)]
Check for
Updates

ParBFT: Faster Asynchronous BFT Consensus with a Parallel
Optimistic Path

Xiaohai Dai* "
Huazhong University of Science and Technology
Wuhan, China

Hai Jin®
Huazhong University of Science and Technology
Wuhan, China

ABSTRACT

To reduce latency and communication overhead of asynchronous
Byzantine Fault Tolerance (BFT) consensus, an optimistic path is
often added, with Ditto and BDT as state-of-the-art representatives.
These protocols first attempt to run an optimistic path that is typi-
cally adapted from partially-synchronous BFT and promises good
performance in good situations. If the optimistic path fails to make
progress, these protocols switch to a pessimistic path after a time-
out, to guarantee liveness in an asynchronous network. This design
crucially relies on an accurate estimation of the network delay A to
set the timeout parameter correctly. A wrong estimation of A can
lead to either premature or delayed switching to the pessimistic
path, hurting the protocol’s efficiency in both cases.

To address the above issue, we propose ParBFT, which employs a
parallel optimistic path. As long as the leader of the optimistic path
is non-faulty, ParBFT ensures low latency without requiring an
accurate estimation of the network delay. We propose two variants
of ParBFT, namely ParBFT1 and ParBFT2, with a trade-off between
latency and communication. ParBFT1 simultaneously launches the
two paths, achieves lower latency under a faulty leader, but has a
quadratic message complexity even in good situations. ParBFT2
reduces the message complexity in good situations by delaying the
pessimistic path, at the cost of a higher latency under a faulty leader.
Experimental results demonstrate that ParBFT outperforms Ditto or
BDT. In particular, when the network condition is bad, ParBFT can
reach consensus through the optimistic path, while Ditto and BDT
suffer from path switching and have to make progress using the
pessimistic path.

“This work was done when the first two authors were visitors at the University of
Illinois at Urbana-Champaign.

*Xiaohai Dai and Hai Jin are with the National Engineering Research Center for Big
Data Technology and System, Services Computing Technology and System Lab, Cluster
and Grid Computing Lab, School of Computer Science and Technology, Huazhong
University of Science and Technology.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11...$15.00
https://doi.org/10.1145/3576915.3623101

504

Bolin Zhang®
Zhejiang University
Hangzhou, China

Ling Ren
University of Illinois at Urbana-Champaign
Urbana, USA

CCS CONCEPTS

« Security and privacy — Distributed systems security; « Com-
puter systems organization — Reliability.

KEYWORDS

Byzantine fault tolerance, Byzantine generals, consensus, blockchain

ACM Reference Format:

Xiaohai Dai, Bolin Zhang, Hai Jin, and Ling Ren. 2023. ParBFT: Faster
Asynchronous BFT Consensus with a Parallel Optimistic Path. In Proceedings
of the 2023 ACM SIGSAC Conference on Computer and Communications
Security (CCS °23), November 26-30, 2023, Copenhagen, Denmark. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3576915.3623101

1 INTRODUCTION

Over the past decade, the increasing popularity of blockchain [38,
55, 66] has brought considerate attention back to the Byzantine
Fault Tolerance (BFT) consensus protocols [34, 65, 67]. In general, a
BFT consensus protocol ensures multiple replicas reach agreement,
even if a fraction of them may behave arbitrarily (called Byzantine
replicas) [44]. BFT consensus protocols can be roughly divided into
three categories based on their timing assumptions: synchronous
ones, partially synchronous ones, and asynchronous ones. Among
the three categories, asynchronous protocols offer the strongest
robustness to unpredictable network conditions [27, 37, 50]. How-
ever, asynchronous BFT protocols are rarely deployed in production
for performance reasons [46]. More specifically, compared to their
synchronous and partially synchronous counterparts, asynchro-
nous BFT protocols have higher latency (larger number of rounds)
and higher communication overheads, even when all replicas are
non-faulty and the network condition is good.

To remedy the inferior performance of asynchronous BFT, a num-
ber of works introduce an optimistic path [43, 57], with Ditto [33]
and BDT [46] as recent representatives. At a high level, these proto-
cols typically have two paths: an optimistic partially synchronous
path driven by a leader and a pessimistic path that works in asyn-
chrony. The system first attempts to run the optimistic path, which
has low latency and smaller communication overhead. If the op-
timistic path fails to make progress, the protocol falls back to the
pessimistic path after a timeout event. After one or more agreement
instances on the pessimistic path, the protocol will switch back to
the optimistic path. Since only one path is being executed at any
given time, we call this design the serial-path paradigm.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Xiaohai Dai, Bolin Zhang, Hai Jin, and Ling Ren

Table 1: Consensus performance comparison. As for the serial-path protocols (i.e., Ditto and BDT), the performance is measured
with the protocol starting from the optimistic path, which is the default in these protocols. The number of total replicas is
denoted as n, and the actual number of faulty replicas is denoted as ¢.

Latency Message complexity
A is needed Non-faulty leader Non-faulty leader
Faulty leader Faulty leader
<A 5> A <A 5>A
Ditto [33] Yes 58 20 + 165 20 + 165 Oo(tn) 0(n?) 0(n?)
BDT [46] Yes 58 20 + 2568 20 + 258 Oo(tn) 0(n?) 0(n?)
ParBFT1 No 58 58 2268 0(n?) 0(n?) o(n?)
ParBFT2 Yes 58 55 20 + 258 o(tn) 0(n?) 0(n?)

* Both BDT and ParBFT can be implemented using various protocols for the two paths. We use provable broadcast protocols to implement the optimistic path, which is identical
to Bolt-sCAST described in [46], and choose SMVBA [36] for the pessimistic path. We use an ABA protocol adapted from [1], whose worst-case latency is 98 in expectation.

** When the optimistic path uses the chain structure, the timeout parameter in Ditto/BDT/ParBFT2 is set to 2A, an upper bound on the round trip delay.

The serial-path paradigm has several drawbacks. First, it requires
a good estimation of network latency, usually denoted A, to set
the timer accordingly. It is quite challenging to get the parameter
A right. When the leader is Byzantine, the optimistic path cannot
make any progress, and the fallback to the pessimistic path should
ideally be launched as soon as possible. A large value of A will delay
the fallback and hurt latency. On the contrary, if A is mistakenly set
too small, the timeout and fallback events will be triggered prema-
turely, potentially disrupting a non-faulty leader on the optimistic
path who is about to make progress.

Moreover, when to switch back to the optimistic path is also a
tough decision. If the switch is performed too late since the network
has healed, the protocol has unnecessarily stayed on the pessimistic
path for too long. Conversely, switching back too hastily while the
network condition remains poor is meaningless and wasteful as the
optimistic path still cannot make progress. This may even cause
frequent back-and-forth switches, making the protocol even slower
than simply running the pessimistic path alone. For some contexts,
Ditto [33] opts for the hasty approach and performs the switch back
whenever a single agreement instance on the pessimistic path is
finished. BDT [46] similarly uses a hasty switch in their pseudocode.
Although BDT mentions that other heuristics can be used for the
switch back, designing these heuristics is also a tricky task.

To address these challenges regarding path switches, we propose
an alternative paradigm for adding optimistic paths to asynchro-
nous BFT: running the two paths in parallel. At a high level, by
running the two paths in parallel, replicas can reach a decision as
soon as one of the two paths succeeds. This enables the protocol to
gracefully handle both good and bad network conditions and avoid
the drawbacks of the serial-path paradigm. To be more concrete,
we propose ParBFT that runs a partially synchronous optimistic
path and an asynchronous pessimistic path in parallel. The two
paths may each produce an output (called candidates). ParBFT then
leverages an Asynchronous Binary Agreement (ABA) algorithm to
reach an agreement between these two candidates. The last key
design element of ParBFT is a shortcut mechanism: if the leader
is non-faulty and the network is good, all replicas will decide at
the end of the optimistic path and directly advance to the next
instance, without the need to execute the ABA algorithm or even
the pessimistic path. This makes ParBFT’s performance in the good
situation similar to the serial-path paradigm.

505

We present two variants of ParBFT, which we call ParBFT1 and
ParBFT2, that give a trade-off between latency and communication.
ParBFT1 launches the two paths simultaneously; this variant offers
better latency under a Byzantine leader but suffers from quadratic
message complexity even in a good situation. On the contrary,
ParBFT2 delays the launch of the pessimistic path, and as a result,
reduces the message complexity to linear in a good situation at the
cost of higher latency under a Byzantine leader.

As shown in Table 1, prior works Ditto [33] and BDT [46] achieve
a low latency of 56 (8 represents the actual network delay) only
when the leader is non-faulty and the parameter A is estimated
correctly (i.e., § < A). In contrast, ParBFT1 and ParBFT2 achieve
a good latency of 56 as long as the leader of the optimistic path is
non-faulty, regardless of whether A is estimated correctly or not. As
mentioned, ParBFT1 makes a sacrifice on the message complexity in
the good situation: when the leader is non-faulty and the estimation
of A is correct, ParBFT1 incurs quadratic communication. ParBFT2
avoids this problem by delaying the launch of the pessimistic path
by 5A time: this reduces the communication complexity in the good
case back to O(tn)! (¢ and n represent the number of actual faulty
replicas and total replicas, respectively) but increases the latency
under a Byzantine leader by that amount.

We also note that while ParBFT1 does not need the parameter
A at all, ParBFT2 brings back the parameter of A. But unlike prior
works, the penalty for an incorrect estimation of A is much smaller.
Concretely, when A is set too small, i.e, A < §, ParBFT2 only
incurs an increase in the communication cost, while prior works
incur much longer latency, increased communication cost, and the
potential problem of back-and-forth switching.

We implement both variants of ParBFT and conduct extensive
experiments to evaluate their performance in comparison with
prior works. Our implementations use the chain-based paradigm in
which different agreement instances are pipelined to improve the
throughput. The experiments are divided into three parts, corre-
sponding to three different scenarios. The first part mimics a good
situation where the leader is non-faulty and the network is good.

! A number of prior works [33, 46, 68] claim O(n) communication in the good case.
But upon closer inspection, they ignored the cost of retrieving the committed data.
In more detail, a replica that commits on the linear optimistic path has to respond to
retrieval requests from other replicas who have not, or claim to have not, received the
committed data. This adds a factor of ¢ to the communication overhead, since each
faulty replica can send such a retrieval request to all non-faulty replicas. See [59, 64]
for a more thorough discussion on this issue.

