quantitative and qualitative analysis on three datasets show the
effectiveness of our model.

Index Terms—sequential data, anomaly detection, explanations

I. INTRODUCTION

Sequential anomaly detection has received much attention
in recent years because of its wide applications. For example,
detecting anomalies in system logs is an important task for
building secure systems [1]-[5]. Identifying anomalies in the
system logs can make a great contribution to debugging system
errors or defending against attacks.

Recently, researchers have applied deep learning models
for sequential anomaly detection, which outperform traditional
approaches [6], [7]. However, deep learning models mostly
are not transparent, which poses a barrier to widely applying
them to anomaly detection problems. Predictions of the models
reporting anomalies without explanations will not be well
accepted by domain experts, especially for the high stake
tasks. Therefore, it is an urgent task to explore interpretable
sequential anomaly detection approaches. However, compared
to the task of interpretable object detection in computer
vision, where the interpretations can be the highlighted objects,
providing human-understandable and helpful explanations for
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sequential anomaly detection is more challenging and yet not
to be well explored.

In this paper, we aim to develop an interpretable anomaly
detection model on sequential data via prototypes. Prototypes
can provide intuitive explanations to model decisions, where
a prototype is usually a representative case in an observed
dataset [8]-[11]. Prototype-based explanations are analogous
to how humans make decisions when a new case presents
before them, i.e., comparing it to similar cases and then
deriving a decision based on similar cases. In our scenario, for
a sequential anomaly detection model, if the model can show
that a newly detected anomaly is similar to some abnormal
sequences in the observed dataset, then the domain expert can
easily understand why a sequence is labeled as abnormal.

To this end, we develop a sequential anomaly detection
model with explanations via prototypes. Because the explana-
tions are provided by comparing the unlabeled samples to the
observed (labeled) samples, anomaly detection is conducted
under a semi-supervised setting, which assumes the availabil-
ity of a small set of labeled samples and a large number of
unlabeled samples [12].

Considering the diversity of normal and abnormal se-
quences, we aim to derive multiple prototypes, each of which
can capture one type of normal or abnormal behavior. There-
fore, we leverage contrastive learning and the k-means algo-
rithm to detect abnormal sequences and provide explanations
by showing the prototypes. Specifically, k-means is applied to
cluster normal and abnormal sequences, respectively, where
the sequence closest to the center of each cluster is the proto-
typical sequence of the cluster. Then, the sequences grouped
into the same cluster can be explained by the corresponding
prototypical sequence. On the other hand, in order to achieve
meaningful clustering results, having distinguishable represen-
tations of sequences is critical. In this work, we leverage the
idea of contrastive learning to derive sequence representations.
In particular, contrastive learning in our approach consists of
two parts. One is instance-wise contrastive learning, which
is to learn a good representation of each sequence. Another
is cluster-wise contrastive learning, which is to learn sepa-
rable representations for each type of sequences so that the
sequences with similar patterns would be grouped together
while sequences with different patterns would be separated.
Finally, to properly train the whole framework, the k-means
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algorithm and contrastive learning are conducted in an iterative
manner. The intuition is that after each iteration, k-means can
get better clusters, and meanwhile, contrastive learning, es-
pecially cluster-wise contrastive learning, derives the positive
and negative samples based on the clustering results. Then
better clustering results can further help contrastive learning
to derive more distinguishable sequence representations.

We summarize the contributions of ESAD as follows.
First, ESAD leverages both instance-wise and cluster-wise
contrastive learning loss to derive the sequence representations
so that similar sequences can be grouped together. Second, by
using the k-means algorithm to find the underlying clusters
of normal and abnormal sequences, ESAD can leverage the
prototypical sequence of each cluster to provide instance-
based explanations. Third, the experimental results show that
ESAD can accurately detect anomalies and provide insightful
explanations.

