Check for
Updates

Towards Practical Sleepy BFT

Dahlia Malkhi
Chainlink Labs
San Francisco, CA, USA
dahliamalkhi@gmail.com

ABSTRACT

Bitcoin’s longest-chain protocol pioneered consensus under dy-
namic participation, also known as sleepy consensus, where nodes
do not need to be permanently active. However, existing solutions
for sleepy consensus still face two major issues, which we address
in this work. First, existing sleepy consensus protocols have high
latency (either asymptotically or concretely). We tackle this prob-
lem and achieve 4A latency (A is the bound on network delay) in
the best case, which is comparable to classic BFT protocols without
dynamic participation support. Second, existing protocols have to
assume that the set of corrupt participants remains fixed through-
out the lifetime of the protocol due to a problem we call costless
simulation. We resolve this problem and support growing partici-
pation of corrupt nodes. Our new protocol also offers several other
important advantages, including support for arbitrary fluctuation
of honest participation as well as an efficient recovery mechanism
for new active nodes.

CCS CONCEPTS

« Security and privacy — Distributed systems security.

KEYWORDS
BFT Protocols; Blockchain; Dynamic Participation; Sleepy Model

ACM Reference Format:

Dahlia Malkhi, Atsuki Momose, and Ling Ren. 2023. Towards Practical
Sleepy BFT. In Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security (CCS °23), November 26-30, 2023, Copenhagen,
Denmark. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3576915.3623073

1 INTRODUCTION

Byzantine fault-tolerant (BFT) consensus, a decade-old problem in
distributed computing and cryptography, allows a group of nodes
to reach an agreement in the presence of corrupted nodes [25, 33].
Traditional consensus research has mainly focused on the static

*Lead author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11...$15.00
https://doi.org/10.1145/3576915.3623073

Atsuki Momose®
University of Illinois at
Urbana-Champaign
Urbana, IL, USA
atsuki.momose@gmail.com

490

Ling Ren
University of Illinois at
Urbana-Champaign
Urbana, IL, USA
renling@illinois.edu

participation model where all honest nodes remain active through-
out the execution [9, 23]. The celebrated Bitcoin protocol [29] pio-
neered consensus in a dynamic participation model, enabling nodes
to switch between active and inactive states spontaneously without
any prior notice. Furthermore, participants do not need to know
how many other participants are currently active in the system. This
dynamic and unknown participation model was later formalized as
the sleepy model [32]. The sleepy model allows an arbitrary subset
of n; nodes out of a total of N eligible participants to be active at
any given time t. The status of active/inactive can be determined
arbitrarily by an adversary, making the participation dynamic and
unknown.

Inspired by Bitcoin’s longest-chain protocol, there have been
many recent proposals employing the longest-chain paradigm for
the sleepy model [12, 14, 32]. However, all of these protocols face
two major problems, which we highlight in this work.

Problem 1: Latency. A notable drawback of the longest-chain par-
adigm has been its long latency. The latency of Nakamoto’s longest-
chain protocol depends on several factors, including the security
parameter and the actual level of participation [31, 34]. Substantial
effort has been made to remove these dependencies [6, 20, 22, 26],
culminating in the work of Momose-Ren [28] that achieves con-
stant latency. However, despite being asymptotically optimal, the
concrete latency of Momose-Ren is still quite large. Specifically, its
latency is at least 16A! (where A is the bound on network delay).
This is much slower than classic BFT protocols operating under
the static participation model, which can make decisions within A
time [3].

Our first result is to address this issue and achieve concretely
small latency in the sleepy model. Specifically,

THEOREM 1.1 (INFORMAL). Assuming a verifiable random function
(VRF) and public-key infrastructure (PKI), there exists an atomic
broadcast protocol with (best-case) 4A latency in the sleepy model
where up to f; < ny/2 corrupt nodes are active at any given time t.

Following prior works, we focus on the atomic broadcast prob-
lem [11], i.e., achieving consensus on a linearizable log.

The core ingredient of our protocol is a new construction in the
classic view-based approach to BFT atomic broadcast. We construct
each view from the composition of a graded proposal election (GPE)
and a sequence of graded agreements (GA). We observe that most
classic construction puts the decision at the end of each view after
sequential invocations of GA, and this introduces a large latency.
We instead push back most of the tasks done by the sequential GAs
and make a decision earlier after minimum steps (in GPE). This
results in a significant improvement in the best-case latency.

! Assuming perfectly synchronized clocks for lockstep execution. This latency will
further increase under the assumption of a bounded clock skew.

https://doi.org/10.1145/3576915.3623073
https://doi.org/10.1145/3576915.3623073
https://doi.org/10.1145/3576915.3623073
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576915.3623073&domain=pdf&date_stamp=2023-11-21

CCS *23, November 26-30, 2023, Copenhagen, Denmark

Problem 2: Costless simulation. Besides latency, another major
limitation of previous sleepy consensus protocols (without proof-
of-work) do not allow dynamic participation of corrupt nodes. The
Bitcoin protocol allows both honest and corrupt nodes to fluctuate
dynamically as long as there is an honest majority. However, once
we remove the computationally expensive proof-of-work, we lose
the crucial property that computational effort is not reusable. Be-
cause of this, the original sleepy model [32] by Pass-Shi assumes
stable participation of corrupt nodes. To elaborate, at each point in
time t, they allow a maximum of f; = O(n) active corrupt nodes
where n represents the minimum count of active nodes throughout
the entire execution. In other words, even if the overall (honest
plus corrupt) participation level fluctuates tremendously through-
out the execution, the count of corrupt participants must always
be bounded by the minimum participation level rather than the
current level. This assumption is hard to justify in practice. Suppose
only dozens of nodes were active in the beginning, but a million
nodes are active a few years later when a system attains widespread
recognition. Even at that later time, the number of corrupt nodes
must be limited to a few dozen out of the one million nodes!

This problem arises due to an attack known as costless simu-
lation [15]. To elaborate, when a corrupt node becomes active, it
can pretend to have always been active in the past. It can fabricate
messages that were supposed to be sent when it was not active in
an attempt to alter the consensus results in the past. Our protocol
tackles this problem and accommodates growing corrupt partici-
pation proportional to the active participation level (formalized in
Section 2).

Other advantages. Along the way, we also offer several other
advantages elaborated below.

e We introduce a novel technique to eliminate the assumption of
eventual stable participation, a requirement for ensuring liveness
in Momose-Ren. Intuitively, their protocol assumes that eventu-
ally, a large fraction of active nodes stays active for a certain pe-
riod of time to make progress. In contrast, our protocol advances
consistently even under arbitrary churn in active participants,
offering guarantees akin to those of longest-chain protocols.

e The original sleepy model by Pass-Shi assumes that nodes upon
waking up receive all past messages including those sent during
their sleep, which is impractical. Momose-Ren addresses this
issue by introducing a concrete recovery mechanism for newly
active nodes to retrieve only essential messages from other active
nodes. However, in Momose-Ren, nodes are required to recover
messages from the past Q(x) rounds (besides the log contents)
where x is a security parameter. Moreover, the recovery protocol
introduces additional overhead to the main protocol, resulting
in an increased latency of at least 19A. In contrast, our recovery
protocol mandates nodes to recover messages from only the
constant number of past rounds (in fact less than a dozen). This
protocol also avoids introducing any additional latency.

Organization. The rest of this paper is organized as follows. After
defining the model and some primitives in Section 2, we provide
the overview of our protocol in Section 3. We present our graded
agreement (GA) protocol in Section 4 graded proposal election
protocol (GPE) in Section 5. Then, building on the GA and GPE

491

Dahlia Malkhi, Atsuki Momose, and Ling Ren

protocols, we present our atomic broadcast protocol in Section 6.
Finally, we review some related works in Section 8 and conclude
this paper with some future works in Section 9.

2 MODEL AND DEFINITIONS

We consider a system comprising a total of N nodes communicat-
ing over a synchronous network. Note that network synchrony
is necessary for consensus in the sleepy model [32]. A represents
the bound on communication delay. For simplicity, we assume the
existence of a perfectly synchronous clock, meaning nodes share
access to a common global clock. We can extend our results to
accommodate a model with bounded clock skew by applying the
round transformation technique in [28] (with a minor increase in
latency). We assume the communication channel is unauthenticated,
implying that the origin of any message is unknown to nodes. Let
Kk denote the security parameter. We assume an adaptive adversary
that can corrupt nodes anytime during an execution. Corrupt nodes
exhibit arbitrary behavior under the control of an adversary. Any
non-corrupt node is said to be honest and behave as instructed by
the protocol.

The sleepy model. Our protocol operates in an extended sleepy
model that accommodates the dynamic participation of corrupt
nodes. Let us begin by briefly reviewing the original sleepy model
introduced by Pass-Shi [32]. In this model, nodes exist in one of two
states: awake or asleep. Awake nodes actively engage in the execu-
tion, while asleep nodes neither execute any code nor send/receive
any message. The count of awake nodes at any given time ¢ is
represented as 0 < n; < N. At each time point, the status of each
node can change at the adversary’s control without any prior notice.
Regarding the message delivery, the assumption is that if an honest
node p is awake at time ¢, then p must have received all messages
sent to it by other honest nodes prior to time t — A. However, as
pointed out in [28], this message delivery assumption is not realistic.
It essentially assumes all past messages are magically buffered until
the recipient comes back awake. We will eliminate this assumption
in Section 6.3 where we introduce our recovery mechanism.

Dynamic participation of corrupt nodes. Now let us delve into
the dynamic participation of corrupt nodes and clarify the differ-
ence between the original sleepy model and our extended version.
The original sleepy model, while allowing arbitrary churn among
honest nodes, imposes a strong restriction on the dynamic par-
ticipation of corrupt nodes. Precisely, the count of active corrupt
nodes is capped at n/2 where n is the minimum count of active
nodes throughout the entire execution, essentially disallowing any
fluctuation in the corrupt node’s participation. This stems from the
costless simulation problem, wherein corrupt nodes can fabricate
past messages during their inactive period.

