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ABSTRACT Machine learning (ML) has been successfully applied to classification tasks in many domains,
including computer vision, cybersecurity, and communications. Although highly accurate classifiers have
been developed, research shows that these classifiers are, in general, vulnerable to adversarial machine
learning (AML) attacks. In one type of AML attack, the adversary trains a surrogate classifier (called the
attacker’s classifier) to produce intelligently crafted low-power ‘‘perturbations” that degrade the accuracy
of the targeted (defender’s) classifier. In this paper, we focus on radio frequency (RF) signal classifiers,
and study their vulnerabilities to AML attacks. Specifically, we consider several exemplary protocol and
modulation classifiers, designed using convolutional neural networks (CNNs) and recurrent neural networks
(RNNs). We first show the high accuracy of such classifiers under random noise (AWGN). We then study their
performance under three types of low-power AML perturbations (FGSM, PGD, and DeepFool), considering
different amounts of information at the attacker. On one extreme (so-called ‘““white-box” attack), the attacker
has complete knowledge of the defender’s classifier and its training data. As expected, our results reveal that in
this case, the AML attack significantly degrades the defender’s classification accuracy. We gradually reduce
the attacker’s knowledge and study five attack scenarios that represent different amounts of information at
the attacker. Surprisingly, even when the attacker has limited or no knowledge of the defender’s classifier
and its power is relatively low, the attack is still significant. We also study various practical issues related to
the wireless environment, including channel impairments and misalignment between attacker and transmitter
signals. Furthermore, we study the effectiveness of intermittent AML attacks. Even under such imperfections,
alow-power AML attack can still significantly reduce the defender’s classification accuracy for both protocol
and modulation classifiers. Lastly, we propose a two-step adversarial training mechanism to defend against
AML attacks and contrast its performance against other state-of-the-art defense strategies. The proposed
defense approach increases the classification accuracy by up to 50%, even in scenarios where the attacker
has perfect knowledge of the defender and exhibits a relatively large power budget.

INDEX TERMS Deep learning, signal classification, adversarial machine learning, shared spectrum,
wireless security.

I. INTRODUCTION underlying protocol or modulation scheme of the received
ACHINE learning (ML) based signal classification signal in a spectrum-sharing scenario, e.g., coexisting Wi-Fi
plays an important role in next-generation wire- and cellular transmissions over the unlicensed 5/6 GHz bands

less systems. It can be used, for example, to identify the [1], [2], [3], and LTE/radar transmissions over the CBRS
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band [4], [5]. It can also be used to identify anomalies, rogue
signals, and selective-jamming attacks [6], [7], [8]. Signal
classification may also be used for RF fingerprinting [9],
[10], [11] to provide awareness of nearby emitters and avoid
radio interference. Deep neural networks (DNNs) were used
in [12] and [13] to identify signal types not included in the
training phase, i.e., unknown signals. In [14] and [15], the
authors proposed more advanced DNNs, including fusion
convolutional neural networks (CNNs) and self-supervised
DNNs to improve the accuracy of modulation classification.
Recent DNN-based RF signal classifiers also use recurrent
neural networks (RNNs) [16], [17] (see also [18], [19] and
the references therein for related work on ML-based signal
classification).

However, ML classifiers are vulnerable to adversarial
machine learning (AML) attacks. These attacks can infer
membership [20], leave a backdoor in the data [21], poison
the data [22], or mislead the classifier into assigning wrong
labels during normal operation [23], [24], [25], [26], [27]. In
this paper, we focus on the last type of AML attacks. Specif-
ically, we investigate the impact of AML perturbations on
signal classifiers, considering realistic aspects of the wireless
scenario. AML perturbations have mainly been studied in the
context of object classification/recognition, but more recently
in the context of RF signal classification (e.g., [28], [29], [30],
[311, [32], [33], [34]). In such attacks, an adversary trains a
surrogate DNN, henceforth called the attacker’s classifier,
to produce cleverly crafted perturbations that are difficult to
detect. When combined with the original (a.k.a. “benign’’)
samples, these perturbations can mislead the defender’s clas-
sifier into wrongly classifying the signal type (see Figure 1).