II. RELATED WORK

Interpretable Machine Learning. Interpretability is becom-
ing a prominent desideratum of trustworthy machine learning,
especially when people deploy machine learning models into
high-stakes applications. Currently, most interpretable machine
learning techniques can be grouped into two categories, in-
herent interpretability, and post-hoc interpretability. Inherently
interpretable models are designed to justify their decisions
based on their structures. For example, FCDD [13] is an
inherently interpretable framework that can detect abnormal
images and yield explainable heat maps. ProSeNet [9] is
another inherently interpretable approach by learning proto-
types for each class in classification tasks. To interpret the
black-box machine learning models, post-hoc techniques are
developed to provide explanations, such as perturbation-based
and gradient-based approaches. LIME [14] and SHAP [15]
are both perturbation-based approaches to identify important
features based on the impact on the outputs given perturbated
inputs. Gradient-based approaches evaluate the contribution
of input features according to the gradient magnitude, such
as Grad-CAM [16] and Integrated Gradient [17]. In general,
a model with inherent interpretability can better show the
internal behavior of the specific model but not be able to
explain other models, while many post-hoc interpretability
techniques are model agnostic and can be applied to explain
multiple black-boxed models. One limitation of the existing
interpretable machine learning models is that they are usually
designed in a supervised learning setting, which is impractical
for many anomaly detection tasks. For example, although
ProSeNet can show prototypes of sequential data for case rea-
soning, it is trained by labeled samples for classification. Once
we have the supervised signals, the number of classes usually
means the number of prototypes we expect for explanations.
On the other hand, for the anomaly detection tasks, in most
cases, we may have a few anomalies available, but usually do
not have information about the types of anomalies in advance.
In such a case, how to derive prototypes for case reasoning is

much more challenging compared with the task of supervised
prototype learning.

Contrastive Learning. Contrastive learning is widely used
for unsupervised representation learning, aiming to pull similar
instances close and push different instances apart [18]-[23].
Recently, contrastive learning is also applied to learn the
representation of sequential data, especially text data [20],
[24]-[26]. For example, an efficient framework to learn sen-
tence representations [20] is proposed by taking the contextual
sentences as positive samples. Meanwhile, several approaches
are also developed to improve the efficiency of contrastive
learning. The memory bank approach [23] is proposed to learn
discriminative individual instance representations by storing
the features of all samples that are derived in the previous
step. MoCo [19] employs a momentum encoder to obtain
positive and negative samples and maintains a queue to keep
data instance features. In this work, we propose a contrastive
learning framework that considers the discriminative of sam-
ples at both the instance-level and cluster-level so that samples
shared similar patterns can group together.

I1I. METHODOLOGY

A. Overview

In this paper, we aim to detect abnormal sequences and
further identify prototypes for case reasoning as explanations.
Specifically, we consider a semi-supervised setting, where a
small set of normal and abnormal sequences as well as a large
number of unlabeled samples are available.

We develop an Explainable Sequential Anomaly Detection
(ESAD) approach to detect abnormal sequences in a semi-
supervised setting. ESAD detects anomalies based on the
prototypes of normal and abnormal sequences, where each
prototype represents a specific pattern of normal or abnormal
sequences. In particular, ESAD employs an encoder to encode
sequences into an embedding space and trains the encoder
with the contrastive loss. The encoder can learn sequence
representations that make each sequence only close to its
similar samples and far from other sequences. We separately
perform a clustering algorithm, i.e., k-means, on the normal
and abnormal sequence representations to obtain normal and
abnormal clusters. We then derive the centroid of each cluster
as the prototype and mark a sequence that is closest to
the centroid as the prototypical sequence. Therefore, each
prototype represents a specific normal or abnormal pattern,
and the prototypical sequence can be used to understand why
a new sequence is labeled as abnormal via case reasoning.
Figure 1 illustrates the ESAD framework.