ParBFT: Faster Asynchronous BFT Consensus with a Parallel Optimistic Path

In the second part, we simulate a slow network by intentionally
delaying messages while assuming a non-faulty leader. Finally, in
the third part, we introduce a faulty leader by delaying proposals
from the leader.

The experimental results demonstrate that, under good situa-
tions, ParBFT2 performs comparably well to Ditto and BDT, as all
three protocols can commit through the optimistic path. As ex-
pected, as the number of replicas increases, the performance of
ParBFT1 deteriorates due to its quadratic message complexity. In
the situation of a slow network, where the delay is set larger than
A, ParBFT1 and ParBFT2 exhibit significantly lower latency com-
pared to Ditto and BDT. ParBFT achieves lower latency because it
can commit through the optimistic path even if the network delay
is wrongly estimated, whereas Ditto or BDT must switch to the
pessimistic path. In the case of a faulty leader, all protocols will
commit through the pessimistic path. However, ParBFT1 offers
lower latency than Ditto, BDT, and ParBFT2, because it launches
the pessimistic path immediately without waiting for a timeout
event.

To sum up, we make the following contributions in this paper. We
first identify major limitations of current serial-path asynchronous
protocols: they rely on accurate estimates of network latency to
appropriately switch between the two paths. We then propose a
new paradigm called ParBFT that runs the two paths in parallel to
address these limitations. Two variants of ParBFT are presented,
offering a trade-off between latency and communication overhead.
Finally, we implement our protocols and conduct comprehensive
experiments to demonstrate their advantages.

The remainder of this paper is structured as follows. In Section 2,
we introduce the model used in our work and present some prelim-
inaries that will serve as building blocks to our protocols. Section 3
outlines the main idea of parallel paths by describing a preliminary
version named ParBFTO0. In Section 4 and Section 5, we elaborate on
the two actual variants of ParBFT that provide a trade-off between
latency and communication overhead. More implementation details
(including chain-based versions of ParBFT) and evaluation results
are presented in Section 6. We discuss related work in Section 7
and conclude the paper in Section 8.

2 MODELS AND PRELIMINARIES
2.1 Models and definitions

We consider a distributed system consisting of n = 3f + 1 replicas,
among which up to f can misbehave in an arbitrary manner, i.e.,
they can be Byzantine. Each replica has a unique identity denoted
as p; (0 < i < n). All the Byzantine replicas are under the control of
an adversary who can coordinate their actions. Each pair of replicas
is connected through a reliable link, which will eventually deliver
every message, but the network is asynchronous, meaning that any
message can be delayed by the adversary arbitrarily. Leaders of the
optimistic path are selected by a predetermined order, e.g., simple
round-robin.

We assume a public-key infrastructure (PKI), which allows each
replica p; to be identified by a public key pk;, and all the public
keys are known to all replicas. Corresponding to pk;, each replica
holds its private key sk;. We also assume a threshold cryptosystem
is established among the replicas, possibly via Distributed Key

506

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Generation protocols [3, 24, 41], to enable threshold signatures. We
also assume a collision-resistant hash function. Finally, we assume
that the adversary has limited computational resources and cannot
break the PKI, the threshold cryptosystem, or the hash function.

For performance evaluation, we consider two types of situations:
good situations and bad situations. A good situation is when the
leader of the optimistic path is non-faulty and (if applicable) the
actual network delay § is not greater than the estimated parameter
A. On the contrary, a bad situation is when the designated leader is
faulty or § is larger than A. It is worth noting that since there is no
parameter of A in ParBFTO0 or ParBFT1, the good and bad situations
depend solely on whether the designated leader is non-faulty.

A consensus protocol maintains a replicated log among all non-
faulty replicas. Each entry in the log corresponds to a request or
some submitted data from a client. Henceforth, we use the terms
“request” and “log entry” interchangeably. A correct consensus
protocol must guarantee safety and liveness, which are defined as
follows:

e Safety: If two non-faulty replicas commit two data d and d’
at the same log position, then d must be equal to d’.

e Liveness: If a client proposes a request req, req will eventu-
ally be committed.

2.2 Preliminaries

In the design of ParBFT, we make use of Validated Asynchronous
Byzantine Agreement (VABA) protocols to implement the pessimistic
path and Asynchronous Binary Agreement (ABA) protocol to de-
cide between the outputs from the two paths. We utilize ABA in a
black-box manner and slightly modify VABA to let it output a proof
for the decided value. We refer to the modified VABA as Provable
VABA (PVABA). In this section, we present the interfaces of ABA
and PVABA and show how to modify a VABA protocol to a PVABA
protocol.

2.2.1 ABA interface. An ABA protocol is used to reach consensus
on a single bit [56, 63]. In an ABA protocol, each replica inputs a
Boolean value of 0 or 1, and ultimately, each non-faulty replica will
decide on the same bit value as the output. To be more precise, an
ABA protocol must satisfy the following three properties:

o Validity: If a non-faulty replica decides on a value v, v must
be input by at least one non-faulty replica.

e Agreement: If two non-faulty replicas decide on two values
v and o’ respectively, thenv = v’.

e Termination: If all non-faulty replicas complete inputting
values to the protocol, every non-faulty replica will eventu-
ally decide on a value.

o Integrity: No non-faulty replica decides twice.

Over the past few decades, various ABA protocols have been
proposed [1, 8, 31, 52]. We will use ABA in a black box.

2.2.2 VABA & PVABA interfaces. First, we describe the original
VABA interface. In a VABA protocol, each replica is allowed to
input an arbitrary value, and the protocol will eventually decide on
a value [15]. To prevent the protocol from deciding on an invalid
or trivial value, an external validation predicate Q is defined, and

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

the output value must satisfy Q. More formally, a VABA protocol
must satisfy the properties as follows:

e External-validity: If a non-faulty replica decides on a value
v, Q(v) must be True.

e Agreement: If two non-faulty replicas decide on two values
v and v’ respectively, then v = 0’.

e Termination: If all non-faulty replicas complete inputting
values to the protocol, every non-faulty replica will eventu-
ally decide on a value.

e Quality: The probability of deciding on a non-faulty replica’s
input is at least 1/2.

e Integrity: No non-faulty replica decides twice.

Decided values of a VABA protocol will be taken as inputs for
the final agreement of ParBFT. To prevent Byzantine replicas from
forging decided values, we further require the VABA protocol to
output a proof for the decided value. In other words, output from
the VABA protocol has the format of (v, o), where o is the proof
for the value v. Each replica can verify the legitimacy of the VABA
output through an external validity predicate R(v, o).

e Provability: If a non-faulty replica outputs (v, o), then R(v, o) =

true. If a Byzantine replica outputs (v, o) satisfying R(v, o) =
true, then some non-faulty replica must have output (v, o).

We note the differences between the two predicates: Q is to verify
the external validity of an input, while R is to verify that a value is
indeed decided by the VABA instance.

The adapted VABA interface is named PVABA. Existing VABA
protocols [5, 15, 36, 47] can be easily modified into PVABA. Taking
AMS-VABA [5] or sMVBA [36] as examples, the proof o can be set
as the VIEW-CHANGE message (Line 22 of Algorithm 3 in [5]) or the
HaLT message (Line 16 of Algorithm 5 in [36]), and the predicate
R(v, o) can be set as the threshold signature verification function.
When there is no ambiguity, we will simply use VABA to mean
PVABA in the remaining parts of this paper.

3 PARBFT DESIGN

Before delving into the final designs of ParBFT (i.e., ParBFT1 and
ParBFT2), we first introduce a preliminary variant named ParBFT0
in this section. ParBFT0 is meant to illustrate the basic idea of
running two parallel paths and is not designed for efficiency. As
such, ParBFTO0 has higher latency and larger communication over-
head even in a good situation. But it demonstrates the feasibility of
removing the parameter A and the finicky path-switch mechanism.

3.1 Description of ParBFT0

The structure of ParBFTO is illustrated in Figure 1. For brevity,
we omit the process of sending requests from clients, which is
similar to that in partially-synchronous protocols [18]: (1) The
client will first send the request to the leader on the optimistic
path initially; (2) If within a predetermined period, the request
cannot be successfully committed, the client will then broadcast the
request to all replicas. The protocol consists of two stages: parallel
paths and final agreement. In the first stage, an optimistic path and
a pessimistic path are launched simultaneously, and each replica
participates in both paths. The optimistic path can be implemented
using the normal-case protocol of many partially synchronous

507

Xiaohai Dai, Bolin Zhang, Hai Jin, and Ling Ren

= DCommit data

"W Candidate from optimistic path
W Candidate from pessimistic path

(" Optimistic path
@
[PBJe< e
‘e

-
[VABA i
L Pessimistic path

Final agreement

Parallel paths
Figure 1: The structure of ParBFT0

BFT works. To be concrete, we adopt the normal-case protocol of
SBFT [35], as it offers a low communication overhead of O(tn). The
pessimistic path can be constructed using any VABA protocol in a
black box.

We borrow the notion of Provable Broadcast (PB) from AMS-
VABA [5] or sMVBA [36] to describe the process of data broadcast
plus vote collection. In a PB instance, a broadcaster pj, first broad-
casts its data d along with a proof 7 in the format of (d, 7) to each
replica. The proof 7 is used to verify the validity of d according to
a global predicate function. If the validation passes, a replica p; will
output a tuple (d, 7) locally and send its vote through a threshold
signature share p on d to pp. To aid presentation, we refer to the
replicas that send votes to the broadcaster in a PB instance as voters.
After collecting more than two-thirds of the shares, p, can combine
them into a final threshold signature o and output the tuple (d, o).

As Figure 1 illustrates, the optimistic path consists of two consec-
utive PB instances followed by an additional broadcast performed
by the leader (pr). For brevity, we refer to the two consecutive PBs
as one Strong Provable Broadcast (SPB) as defined in SMVBA [36]. In
an SPB instance, the broadcaster pj, uses the output from the first
PB (PB1) as input for the second PB (PB2). In other words, 72 = o1
where o1 represents pj,’s output from PB1 and 75 denotes the proof
for d in PB2. The broadcaster p;’s output from SPB is exactly the
output from PB2. Moreover, in the additional broadcast after SPB,
pp broadcasts its output from SPB, namely the tuple (d, 02).