We address part of this issue and manage to allow corrupt nodes’
participation to grow proportionally to the current overall partici-
pation level. Formally, we measure corrupt nodes’ participation in
the following way. Let F; be the set of corrupt nodes awake at time

t, and define

t-Tr<r<t+Tp

f& T, Ty) = | Fel.

Towards Practical Sleepy BFT

We say an execution is admissible in the (T, Tj, ar)-sleepy model if
forallt >0

f(, Tf: Tp) < ang.

In other words, a corrupt node is counted as an active corrupt
node for an extra Ty time forward and an extra T, time backward
beyond the time interval it is actually active. This essentially ac-
knowledges that the protocol cannot effectively defeat costless
simulation within that duration other than considering the corrupt
node active in that duration. On the other hand, any simulation
outside of this time frame must be tolerated by the protocol.

For example, the original sleepy model can be described as the
(00, 00, 1/2)-sleepy model, and protocols in this model essentially
are not tolerant to any backward or forward simulations. Bitcoin
works in the (0,0, 1/2)-sleepy model because any simulation is
costly due to the non-reusable property of proof-of-works.

Our protocol is designed to operate in the (oo, Tj, 1/2)-sleepy
model with T, = O(A). In other words, we are still unable to tolerate
forward simulation because a corrupt node can simply give its
secret key to the adversary before going to sleep. However, we
prevent backward simulation for the most part. This allows the
number of active corrupt nodes to grow proportionally to the overall
participation, albeit with a slight delay of T, = O(A). Further insight
into these parameters will be provided in Section 3.3.

Atomic broadcast. An atomic broadcast protocol [11] allows nodes
to agree on a linearizable log. Specifically, nodes input a finite set of
values and decide on a growing sequence of values [xo, x1, X2, ...]
called a log. The protocol provides the following guarantees:

(1) Safety. If two honest nodes decide logs [xo, .., x;] and [x(, .., x},],
then x; = x| for all i < min{j, j'}.

(2) Liveness. If an awake honest node inputs a value x at time t,
then there is a time t’ > t s.t. all awake honest nodes at any

time after ¢’ decide a log containing x.

Here, we do not specify what the values are. It might be from a
finite class depending on the application built on top of the atomic
broadcast.

Latency of atomic broadcast. We define latency as the time
needed for a value input by an honest node to get decided. Namely,
suppose an honest node inputs a value x at time ¢, and an honest
node decides a log that includes the value x for the first time at time
t’. In this context, the latency for deciding the value x is ¢t — ¢’. This
paper primarily focuses on the best-case latency, representing the
shortest possible latency, typically when all nodes behave honestly.

Cryptographic assumptions. We make use of digital signatures
with a public-key infrastructure (PKI). We use (), to denote a
message u signed by node p. We assume a cryptographic hash
function denoted H(-). We also assume a verifiable random function
(VRF). A node p with its secret key can evaluate (p, 7) < VRFp(u)
on any input p. The output is a deterministic pseudorandom value p
along with a proof . Using 7 and the public key of node p, anyone
can verify whether p is a correct evaluation of VRF, on input p.

2.1 Definitions and Primitives

We define some primitives and notions we will use in our protocol.

492

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Blocks. As commonly done in recent BFT protocols, we employ
the concept of block. In our protocol, a batch of values are grouped
into a block. Each block contains a hash reference pointing to
another block, forming a hash chain. The last block in the chain
(i.e., without a hash reference) is called genesis block and is denoted
as By = (L, L,0). The height of a block represents its position in
the chain, measured as the distance from the genesis block. The
block of height k is formatted as

By := (bg, H(Bg—1),0)

where by is the batch of values in this block and H(Bj._;) is the
hash reference to the preceding block By_;. Any block By uniquely
defines a chain By . .. By, and hence a unique log. We say a block
By extends By (k > 1) if B = B; or By is the ancestor of By in the
chain (i.e., there is a path from B to B;). We say two blocks By
and B; conflict with each other if neither of them extends the other.
The last element v is an integer called view number. Intuitively,
the view number identifies when the block was created (we will
elaborate more later). We say the block By, is of view v and use
the notation view(B) to denote the view of block B. We say the
block By, is valid if the preceding block Bj._; is valid and is of view
v’ < v. In other words, the view numbers in any valid chain must
be strictly increasing.

Graded agreement (GA). We use a primitive called graded agree-
ment (GA), which is also used in Momose-Ren [28] and is similar
to gradecast [23]. Each node takes as input a block B and outputs a
set of blocks along with grades. More specifically, at the end of the
protocol, each node outputs a set of pairs (B, g) of a block B and a
grade bit g € {0, 1}, subject to the following constraints:

o Graded delivery. If an honest node outputs (B, 1), then all honest
nodes output (B,).

o Integrity. If an honest node outputs (B, *), then at least an honest
node has input B’ extending B.

e Validity. Let B be the highest block that every honest node’s
input extends. Then, all honest nodes output (B, 1).

Note that the standard GA (also adopted in [28]) is defined for
values, but we extend it to chained blocks. We also note that we
do not have any consistency guarantee for outputs. In other words,
nodes (even a single node) can output multiple conflicting blocks.

Graded proposal election (GPE). We introduce a primitive called

graded proposal election, which resembles the composition of a

leader/proposal election and a graded agreement. In GPE, nodes

propose their own blocks B and elect a single block with grades.

At the end of the protocol, each node outputs a single pair (B, g) of

ablock B (or B = L) and a grade bit g € {0, 1} with the following

constraints:

e Consistency. If two honest nodes output (B, *) and (B’, %) for
B,B’ # 1,then B=B’'.

o Graded delivery. If an honest node outputs (B, 1), then all honest
nodes output (B,).

o Validity. With a probability of more than 1/2, all honest nodes
output (B, 1) where B is inputted by an honest node.

o Integrity. If an honest node outputs (B, %), then the block B is
permissible for at least an honest node.

CCS *23, November 26-30, 2023, Copenhagen, Denmark

Here, the criterion for a block to be considered permissible for
a node is defined externally. It is important to note that there is a
case that a block is permissible for one node but not for others.

Intuitively, with a probability of more than 1/2, all honest and
awake nodes will output the same honest node’s input with grade
1. For the remaining less than 1/2 probability, GPE still guarantees
consistency in the sense at most one proposal is output, albeit not
by all honest and awake nodes since some of them may output
L. Furthermore, the block must pass an external safety check (be
permissible) by at least one honest node, which helps eliminate
unsafe proposals from corrupt nodes.

As mentioned, GPE resembles and can be implemented with,
a composition of a leader election and a GA. However, we will
directly implement a GPE that is more efficient.

3 OVERVIEW

In this section, we present an overview of this work to elaborate
on the technical details.

3.1 View-based BFT with Early Decision

At ahigh level, we follow the classic view-by-view construction that
is employed by most mainstream BFT protocols [1, 2, 8, 9, 18, 23, 36]
as well as the latest sleepy consensus of Momose-Ren [28]. This
paradigm is useful in achieving expected constant round latency.
Specifically, the protocol progresses through a series of views, each
possessing a fixed duration wherein one block is decided. View-
based protocols in general (including non-sleepy protocols) involve
(often implicitly) sequential invocations of a graded agreement (or
a primitive with similar guarantees) and decide a block when all
of the GAs from the initial to the final succeed. However, this ap-
proach brings a notable latency overhead, especially in the sleepy
model, as each GA takes a few more rounds. For example, Momose-
Ren involves five consecutive GAs, resulting in a latency of 16A
at the minimum. To resolve this bottleneck, we introduce a new
construction of each view. The high-level idea is that we can push
back most of the tasks done by the sequential GAs to make a deci-
sion earlier. Concretely, we observe that we can instantiate a view
from a composition of a GPE and two sequential GAs as outlined
in Figure 1. The GPE performs the minimum task to make a safe
decision within the view, and the latter two GAs resolve all other
works to maintain safety and liveness across all views. This way,
our protocol can decide on a block immediately after the GPE in
the best case, taking 4A. We elaborate more on how our protocol
maintains safety and liveness below.

Each view starts with a graded proposal election (GPE), and a
grade-1 output from GPE is decided. Again, the crucial role of the
GPE is to converge on a unique proposal. The consistency of GPE
ensures that two distinct blocks cannot be decided simultaneously
in the same view, thereby guaranteeing safety within a view. To
maintain safety across views, we want to make all nodes lock on
the decided block and discard any block conflicting with the lock
in the subsequent views. To this end, the subsequent GAs resolve
which block has possibly been decided by other nodes. Specifically,
grade-0 output from GPE is handed over to the GAs, and grade-1
output from the second GA is locked. The graded delivery of GPE
says, that if one node decides on a grade-1 output from GPE, then

493

Dahlia Malkhi, Atsuki Momose, and Ling Ren

Each node in view v runs the following steps if it is awake.
Let GA/, and GA, be the two graded agreements for view v.

GPE. Input to GPE a block B extending candidate: the highest
grade-0 output from GA,_1. A block is considered permissible
within GPE if it extends lock: the highest grade-1 output from
GAy-1.

Decide. If GPE outputs (B, 1), decide on B.

GA1. Each node inputs to GA}, the output B from GPE (with
any grade) if B # L, otherwise input lock.

GA2. Each node inputs to GA, the highest block B s.t. GA),
has outputted B with grade g = 1 and has not output (with
either grade) any block conflicting with B.

lock, candidate are initialized to the genesis block By.

Figure 1: Summary of each view of our atomic broadcast
protocol (simplified).

all other nodes at least output the same block with grade-0 from
GPE. Thus, they input the block to the GAs. The validity of GA
makes sure all nodes output this block with grade 1 and thus lock
on this decided block. Lastly, any blocks conflicting with the locked
block are deemed impermissible during the GPE and are discarded.