During the inference process, given a test sequence, we
can search for the most similar prototype in the embedding
space. The testing sequence will be predicted as abnormal if
the prototype indicates an abnormal pattern. Furthermore, by
examining the corresponding prototypical sequence of the test
sample, the domain expert can understand why a sequence is
labeled as abnormal.
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Fig. 1: Mlustration of the ESAD Framework.

B. Sequence and Prototype Representation

Assume that we are given a small set of labeled sequences &
consisting of a subset of normal sequences ST = {(s;F vili=

0)}'{;' and a subset of abnormal sequences S~ = {(s; ,y: =

1) L‘i |, and also given a large set of unlabeled sequence U =
{s? }£=|1- Following the typical assumption, we assume most
of the sequences in U are normal samples [12].

Sequence Representation. We adopt a long short-term
memory (LSTM) neural network [27] as an encoder to encode
a sequence s; into its representation, defined as r; = f(s;),
where f(-) denotes the LSTM model and r; is derived by the
average of all hidden states in LSTM over the sequence.

Prototype Representation. We further aim to derive the
prototype representations of both normal and abnormal se-
quences. In this work, we leverage the k-means algorithm
to group sequences with a similar pattern together so that
the centroid of the cluster can be naturally considered as
the prototype of the group of sequences. To this end, given
sequences s; € St U U, we first derive the sequence
representations Rt = {rf,rj,...,rigﬂﬂm}. Note that as
the majority of unlabeled sequences are normal, we combine
the normal and unlabeled sequences together. Then, we run
k-means on R+ and derive the prototypes P+ for the normal
sequences, i.e.

pii_:pg_z" ¥ '.!p:_+ i k—lneaﬂS(R+), (1)
where k1t is the number of normal clusters, and
Py.P3....;Ps:x € P+t are the centroids of normal
clusters.

Similarly, for any abnormal sequence s; € S, we
use the same LSTM model to obtain its representation as
r; = f(s;) and apply k-means on representations R~ =
{r7,r3,---, ris- |} of sequences in S~ getting the prototypes
P~ for the abnormal sequences:

P1,P3;---; Py = k-means(R™), 2

where k— is the number of abnormal clusters, and
P1.:P2,-.., P, € P~ are the centroids of abnormal clusters.
C. Learning Objective

For any sequence s; € S UU, the LSTM encoder can map
s; into an embedding space where sequences with similar pat-

terns are grouped together. Then, k-means can find clusters of
sequences, and the centroid of a cluster can be a prototype of a
group of sequences. To this end, we adopt contrastive learning
to train the LSTM encoder, aiming to pull similar sequences
close while pushing different sequences apart. Specifically,
the objective function consists of two parts, instance-wise and
cluster-wise contrastive learning.

Instance-wise Contrastive Learning. The instance-wise
contrastive learning is similar to the existing contrastive learn-
ing approach [21], where the positive pair is from similar
sequences while the negative pairs are from the discrepant
sequences, i.e.

IS|+1U]

o empl(f(s) - Fs/)
2, e e (fe) - FE@y @

Ccon, =

where 7 is a temperature hyper-parameter, and (s;, s}) are a
positive pair, and 3;; includes one positive sample (i.e., when
j = 1) and r negative samples.

Contrastive learning needs positive and negative samples for
the pretext task. The negative samples can be easily composed
by sampling discrepant sequences from the training set. To
generate positive samples, we develop a token replacement
strategy for data augmentation. Token replacement is to replace
the tokens in a sequence with similar tokens. To this end,
we first generate normal and abnormal token dictionaries,
respectively, based on the training set. Each dictionary consists
of tokens from the corresponding labeled sequences. Then,
for each sequence s;, we randomly replace a few tokens to
generate augmented samples.