A replica returns from the optimistic path after receiving the
tuple of (d, 02), marked by the green triangle in Figure 1. Recall
that in Section 2.2.2, a replica returning from the pessimistic path
(i.e., VABA) also possesses a tuple of (d, o), which is marked by
the red triangle in Figure 1. The tuples returned from the two
parallel paths are referred to as candidates. We distinguish them
as optimistic candidates and pessimistic candidates, denoted by
(do, 00) and (dp, 0p), respectively. It is worth noting that (do, 0o)
obtained by different replicas are identical, and the same holds true
for (dp, op).

ParBFT: Faster Asynchronous BFT Consensus with a Parallel Optimistic Path

Algorithm 1 FINAGRO: Final agreement protocol in ParBFTO0 (for
replica p;)
1: Let v; denote the input (a candidate in the context of ParBFT0)
of p; and ValFn denote a global predicate function.

: initialize vals[2] « [L, 1]
: broadcast (FA, v;)
. if v; is an optimistic candidate then:
vals[0] « v;
invoke ABA with 0
else:
vals[1] « v;
invoke ABA with 1

R B A U

10:
11:

upon receiving (FA, v;) from p; that ValFn(v;) = true do:
if v; is an optimistic candidate and vals[0] = L then:

12: vals[0] « v;
13 else if v; is a pessimistic candidate and vals[1] = L then:
14: vals[1] < v;

: upon receiving the output b from ABA do:
wait until vals[b] # L
output vals[b]

In the second stage of ParBFTO0, each replica takes the first can-
didate it obtains from the parallel paths as input for the final agree-
ment. The final agreement, described in Algorithm 1, is primarily im-
plemented based on a black-box ABA protocol, where 0 represents
the optimistic candidate (d,, 0,) and 1 represents the pessimistic
candidate (dp, 0p). A replica will first broadcast its candidate (Line
3) and then invoke the ABA protocol with the mapped bit (Lines
4-9). Once the ABA protocol outputs a decision bit, the replica waits
until the candidate corresponding to the decision bit is received
(Lines 10-14) and then outputs the candidate (Lines 15-17).

To reduce the number of communication rounds, the round of
broadcasting the candidate (Line 3 of Algorithm 1) can be merged
with the first round of ABA. Additionally, a replica only accepts
the candidate broadcast by others if it passes the check against a
global predicate function ValFn (Line 10 of Algorithm 1). If the
candidate is optimistic, ValFn is simply the verification function
of the threshold signature. If the candidate is pessimistic, ValFn is
precisely the predicate R(v, 0) mentioned in Section 2.2.2.

Note that a replica that returns from either path can immediately
stop participating in the other path. Besides, it is possible for a
replica to receive valid candidate (d, o) from the final agreement
protocol before it returns from either path in the first stage. In such
a case, the replica can treat (d, o) as its own candidate (as though
it has obtained (d, o) from the first stage on its own), input (d, o)
to the final agreement, and terminate both paths in the first stage.

3.2 Correctness analysis of ParBFT0

The correctness analysis of ParBFT0 includes two parts: safety and
liveness. Notably, each instance of the ParBFTO0 protocol described
above is responsible for committing data at one log position. There-
fore, for safety, we only need to show that all non-faulty replicas
commit the same data from a given ParBFTO instance. For liveness,

508

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

since each leader attempts to propose requests from clients, we
only need to show that each non-faulty replica is able to commit
from the ParBFTO instance.

3.2.1 Safety. The safety analysis of ParBFTO is straightforward
and relies on the safety guarantees provided by the SBFT, VABA,
and ABA protocols. According to the safety property of SBFT, all
optimistic candidates are identical, and according to the agreement
property of VABA, all pessimistic candidates are also identical. This
means that there can only be two distinct candidates taken as inputs
into the final agreement protocol, which are mapped to bits 0 and 1.
The ABA protocol ensures that all non-faulty replicas will output
the same bit. Thus, all non-faulty replicas will output the same
candidate from the final agreement protocol corresponding to the
ABA’s output bit. This guarantees the safety of ParBFTO.

3.2.2 Liveness. We refer to the execution of ParBFT to commit a
single decision as one instance. Within each instance, a client can
initially send the request to the leader of the optimistic path. If the
request does not get committed through the optimistic path for
some time, the client broadcasts the request to all replicas. Recall
that the leader of the optimistic path is predetermined in a round-
robin fashion. If the optimistic path under some non-faulty leader
succeeds, the client’s request will be committed. On the flip side, if
all instances with non-faulty leaders commit in the pessimistic path,
the quality property of VABA ensures with at least 1/2 probability
that a non-faulty replica’s input will be committed, which will in-
clude the client’s request. It remains to show that each consensus
instance will successfully commit. We will first establish a lemma.

LEMMA 1. Every non-faulty replica in ParBFT0 will eventually
invoke the ABA protocol.

Proor. We establish this lemma through two cases.

Case 1: Some non-faulty replica p; outputs from the op-
timistic path. According to Algorithm 1, p; will broadcast its
optimistic candidate during the stage of final agreement. Therefore,
non-faulty replicas that have not yet output from either the opti-
mistic or the pessimistic path can receive an optimistic candidate
from p;. This ensures that every non-faulty replica will acquire a
candidate and invoke the ABA protocol.

Case 2: No non-faulty replica outputs from the optimistic
path. In this case, every non-faulty replica will keep running the
pessimistic path. The termination property of VABA guarantees that
each non-faulty replica will eventually output from the pessimistic
path and acquire a pessimistic candidate. Thus, each non-faulty
replica invokes the ABA protocol. O

THEOREM 2. Every non-faulty replica in ParBFT0 can successfully
commit in each consensus instance.

Proor. Due to Lemma 1, every non-faulty replica will invoke
the ABA protocol. Subsequently, by the termination property of
ABA, every non-faulty replica will eventually output from the ABA
protocol. Based on the validity property of ABA, at least one non-
faulty replica must have inputted the same bit as the output bit.
That replica must have also broadcast the corresponding candidate.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Therefore, each non-faulty replica will receive a candidate corre-
sponding to the output bit and commit that candidate value. This
concludes the proof of Theorem 2. O

3.3 Performance analysis of ParBFT0

We analyze the performance of ParBFTO0 in terms of consensus
latency and communication overhead. To this end, we assume that
ABA and VABA are implemented based on the state-of-the-art ABY-
ABA [1] and sMVBA [36], respectively. The expected latency of
ABY-ABA is 46 in a good situation and 96 in a bad situation. The
expected latency of sSMVBA is 64 in a good situation and 125 in a
bad situation.

If the leader is non-faulty, each replica will return from the
optimistic path first, which takes 58. In addition, the ABA protocol
has an expected latency of 45. Therefore, in the case of a non-faulty
leader, the expected latency of ParBFTO0 is 96. When the leader
is faulty, each replica will return from the pessimistic path first.
Consequently, the expected consensus latency of ParBFTO is 214:
126 from sMVBA and 95 from ABA. Regarding communication
overhead, since each replica broadcasts data on the pessimistic
path, ParBFT0 always has a message complexity of O(n?).

4 PARBFT1 WITH LOWER LATENCY

To reduce latency under a non-faulty leader, we propose ParBFT1,
which allows a replica to commit directly on the optimistic path
without going through the final agreement. This is achieved by
adding a shortcut on the optimistic path and a prepare phase to
exchange candidates before running ABA. We also modify the rule
of returning candidates from the optimistic path.

4.1 Description of ParBFT1

Figure 2 illustrates the structure of ParBFT1, where we open the box
of PB2 to show how a replica outputs a candidate in PB2. Compar-
ing it with ParBFTO0 in Figure 1 highlights the difference of ParBFT1
from ParBFTO0: a replica outputs a candidate from the optimistic
path after receiving (d,, 01) in PB2, without waiting for (d, 02)
as in ParBFTO0. Instead, upon receiving (d,, 02), a replica can im-
mediately commit and exit the current ParBFT1 instance, marked
by |1]in Figure 2. This serves as a shortcut on the optimistic path,
eliminating the need to execute the final agreement and resulting in
an optimal latency of 58, which is the same as Ditto or BDT. Algo-
rithm 2 outlines the pseudocode of the optimistic path in ParBFT1.
For brevity, we omit the validity check of data in the pseudocode.
As shown in Lines 11-12, a replica outputs the optimistic candidate
after receiving data from PB2. To ensure liveness, a replica will
broadcast a Halt message before exiting. Any replica that receives
a valid Halt message can take a shortcut to commit and exit the
current ParBFT1 instance as well. Pseudocode related to the deci-
sion and broadcast of Halt messages is shown in Lines 13-16 of
Algorithm 2.

The use of a shortcut rule may pose safety risks to the algorithm,
as some replicas may commit through the shortcut while others may
commit different data through the final agreement. To mitigate this
safety risk, we introduce a prepare phase to exchange candidates
before activating the ABA protocol. The prepare phase also provides
an additional shortcut for committing data without running an ABA

509

Xiaohai Dai, Bolin Zhang, Hai Jin, and Ling Ren

"W Candidate from optimistic path .
DCommlt data

W Candidate from pessimistic path

Optimistic path
g)
e
‘® ‘e
¥y G @) “B)
1 I 10 .
ABA
o o
to °
VABA
Prepare
Pessimistic path phase

Parallel paths
Figure 2: The structure of ParBFT1

Final agreement

Algorithm 2 OpTPATHI1: Optimistic path protocol in ParBFT1 (for
replica p;, with py as the leader)

1: Let v; represent the data proposed by p;.

2. if p; = p, then:

32 dy «— v;

4 activate PB1 as the broadcaster with (d,, L) as data
5. upon receiving (do, o1) from PB1 do:

6: activate PB2 as the broadcaster with (d,, 1) as data
7. upon receiving (do, 02) from PB2 do:

8: broadcast (OPTH, dy, 02)

9: else:

10: activate PB1 and PB2 as a voter

11: upon receiving (do, 01) from PB2 do:

122 output the candidate (dy, 01)

13: upon receiving (OPTH, d,, 02) from p; do:

14: commit d,

15: broadcast (HALT, d,, 02) if has not

16: exit

protocol. The final agreement after adding the prepare phase is
described by Algorithm 3. Each replica will begin by broadcasting a
PREP message, which contains the candidate and a partial threshold
signature on the data (Lines 4-5 of Algorithm 3). The threshold is
set to n — f. Once a replica has received n — f valid PREP messages,
it checks whether it can commit using another shortcut, marked by
in Figure 2. If it cannot, the replica will prepare the input value
to the ABA protocol. In more detail, there are three cases:

Case 1: If all the n — f PREP messages contain optimistic candi-
dates (Lines 7-11 of Algorithm 3), the replica can construct a com-
plete threshold signature o for d, based on the partial signatures
in the PREP messages. With a valid o, the replica can commit d,
directly without activating the ABA protocol. Also, the replica will
broadcast a Halt message containing (d,, o) to help other replicas
commit d,.