Now we also need to ensure liveness when some nodes lock
on a block. It is important that other nodes extend this locked
block in their proposals in later views; otherwise, honest nodes
might discard an honest node’s proposal. To this end, a grade-0
output from the second GA is set to candidate, and each node in the
next view proposes a block extending the candidate. The graded
delivery of GA makes sure that when some nodes lock on a block
(by outputting from GA with grade 1), all other nodes at least output
the same block with grade 0 from GA, so they will always set the
locked block (or its descendant) as their candidates.

So far, we have only mentioned the role of the second GA. In fact,
the second GA plays the primary role in maintaining safety and
liveness across views. However, one missing aspect in the above
is that a single GA can output conflicting blocks (recall that GA
does not guarantee consistency). Therefore, a single GA does not
guarantee that nodes lock on a unique block. The goal of the first
GA is to prevent conflicting outputs from the second GA. We will
provide further details in Section 6.

Comparison with PBFT. We can get more intuition by drawing
some analogy to classic view-based BFT designs. The decide-lock
relation and the lock-candidate relation that we employ are in fact
two pillars of classic view-based BFT protocols [9, 36]. In more
detail, if a block is decided, then all (or supermajority) other nodes
must lock on the block to safeguard it from conflicting decisions in
later views. For liveness, if a block is locked, all (or supermajority)
other nodes must recognize the block as the candidate of their
future proposals. We observe that our construction is somewhat
similar to the classic PBFT-style construction with a main path for
decision followed by a view-change sub-protocol to resolve conflict
across views. The GPE and GA can be viewed as the main path and
the view-change, respectively.

Towards Practical Sleepy BFT

3.2 Graded Agreement without Stable
Participation Requirement

Another key technical contribution is a new construction of graded
agreement (GA) summarized in Figure 2. Our GA protocol builds
on the GA protocol introduced by Momose-Ren but eliminates their
reliance on the eventual stable participation assumption. For ease of
exposition, let us consider a GA on binary values, i.e., B € {0, 1},
instead of blocks.

Time-shifted quorum [28]. Our starting point is the time-shifted
quorum idea introduced by Momose-Ren. Let us briefly review the
original time-shifted quorum construction as a warm-up. First note
that in the classic static participation model, achieving the graded
delivery guarantee is trivial: forwarding a predefined quorum of
votes is sufficient. When a node receives a quorum of votes (to
obtain a grade-1 output), the node forwards these votes to all other
nodes. All other nodes receive the quorum of votes one round later
and output with grade g = 0. In the sleepy model, however, the
quorum threshold (e.g., “majority”) is not predefined but rather
depends on the “perceived” participation level of each node. The
above quorum forwarding approach obviously breaks down be-
cause a quorum of votes is no longer transferable. In other words, a
set of votes may be accepted as a quorum by one node but may not
meet the quorum threshold for another node. To address this chal-
lenge, Momose-Ren introduced the following time-shifted quorum
technique.

Nodes send their inputs with “echo” messages at time ¢ = 0.

e Let E;(B) and E3(B) denote the counts of “echo” messages for
each B € {0, 1} received by time ¢t = A and t = 2A, respectively.

e Let Ej and E3 denote the count of “echo” messages (i.e., per-
ceived participation level) received by time t = 2A and ¢ = 3A,
respectively.

These counts are maintained locally by each node (if awake at the
specified times), and nodes forward all received “echo” messages to
all other nodes.

If a node p observes E1(B) > E;/2, it outputs B with grade 1.
Since all “echo” messages are forwarded, any node q at time t = 2A
receives at least the same number of “echo” messages for B as p.
Similarly, node g at t = 2A cannot observe a higher participation
level than what p observes at time t = 3A. Thus, g must satisfy
E>(B) > E;/2, leading it to send a “vote” message for B at time
t = 2A\. This process causes all honest nodes awake at time ¢ > 3A
to recognize a majority “vote” for B, leading them to carry B as
grade-0 output.

Removing the stability requirement. An observant reader may
have noticed that the protocol described above imposes a con-
straint on nodes’ churn. A node relies on the values of E;(B) and
EZ counted at distinct points in time to output with grade-1. There-
fore, the node must be active at both of these time points to make
progress. This is why Momose-Ren assumes the participation level
becomes eventually stable to ensure liveness.

Our protocol sidesteps this assumption through the following
novel technique. Instead of directly utilizing the value of E;(B)
counted at time t = A, a node awake at ¢t = 3A obtains an estimation
from the values reported by those who were awake at time ¢ = A.

494

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Input. Each node awake at time ¢ = 0 multicasts the input
value B through a message (“echo”, B).

Report tally. Each node awake at time ¢ = A multicasts the
following value for each B € {0, 1}.

e E(B) is the # of (“echo”, B)

Vote. Each node awake at time ¢t = 2A computes the following
values.

e E; is the # of (“echo”, *)

e E;(B) is the # of (“echo”, B) for each B € {0, 1}

If E2(B) > E; /2, then the node multicasts (“vote”, B).

Output. Each node awake at time ¢t > 3A compute the fol-
lowing values.

e E be the # of (“echo”, *)

e E;(B) is the median of all E; (B) received for each B € {0, 1}
IfE{(B) > E7 /2, then output (B, 1). Similarly, compute the
following values.

e V' is the # of (“vote”, *

e V3(B) is the # of (“vote”, b) for each B € {0, 1}

If V3(B) > V' /2, then output (B, 0).

Figure 2: Summary of our GA. For simplicity, we present an
agreement on a binary value B € {0, 1}.

To ensure a robust estimation, we take the median of the reported
values. Since we have an honest majority at any time, the estimated
value is both upper and lower bounded by values reported by honest
nodes. Thus, the time-shifted quorum argument still holds without
the eventual stable participation assumption.

3.3 Tolerating Backward Simulation with
Stateless Algorithm

The challenge to tolerating costless simulation attacks lies in how
to convince a newly awake node of the correct execution history.
In the sleepy model, an honest node that just woke up has no idea
what happened during its sleep. In particular, it cannot distinguish
messages that were truly sent/received earlier in the execution
from messages that corrupt nodes fabricate and claim to have been
sent/received at those moments. To give a more concrete example,
consider a proof-of-stake longest-chain protocol. Suppose a newly
awake node receives two chains. One was built over the last ten
years using the voting powers of honest nodes active at each point
in time. Another is recently put together by corrupt nodes who
only became active a few hours ago but claimed to have been
building this chain over the entire decade. The newly awake node
cannot tell the honestly generated chain from the simulated corrupt
chain. The Momose-Ren protocol faces a similar challenge in spirit
(despite not being based on longest chains). At each time, their
protocol determines the next move based on the history of graded
agreements. Recall that graded agreement decides the output once
the number of votes reaches the threshold. Because corrupt nodes
can fabricate votes in the past, they can inflate the threshold and

CCS *23, November 26-30, 2023, Copenhagen, Denmark

convince a newly awake node of a fake output. This is also why
all previous protocols have to assume T;, = oo, or equivalently,
disallow the growing participation of corrupt nodes. Without this
assumption, a newly active corrupt node at time ¢ can pretend to
have been active all the way back when it was not counted in the
corruption budget and help undermine the protocol’s safety.

Making the protocol stateless. To tackle this issue, our approach
is to make the protocol stateless. Note that each view v of our pro-
tocol (summarized in Figure 1) updates crucial variables (namely,
candidate and lock) based on the result of GA from the immediate
last view, occurring at most T, = O(A) time earlier. Consequently,
our protocol can ignore any message from the ancient past, in-
cluding those fabricated by corrupt nodes. The key to a stateless
protocol is to ensure that each node always inputs a non-empty
value to GA even when the GPE results in failure. Specifically, each
node provides its lock as input when GPE produces an output of
L. This guarantees that GA in each view always yields an out-
put (which could potentially match the result of the previous GA
or even the genesis block). As a result, we can safely discard the
outputs of all past GAs except the most recent one.

The stateless nature of our protocol also brings benefits to the
efficiency of our recovery mechanism. When a new active node
joins, it only needs to retrieve messages from the most recent view
(along with any missing blocks).

Impossibility of fluctuating corruption. We note that our pro-
tocol does not tolerate fluctuating corruption. To elaborate, while
our protocol allows active corrupt nodes to increase over time, it
does not allow the set of corrupt participants to shrink, as implied
by Ty = co. This limitation stems from the simple fact that corrupt
nodes can hand off their secret keys to the adversary (or other
corrupt nodes) before going inactive. Then, the adversary can use
their keys to sign any future messages on their behalf as if those
corrupt nodes never went inactive. In other words, a corrupt node
can simulate indefinitely forward. Unfortunately, this issue is in-
herent in a model without constraints on adversary computational
power such as those imposed by proof-of-work (Section 7).

4 GRADED AGREEMENT

This section presents a graded agreement (GA) protocol with 3A
latency. Our protocol builds on the time-shifted quorum technique
of Momose-Ren [28] but eliminates the eventual stable participation
assumption with the “median trick” explained in Section 3. Our
protocol is described in Algorithm 1.

The protocol runs up to time ¢ = Tj, (c.f., Section 2) since the
beginning of the execution. The specific value of T, will be given
when we present our atomic broadcast protocol in Section 6. We
also note that GA defined in this paper can output multiple pairs
of (B, g). Therefore, we denote outputs as the set of outputs. Now
we proceed to provide a detailed explanation of our protocol below,
mainly focusing on how to extend the binary-valued GA in Section 3
to support chained blocks.

Tally echo and report. At time ¢ = 0, awake nodes multicast their
input blocks through “echo” messages. At time ¢ = A, each awake
node tallies “echo” messages received for each block and reports
these tallies. Notably, even nodes that input non-conflicting blocks

495

Dahlia Malkhi, Atsuki Momose, and Ling Ren

might input different blocks within the same chain. This implies
we have to count “echo” for a block B as an implicit “echo” for all
ancestors of B. Namely, for each block B, a node counts the number
of “echo” messages received from distinct nodes for some block
B’ that extends B. This count is denoted as E(B) and is reported
via a “tally” message. Moreover, each node also forwards all “echo”
messages counted in E(B). To avoid sending an unbounded number
of tallies (especially in cases where a corrupt node sends arbitrarily
many “echo”), a node sends the “tally” message only if E(B) > E*/2
where E* is the total number of distinct nodes who send “echo”
messages (for any block). This ensures at least one honest node
must have sent “echo” for B (or its descendant) when an honest
node reports a tally for B. If there is no tally to report, a node sends
a “tally” for L just to announce itself to other nodes.