Cluster-wise Contrastive Learning. In order to derive the
prototypes, we also aim to learn various patterns underlying
the normal and abnormal sequences. In general, the sequences
that share a similar pattern should group together, meaning
that similar sequences should be close to the corresponding
prototype. On the other hand, sequences with different patterns
should be apart, meaning that sequences should be far away
from the prototypes representing different patterns. Therefore,
for any prototype p. € P =P+t UP~ of a cluster ¢, p. can
be used for composing the positive sample of a sequence sf,
where s{ indicates a sequence in the cluster ¢. On the other
hand, the prototypes except p. can be used to compose the
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negative samples of s§. Therefore, the objective function can
be defined as:

IS1+1U]

Lo S g CRU(s5) De/de)
" ; ; Z_@z exp(f(sf) - P;j/5)

where s§ is a sequence in cluster ¢ and ¢, and ¢; indicates
the concentration level of the clusters ¢ and j, respectively.
The concentration level of a cluster ¢ can be proportional to
the summation of Euclidean distance between f(sf) and p,.
for all sequences in the cluster ¢, a small concentration level
indicating a tight cluster.

Finally, to learn meaningful sequence representations and
prototypes, we combine Equations 3 and 4 as the final objec-
tive function:

“4)

& :ﬁcon ‘f‘/\'ﬂpro: (5)
where A is a hyper-parameter to balance these two objectives.

D. Abnormal Sequence Detection via Prototypes

A new sequence can be labeled based on its closest proto-
type. Specifically, given a test sequence s;, we search for the
most similar prototype in P as:

p* :aIgmjan‘P D(f(st)'sp): (6)

where D(-) indicates the Euclidean distance. If p* € P, then
we predict s; as normal, while if p* € P—, we label s; as
abnormal. Meanwhile, the sequence in the training set that is
closest to the corresponding p* is a concrete instance of the
prototype of the cluster, which can provide the explanation to
domain experts for case reasoning.

E. Training Details

We briefly discuss how to train our framework.

Iterative Training. Our framework consists of two parts,
k-means and contrastive learning. During the training phase,
these two steps are run in an iterative manner. In the beginning,
the LSTM encoder can not learn separable representations for
sequences due to randomly initialized parameters. Therefore,
the clustering results from k-means may not be well sepa-
rated. In this stage, the objective of instance-wise contrastive
learning plays a vital role in learning good representations
of sequences. As in each iteration, we update the LSTM
encoder, the clustering results from %k-means would become
better. Then, the objective for cluster-wise contrastive learning
can further group sequences into different clusters, and the
centroid of each cluster becomes a representative point of a
cluster, i.e., the prototype. After training, the LSTM encoder
should be able to map similar sequences into a cluster.

Momentum Encoder. As in contrastive learning, using the
same encoder to encode sequences and their negative samples
in different batches may cause an inconsistent problem, we
adopt the idea of MoCo [19] to implement our contrastive
learning framework, which includes an original encoder and
a momentum encoder. Specifically, the representation of the
original sequence (query sequence) f(s;) is derived by the

original LSTM encoder, while the representations of the posi-
tive or negative samples (key sequences) f(s;) and f(s}) are
derived by the momentum encoder. The relationship between
the original encoder and momentum encoder in terms of their
parameters can be defined as 0, + abf, + (1 — a)f,, where
. and 8, are the parameters of the original and momentum
LSTM encoders, respectively, and m € [0,1) is a momentum
coefficient. Meanwhile, similar to [28], the sequence repre-
sentations used for k-means clustering are derived from the
momentum encoder.

IV. EXPERIMENTS
A. Datasets

We evaluate ESAD against existing baselines on three
datasets:

TABLE [I. Statistics of the training and testing sets in three
datasets

Dataset BGL | Reuters | 20 Newsgroups
Normal 100 200 200
Training | Abnormal 100 200 200
Unlabeled | 900 800 800
Test Normal 10000 1000 1000
Abnormal | 1000 200 200

« BlueGene/L (BGL) [29] is a log dataset containing alert
and non-alert log messages collected from a BlueGene/L
supercomputer system at Lawrence Livermore National
Labs.