ParBFT: Faster Asynchronous BFT Consensus with a Parallel Optimistic Path

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Algorithm 3 FINAGR: Final agreement protocol in ParBFT1 and
ParBFT?2 (for replica p;)

1: Let v; represent an input value (a candidate in the context of
ParBFT1 or ParBFT2) of p;. SignShare and Combine denote the
threshold signature functions.

. initialize vals[2] « [L, L]

: parse v; as (tag, d, o)

: p « SignShare,,_r(d, tag)

: broadcast (PREP, tag, d, o, p)

(S I N X

6: upon receiving n — f PREP messages do:

7. if all the n — f messages with tag OPT then:

8 Sy < all the p from n — f messages

9: extract d, from one message

10: broadcast (HALT, do, Combinen_f(Sp, do, OPT))

11: commit d,; exit

12: else if at least one message with tag OPT then:

13: extract d, and o, from the message with tag OPT
14: broadcast (FA, do, 05)

15: invoke ABA with 0

16: vals[0] « (do, 00)

17: else:

18: extract dj and 0 from one message

19: broadcast (FA, dp, O'p)

20: invoke ABA with 1

21: vals[1] « (dp, op)

22: // Same as Lines 10-17 of Algorithm 1 (FINAGRO)

Case 2: If all the n — f PREP messages contain pessimistic candi-
dates (Lines 17-21 of Algorithm 3), the replica will broadcast the
pessimistic candidate (dp, 0p) and invoke the ABA protocol with 1.

Case 3: If both optimistic and pessimistic candidates are present
in these n — f PREP messages (Lines 12-16 of Algorithm 3), the
replica will broadcast the optimistic candidate and invoke the ABA
protocol with 0.

Pseudocode of ParBFT1 is given in Algorithm 4. Note that even
if a replica has obtained a candidate from the optimistic path, it will
continue the remaining parts of the optimistic path. However, like
in ParBFTO, a replica that obtains a candidate from either path will
terminate its participation in the other path (Lines 9-12 of Algo-
rithm 4). To speed up the progress, a replica can use the candidate
from the received PREP message as if it is obtained from the first
stage. In other words, the replica can construct and broadcast its
PREP message using the candidate received from others. Besides,
in Lines 4-7 of Algorithm 4, once a replica receives a valid Halt
message, it can commit immediately and exit the current ParBFT1
instance. If data is committed at the end of the final agreement
(Lines 14-16 of Algorithm 4), a replica is not necessary to broad-
cast a Halt message. This is because the ABA protocol in the final
agreement already includes a broadcast step that assists others in
obtaining the output from ABA and committing the data [1].

510

Algorithm 4 ParBFT1 protocol (for replica p;)

1: Let v; represent the data proposed by p;.

2: activate OpTPATHI1(0;)
: activate VABA (v;)

w

: upon receiving (HALT, d, o) from p; do:
commit d

broadcast (HALT, d, o) if has not
exit

N T

8: wait for the output (d, o) from OpTPATH1 or VABA
9: if the output is an optimistic candidate then:
terminate the pessimistic path; tag < OPT

11: else:

terminate the optimistic path; tag « PES

: activate FINAGR with (tag, d, 0) if has not

. wait for the output d from FINAGR
: commit d
. exit

4.2 Correctness analysis

4.2.1 Safety. There are three points at which data can be com-
mitted in ParBFT1: the end of the optimistic path, the end of the
prepare phase, and the end of the final agreement. For brevity, we
refer to these three points as t1, t, and f3, respectively. Next, we
will analyze the safety of ParBFT1 in three situations.

Situation 1: A non-faulty replica commits d at t;. In this
situation, at least f + 1 non-faulty replicas have returned from
the optimistic path, each of which will broadcast the optimistic
candidate in the prepare phase. Therefore, every replica will receive
at least one optimistic candidate among the n — f PREP messages,
and only Case 1 or Case 3 in Section 4.1 are possible. If a non-faulty
replica is in Case 1, it will commit d directly. If it is in Case 3,
it will broadcast the optimistic candidate (i.e., d) and invoke the
ABA protocol with 0. In other words, each non-faulty replica will
invoke the ABA protocol with 0, provided that it has not exited at
t; or tp. According to the validity property of ABA, the data output
from ABA must be 0, and the data to be committed at 3 must be d.
Therefore, safety is guaranteed in this situation.

Situation 2: A non-faulty replica commits d at 3. According
to Case 1 in Section 4.1, at least f + 1 non-faulty replicas must
have broadcast the optimistic candidate in the prepare phase. The
remaining analysis is identical to Situation 1.

Situation 3: A non-faulty replica commits d at 3. If there are
other non-faulty replicas that commit at ¢; or t;, safety is guaran-
teed based on the analysis of Situation 1 and Situation 2. Therefore,
we only need to consider the remaining situation where all the
non-faulty replicas commit at 3. According to the agreement prop-
erty of ABA, non-faulty replicas will get the same output bit from
ABA and thus commit the corresponding candidate. Since all the
optimistic (respectively, pessimistic) candidates are identical, safety
is guaranteed in this situation.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

4.2.2 Liveness. Similar to the liveness analysis in ParBFTO, the
liveness property of ParBFT1 is stated in Theorem 4, with its proof
relying on Lemma 3.

LEMMA 3. In ParBFT1, if no non-faulty replica commits at t1 or to,
every non-faulty replica will eventually invoke the ABA protocol.

ProoF. This lemma is established through two cases.

Case 1: Some non-faulty replica p; outputs from the op-
timistic path. According to Algorithm 3, p; will broadcast its
optimistic candidate during the prepare phase. Each non-faulty
replica will receive this optimistic candidate. This ensures that each
non-faulty replica can broadcast a PREP message and expect to re-
ceive at least n — f PREP messages during the prepare phase. Then,
every non-faulty replica will invoke the ABA protocol.

Case 2: No non-faulty replica outputs from the optimistic
path. In this case, all non-faulty replicas will keep participating in
the pessimistic path, eventually obtaining a pessimistic candidate
according to the termination property of VABA. Every non-faulty
replica can then broadcast a PREP message and invoke the ABA
protocol after receiving n — f PREP messages. O

THEOREM 4. Every non-faulty replica in ParBFT1 can successfully
commit in each consensus instance.

Proor. First, if some non-faulty replica p; commits at ¢; or ty, it
will broadcast a Halt message. Every non-faulty replica will even-
tually receive this Halt message from p;, leading them to commit if
it has not yet. Next, if no non-faulty replica commits at ¢1 or 2, then
due to Lemma 3, each non-faulty replica will invoke the ABA proto-
col. The termination property of ABA ensures that each non-faulty
replica will eventually output from the ABA protocol. Based on the
validity property of ABA, at least one non-faulty replica must have
inputted the same bit as the output bit. According to Algorithm 3,
that replica must have also broadcast the corresponding candidate.
Therefore, each non-faulty replica will receive a candidate corre-
sponding to the output bit and commit that candidate value. This
concludes the proof of Theorem 4. O

4.3 Performance analysis

In a good situation with a non-faulty leader, a replica in ParBFT1
can commit at the end of the optimistic path, which has a latency
of 58. In a bad situation characterized by a faulty leader, ParBFT1
takes 226 to reach consensus, slightly larger than 216 in ParBFTO0,
due to the additional prepare phase. Furthermore, since the pes-
simistic path always results in quadratic communication overhead,
the optimistic path in ParBFT1 could be implemented using the
normal-case protocol of PBFT [18], where each replica sends the
vote to all replicas instead of only to the leader. This will give
ParBFT1 a latency of 36 under a non-faulty leader.

It is worth noting that if the adversary manipulates the network
only slightly, ParBFT1 can still commit in the optimistic path. To
be more specific, if f + 1 or more non-faulty replicas obtain the
optimistic candidates earlier than pessimistic candidates, each non-
faulty replica will receive at least one PREP message containing the
optimistic candidate by the end of the prepare phase. Consequently,
each non-faulty replica will invoke the ABA protocol with input 0.
As indicated by the validity property, the ABA protocol will output

511

Xiaohai Dai, Bolin Zhang, Hai Jin, and Ling Ren

=".
a
<

"W Candidate from optimistic path

Commit data
"W Candidate from pessimistic path D

[em

Delay 5A

Prepare
phase

Pessimistic path

Parallel paths
Figure 3: The structure of ParBFT2

Final agreement

0 and each non-faulty replica will commit the optimistic candidate.
Furthermore, if all non-faulty replicas obtain optimistic candidates
earlier, they can even take a shortcut to commit the optimistic
candidate at the end of the prepare phase, bypassing the need to
run the ABA protocol altogether.

However, since the pessimistic path is launched at the beginning,
ParBFT1 has a message complexity of O(n?), even when the leader
is non-faulty and the network is good, which is larger than the
O(tn) complexity of Ditto or BDT where t is the actual number of
Byzantine replicas.

5 PARBFT2 WITH LOWER COMMUNICATION

To reduce the message complexity in good situations, we propose
ParBFT2, whose key idea is to delay the launch of the pessimistic
path by 5A. When it is in a good situation, the consensus can be
reached through the optimistic path in 5A, without running the
pessimistic path and avoiding the quadratic message complexity.
Although ParBFT2 reintroduces the parameter A, its negative ef-
fects are not as severe as those in prior works. To be more specific,
an incorrect estimation of A in Ditto or BDT can lead to premature
switching from the optimistic path to the pessimistic path, result-
ing in both high latency and large communication overhead. In
ParBFT?2, incorrect estimation of A will only increase communica-
tion overhead. Furthermore, if the optimistic path is implemented
using the chain structure, as detailed in Section 6.1, the timer for
delaying the pessimistic path can be configured to 2A, same as in
Ditto or BDT.