Adversarial Transceiver
(attacker’s classifier)

«A))
() /
A Benign Data J

\

Legitimate Transmitter

AML
Perturbations

Legitimate Receiver
(defender’s classifier)

FIGURE 1. AML perturbations attack on a signal classifier in
wireless systems.

Several factors contribute to the effectiveness of an AML
attack, including how much knowledge the attacker has about
the defender and what imperfections the AML perturbations
may encounter before reaching the defender’s classifier. In
[28], [29], [30], [31], the authors studied AML attacks in
two extreme scenarios: the attacker has full knowledge of the
defender’s classifier (white-box attack) or it has zero knowl-
edge (black-box attack). Specifically, in [28] the authors
adapted the original Fast Gradient Sign Method (FGSM) for
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generating perturbations [23] to attack modulation classifiers,
assuming the attacker has perfect knowledge of the defender’s
classier. The authors in [29], [30], and [31] showed that DNN-
based signal classifiers are vulnerable to both white-box and
black-box attacks. These attacks only represent two extremes.
In many practical scenarios, the attacker has partial knowl-
edge of the defender’s classifier. The authors in [32], [33],
and [34] analyzed AML attacks that require prior knowl-
edge (exact or probabilistic) of the channel state between the
attacker and defender, assuming that the attacker knows the
DNN architecture (including the trainable weights and loss
function) used by the defender’s classifier. Note that due to
differences in the dynamics of the transmitter-attacker and
transmitter-defender channels, the benign signal seen by the
attacker will be different from the one seen by the defender,
which will result in different trained weights even for the
same DNN (ultimately, impacting the effectiveness of the
attack, as later shown in our simulations).

Prior works on RF signal classification have not exten-
sively examined differences in the hyperparameters of the
DNN structures, even when such structures are trained under
the same data. Our study examines both aspects (differences
in the input as well as differences in the hyperparameters).
In particular, we observe that knowledge of the defender’s
classifier plays an important role in the strength of the attack.
Intuitively, the attack is stronger when both the attacker and
defender apply the same DNN than when they use different
DNNs. Even under the same DNN architecture, differences
in the hyperparameters can also affect the attacker’s effec-
tiveness (even when the attacker and defender use the same
training and testing datasets). For example, if two CNNs
differ in filter sizes at the Cov2D layer(s) or in the number of
layers, the attack can be less effective. We further observe the
attack’s effectiveness is reduced even when the defender and
attacker apply the same DNN but train it with different seeds.
This implies that knowledge of defenders’ DNN structure is
critical for AML attacks. In our work, we first examine the
impact of AML perturbations under a white-box model. We
use the results as a reference point to evaluate other attack
scenarios where the attacker has partial knowledge of the
defender.

Previous works (e.g., [28], [29], [30], [31], [32], [33], [34])
primarily focused on modulation classification attacks. Such
works used CNN-based classifiers as examples but did not
consider sequence-to-sequence models such as RNNs [16],
[17]. Our paper evaluates both protocol and modulation clas-
sifiers, considering CNN- and RNN-based designs. We start
with FGSM, as a simple technique to generate AML per-
turbations [23]. We then extend the treatment to multi-step
attacks by considering Projected Gradient Descent (PGD)
[24] and DeepFool [25]. We evaluate these attacks under
different knowledge levels for both modulation and protocol
classifiers.

The authors in [32], [34], and [33] considered the problem
of synchronization between the attacker and defender. The
synchronizing problem in our paper differs from theirs in
two main aspects. First, we focus on studying the synchro-
nization issue for input-dependent AML attacks (e.g., FGSM,
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PGD, and DeepFool). In contrast, the shift-invariance prop-
erty demonstrated in [32], [34], and [33] pertains to input-
independent attacks, e.g., Universal Adversarial Perturbation
(UAP). In the UAP attack, the same matrix of perturba-
tions is generated for all different benign inputs. This matrix
effectively fools all inputs with high probability [35]. Con-
sequently, the defender receives the same perturbation for all
inputs, a notable contrast from the perturbations we exam-
ine in our paper. Second, UAP, being input-independent,
allows the generated attack on one window to be effective
on other windows, as demonstrated in [32], [34], and [33].
In our paper, we refer to this coarse-scale misalignment as
inter-window shift. However, the misalignment can also be a
fraction of a window, a scenario we refer to as intra-window
shift. In this case, the shift-invariance property of the UAP
attack is no longer valid. For input-dependent AML attacks,
we study the impact of both inter- and intra-window shifts.