« Reuters is a text dataset consisting of 90 categories from
7769 training documents and 3019 testing documents.

« 20 Newsgroups is another text dataset containing about
18000 newsgroups posts from 20 different topics.

For BGL, we consider the sequences with alert messages
as anomalies, while for the Reuters and 20 Newsgroups,
we select a set of categories as normal classes and another
set of categories as abnormal classes. In particular, for the
Reuters dataset, we set “earn” and “acq” as the normal
classes, while “interest”, “wheat”, “dlr”, “gnp”, and “crude”
as abnormal classes. For the 20 Newsgroups dataset, we
consider that “talk.politics.mideast”, “talk.politics.misc”, and
“talk.religion.misc” are normal classes, while “misc.forsale”,
“rec.sport.baseball”, “sci.med”, “soc.religion.christian”, and
“rec.autos” are abnormal classes.

Table I shows the statistics of the three datasets in our
experiments. For the BGL dataset, we use 100 normal, 100
abnormal, and 900 unlabeled sequences for training, while the
test set includes 10000 normal and 1000 abnormal sequences.
For the Reuters and 20 Newsgroups datasets, the training set
consists of 200 normal and 200 abnormal documents as well
as 800 unlabeled documents, while the test set consists of 1000
normal documents and 200 abnormal documents.

B. Baselines

We compare our approach with the following unsuper-
vised and semi-supervised baselines for detecting abnormal
sequences.
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TABLE II: Results of abnormal sequence detection (mean 4 std.)

Dataset Metric iForest OCSVM DeepSAD ESAD
Precision | 21.9245.74  20.27£10.20 8543+1181  90.88+4.8I
BGL Recall 49.65+£13.94  60.05+1850  97.46+2.52 97.494+2.05
F-1 score | 30.404+8.13  29.95+£13.36  90.6347.13 93.99+2.51
AUC 57.2847.67 534741637  97.79+1.54 98.244-0.96
Precision | 41.8012.61 42.67+1.91 76.8618.14 86.03+3.28
Bl Recall 58.15+4.49 41.154£3.58  88.90+12.80  94.85+1.16
F-1 score | 48.59+2.97 41.8542.55 82.2549.67 90.19+1.89
AUC 70.97+2.21 65.05+1.60 91.79+6.79 95.87+0.70
Precision | 27.40Xt1.65 26.50+2.21  72.92+1398 T1.53£10.29
o0 NG Recall 41.30+3.03 35.60+3.05  8535+11.18  87.10+5.63
EOUPS | B score | 32.91£1.90 30.38+2.55 77.194+7.20 77.824+5.26
AUC 59.69+1.42 57.93+1.79 88.91+4.11 89.71+1.65

Normal sequences {57
Abnormal sequences {57)
«  Normal prototypes (#°]
« Abnormal prototypes (77}

Normal sequences {5%)
Abnormal sequences (57)
w  Normal prototypes (77
«  Abnormal prototypes (7]

(a) BGL

(b) Reuters

Normal sequences (%)
Abnormal sequences (57)
»  Normal prototyges (774 .
«  Abnormal protatypes (7]

(c) 20 Newsgroups

Fig. 2: Visualization of the normal sequences (cyan), abnormal sequences (yellow), normal prototypes (black), and abnormal

prototypes (red)

» Isolation Forest (iForest) is an unsupervised outlier
detection algorithm that recursively partitions the obser-
vations based on decision trees [30].

« One Class Support Vector Machine (OCSVM) is a
one-class novelty detection method that learns the pattern
of observations and recognizes samples whose behaviors
deviate from the learned pattern [31].

s DeepSAD is a state-of-the-art semi-supervised anomaly
detection approach that takes advantage of the labeled
anomalies as well as the unlabeled samples to achieve
good performance on anomaly detection. [32].

For iForest and OCSVM, we use count vectors to represent
sequences by transferring training text data to a matrix of token
counts. For DeepSAD, we use an LSTM to encode sequences
to representations and update the parameters of the encoder
during the training period.