Vote. At time t = 2/, each awake node tallies “echo” messages in
the same manner as above and sends a “vote” message for a block
B that has a majority of “echo”, namely satisfying E(B) > E*/2.If
there is no such block, then send “vote” for L. Additionally, if it
has received an “echo” message (for any block) from any node g, it
forwards the “echo” message if it has not done so already (line 22).
This ensures that all awake nodes after time ¢t = 3A will possess
higher (or at least the same) quorum thresholds (i.e., E*), a critical
aspect for the time-shifted quorum argument.

Output. At time t = 3A or later up to t = Tj,, awake nodes decide
outputs based on “tally” and “vote” messages. In order to compute
potential grade-1 outputs, each node obtains a robust estimation of
E(B) tallied at time ¢ = 2A from the “tally” messages. Specifically,
for each block B, a node calculates the set & of reported tallies for
B as follows (line 25-30):

(1) If the node has received from a node g a “tally” for a block B
extending B, then the reported tally E(B’) in the message is
adopted for node gq.

(2) Otherwise, for example, if the node has received from a node ¢
a “tally” for a block conflicting with B, then node g is considered
reporting E(B) = 0.

Next, the median E(B) from the set & is selected as the estimation.

If the estimated tally meets the threshold, i.e., E(B) > E*/2, then

the node outputs B with grade g = 1. Finally, the node computes

a grade-0 output based on “vote” messages. If the count of “vote”

messages for a block B or its descendants (referred to as V(B))

exceeds the majority of voters (denoted V*), then block B is taken

as an output with grade g = 0.

Time-shifted quorum. Let us quickly go over the time-shifted
quorum argument. Suppose an honest node p has the estimated tally
ep = E(B). The estimated tally ep is upper bounded by an honest
node’s tally e, at time t = A. This is because e, is the median of all
reported tally and there is always an honest majority. Now, suppose
an honest node g awake at time ¢ = 2A has tally e; = E(B). Since
the node r has forwarded all “echo” counted to e, we have e, < eg.
As we also have ep < e, this leads to e, < eq. Similarly, given
that node ¢ forwards all “echo” messages, the quorum threshold
my /2 = E* /2 for node p is higher than (or at least the same as) the
threshold mg/2 observed by node q at time ¢ = 2A. Consequently,
if ey > my /2 (indicating p would consider B as a grade-1 output),
we have eq > mg/2. Thus node g sends “vote” for B, resulting in

Towards Practical Sleepy BFT

Algorithm 1 Graded Agreement — GAj4

Initialize outputs = 0. Node p executes the following algorithm at
every time 0 < ¢t < T, after starting the protocol. Below, we assume
every message binds to the protocol’s id denoted id.

1: if + = 0 then
2: multicast (“echo”, B),, for the input block B.

3: if t = A then

4 E* « # of nodes g s.t. p has received (“echo”,)4

5 for all block B do // examine blocks from a higher height

6 E(B) « # of nodes g s.t. p has received (“echo”, B')4 for a
block B’ extending B

7: if E(B) > E*/2 and p has not sent (“tally”, B, e),, for e >
E(B) and a block B’ extending B then

8: multicast (“tally”, B, E(B))p

forward all “echo” counted in E(B)
10: if p has not sent “tally” then
11: multicast (“tally”, L, L),

12: if t = 2A then
13: for all block B do // examine blocks from a higher height.

14: E(B) « # of nodes g s.t. p has received (“echo”, B')4 for a
block B’ extending B

15: E* « # of nodes g s.t. p has received (“echo”,)4

16: if E(B) > E*/2 then

17: if p has not sent “vote” for a block B’ extending B then

18: multicast {“vote”, B),

19: if p has not sent “vote” then

20: multicast (“vote”, L),

21: forward all (“echo”,)g // only once per q

22: if 3A < t < Ty, then

23: for all block B do // examine blocks from a higher height.

24: E«0

25: for all node g s.t. p has received (“tally”, B, e)4 do

26: if B’ extends B then

27: addeto &

28: else

29: add0to &

30: E(B) < medianin &

31: E* « # of nodes q s.t. p has received (“echo”, ¥)4

32: if E(B) > E*/2 then

33: add (B, 1) to outputs

34: for all block B do

35: V* « # of nodes g s.t. p has received (“vote”, ¥)4

36: V(B) « # of nodes g s.t. p has received (“vote”, B')4 for a
block B’ extending B

37: if V(B) > V*/2 then

38 add (B, 0) to outputs

39: // line 25: If multiple “tally” exist, choose one with B" extending B with
the largest e; if no such B’ exists, pick one arbitrary.

a majority vote for B, making all other nodes at least have B as
grade-0 output, thus achieving graded delivery.

4.1 Correctness Proof

We prove the correctness of our GA protocol. Below, we use the
notion of each node’s tally. We define the “tally e of node g for
a block B” as follows: 1) e = ¢’ if node g sent (“tally”, B’, ") for

496

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

any block B’ extending B (if multiple such e’ exists, then pick the
largest one), and 2) e = 0 otherwise. In other words, each node’s
tally is the value counted to & (line 25-30).

LEMMA 4.1. For any block B, let e), be the value of E(B) observed
by an honest node p at timet > 3A, and eq be the value of E(B)
observed by an honest node q at timet = 2AA. Then, ey < eq.

Proor. Since the total number of corrupt nodes ever awake by
time ¢t = T, is less than half of the nodes awake at time ¢t = A, the
median e, in the set & of all tallies for B must be upper bounded by
at least one honest node’s tally e for B. Consider the case where e >
0 (the lemma is obvious if e = 0). That node must have forwarded
all (“echo”, B), counted in e, which were received by node g by
time t = 2A. Hence, we have e < eqs leading to ep < eq. m]

LEMMA 4.2 (GRADED CONSISTENCY). If an honest node outputs
(B, 1), then for all t where 3A <t < Ty, all honest nodes awake at
time t output (B,).

PROOF. Suppose an honest node p outputs (B, 1). Let e, and m,
be the values of E(B) and E*, respectively, observed by node p. We
have that e, > my /2. Let eg and mg be the values of E(B) and E*,
respectively, observed by any honest node g at time ¢t = 2A. By
Lemma 4.1, we have e, < eq. Since the node q forwards all “echo”
messages counted in mg, we also have mg < myp. Thus, we have
eq > mq/2. So all honest nodes awake at time ¢ = 2A must have
sent (“vote”, B).. Therefore, for all ¢ from 3A to Tj, all honest nodes
awake at time ¢ observe V(B) > V*/2 and output (B, 0). O

LEMMA 4.3 (INTEGRITY). Ifan honest node outputs (B, %), then at
least an honest node has input B’ extending B.

Proor. Suppose all honest nodes awake at time ¢t = 0 input
blocks that do not extend B. Let e and m represent the values of
E(B) and E*, respectively, observed by an honest node awake at
time ¢t = 2A. The “echo” messages counted toward the value e are
only from corrupt nodes, while “echo” messages from honest nodes
awake at time t = 0 are counted to m. Given that the number of
all corrupt nodes ever awake by time ¢t < Tj, is less than half of
all honest nodes awake at time ¢t = 0, we have e < m/2. As a
result, none of the honest nodes awake at time t = 2A would send
(“vote”, B’) for any block B’ extending B. Therefore, any honest
node awake at any time 3A < t < Tj, observes V(B) < V*/2, and
thus would not output (B, 0). By graded consistency (Lemma 4.2),
nor would they output (B, 1). m]

LEMMA 4.4 (VALIDITY). Let B be the highest block that every honest
node’s input extends. Then, for any 3A < t < Ty, all honest nodes
awake at time t output (B, 1).

Proor. Let p be any honest node awake at time 3A < t < Ty,
and let e and m,, be the values of E(B) and E* observed by node p
at time ¢. We observe that there exists an honest node g awake at
time t = A and the tally e of q for B satisfies e < e. This is because
the number of all corrupt nodes ever awake by time t = T}, is less
than half of nodes awake at time ¢t = A (i.e., an honest majority),
and the median e, in the set & of all tallies for B must be lower
bounded by at least one honest node’s tallies e for B. Now, if every
honest node’s (awake at time ¢ = 0) input extends B, then all “echo”

CCS *23, November 26-30, 2023, Copenhagen, Denmark

messages sent by these honest nodes are counted to e. Again since
we have an honest majority, we have e > m; /2, hence e, > m; /2.
Therefore, node p outputs (B, 1). O

5 GRADED PROPOSAL ELECTION

This section presents a graded proposal election (GPE) protocol
with 4A latency. Intuitively, the GPE protocol is a combination of
a VRF-based leader election with the GA protocol presented in
Section 4. Our protocol is presented in Algorithm 2.

Input. The protocol starts with a VRF-based leader election. In
this process, each node p sends its own input block along with
the VRF evaluation on the protocol’s ID in an “input” message.
For ease of presentation, we define the winning input to be the
input message with the highest VRF value. Given that each node
may receive a distinct set of messages, the winning input is defined
individually for each node. Specifically, a message (“input”, B, p, 7)4
is considered a winning input by a node p if both of the following
conditions are satisfied:

(1) p has not received any (“input”, %, p’, '), with p’ > p.
(2) p has not received any (“input”, B’, p, 7)4 for B’ # B.

In simpler terms, if the VRF of node ¢’s input is the highest among
all received inputs and p has not received any equivocating input
from node g, then node p considers node ¢’s input as the winning
input. We also refer to the corresponding block B as the winning
block. Since we have an honest majority, there is a probability of
at least 1/2 that a VRF from an honest node will be the highest,
resulting in its input being the winner.