5.1 Description of ParBFT2

Figure 3 illustrates the structure of ParBFT2, which delays launch-
ing the pessimistic path by 5A. The rationale behind this delay is
that, in a good situation, a replica is expected to commit on the
optimistic path within 5A. To be more specific, a replica that cannot
commit within this time period will check whether it has obtained
the optimistic candidate. If it has, the replica will activate the fi-
nal agreement with the optimistic candidate, avoiding the need to

ParBFT: Faster Asynchronous BFT Consensus with a Parallel Optimistic Path

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Algorithm 5 ParBFT2 protocol (for replica p;)

1: Let v; represent the data proposed by p;.

2: bd « false // bd indicates whether p; has broadcast data
. activate OpTPATH2(0;)

w

4: upon receiving (HALT, d, o) from p; do:
5. commit d

6: if bd then:

7: broadcast (HALT, d, o) if has not
8: exit

9: wait until the timer of 5A expires
: 0pl « OpTPATHZ; bd « true
. if op1 # 1 then:

12: parseopl as (d,0)

13: activate FINAGR with (OPT, d, o) if has not

14: else:

15: activate VABA (v;)

16: wait for the output op2 from OpTPATH2 or VABA
17: parse op2 as (d, o)

18: if op2 is an optimistic candidate then:

19: terminate the pessimistic path; tag « OPT
20: else:

21: terminate the optimistic path; tag < PES
22: activate FINAGR with (tag, d, o) if has not

23: wait for the output d from FINAGR
24: commit d
25: exit

launch the pessimistic path. Otherwise, the replica will launch the
pessimistic path.

Algorithm 5 describes the ParBFT2 protocol. It differs from
ParBFT1 in that replicas do not activate the final agreement imme-
diately after obtaining an optimistic candidate. Instead, the final
agreement is activated only after the timer of 5A expires (Lines
9-13 of Algorithm 5), similar to the launch of the pessimistic path.
Additionally, a replica that commits on the optimistic path or re-
ceives a Halt message will not always broadcast a Halt message to
avoid introducing quadratic communication overhead. Instead, the
replica will check if it has already activated FINAGR or VABA before.
Only if this is true will it broadcast Halt messages. Furthermore,
to ensure that each non-faulty replica can commit, a replica that
has committed must send a Halt message to another replica p; if
it receives a FINAGR or VABA message from p;, even though it has
exited from the current ParBFT2 instance. It is worth noting that
the partially synchronous BFT protocols such as HotStuff also use
a similar design to help each non-faulty replica commit, where a
non-faulty replica p; responds to another replica p; with the blocks
lacked by pj.

In fact, ParBFT2 can be viewed as an intermediate protocol be-
tween the serial-path protocols (i.e., Ditto/BDT) and ParBFT1. At
one end of the spectrum, the serial-path protocols execute the opti-
mistic and pessimistic paths in a serial manner. At the other end of
the spectrum, ParBFT1 launches these two paths simultaneously
in parallel. As an intermediate design point, ParBFT2 launches the

512

Algorithm 6 OpTPATH2: Optimistic path protocol in ParBFT2 (for
replica p;, with py, as the leader)

1: Let v; represent the data proposed by p;. bd is a variable shared
with Algorithm 5.

2: // Same as Lines 2-12 of Algorithm 2 (OpTPATH1)

3: upon receiving (OPTH, dy, 02) from pr.
4 commit d,

5. if bd then:

6 broadcast (HALT, d, o) if has not
7 exit

two paths in a partially parallel fashion, with the pessimistic path
being activated slightly later than the optimistic path.

5.2 Correctness analysis

It is evident that ParBFT2’s safety proof is identical to that of
ParBFT1, so we focus on liveness.

THEOREM 5. Every non-faulty replica in ParBFT2 can successfully
commit in each consensus instance.

Proor. We refer to the three points to commit in ParBFT2 as t1,
ty, and t3. We prove liveness by analyzing three cases.

Case 1: Some non-faulty replica p; commits at ¢;. If another
non-faulty replica p; cannot commit at #;, it will trigger the execu-
tion of VABA and FINAGR. Then, p; will receive a VABA/FINAGR
message from p; and will send a Halt message to help p; commit
as well. Thus, every non-faulty replica can commit in this case.

Case 2: No non-faulty replica commits at {1, but some non-
faulty replica p; outputs from the optimistic path. In this
case, p; will broadcast its optimistic candidate during the prepare
phase after the timer expires. Any non-faulty replica that has not
output from the stage of parallel paths can obtain an optimistic
candidate from p;. Therefore, every non-faulty replica broadcasts
a PREP message. If some non-faulty replica p; manages to commit
at the end of the prepare phase (i.e., t2), it will broadcast a HALT
message to help others commit as well. If no non-faulty replica
commits at t3, every non-faulty replica will advance to the ABA
protocol. The termination and validity properties of ABA ensure
that every non-faulty replica eventually commits, similar to the
proof of Theorem 4.

Case 3: No non-faulty replica commits at t; or outputs
from the optimistic path. In this case, each non-faulty replica
will launch the pessimistic path after the timer expires. VABA’s ter-
mination property guarantees that each non-faulty replica can ob-
tain a pessimistic candidate. Subsequently, every non-faulty replica
will broadcast a PREP message and invoke the ABA protocol. The
remaining analysis is similar to Case 2.

To summarize, all non-faulty replicas in ParBFT2 commit. O

5.3 Performance analysis

In a good situation where the leader on the optimistic path is non-
faulty, ParBFT2 can achieve the same latency of 56 as ParBFT1. In
a bad situation involving a faulty leader, ParBFT2’s latency is 5A

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

larger than ParBFT1, at an expected latency of 5A + 22§ due to
the delay to the pessimistic path. However, by adopting the chain
structure and the pipelining technique described in Section 6.1 and
Appendix A in our full version [22], ParBFT2 can achieve a latency
of 2A + 256 under a faulty leader, which is the same as that of BDT.

Regarding the communication overhead, if it is in a good sit-
uation where the leader is non-faulty and § < A, ParBFT2 can
commit without launching the pessimistic path or activating the
final agreement protocol. As a result, ParBFT2 has a message com-
plexity of O(tn), which is better than ParBFT1 and comparable to
Ditto or BDT. On the contrary, if it is in a bad situation, the message
complexity of ParBFT2 is O(nz), the same as ParBFT1, Ditto, and
BDT.

As can be seen from Table 1, a wrong estimation of A in ParBFT2
will only increase the message complexity without affecting the
consensus latency. We can think of ParBFT2 as making a trade-off
between latency and communication over ParBFT1. To be more
specific, ParBFT2 trades the larger latency under a Byzantine leader
for a smaller message complexity in a good situation.

6 IMPLEMENTATION AND EVALUATION

In this section, we first introduce the chain-based version of ParBFT,
which organizes data on the optimistic path into blocks that are
chained one by one and processed in a pipelined manner to improve
throughput. We then implement the chain-based system prototypes
of both variants (i.e., ParBFT1 and ParBFT2) and conduct extensive
experiments to evaluate their performance.

6.1 Chain-based ParBFT

In the previous description of ParBFT, we focused on a single in-
stance of consensus to illustrate our main ideas more clearly. We
can easily organize the data on the optimistic path across consec-
utive ParBFT instances into blocks and chain them together. This
allows us to pipeline the processing of these blocks to improve
throughput, as is commonly done in many partially-synchronous
protocols [13, 68].

In general, the chain-based ParBFT proceeds in epochs, with
blocks in an epoch indexed by increasing and successive height
numbers. On the optimistic path of an epoch, the leader L;, of height
h will create a Quorum Certificate (QCp,_1) by combing the partial
threshold signatures on the block (Bj_;) of height A — 1. After
embedding QCj,_; in its newly created block By, Lj, will broadcast
By, to other replicas. When a replica receives By, it will commit
the block Bj_, and vote for By, by sending its partial threshold
signature on By, to the leader Ly, of height h + 1. This optimistic
path is similar to Tendermint [13] or two-chain HotStuff [68], where
block processing is pipelined. The difference is that the chain-based
ParBFT also attempts to launch a pessimistic path and then the final
agreement protocol for each height, either immediately in ParBFT1
or delayed in ParBFT2. An epoch ends if any candidate from the
pessimistic path gets committed, at which point the protocol moves
on to the next epoch.

For chain-based ParBFT2, the timing parameter for delaying the
pessimistic path can be set to 2A, resulting in a latency of 2A + 258
under a faulty leader, as shown in Table 1. Due to space constraints,
we defer a detailed description of chain-based ParBFT to Appendix

513

Xiaohai Dai, Bolin Zhang, Hai Jin, and Ling Ren

A in our full version [22] From now on, we refer to the chain-based
ParBFT simply as ParBFT in the remainder of the paper when there
is no ambiguity.

6.2 Implementation and experimental details

We implement the chain-based version of ParBFT in Golang (v1.17).
Our implementation leverages several open-source libraries, in-
cluding kyber? for threshold signatures, go-msgpack® for network
communication, and gorpc* for synchronizing data payloads. We
choose the MMR version of the ABA protocol [52] for implemen-
tation due to its simplicity. We are aware that the MMR protocol
is vulnerable to liveness attacks if the adversary can arbitrarily
manipulate message deliveries. This problem has known solutions
[1, 48, 53], but it is not central to our paper.

Although there is an open-source implementation of BDT, it is
written in Python, which generally has worse performance than
Golang implementations. In addition, its pessimistic path uses
Dumbo-MVBA [37], which is no longer the state-of-the-art. To
ensure fairness, we implement our own version of BDT in Golang
and give it a more efficient MVBA subroutine (i.e., sMVBA [36]) as
its pessimistic path. For Ditto, we directly adopt its open-source
Rust implementation®. For a lack of better heuristics, we follow
the default configuration of BDT and Ditto that switch back to the
optimistic path once a single agreement decision is reached on the
pessimistic path.

We implement clients to send transactions to replicas at a rate
controlled by a tunable configuration parameter. Additionally, we
implement a mempool [32] to facilitate replicas to synchronize
the data blocks in the background without embedding them into
consensus messages. The payload size in the mempool is set to
512 KB. Each block proposal can contain hash digests of up to 32
payloads. Each hash digest is 32 bytes, making the maximum size
of a block proposal 1 KB.