C. Implementation Details

For the BGL dataset, we first apply a log parser, Drain
[33], to transfer raw log messages to log templates. We then
apply a sliding window with size 20 to generate log sequences.
For the Reuters and 20 Newsgroups dataset, we preprocess
the raw text data by removing the stopwords, stemming, and
tokenizing, as well as splitting them into training and test sets.
We then employ Word2Vec to represent words and update the
vectors during the training period.

In BGL, we represent log templates as 100-dimensional
embedding vectors. After randomly initializing the structured

log template embeddings, we adopt an LSTM as the encoder
and generate the sequence representation with 256 dimensions.
We also employ Adam as the optimizer with a learning rate of
0.005 and weight decay of le-6. We trained our model for 150
epochs with a batch size of 20. We set the temperature hyper-
parameter 7 in Equation 3 as 0.05. To balance the loss terms
Leon and Ly, we set the hyper-parameter A in Equation 5 as
1.0. The k in the k-means algorithm is set as the number of
normal or abnormal classes in each dataset. The source code
is available online '.

D. Experimental Results

1) Sequential Anomaly Detection: Table II shows the per-
formance of abnormal sequence detection on three datasets.
We run the experiments ten times and report the mean and
standard deviation. First, the traditional anomaly detection
approaches, iForest and OCSVM, cannot achieve reason-
able performance on sequential anomaly detection as using
count vectors to represent sequences cannot well capture the
sequential patterns. Second, DeepSAD as a state-of-the-art
semi-supervised anomaly detection method can achieve good
performance, which shows the advantage of leveraging a few
labeled samples for training. However, in terms of F-1 score
and AUC, ESAD is also better than DeepSAD. Overall, ESAD
achieves the best performance with the highest F-1 score
and AUC compared to the baselines. Meanwhile, ESAD can

"https://github.com/Serendipity6 18/ESAD/
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TABLE III: Results of sequence anomaly detection and clustering with various pre-defined &~

Dataset Metric k=1 k& =2 Kk =3 k =4 K =5 k =6 Kk =T
Precision 94.79 92.68 91.90 90.87 87.84 90.52 00.82
sequence anomaly detection Recall 91.00 95.00 96.50 04.50 97.50 05.50 04.00
Reuters F-1 score 9286 9383 9415 9265 9242 9294 9238
clustering Rand Index 0.87 0.88 0.88 0.88 0.87 0.88 0.87
Mutual Information 0.73 0.84 0.83 0.84 0.84 0.85 0.85
Precision 83.87 83.78 82.81 85.25 79.81 75.44 70.17
sequence anomaly detection Recall 78.00 77.50 79.50 78.00 83.00 86.00 83.50
20 Newsgroups F-1 score 80.83 80.52 81.12 81.46 81.37 80.37 76.26
cliskesing Rand Index ] 0.69 0.69 0.69 0.69 0.71 0.71 0.71
Mutual Information 0.39 0.39 0.40 0.42 0.44 0.48 0.48
further group abnormal samples into multiple clusters and E. Case study

provide explanations via prototypical sequences.

2) Visualization: We further visualize normal and abnormal
sequence representations in BGL, Reuters, and 20 News-
groups. We select 1000 normal and 200 abnormal sequences
and feed them to the momentum encoder to obtain sequence
representations. We then employ t-SNE [34] to map sequence
representations into a two-dimensional space. Figure 2 shows
the visualization results. First, we can observe that normal
and abnormal sequences are overall separated. Second, both
normal and abnormal sequences can be grouped into multiple
clusters, where each cluster consists of sequences with similar
patterns. Meanwhile, as the anomalies are diverse, we can
notice that the distribution of abnormal clusters is more diverse
compared with normal clusters. Furthermore, we can notice
that the prototypes of all normal and abnormal sequences are
far from each other, which indicates that by using contrastive
learning, different patterns of normal and abnormal sequences
are separated.