GA on the winning input. The rest of the algorithm (from time
t = A to t = 4A) can be viewed as achieving graded agreement on
a winning input. At time ¢ = A, awake nodes send “echo” messages
for the winning blocks they have received. At time ¢ = 2A, nodes
tally “echo” for the winning block and report their tallies. At time
t = 3A, if the count of “echo” for a winning block meets the majority,
then the block is voted. Finally, at time ¢ = 4A, each node calculates
the median of the reported tallies, and if it meets the majority, the
node outputs the block with grade g = 1. If there are majority votes
for a block, it becomes a grade-0 output.

The key distinction from the GA in Section 4 is that each node
performs every action exclusively on the winning input/block. This
helps achieve consistency of the GPE, a property that is not man-
dated by GA. More concretely, each node votes only for the winning
block, and all blocks voted by honest nodes are echoed at least A
time before. So it is impossible for two different blocks to get ma-
jority votes. Additionally, each node forwards the winning input to
all other nodes. Similarly, if no winning input is present, indicating
the highest VRF holder is equivocating, the equivocating inputs
are propagated to all nodes. This ensures that if an honest node
possesses a grade-1 output (at time ¢ = 4A), all honest nodes awake
at time ¢ = 3A have unanimously identified the same input as the
winner, i.e., there exists no input with a higher VRF and no equivo-
cating input. This makes sure the time-shifted quorum argument
holds.

Another crucial distinction from GA is that each node sends
“echo” only for a permissible block (line 8). Due to the honest major-
ity, a block must be echoed by at least one honest node to become

497

Dahlia Malkhi, Atsuki Momose, and Ling Ren

the GPE output. This guarantees the integrity of GPE. We reiterate
that the condition for a block to be permissible is externally defined,
which will be specified in Section 6.

Remark on the validity. We note that, during the tallying of
“echo” or “vote” for a block, a node only considers the messages
regarding the specific block and excludes blocks extending that
block. This distinction arises from the validity requirement. Our
GA must produce grade-1 output for the highest common input
(i.e., the block that all honest nodes’ inputs extend). In contrast, the
validity of GPE requires the algorithm to have grade-1 output for
an honest node’s input (with probability 1/2). Therefore, honest
nodes will not echo different blocks when the winning input is from
an honest node, which is why we do not need to count indirect
echoes/votes.

5.1 Correctness Proof

We prove the correctness of our GPE protocol. As in the proof
for GA, we employ the notion of each node’s tally. We define the
“tally e of node q for a block B” as follows: 1) e = ¢’ if node q sent
(“tally”, B, e’)q, and 2) e = 0 otherwise.

LEMMA 5.1 (GRADED DELIVERY). If an honest node outputs (B, 1),
then all honest nodes output (B,).

PROOF. Suppose an honest node p outputs (B, 1). Let e, and m,

denote the values of E(B) and E*, respectively, observed by node
p at time t = 4A. We have that e, > m; /2. We observe that there
exists an honest node r awake at time ¢ = 2A and the tally e for B
satisfies ep < e Letqg be any honest node awake at time ¢ = 3A, and
eq and mq be the values of E(B) and E*, respectively, observed by
node g. Since node g forwards (“echo”, *)s for every node s counted
to mg, we have mg < mp. We further observe that node r has
B as the winning block; otherwise, it would have forwarded its
winning input (or equivocating inputs), and node p would not have
considered B as the winning block. So, r must have forwarded all
“echo” for the winning block B, leading to e < eq and hence ey < e4.
Given that mg < my, it follows that e > mg/2. Consequently,
node g sends (“vote”, B)q. Therefore, any honest node awake at
time ¢t = 4A should observe V(B) > V*/2 and output (B,). O

LEMMA 5.2 (CONSISTENCY). If two honest nodes output (B, *) and
(B, %), respectively, then B= B’.

Proor. Suppose for the sake of contradiction two honest nodes
output (B, %) and (B’,), respectively, with B # B’. These two nodes
must have independently observed local conditions V(B) > V*/2
and V(B’) > V*/2, implying that both B and B’ receive votes
from honest nodes. Let p and g denote the nodes who voted for
B and B, respectively. By definition, node p must have observed
E(B) > E*/2 at time ¢t = 3A, indicating that at least an honest
node sent (“echo”, B). Similarly, node g, voting for B/, must have
witnessed E(B’) > E*/2, indicating an honest node must have sent
(“echo”, B"). However, this scenario implies that both p and q have
received the corresponding “input” messages for B and B’, one of
which is not the actual winning input. Given that nodes would not
vote for non-winning blocks, this contradicts both B and B are
voted. O

Towards Practical Sleepy BFT

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Algorithm 2 Graded Proposal Election — GPE4

Node p executes the following algorithm at every time 0 < ¢ < 4A after

staring the protocol. Let id be the protocol’s id.

1: if t = 0 then
2: p, 7 — VRF,(id)
3: multicast (“input”, B, p,), for the input B.

4: if t = A then

5 if there exists a winning input then
6 Let (“input”, B, p, 7)1, be the winning input
7: forward the winning input
8 multicast (“echo”, B), if B is permissible
9: else
10: forward the equivocating inputs
11: multicast (“echo”, 1),
12: if t = 2A then
13: if there exists a winning input then
14: Let (“input”, B, p, 7)1, be the winning input
15: forward the winning input (if not yet).
16: E(B) « # of nodes g s.t. p has received (“echo”, B)q
17: forward all (“echo”, B).
18: multicast (“tally”, B, E(B))«
19: else
20: forward the equivocating inputs (if not yet)
21 multicast (“tally”, L, L),
22: if t = 3A then
23: if there exists a winning input then
24: Let (“input”, B, p, 7)1, be the winning input
25: forward the winning input (if not yet)

26: forward all (“echo”, *)4 (once per node q)

27: E(B) « # of nodes g s.t. p has received (“echo”, B)4
28: E* « # of nodes g s.t. p has received (“echo”,)4

29: if E(B) > E*/2 then

30: multicast (“vote”, B)p

31: else

32: multicast (“vote”, L),

33: else

34: forward the equivocating inputs (if not yet)

35: multicast (“vote”, L),

36: if ¢ = 4A then

37: if there exists a winning input then

38: Let (“input”, B, p, 7)1, be the winning input

39: E«—0

40: for all node g s.t. p has received (“tally”, B’, e)4 received do
41: if B’ = B then

42: addeto &

43: else

44: add0to &

45: E(B) « the median in &

46: E* « # of nodes q s.t. p has received (“echo”, *)¢4
47: if E(B) > E*/2 then

48: output (B, 1)

49: for all block B do

50: V* « # of nodes g s.t. p has received (“vote”, x)g4

51: V(B) « # of nodes g s.t. p has received (“vote”, B)4
52: if V(B) > V*/2 and p has not outputted yet then
53: output (B, 0)

Here, we note that the validity we prove below assumes that
every honest node inputs a permissible block; otherwise, the validity
would be trivially false. It is worth noting that this assumption will
be justified by our atomic broadcast (c.f., Section 6).

LEmMMA 5.3 (VALIDITY). With probability more than 1/2, all honest
nodes output (B, 1) for a block B that honest node inputs.

PRrROOF. Let p be an honest node awake at time t = 4A, and let
ep and my be the values of E(B) and E*, respectively, observed by
node p. We observe that there exists an honest node r awake at
time t = 2A whose tally e, for B satisfies e, < ej. Given that the
number of corrupt nodes ever awake by time ¢ = Tj, is less than half
of all honest nodes awake at time ¢ = 0, with probability ¢ > 1/2,
an honest node’s VRF will be the highest, making its input B the
winning block. Consequently, all honest nodes awake at time t = A
will send (“echo”, B). This leads to e, > m, /2. Given that e, < e,
it follows that e, > m, /2. As a result, node p outputs (B, 1). O

LEMMA 5.4 (INTEGRITY). If an honest node outputs (B, *), then the
block B is permissible for at least an honest node.

PRrROOF. As we have observed, when an honest node outputs a
block B, it indicates that at least one honest node has sent “echo”
message for B. This means the block is deemed permissible by the
honest node that sent the “echo”. O

498

6 ATOMIC BROADCAST

This section presents an atomic broadcast protocol with 4A latency
in the best case, building on the GA protocol (in Section 4) and
the GPE protocol (in Section 5). Our protocol achieves safety and
liveness in the O(co, Tj, 1/2)-sleepy model with Tj, = 11A.

The protocol is described in Algorithm 3. It progresses through
repeated views. Each view is identified by an integer » > 0 and
takes 10A time. As mentioned in Section 3, each view consists of a
GPE and two GAs. Based on the output from GPE and GA, nodes
lock on a potentially decided block to safeguard it from future
conflicting decisions. Nodes also determine the next proposal does
do not conflict with locked blocks to ensure liveness. These values
are maintained by the variables lock and candidate, initially set to
the genesis block By (which is considered a block of view v = 0).

Each view begins with a GPE. At time ¢ = 0, each node inputs
to GPE, a block B that extends its current candidate. candidate is
updated to the highest block that GA,—1 has output with grade
0. Within the GPE, a block is considered permissible if it extends
lock. Again, this makes sure any block conflicting with a potentially
decided block is precluded from the GPE output.

The output from GPE, is passed to two consecutive GAs (first
GAJ, and then GAy). Let us call them the pre-GA and the main GA,
respectively. The pre-GA GA, is to preclude conflicting outputs
from the main GA. Specifically, a node inputs to GA, a grade-1

CCS *23, November 26-30, 2023, Copenhagen, Denmark

output from GA, only if there is no other conflicting output from
GA,. This makes sure honest nodes’ inputs to GA, are always
non-conflicting, avoiding divergent locks and candidates among
nodes.