In Ditto’s open-source implementation, a non-leader replica will
create and broadcast a payload only after receiving enough trans-
actions to fill a payload. This will lead to very large end-to-end
latency when the input rate is low. To address this problem, we add
an improvement on Ditto’s mempool implementation: in addition
to broadcasting a payload whenever it is full, a replica also broad-
casts a payload one second after broadcasting the previous payload,
even if the new payload is not full.

Our experiments are conducted in three different settings that
attempt to capture the three situations in Table 1: (1) a good situa-
tion where the leader of the optimistic path is non-faulty and the
network is good; (2) a situation with a non-faulty leader but a slow
network; and (3) a situation where the leader is faulty.

We focus on the performance metrics of throughput and end-
to-end latency. Throughput is calculated as the average number
of committed transactions per second, while end-to-end latency
is measured as the time it takes for a transaction to be committed
since the client sends that transaction.

Each experiment lasts for five minutes and is repeated three
times. Each data point in the rest of this section reports the average

Zhttps://github.com/dedis/kyber
3https://github.com/hashicorp/go-msgpack
“https://github.com/valyala/gorpc
Shttps://github.com/danielxiangzl/Ditto

ParBFT: Faster Asynchronous BFT Consensus with a Parallel Optimistic Path

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

—4— Ditto-10 BDT-10 —%— ParBFTI-10 —¥— ParBFT2-10
¥ Ditto-19 BDT-19 --§+- ParBFT1-19 %+ ParBFT2-19
-4- Ditto-40 BDT-40 -4- ParBFT1-40 -+4- ParBFT2-40
20+
/w\ISf
=
Q
S
<
— 10
5,
0
0 10 20 30 40 50 60 70 80
Throughput (k tx/s)

Figure 4: Latency vs throughput in a good network

and is accompanied by error bars. The experiments are conducted
on Amazon Web Service (AWS). Each replica is implemented on an
mb5d.2xlarge EC2 instance with 8 vCPUs, 32 GB memory, and a
network bandwidth of up to 10 Gbps. The replicas are distributed
across five AWS regions in a geo-distributed manner: US-East (N.
Virginia), US-West (N. California), Asia-Pacific (Sydney), EU (Stock-
holm), and Asia-Pacific (Tokyo).

6.3 Performance in a good situation

In this section, we compare the performance of different protocols in
a good situation. Specifically, we set the parameter A in Ditto, BDT,
and ParBFT?2 to 500 ms (milliseconds), leading to a timer setting of
1,000 ms (2A), which is significantly larger than the actual network
delay. Our evaluation consists of two parts. Firstly, we analyze
the relationship between latency and throughput for three system
scales. Next, we conduct a more detailed comparison of latency
as the number of replicas increases when the input rate does not
saturate the system.

In the first part of our evaluation, we set the number of replicas
to 10, 19, and 40, respectively. The results are shown in Figure 4.
As anticipated, as the system scales up, all protocols exhibit a re-
duction in their peak throughput. For each replica count, ParBFT2
demonstrates a peak throughput comparable to BDT and Ditto.
ParBFT1 also delivers a similar peak throughput when there are
only 10 replicas, but as the system scales up, ParBFT1 shows worse
performance than others due to its quadratic communication in the
pessimistic path.

In the second part, we fix the input rate to 10,000 transactions
per second and vary the number of replicas from ten to forty. The
latency comparison is illustrated in Figure 5. Notably, Ditto, BDT,
and ParBFT2 exhibit excellent scalability as the replica count in-
creases, sustaining a 900~1,000 ms latency with up to 40 replicas.
This is because in the good case, Ditto or BDT do not switch to
the pessimistic path, and ParBFT2 need not launch the pessimistic
path. On the other hand, ParBFT1 demonstrates poor scalability
as the replica count increases, again due to its quadratic message

514

1,500

--¢- Ditto
BDT

—4— ParBFTI

—4— ParBFT2

1,400

1,300

1,200

Latency (ms)
S
(=]

1,000

900

800

700

10 16 22 28

Replicas

34 40

Figure 5: Latency comparison as the number of replicas in-
creases in a good network

complexity. It is worth noting that ParBFT1 has an advantage in
latency over other protocols when the number of replicas is small.
The reason is that replicas in ParBFT1 can promptly activate the
prepare phase within the final agreement protocol upon receiving
a subsequent block (or receiving output from PB1 in Figure 2). The
prepare phase empowers replicas to commit a block within one
round of communication, in contrast to the two rounds mandated
by the optimistic path.

6.4 Performance in a slow network

In this situation, we simulate a slow network by adding delays to
all messages. We introduce a new delay parameter {. We note that
{ represents an artificial delay added to all messages, so the final
message delay would be { plus the original network delay. We fix
the number of replicas at sixteen and retain the same 500 ms value
of A as in Section 6.3. Our experiments include two parts: the first
part depicts the relationship between latency and throughput, while

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

—4— Ditto-200ms

¥ Ditto-600ms

BDT-200ms ~ —$— ParBFT1-200ms —#— ParBFT2-200ms

ParBFT1-600ms §- ParBFT2-600ms

BDT-600ms ¥

Latency (s)

0 10 20

Throughput (k tx/s)
Figure 6: Latency vs throughput in a slow network

30 40

the second part explores how the latency changes as the artificial
delay ¢ increases.

For the first part, we try two { values: 200 ms and 600 ms. The
results are given in Figure 6. When { is 200 ms, all the protocols
exhibit similar performance. When ¢ is set to 600 ms, Ditto and
BDT suffer considerably worse performance compared to ParBFT1
or ParBFT2. This is the case where Ditto and BDT fail to commit
in their optimistic paths and switch to the pessimistic path after
the timeout is triggered. Although the timer also expires and the
pessimistic path is launched in ParBFT2, the optimistic path will
still finish faster than the pessimistic path, enabling ParBFT2 to
commit through the optimistic path, without having to finish the
entire pessimistic path.

In the second part, we fix the input rate to 10,000 transactions per
second and vary the value of { from 0 ms to 700 ms in increments
of 100 ms. The experimental results are presented in Figure 7. As
shown, the performance of Ditto and BDT deteriorates significantly
when { exceeds 500 ms. By contrast, the performance of ParBFT1
and ParBFT2 degrades in a gradual manner.

An interesting phenomenon captured by Figure 7 is the initial
lower latency of ParBFT1 compared to ParBFT2. As the value of {
increases, this latency difference becomes larger. However, eventu-
ally, the latency of ParBFT2 converges to a level similar to ParBFT1.
The reason for this trend is that at the start of small {, ParBFT1
can benefit from early decision in the prepare phase in contrast to
ParBFT?2, as we have discussed in Section 6.3. As { increases from
0 ms to 400 ms, the benefits of one less communication round in
ParBFT1 become more and more significant, leading to an increas-
ing latency difference. However, when { reaches 500 ms, the timer
in ParBFT?2 expires and the prepare phase is activated. In this case,
ParBFT?2 also benefits from the prepare phase, similar to ParBFT1,
and hence achieves comparable performance.

6.5 Performance under a faulty leader

In this section, we examine the situation where the leader is faulty.
Although a Byzantine faulty leader can behave arbitrarily, it is
reasonable to focus on a crashed or slow leader. This is because

515

Xiaohai Dai, Bolin Zhang, Hai Jin, and Ling Ren

161 --#- Ditto
BDT
—— ParBFT1
—4— ParBFT2

0

Latency (s)

0 100 200 300 400

¢ (ms)
Figure 7: Latency comparison as the added delay increases
in a slow network

500 600 700

w

IS

Latency (s)

—$— Ditto-400ms
~§- Ditto-2s

0 10

BDT-400ms
BDT-2s ¥

20
Throughput (k tx/s)

Figure 8: Latency vs throughput under a faulty leader

—4— ParBFT1-400ms

—&— ParBFT2-400ms
ParBFT1-2s ¢ ParBFT2-2s

30 40

the leader’s power in ParBFT is limited to the optimistic path. The
worst disruption a faulty leader can cause is to spoil the optimistic
path, which can be achieved by simply crashing or being slow. Thus,
we delay the block proposals from the leader by a parameter of
1/, through which we can observe the performance change under
different ¢ values. For this group of experiments, we fix the number
of replicas at sixteen. The parameter A is configured at 250 ms,
resulting in a timer of 500 ms. Our experiments again include two
parts: the first part shows the relationship between latency and
throughput, and the second part analyzes the latency as a function
of .

In the first part, we try two values of ¢: 400 ms and 2 seconds.
Experimental results are shown in Figure 8. From the figure, we see
that when ¢ is set to 400 ms, both ParBFT1 and ParBFT2 demon-
strate superior performance compared to Ditto or BDT. In this case,
Ditto and BDT will switch to run the pessimistic path. Despite the

ParBFT: Faster Asynchronous BFT Consensus with a Parallel Optimistic Path

3,000

2,500

2,000

Latency (ms)
2
=3
(=]

1,000
--§-- Ditto
500 BDT
—4— ParBFTI
—4— ParBFT2
0
0 400 800 1,200 1,600 2,000 2400 2,800
y (ms)

Figure 9: Latency comparison as the leader becomes slower

timer also expiring in ParBFT2, ParBFT2 can still commit in the
optimistic path similar to the previous situation. When ¢ is set to
2 seconds, all protocols resort to the pessimistic path to commit.
In this case, ParBFT1 outperforms the other protocols due to the
simultaneous launch of both two paths. In contrast, Ditto, BDT, and
ParBFT?2 activate the pessimistic path only after a timer expires.

For the second part, we set the input rate to 10,000 transactions
per second while varying the value of ¢ from 0 ms to 2,800 ms in
increments of 400 ms. The results of these experiments are shown in
Figure 9. We can immediately notice that the latency of all protocols
grows when the block proposals are delayed. Upon a more careful
comparison, we see that Ditto and BDT experience a sharp increase
in latency when i/ reaches 400 ms, due to the expiration of the timer
and consequent path switch. In contrast, the latency of ParBFT1
and ParBFT?2 increases gradually, due to the early decision in the
prepare phase. Specifically, in the case of ParBFT2, a block can still
be committed at the end of the prepare phase, even after the timer
expires and the pessimistic path is launched when ¢ exceeds 400 ms.
In terms of the final steady performance, all protocols demonstrate
a high latency, as a result of running the pessimistic path. However,
BDT and ParBFT2 exhibit slightly larger latency than Ditto, possibly
due to the additional usage of an ABA protocol.