3) Clustering Analysis: Because the Reuters and 20 News-
groups datasets provide ground truth information about the
class of each text, we further conduct clustering analysis
to check the impact of pre-defined numbers of abnormal
prototypes on the performance of sequence anomaly detection
and clustering. Specifically, we vary the value of kK~ and
evaluate the performance of sequence anomaly detection using
precision, recall, and F-1 score, as well as the performance
of detecting various anomalies using Rand Index and Mutual
Information [35]. The ground-truth &~ for both Reuters and
20 Newsgroups datasets is 5. We evaluate the performance
of our approach by changing the value k= from 1 to 7. The
results are shown in Table III. First, in terms of clustering,
on both datasets, most of the texts in the same class are
grouped into one cluster, leading to a high rand index and
mutual information score as long as we set a reasonable k—
value. Meanwhile, our findings suggest that clustering results
may be unsatisfactory for much smaller values of k—, as a
reduced number of abnormal prototypes may fail to effectively
summarize multiple anomalies. In terms of anomaly detection,
increasing the value of £~ does not significantly affect the
accuracy of sequence anomaly detection on Reuters, but can
lead to a decrease in accuracy on 20 Newsgroups, particularly
for values of k~ exceeding the golden number.

One major advantage of ESAD is that the derived proto-
types can provide human-understandable explanations for case
reasoning after they are instantiated by real-world sequences.
We further conduct a case study for each dataset to show the
advantage. Since in practice, we are usually more interested
in why a sequence is labeled as abnormal, in this case study,
we focus on showing how to explain the detected abnormal
sequence based on the prototypical sequence.

1) Case Study 1: Explainable Text Data Anomaly Detec-
tion: Table IV shows the test cases of anomaly detection on
Reuters and 20 Newsgroups. In the Reuters dataset, given a
query text that is detected as abnormal due to its closeness to
an anomaly prototype, we can figure out the reason why this
text is abnormal by checking the corresponding prototypical
sequence. For example, the prototypical sequence of Query
I is about the bank providing help to the market. Once the
domain experts know the prototype, they can figure out Query
I should describe a similar topic. This is confirmed when
we further check the text of Query I. Both Query I and the
prototypical sequence are from the category “interest” in the
Reuters dataset. Similarly, the prototypical sequence of Query
I is about wheat. With that information in mind, once a new
text, such as Query II, is detected, the domain expert can know
Query II should have a similar topic. Hence, ESAD detects
abnormal sequences via prototypes, i.e., when new sequences
have similar abnormal patterns to the prototypes, ESAD can
capture them.

We have similar observations in the 20 Newsgroups dataset.
Given a text, Query I, ESAD detects the text as abnormal.
Then, by checking the corresponding prototypical sequence,
which is about the topic “autos”, we can be safely sure that
Query I is detected as abnormal due to describing a similar
topic. If we further examine Query I, both Query I and the
prototypical sequence are about “autos”. Moreover, given a
text, Query II, the prototypical sequence can explain why
Query II is labeled as an anomaly.

2) Case Study 2: Detecting and Explaining Anomalies in
Log Data: Log data record the system or user activities so
we can use them to debug system faults or identify malicious
attacks. Generally, there are multiple abnormal patterns in log
data, especially for complicated systems, so we further evalu-
ate ESAD on the BGL dataset which is a good representative
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TABLE IV: Case study on text data

Reuters
I U.K. MONEY MARKET GIVEN FURTHER 166 MLN STG HELP The Bank of England

Query said it provided the market with further help totalling 166 min stg ...