A grade-1 output from GPE, is decided immediately. When a
node decides on a block, the node multicasts a “decide” message for
the block to let other nodes (especially those who were not awake
at t = 4A) decide on the block. If a node receives “decide” messages
for a block B (or its descendants) from a majority of all senders of
“decide” messages, i.e., D(B) > D*/2, the node also decides on the
block B (line 27-31, 4-8).

Tolerating backward simulation. Each view in our protocol
examines only messages from the immediate preceding view. To
be more specific, all steps that depend on previous messages are
summarized below:

(1) At time t = 0, each node computes its input to GPE, based on
the result of GAy—1 (i.e., candidate), which starts at time t = 7A
of view v — 1. These messages are sent at most 3A earlier.

(2) At time t = 4A, each node decides a block or computes its
input to GA, based on the result of GA,_1 (i.e., lock), which are
derived from messages sent at most 7A earlier.

(3) At any time up to time t = 5A of view v, nodes decide blocks
based on the “decide” messages sent at time ¢t = 4A of view v — 1,
which are at most 11A earlier.

To sum up, attempts by corrupt nodes to fabricate messages of
more than T, = 11A time before have no impact on the execution
of honest nodes.

6.1 Safety and Liveness Proofs

We prove the safety and liveness of our atomic broadcast protocol.
We say a node directly decides a block B if the node has not decided
any descendant of B by that moment. We first show below that
locks are always non-conflicting in the same view.

LEMMA 6.1. Let p and q be honest nodes awake at time t = 4/
of a view v, and let lock, and lockg be the value of lock observed
by honest nodes p and g, respectively. Then, lock,, and lockyq do not
conflict with each other.

PRrOOF. In each view, an honest node inputs to GA, (the main
GA) a block received from GAJ, (the pre GA) with grade g = 1.
Moreover, the block should not conflict with any other outputs
from GAJ,. The graded delivery ensures that other honest nodes
deliver the block with grade g = 0, so they would not input any
conflicting block to GA,. Due to the integrity of GA, GA, will output
non-conflicting blocks. Thus, lockp and Iockq do not conflict with
each other. |

LEmMmaA 6.2. If a block B of view v is directly decided by an honest
node, then at least an honest node has sent (“decide”, B, v).

Proor. Assume for the sake of contradiction that none of the
honest nodes awake at time ¢ = 4A in view v sends (“decide”, B, v).
Then, the block B will not be decided (either directly or indirectly)
until time t = 5A of view v + 1. Thus, none of the honest nodes
awake at time ¢t = 4A in view v + 1 will send (“decide”, B,v + 1). By
induction, in all subsequent views v’ > v, honest nodes will never

499

Dahlia Malkhi, Atsuki Momose, and Ling Ren

Algorithm 3 Atomic Broadcast

Variables are initialized as lock, candidate = By.
In each view o, node p executes the following algorithm at every time
0 < t < 10A during view v, and enter the next view v + 1.

/ update variables
: candidate « the highest block B s.t. GA,_1 outputs (B, *)
: lock « the highest block B s.t. GA,—1 outputs (B, 1)
: if t+ < 5A then
D* « # of nodes g s.t. p has received (“decide”, , v — 1)g4.
for all block B do
D(B) « # of nodes g s.t. p has received (“decide”, B’, v — 1)
for any block B’ extending B.
if D(B) > D*/2 then
8: decide B and all its ancestors

Lo I O e

X

/ GPE invocation
9: if t = 0 then
10: B « (b,H(B’), v) where B’ = candidate.
11: start GPE, with input B; within GPE, any block is considered per-
missible if it extends lock and view(B) = v.

// pre GA invocation
12: if ¢+ = 4A then
13: B, g « the output from GPE,.

14: if g = 1 then

15: decide B and all its ancestors

16: multicast (“decide”, B, v),,

17: else

18: multicast (“decide”, B’, v),, for the highest decided block B'.

19: if B # 1 then

20: start GA, with input B

21: else

22: start GA, with input lock
// main GA invocation

23: if ¢ = 7A then

24: B « the highest block s.t. GA], has output (B, 1) but has not output
(B', *) for any B’ conflicting with B

25: start GA, with input B
// decide

26: if t > 5A then

27: D* « # of nodes g s.t. p has received (“decide”, *, v)4.

28 for all block B do

29: D(B) « # of nodes g s.t. p has received (“decide”, B’, v)4 for
any block B’ extending B.

30: if D(B) > D*/2 then

31: decide B and all its ancestors

send (“decide”, B,v"). This contradicts that the block B was directly
decided. O

Next, we show that a directly decided block will always be
handed over to the immediately following GA, thereby ensuring
its subsequent locking.

LEMMA 6.3. If an honest node sends (“decide”, B,v) for a block B
of view v, then all honest nodes awake at time t = 7A of view v input
the block B to GA,.

ProoF. Suppose an honest node p sends (“decide”, B, v). This
implies that node p must have received a block B of view v from
GPE, with grade g = 1. Let g be any honest node awake at time

Towards Practical Sleepy BFT

t = 4A\. The graded delivery of GPE ensures that node g has received
B from GPE, (with any grade). So node ¢ will input B to GA/, (the
pre-GA). Due to the validity of GA, the pre-GA will output B (or
a block extending B) to all honest nodes awake at time t = 7A,
leading them to input B to GA, (the main GA). O

LEMMA 6.4 (SAFETY). If two honest nodes decide B and B’, then B
does not conflict with B'.

Proor. Suppose for the sake of contradiction two conflicting
blocks are decided by honest nodes. This implies there are two
conflicting blocks B and B’ of view v and o', respectively, decided
directly by honest nodes. We have that v # o’ due to the consistency
of GPE. Without loss of generality, we assume v < v’. Based on
Lemma 6.2 and 6.3, all honest nodes awake at time t = 4A of
view o input blocks extending B into GA,, leading to all honest
nodes awake during view v + 1 locking on B (i.e., set lock to B
or its descendants). Consequently, any conflicting block will be
precluded from GPE/GA outputs during view v. By induction, in all
subsequent views, all honest nodes keep inputting blocks extending
B to GPE/GA. However, by the same argument, in view v’, honest
nodes must input blocks extending B’ into GA,. This contradicts
that B and B’ are conflicting. m]

The above lemma directly implies safety as non-conflicting blocks
B and B’ represent consistent logs, i.e., one of them is a prefix of
the other.

LEmMA 6.5 (LIVENESS). If an awake honest node inputs a value x
at time t, then there is a time t’ > t s.t. all honest nodes awake after
t’ decide a log containing x.

Proor. We first observe that if an honest node (say p) inputs
a block B to GPE,, then B extends lock observed by other honest
nodes, indicating that B is permissible for all honest nodes. This is
due to the graded delivery of GA. An honest node g sets to lockg a
grade-1 output from GA,-1. This implies node p has received lockg
from GAy—1, at least as grade-0 output, leading to node p setting it
to p’s candidate. Node p inputs a block extending candidate, so B
must extend locky.

Now, if the honest node’s input becomes the winning block, then
all honest nodes awake at time t = 4A of the view decide the block
B and send (“decide”, B, v). So all honest nodes awake at any time
from time ¢t = 5A of view v to time t = 5A of view v + 1 decide
the block B. By induction, all honest nodes awake at any time after
t = 5A of view v decide B.

The validity of GPE implies that such a view v eventually and
repeatedly appears. All values input by honest nodes before this
view will get included in block B (with input dissemination, i.e.,
honest nodes multicast their input values) and get decided. So all
values input by honest nodes will eventually be decided. O

6.2 Analysis

We give the analysis of the latency and communication complexity
of our protocol.

Latency. The best-case latency of our protocol is 4A as nodes can
decide on a block immediately after GPE. This is far better than prior
and concurrent works such as 16A of Momose-Ren [28] and 10A of

500

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Gafni-Losa [27]. The expected latency of our protocol is 14A, which
is also better than prior and concurrent works: 32A of Momose-
Ren and 20A of Gafni-Losa. Finally, the latency in the worst case
(except with negligible probability) is O(xA). This matches the
lower bound [4].

Communication complexity. The expected communication com-
plexity of our protocol described in Algorithm 3 is O(Ln®) per view,
where L represents the block size. To elaborate, recall that honest
nodes input to GA an output from GPE or blocks they are locking
on. Since GPE guarantees consistency, there is no disagreement
among honest nodes on the former. For the latter, honest nodes
might have distinct locks. However, in the last few (constant in ex-
pectation) views, there is at least one “good” view where all honest
nodes lock on the same block proposed by an honest node. There-
fore, honest nodes collectively input at most constant number of
blocks to GA. This implies each honest node sends O(1) “vote/tally”
messages and forwards O(n) “echo” messages associated with these
vote/tally, which means O(n®) messages are sent in total.

The communication complexity can be reduced to O(Ln? + xn®)
with a simple modification: each message contains only the hash
of the block (of length O(x)) and nodes transmit blocks separately
(and only once per block). When dealing with sufficiently large
blocks, i.e., L = Q(kn), it will be O(Ln?). This matches the cost
of all existing sleepy consensus protocols including longest-chain
protocols.

6.3 Efficient Recovery

We have assumed for simplicity that any message sent by an honest
node at time ¢ is received by the recipient awake at any time ¢’ >
t + A (Section 2). This is clearly an impractical assumption since it
implies that messages must be magically buffered until the recipient
comes back awake. In practice, we have to assume that the message
will be lost if not received by the recipient within A time, and we
must provide an explicit message recovery mechanism for newly
awake nodes.

Let us begin by adjusting the model to accommodate message
loss. We follow the sleepy model with recovery model introduced
by Momose-Ren [28]. In addition to the awake/asleep statuses, we
introduce a third status called recovering. When a node transitions
from asleep to awake, it enters the recovering status. During this
period, the node retrieves missing information from other awake
nodes to catch up. The length of this grace period is denoted as
I' > 2A. In theory, I' = 2A suffices as a single round trip fetches all
missing data. In practice, I will depend on how much data a node
needs to retrieve. The message delivery assumption is that if an
honest node p awake at time ¢ sends a message, then the message
will be received by the recipient g as long as q is recovering or
awake at all times during [t, ¢+ A]. A node is treated as awake after
completing the recovery process.