7 RELATED WORK

Based on different timing assumptions, BFT protocols can be classi-
fied into three categories: synchronous, partially-synchronous, and
asynchronous.

7.1 Synchronous BFT protocols

The pioneering works of Pease et al. [44, 54] introduce the prob-
lem of Byzantine agreement, originally in a synchronous network
where messages between non-faulty replicas are delivered in a
timely manner. Assuming a network delay upper bound (i.e., A),
early synchronous protocols coordinate all the replicas to proceed
in a lock-step manner [2, 9, 26, 29, 39]. However, this approach is
caught in a delicate dilemma between security and efficiency. If A
is set too small, the synchrony will be violated, and the protocol

516

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

will lose safety. On the other hand, if A is set too large, each lock-
step round will take a long time, causing unnecessary delays and
poor performance. For this reason, synchronous BFT consensus
protocols have long been considered impractical. Recent works
such as Sync HotStuff [4] alleviated this problem by embracing
a non-lockstep model of synchrony, enabling replicas to advance
more quickly to the next steps and minimizing the protocol’s perfor-
mance dependency on A. Despite the improvement, synchronous
protocols, including Sync HotStuff, still have their performance
fundamentally dependent on A and thus still face the dilemma of
incorrect estimation of A.

7.2 Partially-synchronous BFT protocols

The partial synchrony model proposed by Dwork et al. [28] opens
up a new avenue for BFT consensus protocol design. PBFT [18],
based on a partially synchrony model and using the view-based
design, becomes the de facto standard for practical BFT consensus
for over a decade. To reduce the (already low) latency of PBFT from
three rounds to two rounds, a range of works propose adding a
fast path. These include Zyzzyva [42], FastBFT [45], SBFT [35], and
Trebiz [21]. More recently, the emergence of blockchains inspires
further simplification of the view-based partially synchronous BFT
paradigm protocol with the new chain-based structures of blocks,
as seen in Tendermint [13], Casper FFG [14], HotStuff [68], and
Streamlet [19]. Although partially synchronous protocols exhibit
decent performance in the good case, they have recently been
criticized for being vulnerable to liveness attack [50]. To be more
specific, even with a non-faulty leader, the adversary may construct
an elaborate network scheduler that blocks messages to and from
the leader until the leader is demoted. This results in a loss of
liveness.

Aublin et al. propose a black-box framework to switch between
multiple protocols [7] to get their respective benefits. Their frame-
work adopts the serial-path paradigm. The two baselines considered
in our work, Ditto and BDT, can be viewed as concrete instantia-
tions of this framework.

Some recent works explore an orthogonal direction of employ-
ing multiple leaders to concurrently drive multiple consensus in-
stances [61, 62] to improve throughput. In contrast, ParBFT runs
two parallel paths within each single consensus instance to accel-
erate the instance.

7.3 Asynchronous BFT protocols

Research on the asynchronous BFT protocols dates back to the
1980s [8, 12, 17, 20]. Asynchronous BFT broadcast protocols enable
replicas to deliver the same message from a designated broadcaster,
with Bracha’s reliable broadcast [11] and Dolev’s consistent broad-
cast [25] being notable examples. These protocols are typically used
as subroutines in the Byzantine consensus or state machine replica-
tion protocols. The famous FLP impossibility states that asynchro-
nous BFT consensus protocols must make use of randomness [30].
Early works in this area include Ben-Or [8], Canetti-Rabin [17],
CKPS [15], and SINTRA [16]. Many works focus on the simpler
problem of agreeing on a single bit (0 or 1), also known as Asyn-
chronous Binary Agreement (ABA) [1, 8, 31, 52]. Recent practical
advances in asynchronous BFT include HoneybadgerBFT [50], the

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Dumbo family of protocols [36, 37, 47], and Directed Acyclic Graph
(DAG)-based protocols [23, 40, 58, 60].

Although asynchronous consensus protocols are more robust
than partially synchronous ones, they generally have inferior per-
formance. To match the performance of partially synchronous pro-
tocols, a number of works propose adding an optimistic path, which
is often adapted from a partially synchronous protocol, and use the
original asynchronous protocol as a pessimistic fallback [33, 46].
We have discussed the drawbacks of this design extensively, and it
is also the motivation of our work.

Some recent works combine synchronous and asynchronous
protocols to improve fault tolerance [6, 10, 49, 51]. It is well known
that asynchronous (and partially-synchronous) protocols tolerate
at most n/3 Byzantine faults while synchronous protocols toler-
ate up to n/2 Byzantine faults. These works aim to tolerate more
than n/3 Byzantine faults in the good case when the network hap-
pens to be synchronous. In contrast, ParBFT focuses on improving
performance in the good case.

8 CONCLUSION

The existing serial-path BFT consensus protocols can result in sig-
nificant latency if the network delay is incorrectly estimated. To
deal with this problem, we propose ParBFT, which runs the opti-
mistic and pessimistic paths in parallel. ParBFT can achieve a low
latency of 58 as long as the leader on the optimistic path is non-
faulty without requiring a correct estimation of the network delay.
We present two variants of ParBFT (i.e., ParBFT1 and ParBFT2) that
offer a trade-off between latency and communication overhead. To
improve system throughput, we also introduce the chain-based ver-
sion of ParBFT, which incorporates the chain structure and pipelin-
ing into the optimistic path. Our experimental results demonstrate
the efficiency of ParBFT.

ACKNOWLEDGMENTS

We thank Atuski Momose for helpful suggestions. We thank Zhuolun
Xiang and Guanxiong Wang for their assistance with experiments.
This work is funded in part by the National Science Foundation
award 2143058 and the National Natural Science Foundation of
China (Grant No. 62202187).

REFERENCES

[1] Ittai Abraham, Naama Ben-David, and Sravya Yandamuri. 2022. Efficient and
Adaptively Secure Asynchronous Binary Agreement via Binding Crusader Agree-
ment. In Proceedings of the 2022 ACM Symposium on Principles of Distributed
Computing. ACM, 381-391.

Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren.
2019. Synchronous Byzantine Agreement with Expected O (1) Rounds, Expected
Communication, and Optimal Resilience. In Proceedings of the 23rd International
Conference on Financial Cryptography and Data Security. Springer, 320-334.
Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern,
and Alin Tomescu. 2021. Reaching Consensus for Asynchronous Distributed Key
Generation. In Proceedings of the 2021 ACM Symposium on Principles of Distributed
Computing. ACM, 363-373.

Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. 2020.
Sync Hotstuff: Simple and Practical Synchronous State Machine Replication. In
Proceedings of the 41st IEEE Symposium on Security and Privacy. IEEE, 106-118.
Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. 2019. Asymptotically
Optimal Validated Asynchronous Byzantine Agreement. In Proceedings of the
2019 ACM Symposium on Principles of Distributed Computing. ACM, 337-346.
Andreea B. Alexandru, Erica Blum, Jonathan Katz, and Julian Loss. 2022. State
Machine Replication under Changing Network Conditions. In Proceedings of the

[2

=

.
&

&

(6

=

517

[11

[12

[13

[14

[15

=
&

(17

[18

[19

[20]

[
—

[22

[23

[24

[26

[27

(28]

[29

[30

w
—

(32

[33

Xiaohai Dai, Bolin Zhang, Hai Jin, and Ling Ren

2022 International Conference on the Theory and Application of Cryptology and
Information Security. Springer, 681-710.

Pierre-Louis Aublin, Rachid Guerraoui, Nikola KneZevi¢, Vivien Quéma, and
Marko Vukoli¢. 2015. The Next 700 BFT Protocols. ACM Transactions on Computer
Systems 32, 4 (2015), 1-45.

Michael Ben-Or. 1983. Another Advantage of Free Choice: Completely Asynchro-
nous Agreement Protocols. In Proceedings of the 2nd Annual ACM Symposium on
Principles of Distributed Computing. ACM, 27-30.

Piotr Berman, Juan A Garay, and Kenneth J. Perry. 1992. Bit Optimal Distributed
Consensus. Computer Science Research (1992), 313-322.

Erica Blum, Jonathan Katz, and Julian Loss. 2021. Tardigrade: An Atomic Broad-
cast Protocol for Arbitrary Network Conditions. In Proceedings of the 27th Inter-
national Conference on the Theory and Application of Cryptology and Information
Security. Springer, 547-572.

Gabriel Bracha. 1987. Asynchronous Byzantine Agreement Protocols. Information
and Computation 75, 2 (1987), 130-143.

Gabriel Bracha and Sam Toueg. 1985. Asynchronous Consensus and Broadcast
Protocols. Journal of the ACM 32, 4 (1985), 824-840.

Ethan Buchman. 2016. Tendermint: Byzantine Fault Tolerance in the Age of
Blockchains. Ph.D. Dissertation. University of Guelph.

Vitalik Buterin and Virgil Griffith. 2017. Casper the Friendly Finality Gadget.
arXiv preprint arXiv:1710.09437 (2017).

Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. 2001. Secure
and Efficient Asynchronous Broadcast Protocols. In Proceedings of the 2001 Annual
International Cryptology Conference. Springer, 524-541.

Christian Cachin and Jonathan A. Poritz. 2002. Secure Intrusion-tolerant Repli-
cation on the Internet. In Proceedings of the 2002 International Conference on
Dependable Systems and Networks. IEEE, 167-176.

Ran Canetti and Tal Rabin. 1993. Fast Asynchronous Byzantine Agreement with
Optimal Resilience. In Proceedings of the 25th Annual ACM Symposium on Theory
of Computing. ACM, 42-51.

Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance.
In Proceedings of the 1999 USENIX Symposium on Operating Systems Design and
Implementation. USENIX, 173-186.

Benjamin Y. Chan and Elaine Shi. 2020. Streamlet: Textbook Streamlined
Blockchains. In Proceedings of the 2nd ACM Conference on Advances in Financial
Technologies. ACM, 1-11.

Miguel Correia, Nuno Ferreira Neves, and Paulo Verissimo. 2006. From Consensus
to Atomic Broadcast: Time-free Byzantine-resistant Protocols without Signatures.
The Computer Journal 49, 1 (2006), 82-96.