Prototype U.K. MONEY MARKET RECEIVES 205 MLN STG LATE HELP The Bank of England
said it has provided around 205 mln stg late assistance to the market ...
SRI LANKA GETS USDA APPROVAL FOR WHEAT PRICE Food Department officials said

Query II the U.S. Department of Agriculture approved the Continental Grain Co sale of 52,500 tonnes
of soft wheat at 89 U.S. Dlrs a tonne C and F from Pacific Northwest to Colombo ...
CHINA BUYS U.S. HARD AND SOFT WHEAT Private exporters said China bought

Prototype a total of 550,000 tonnes of U.S. wheat under the export enhancement program

U.S. Department of Agriculture of the subsidies still awaited ...

20 Newsgroups

They beat Ford to the market with the Camaro/Firebird, but really only in words.

Query I

Production of these vehicles will be limited until the end of the year, keeping selling prices

above MSRP for the most part since there are so many twitching Camaro fans out there ...

On BOTH cars, the rubber seals around the window and door fell off. ...

Prototype

The panel gaps were large and non-uniform between the 2 cars I saw - the kind of thing

you expect and accept on a Mustang, but not from Chrysler’s savior ...

Public revelation, which is the basis of Catholic doctrine, ended with the death of St John,

Query 11

the last Apostle. Nothing new can be added. Every so often, the Pope declares that

some departed Christian is now in Heaven, and may be invoked in the public rites of the Church ...

If it were a sin to violate Sunday no one could ever be forgiven for that for Jesus never kept

Prototype

Sunday holy. He only recognized one day of the seven as holy. Jesus also recognized other

holy days, like the Passover. Acts 15 says that no more should be layed on the Gentiles than ...

TABLE V: Top abnormal log template in each anomaly cluster

Cluster | Top abnormal log pattern and its frequency
1 KERNMC, 2
2 KERNDTLB, 6
3 KERNSTOR, 449
4 APPREAD, 40
5 KERNDTLB, 1380
of log data.

After running ESAD on the test set, we collect the detected
abnormal sequences and calculate the frequency of abnormal
log templates in the anomaly clusters. Table V shows the top
abnormal log pattern in each anomaly cluster. We can notice
that each cluster captures one dominant abnormal pattern.
Because BGL includes some common abnormal patterns and
several rare abnormal patterns [29], also shown in Figure 2a,
we can notice some clusters have a lot of abnormal sequences
while some clusters only have a few abnormal sequences.
As we group the abnormal sequences into 5 clusters, we
successfully identify 4 different abnormal patterns.

TABLE VI: Case study on log data

BGL

Que ... 1840cbfe, 828a502b, 65f23e3e, 147cfcff,
y 6ede2c6e, 38a7307d, 38a7307d ...

Prototype  ...38a7307d, 38a7307d, 38a7307d ...

We further conduct a case study to check whether we
can get insightful explanations via prototypical sequences.
Given a query sequence, we detect the sequence as abnormal

because it is close to an anomaly prototype. By checking the
prototypical sequence (shown in Table VI), we can notice
that the prototypical sequence consists of a series of log
templates “38a7307d”, which indicates a specific abnormal
pattern "KERNDTLB”. Based on this information, the domain
experts can expect the detected log sequence also has the
same abnormal pattern "KERNDTLB”. That is to say, we have
already obtained the prototype which includes an abnormal
pattern "KERNDTLB”, so when a new sequence containing
the same abnormal pattern comes, we can classify it as an
abnormal sequence.

V. CONCLUSIONS

In this paper, we have developed a framework, ESAD,
for identifying diverse anomalies in sequential data based
on the idea of contrastive learning and clustering technique.
ESAD is able to learn prototypes for normal and abnormal
sequences, where each prototype represents a specific normal
or abnormal pattern. Given a new sequence, ESAD predicts
the new sequence based on the label of its closest prototype.
Meanwhile, by instantiation of the prototype, ESAD can
provide the prototypical sequence for the case reasoning. The
prototypical sequence can provide insightful information for
domain experts to understand why a sequence is labeled as
abnormal. In the future, one potential direction for us is to
explore whether we can apply the idea of prototype learning
to explainable anomaly detection in an unsupervised setting.
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