Now we present the concrete recovery sub-protocol of our atomic
broadcast in Algorithm 4. When a node p joins the execution (i.e.,
as a new recovering node), it begins the process by querying other
nodes with a “recovery” message with the hash of the highest block
B it has ever decided (line 1-4). If p has not decided or has not
even been awake, then the hash corresponds to the genesis block.
Other nodes respond to the recovering node with the required

CCS *23, November 26-30, 2023, Copenhagen, Denmark

Algorithm 4 Recovery mechanism for Algorithm 3

Node p executes the following algorithm.

// query other nodes
1: upon joining the execution
2: B « the highest block that p has ever decided
3: multicast (“recover”, H(B)),
4 wait for I and resume the execution of Algorithm 3

// respond to a recovering node
5: upon receiving (“recover”, h)q
6 if p has decided a block B s.t. H(B) = h then
7: send to g all decided blocks extending B
8 Let o be the current view.
9 sends to q all messages of view v and v — 1.

information p might have missed. Specifically, each node sends p
all decided blocks after B (i.e., missing log contents) as well as all
messages of the current view v and the preceding view v — 1. Recall
that each view of our main protocol (Algorithm 3) relies only on
messages from the current view and the immediate last view. More
concretely, it relies on the result from GA,—_; and “decide” messages
from view v — 1. As a direct consequence, all messages from older
views 0’ < v — 1 do not need to be recovered (except for the log
contents).

Note that our recovery protocol is completely decoupled from
the main protocol, so the proofs in Section 6.1 still hold.

7 IMPOSSIBILITY OF SUPPORTING
FLUCTUATING CORRUPTION

This section shows the impossibility of consensus in the sleepy
model with corrupt nodes’ fluctuation. Namely, there is no atomic
broadcast protocol against the standard (PPT) adversary in the
(Tf, Tp, a)-sleepy model with any bounded T, Ty, and constant a.

Assumptions. For clarity, let us review the assumptions that are
critical to the result.

(1) We assume a standard probabilistic polynomial-time (PPT) ad-
versary that is allowed to perform any polynomial (in x) amount
of computation. This means we do not have any proof-of-work
style assumption on relative computation power.

(2) The adversary can fully control any corrupt node once it be-
comes awake. This includes extracting the entire private state
as well as deciding all the messages the node sends.

(3) We assume the communication channels between nodes are
unauthenticated. When an honest node receives a message, the
node cannot tell the origin of the message. It is worth emphasiz-
ing and clarifying that what we are assuming here is that there
are no innate authenticated channels in the model. A protocol
can choose to implement authenticated channels using digi-
tal signatures and PKI; but looking ahead, these cryptographic
authenticated channels will be broken by an adversary who
extracts private keys.

Under these assumptions, we can show the following result.

THEOREM 7.1. For any Ty, Tj, = poly(x) and 0 < a < 1, no atomic
broadcast protocol exists in the (Tp, Ty, a)-sleepy model.

501

Dahlia Malkhi, Atsuki Momose, and Ling Ren

Proof sketch. We give a sketch of the proof here and defer the full
proof to Appendix A). Intuitively, our proof'is based on an adversary
performing a forward simulation attack. More concretely, consider
a network of two sets of 1/a nodes P and Q (assume for simplicity
that 1/« is an integer), and a node r. Nodes in P are honest and
always awake. Since less than « fraction of awake nodes can be
corrupt, we can have one corrupt node in each period of T = T¢ +Tj
time. For k € [1,1/a], the adversary makes each node g € Q awake
and then asleep immediately at time ¢t = (k — 1)T after extracting
all its private states. Now, after time ¢ = T/, the adversary holds
all private states of Q and can simulate any execution using nodes
in Q as if they were awake from the beginning. This essentially
breaks the honest majority requirement [32] of the (oo, o0, 1/2)-
sleepy model (the original sleepy model) and allows the adversary
to convince an honest node r who wakes up after time T/a with
the simulated execution, leading to an incorrect decision.

8 RELATED WORK

Byzantine consensus has been studied for several decades, with a
primary focus on the static and known participation model [7, 9,
16, 17, 19, 25]. The emergence of the Bitcoin protocol [29] marked
a turning point, which inspired a new area of research in Byzantine
consensus that considers unknown and dynamic participation. This
unknown and dynamic participation model was later formalized
as the sleepy model [32]. Below, we review the related works in
sleepy consensus research.

Latency of sleepy consensus. Early research on sleepy consensus
naturally adopted Bitcoin’s longest-chain paradigm. A number of
works generalized the longest-chain paradigm by substituting the
computationally intensive proof-of-work with proof-of-stake [5, 12,
24, 32]. However, one of the major drawbacks of the longest-chain
protocol is its inherent long latency. In particular, the basic longest-
chain protocol like Bitcoin has a latency of Q(%) where k is the
desired security level, y is the active participation level (i.e., the
fraction of active nodes compared to the total nodes), and A is the
bound on network delay. Efforts have been made to eliminate some
of the factors that contribute to this long latency. Prism [6], Parallel
Chain [20], and Taiji [26] removed the dependency on k using many
parallel instances of longest chains, but maintained the dependency
on y. A recent work by D’Amato et al. [13] achieves O(A) latency
under optimistic conditions where the participation level is high,
but it inherits the long latency of a longest-chain protocol under
low participation level.

Another line of work adapts the classic BFT paradigm from
the traditional known and static participation model to the sleepy
model. Goyal et al. [22] removes the dependency on y by extending
Algorand [21], but the dependency on x remains. Furthermore, due
to the use of a static quorum threshold, it places a constraint on
honest nodes’ fluctuation as it requires a steady presence of Q(k)
awake honest nodes at all times.

The closest to our work is the work by Momose-Ren [28], which
for the first time eliminates both of the above dependencies and
achieves O(A) latency. The protocol is built on the classic view-
based construction and each view consists of a VRF-based leader
election and five consecutive invocations of GA. That protocol

Towards Practical Sleepy BFT

latency
protocol best-case expected
longest-chain PoS [5, 12, 24, 32] O(xAly)
multi-chain [6, 20, 26] O(Aly)
Goyal et al. [22] O(kA)
Momose-Ren [28] 16AA 32A
Gafni-Losa [27] 10A 20A
this work 4A 14A

Table 1: Latency of sleepy consensus. « is the security level,
y is the active participation level, and A is the bound on
network delay.

incurs a latency of at least 16A time. Moreover, their GA protocol
requires eventual stable participation for liveness.

A concurrent and independent work by Gafni-Losa [27] also
presents a sleepy consensus with O(A) expected latency with op-
timal corruption threshold. They also remove the eventual stable
participation assumption. The best-case latency is 10A and the
expected latency is 20A. In contrast, our protocol achieves 4A best-
case latency and 14A expected latency. The protocol consists of
sequential invocations of Commit-Adopt sub-protocol (similar to
GA). We also note that their protocol is a single-shot and agreement-
style protocol rather than an atomic broadcast. Furthermore, their
adversary model is rather strong, abstracting away the possibility
of a costless simulation attack.

Dynamic participation of corrupt nodes. Another drawback
of the previous sleepy consensus protocols is that they do not
support growing corrupt participation (proportional to the overall
participation level) unless assuming proof-of-work (or other strong
assumptions [12, 14, 15]) due to the costless simulation problem [15].
Our protocol removes this constraint and supports growing corrup-
tion. An interesting insight we learned is “stateless” algorithm is the
key to supporting growing corruption. Namely, each protocol’s step
must depend only on the recent messages. If the protocol makes
decisions based on long-past messages, it would be vulnerable to
an adversary trying to fabricate past messages (i.e., the backward
simulation). This shows another advantage of the classic BFT-like
quorum-based design for sleepy consensus; the longest-chain para-
digm is by design vulnerable to backward simulation as they depend
on the whole mining results in the past.

A possible but orthogonal technique to defend against backward
simulation is key evolution [10, 14]. Here, honest nodes constantly
evolve their signing keys and erase their stale keys so that when
they are corrupted, the adversary cannot access their old keys to
simulate past messages on their behalf. This technique is effective
in preventing backward simulation in the static and known par-
ticipation model (e.g., in Algorand [10]). In the sleepy model with
dynamic participation, however, an additional strong assumption
is required for this technique to work: an adversary cannot corrupt
a new active node before it completes evolving the key. Otherwise,
an adversary could corrupt nodes immediately after they wake up,
gain access to their original keys and sign their past messages.

502

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Fallback under asynchrony. As mentioned in Section 2, the syn-
chrony assumption is necessary for consensus in the sleepy model.
Therefore, it is inherent that our protocol loses safety under asyn-
chrony. Nonetheless, there have been a few proposals to balance dy-
namic participation and partition tolerance [30, 35]. These protocols
involve running a partially synchronous checkpointing protocol
on top of the underlying sleepy consensus, which is also applicable
to our protocol.

9 CONCLUSION

This work presents an atomic broadcast protocol in the sleepy model
with 4A latency in the best case, based on the new construction
of a view-based protocol optimized for reducing best-case latency.
Our protocol achieves liveness under wildly fluctuating honest par-
ticipation with the new GA protocol that does not require stable
honest nodes. The stateless nature of our atomic broadcast proto-
col allows us to achieve tolerance to growing corruption and also
achieve efficient recovery for new active nodes.

We have shown the impossibility of supporting fluctuating cor-
ruption (both growing/shrinking) with the standard adversary that
can extract all corrupt nodes’ private state. However, the assump-
tion is too strong in practice. For example, in the proof-of-stake
protocols, it is highly unlikely that corrupt nodes hand off their
secret keys to the adversary (or other corrupt nodes) at the risk of
losing their entire stake. Supporting corrupt nodes’ fluctuation in a
weaker but more realistic model is an interesting future work.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers at ACM CCS
2023 for their helpful feedback. We also thank Lorenzo Alvisi, Ittay
Eyal, Jacob Leshno, Kartik Nayak, Youer Pu, Jun Wan, for valuable
discussions. This work is supported in part by NSF award 2143058.