Xiaohai Dai, Liping Huang, Jiang Xiao, Zhaonan Zhang, Xia Xie, and Hai Jin.
2022. Trebiz: Byzantine Fault Tolerance with Byzantine Merchants. In Proceedings
of the 38th Annual Computer Security Applications Conference. ACM, 923-935.
Xiaohai Dai, Bolin Zhang, Hai Jin, and Ling Ren. 2023. ParBFT: Faster Asynchro-
nous BFT Consensus with a Parallel Optimistic Path. Cryptology ePrint Archive,
Paper 2023/679. https://eprint.iacr.org/2023/679 https://eprint.iacr.org/2023/679.
George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegel-
man. 2022. Narwhal and Tusk: A DAG-based Mempool and Efficient BFT Consen-
sus. In Proceedings of the 17th European Conference on Computer Systems. ACM,
34-50.

Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew Miller, Lefteris Kokoris-
Kogias, and Ling Ren. 2022. Practical Asynchronous Distributed Key Generation.
In Proceedings of the 2022 IEEE Symposium on Security and Privacy. IEEE, 2518—
2534.

Danny Dolev. 1982. The Byzantine Generals Strike Again. Journal of Algorithms
3,1 (1982), 14-30.

Danny Dolev and H. Raymond Strong. 1983. Authenticated Algorithms for
Byzantine Agreement. SIAM Journal on Computing 12, 4 (1983), 656-666.

Sisi Duan, Michael K. Reiter, and Haibin Zhang. 2018. BEAT: Asynchronous BFT
Made Practical. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2028-2041.

Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the
Presence of Partial Synchrony. Journal of the ACM 35, 2 (1988), 288-323.

Paul Feldman and Silvio Micali. 1988. Optimal Algorithms for Byzantine Agree-
ment. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing.
ACM, 148-161.

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. 1985. Impossibility
of Distributed Consensus with One Faulty Process. Journal of the ACM 32, 2
(1985), 374-382.

Roy Friedman, Achour Mostefaoui, and Michel Raynal. 2005. Simple and Efficient
Oracle-based Consensus Protocols for Asynchronous Byzantine Systems. IEEE
Transactions on Dependable and Secure Computing 2, 1 (2005), 46-56.

Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang.
2022. Dumbo-ng: Fast Asynchronous BFT Consensus with Throughput-oblivious
Latency. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 1187-1201.

Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegel-
man, and Zhuolun Xiang. 2022. Jolteon and Ditto: Network-adaptive Efficient

ParBFT: Faster Asynchronous BFT Consensus with a Parallel Optimistic Path

[34]

[35

[36]

[37

[38]

Consensus with Asynchronous Fallback. In Proceedings of the 2022 International
Conference on Financial Cryptography and Data Security. Springer, 296-315.
Vincent Gramoli. 2020. From Blockchain Consensus back to Byzantine Consensus.
Future Generation Computer Systems 107 (2020), 760-769.

Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas,
Michael Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. 2019.
Sbft: A Scalable and Decentralized Trust Infrastructure. In Proceedings of the 49th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks.
IEEE, 568-580.

Bingyong Guo, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng
Zhang. 2022. Speeding Dumbo: Pushing Asynchronous BFT Closer to Practice.
Cryptology ePrint Archive (2022).

Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang. 2020.
Dumbo: Faster Asynchronous BFT Protocols. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security. ACM, 803-818.
Hai Jin and Jiang Xiao. 2022. Towards Trustworthy Blockchain Systems in the
Era of “Internet of Value”: Development, Challenges, and Future Trends. Science
China Information Sciences 65 (2022), 1-11.

[39] Jonathan Katz and Chiu-Yuen Koo. 2006. On Expected Constant-round Proto-

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48

[49]

cols for Byzantine Agreement. In Proceedings of the 2006 Annual International
Cryptology Conference. Springer, 445-462.

Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman.
2021. All You Need is DAG. In Proceedings of the 2021 ACM Symposium on
Principles of Distributed Computing. ACM, 165-175.

Eleftherios Kokoris Kogias, Dahlia Malkhi, and Alexander Spiegelman. 2020.
Asynchronous Distributed Key Generation for Computationally-Secure Ran-
domness, Consensus, and Threshold Signatures. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security. ACM, 1751-1767.
Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund
Wong. 2007. Zyzzyva: Speculative Byzantine Fault Tolerance. In Proceedings of
21st ACM SIGOPS Symposium on Operating Systems Principles. ACM, 45-58.
Klaus Kursawe and Victor Shoup. 2005. Optimistic Asynchronous Atomic Broad-
cast. In Proceedings of the 32nd International Colloquium on Automata, Languages
and Programming. Springer, 204-215.

Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine Gen-
erals Problem. ACM Transactions on Programming Languages and Systems 4, 3
(1982), 382-401.

Jian Liu, Wenting Li, Ghassan O. Karame, and Nadarajah Asokan. 2018. Scalable
Byzantine Consensus via Hardware-assisted Secret Sharing. IEEE Transactions
on Computers 68, 1 (2018), 139-151.

Yuan Lu, Zhenliang Lu, and Qiang Tang. 2022. Bolt-dumbo Transformer: Asyn-
chronous Consensus as Fast as the Pipelined BFT. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security. ACM, 2159-2173.
Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang. 2020. Dumbo-mvba:
Optimal Multi-valued Validated Asynchronous Byzantine Agreement, Revisited.
In Proceedings of the 39th ACM Symposium on Principles of Distributed Computing.
ACM, 129-138.

Ethan MacBrough. 2018. Cobalt: BFT Governance in Open Networks. arXiv
preprint arXiv:1802.07240 (2018).

Dahlia Malkhi, Kartik Nayak, and Ling Ren. 2019. Flexible Byzantine Fault
Tolerance. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 1041-1053.

518

[50

[51]

[52

[54

[55

[56

[57

[58

[59

[60

N
=

[62

[63

[64]

[65

=
2

(67

[68

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The Honey
Badger of BFT Protocols. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 31-42.

Atsuki Momose and Ling Ren. 2021. Multi-threshold Byzantine Fault Tolerance. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 1686-1699.

Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. 2014. Signature-
free Asynchronous Byzantine Consensus with t< n/3 and O (n2) Messages. In
Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing.
ACM, 2-9.

Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. 2015. Signature-free
Asynchronous Binary Byzantine Consensus with t< n/3, O (n2) Messages, and O
(1) Expected Time. Journal of the ACM 62, 4 (2015), 1-21.

Marshall Pease, Robert Shostak, and Leslie Lamport. 1980. Reaching Agreement
in the Presence of Faults. Journal of the ACM 27, 2 (1980), 228-234.

Marc Pilkington. 2016. Blockchain Technology: Principles and Applications. In
Research Handbook on Digital Transformations. Edward Elgar Publishing.
Michael O. Rabin. 1983. Randomized Byzantine Generals. In Proceedings of the
24th Annual Symposium on Foundations of Computer Science. IEEE, 403-409.
HariGovind V. Ramasamy and Christian Cachin. 2005. Parsimonious Asyn-
chronous Byzantine-Fault-Tolerant Atomic Broadcast. In Proceedings of the 2005
International Conference On Principles Of Distributed Systems. Springer, 88-102.
Maria A. Schett and George Danezis. 2021. Embedding A Deterministic BFT
Protocol in A Block DAG. In Proceedings of the 2021 ACM Symposium on Principles
of Distributed Computing. ACM, 177-186.

Alexander Spiegelman. 2020. In Search for An Optimal Authenticated Byzantine
Agreement. arXiv preprint arXiv:2002.06993 (2020).

Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-
Kogias. 2022. Bullshark: DAG BFT Protocols Made Practical. In Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications Security. ACM,
2705-2718.

Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukoli¢. 2022. State
Machine Replication Scalability Made Simple. In Proceedings of the 17th European
Conference on Computer Systems. ACM, 17-33.

Chrysoula Stathakopoulou, David Tudor, Matej Pavlovic, and Marko Vukoli¢.
2022. Mir-BFT: Scalable and Robust BFT for Decentralized Networks. Journal of
Systems Research 2, 1 (2022).

Sam Toueg. 1984. Randomized Byzantine Agreements. In Proceedings of the 3rd
Annual ACM Symposium on Principles of Distributed Computing. ACM, 163-178.
Jun Wan, Atsuki Momose, Ling Ren, Elaine Shi, and Zhuolun Xiang. 2023. On the
Amortized Communication Complexity of Byzantine Broadcast. In Proceedings of
the 2023 ACM Symposium on Principles of Distributed Computing. ACM, 253-261.
Xin Wang, Sisi Duan, James Clavin, and Haibin Zhang. 2022. BFT in Blockchains:
From Protocols to Use Cases. ACM Computing Surveys 54, 10 (2022), 1-37.

Karl Wiist and Arthur Gervais. 2018. Do You Need A Blockchain. In Proceedings
of the 2018 Crypto Valley Conference on Blockchain Technology. IEEE, 45-54.
Yang Xiao, Ning Zhang, Wenjing Lou, and Y. Thomas Hou. 2020. A Survey of
Distributed Consensus Protocols for Blockchain Networks. IEEE Communications
Surveys & Tutorials 22, 2 (2020), 1432-1465.

Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abra-
ham. 2019. Hotstuff: BFT Consensus with Linearity and Responsiveness. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing.
ACM, 347-356.

	Abstract
	1 Introduction
	2 Models and Preliminaries
	2.1 Models and definitions
	2.2 Preliminaries

	3 ParBFT Design
	3.1 Description of ParBFT0
	3.2 Correctness analysis of ParBFT0
	3.3 Performance analysis of ParBFT0

	4 ParBFT1 with lower latency
	4.1 Description of ParBFT1
	4.2 Correctness analysis
	4.3 Performance analysis

	5 ParBFT2 with lower communication
	5.1 Description of ParBFT2
	5.2 Correctness analysis
	5.3 Performance analysis

	6 Implementation and Evaluation
	6.1 Chain-based ParBFT
	6.2 Implementation and experimental details
	6.3 Performance in a good situation
	6.4 Performance in a slow network
	6.5 Performance under a faulty leader

	7 Related Work
	7.1 Synchronous BFT protocols
	7.2 Partially-synchronous BFT protocols
	7.3 Asynchronous BFT protocols

	8 Conclusion
	Acknowledgments
	References