REFERENCES

[1] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren.

2019. Synchronous Byzantine Agreement with Expected O (1) Rounds, Expected

O(n?) Communication, and Optimal Resilience. In Financial Cryptography and

Data Security (FC). Springer, 320-334.

Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. 2020.

Sync HotStuff: Simple and Practical Synchronous State Machine Replication. In

IEEE Symposium on Security and Privacy (S&P). IEEE, 106-118.

Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. 2021. Good-case

latency of byzantine broadcast: A complete categorization. In ACM Symposium

on Principles of Distributed Computing (PODC). 331-341. https://doi.org/10.1145/

3465084.3467899

Hagit Attiya and Keren Censor. 2008. Lower bounds for randomized consen-

sus under a weak adversary. In ACM Symposium on Principles of Distributed

Computing (PODC). 315-324.

Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vas-

silis Zikas. 2018. Ouroboros genesis: Composable proof-of-stake blockchains

with dynamic availability. In ACM SIGSAC Conference on Computer and Commu-

nications Security (CCS). 913-930.

Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath.

2019. Prism: Deconstructing the blockchain to approach physical limits. In ACM

SIGSAC Conference on Computer and Communications Security (CCS). 585-602.

Gabriel Bracha and Sam Toueg. 1985. Asynchronous consensus and broadcast

protocols. Journal of the ACM (JACM) 32, 4 (1985), 824-840.

Ethan Buchman. 2016. Tendermint: Byzantine fault tolerance in the age of

blockchains. Ph.D. Dissertation.

Miguel Castro, Barbara Liskov, et al. 1999. Practical Byzantine fault tolerance. In

3rd Symposium on Operating Systems Design and Implementation (OSDI). USENIX,

173-186.

[10] Jing Chen and Silvio Micali. 2016. Algorand. arXiv preprint arXiv:1607.01341
(2016).

—
s

3

4

—_
)

https://doi.org/10.1145/3465084.3467899
https://doi.org/10.1145/3465084.3467899

CCS *23, November 26-30, 2023, Copenhagen, Denmark

[11] Flaviu Cristian, Houtan Aghili, Ray Strong, and Danny Dolev. 1995. Atomic
broadcast: From simple message diffusion to Byzantine agreement. Information
and Computation 118, 1 (1995), 158-179.

Phil Daian, Rafael Pass, and Elaine Shi. 2019. Snow white: Robustly reconfig-
urable consensus and applications to provably secure proof of stake. In Financial
Cryptography and Data Security (FC). Springer, 23-41.

Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse. 2022. No
More Attacks on Proof-of-Stake Ethereum? arXiv preprint arXiv:2209.03255
(2022).

Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. 2018.
Ouroboros praos: An adaptively-secure, semi-synchronous proof-of-stake
blockchain. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT). Springer, 66—98.

Soubhik Deb, Sreeram Kannan, and David Tse. 2020. PoSAT: Proof-of-Work Avail-
ability and Unpredictability, without the Work. arXiv preprint arXiv:2010.08154
(2020).

Danny Dolev and H. Raymond Strong. 1983. Authenticated algorithms for
Byzantine agreement. SIAM §. Comput. 12, 4 (1983), 656-666.

Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the
presence of partial synchrony. 7. ACM 35, 2 (1988), 288-323.

Paul Feldman and Silvio Micali. 1988. Optimal algorithms for Byzantine agree-
ment. In 20th Annual ACM Symposium on Theory of Computing (STOC). 148-161.
Michael J Fischer, Nancy A Lynch, and Michael S Paterson. 1985. Impossibility
of distributed consensus with one faulty process. Journal of the ACM (JACM) 32,
2 (1985), 374-382.

Matthias Fitzi, Peter Gazi, Aggelos Kiayias, and Alexander Russell. 2018. Parallel
Chains: Improving Throughput and Latency of Blockchain Protocols via Parallel
Composition. IACR Cryptology ePrint Archive, Report 2018/1119 (2018).

Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.
2017. Algorand: Scaling byzantine agreements for cryptocurrencies. In 26th
Symposium on Operating Systems Principles (SOSP). 51-68.

Vipul Goyal, Hanjun Li, and Justin Raizes. 2021. Instant Block Confirmation in
the Sleepy Model. In Financial Cryptography and Data Security (FC).

Jonathan Katz and Chiu-Yuen Koo. 2009. On expected constant-round protocols
for byzantine agreement. J. Comput. System Sci. 75, 2 (2009), 91-112.

Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual
International Cryptology Conference (CRYPTO). Springer, 357-388.

Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine Gen-
erals Problem. ACM Transactions on Programming Languages and Systems 4, 3
(1982), 382-401.

Songze Li and David Tse. 2020. TaiJi: Longest Chain Availability with BFT Fast
Confirmation. arXiv preprint arXiv:2011.11097 (2020).

Giuliano Losa and Eli Gafni. 2023. Consensus in the Unknown-Participation
Message-Adversary Model. arXiv preprint arXiv:2301.04817 (2023).

Atsuki Momose and Ling Ren. 2022. Constant latency in sleepy consensus.
In ACM SIGSAC Conference on Computer and Communications Security (CCS).
2295-2308.

Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).
Joachim Neu, Ertem Nusret Tas, and David Tse. 2020. Ebb-and-flow protocols: A
resolution of the availability-finality dilemma. arXiv preprint arXiv:2009.04987
(2020).

Rafael Pass, Lior Seeman, and Abhi Shelat. 2017. Analysis of the blockchain
protocol in asynchronous networks. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques (EUROCRYPT). Springer,
643-673.

Rafael Pass and Elaine Shi. 2017. The sleepy model of consensus. In Annual Inter-
national Conference on the Theory and Application of Cryptology and Information
Security (ASIACRYPT). Springer, 380-409.

Marshall Pease, Robert Shostak, and Leslie Lamport. 1980. Reaching agreement
in the presence of faults. Journal of the ACM (JACM) 27, 2 (1980), 228-234.
Ling Ren. 2019. Analysis of Nakamoto Consensus. IACR Cryptology ePrint
Archive, Report 2019/943. (2019).

Suryanarayana Sankagiri, Xuechao Wang, Sreeram Kannan, and Pramod
Viswanath. 2020. The Checkpointed Longest Chain: User-dependent Adaptivity
and Finality. arXiv preprint arXiv:2010.13711 (2020).

Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abra-
ham. 2019. Hotstuff: Bft consensus with linearity and responsiveness. In ACM
Symposium on Principles of Distributed Computing (PODC). ACM, 347-356.

[12]

[13]

[14

[15

[16]

[17

(18]

[19

[20]

[21

[22

[23]

[24]

[25

[27

[28]

[29
[30]

[31]

[32

[33]
[34]

[35]

[36]

503

Dahlia Malkhi, Atsuki Momose, and Ling Ren

A PROOF OF IMPOSSIBILITY OF SUPPORTING
FLUCTUATING CORRUPTION

We give the proof of Theorem 7.1 below.

THEOREM A.1 (THEOREM 7.1 RESTATED.). ForanyTs, T, = poly(x)
and 0 < a < 1, there does not exists an atomic broadcast in the
(Tp, Tf, @) -sleepy model.

Proor. Let f = 1/a. We assume f is an integer (the proof is
easily extended to the case f is not an integer). Suppose there exists
such a protocol. Let T = Ty + Tp. Let T' > ST be the smallest value
s.t. the protocol satisfies I'-Liveness. Let P and Q be two disjoint
sets of f nodes, and r ¢ P U Q be a node. Consider the following
two executions.

W1. For each k € [1, ff], there is a unique corrupt node py € P that
becomes awake and then asleep immediately at time t = (k—1)T.
All nodes in Q are honest and always awake. At time t =T, a
new honest node r becomes awake. The honest nodes Q input
a set X of values. All corrupt nodes P do not send any message.
Until time ¢ =T, the adversary simulates an honest execution
among the corrupt nodes P as if all nodes in P were always
awake from time 0 to T and they had a set X’ of input values s.t.
X NX' =0. At time t =T, the adversary delivers all messages
in the simulated execution to the new awake node r.

W2. The second execution is symmetric. For each k € [1,], there
is a unique corrupt node g; € Q that becomes awake and then
asleep immediately at time ¢t = (k — 1)T. All nodes in P are
honest and always awake. At time t = I', a new honest node r
becomes awake. The honest nodes P input a set X’ of values.
All corrupt nodes Q do not send any message. Until time ¢ =T,
the adversary simulates an honest execution among the corrupt
nodes Q as if all nodes in Q were always awake from time 0
to I' and they had a set X of input values s.t. X N X" = 0. At
time t =T, the adversary delivers all messages in the simulated
execution to the new awake node r.

Let view and views be the random variables that describe the set
of messages that r receives in W1 and W2, respectively. Obviously,
the distribution of these two variables must be identical since they
both consist of two separate honest executions among P with input
X’, and among Q with input X. So, the log decided by r must be
identically distributed in both W1 and W2. However, due to I'-
liveness, r must decide a log containing X in W1, and in W2, r
must decide a log containing X’. So the two distributions should
be different; a contradiction. O

	Abstract
	1 Introduction
	2 Model and Definitions
	2.1 Definitions and Primitives

	3 Overview
	3.1 View-based BFT with Early Decision
	3.2 Graded Agreement without Stable Participation Requirement
	3.3 Tolerating Backward Simulation with Stateless Algorithm

	4 Graded Agreement
	4.1 Correctness Proof

	5 Graded Proposal Election
	5.1 Correctness Proof

	6 Atomic Broadcast
	6.1 Safety and Liveness Proofs
	6.2 Analysis
	6.3 Efficient Recovery

	7 Impossibility of Supporting Fluctuating Corruption
	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Proof of Impossibility of Supporting Fluctuating Corruption