Finally, we propose a two-step defense mechanism to

improve the robustness of the defender’s classifier to AML
attacks. Our defense approach relies on training multiple
classifiers with various adversarial examples [23], each at a
given level of perturbations. During normal operation (testing
phase), a separate DNN-based estimator is used to predict
the level of perturbations of the AML attack (including the
possibility of no attack). Subsequently, one of the retrained
classifiers is selected for robust signal detection.

Our contributions are summarized as follows:

o In addition to modulation classifiers, we extend the
study of AML attacks to protocol classifiers used in
spectrum-sharing scenarios (prior work focused only on
modulation classification). In contrast to [28], [29], [30],
[31], [32], [33], and [34] where only a CNN classifier
was studied, in our work we consider two CNNs and
three RNNs (e.g., LSTM and bidirectional LSTM).

o In contrast to previous work, which considered two
extreme cases of the attacker’s knowledge (i.e., white-
box and black-box attacks), our paper studies a range of
(partial) levels of knowledge.

o« We study AML attacks under practical considerations
of a typical wireless network setting, including unsyn-
chronized transmitter/attacker operation, non-persistent
AML perturbations, and channel degradations. We eval-
uate the attacks under various imperfections and show
that these attacks can still significantly reduce the
defender’s accuracy.

o« We propose a defense approach based on enhanced
adversarial training. Traditional adversarial training
relies on retraining a single classifier under a particular
attack setting, and hence is not effective under other
attack settings. Our proposed defense mechanism shows
better robustness and improves the defender’s accu-
racy by 30-50% compared to conventional adversarial
training.

Il. SYSTEM MODEL

We consider a wireless communication system that consists
of a legitimate transmitter-receiver pair and an adversarial
device (see Figure 1). The transmitter generates RF signals
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according to one of several possible protocols (for proto-
col classification) or modulation schemes (for modulation
classification) in an interleaved manner, i.e., one protocol or
modulation scheme is active at a time. Without loss of gener-
ality, we assume that the defender’s classifier resides within
the legitimate receiver.! This classifier is trained to identify
the protocol (or modulation scheme) based on the received
baseband I/Q samples, which we refer to as benign data or
benign input. The attacker generates its perturbations based
on overheard benign data. These perturbations interfere with
the defender’s classifier, pushing it into wrongly classifying
the received samples. We refer to the combined benign data
plus perturbations as adversarial data.

The output of the defender’s classifier is represented by
the mapping z = g(x; 6), where x is a window of I/Q samples
and 0 is the set of learnable DNN parameters, i.e., weights
and biases. The input x is in R>*V | where N is the window
size (in consecutive samples) and the first (second) row rep-
resents the sequence of I (Q) values, respectively. The input
matrix x is passed through the DNN and is represented by a
feature vector resulting from a projection and nonlinear (acti-
vation) function, o (). The classifier assigns a label f (x; ) =
arg maxy (o (z)x) to the received input, where k € K and o isa
softmax function. In this formulation, o (z)x is the numerical
output of classifier f corresponding to the kth protocol (or
modulation) type.

At any given time, let H,; be the channel matrix from
the legitimate transmitter to the defender, Hy, be the channel
matrix from the legitimate transmitter to the attacker, and
H,; be the channel matrix from the attacker to the defender.
We assume AWGN {n;} and {n,} at the receive chains of
the legitimate receiver (defender) and attacker, respectively.
In the absence of AML perturbations, the defender receives
xg = Hyx, + ng, where x,/ is the transmitted waveform.
The attacker receives x, = Hy,xpy + n,. The adversary uses
its signal x, to generate and transmit AML perturbations 7.
In the presence of AML perturbations, the defender receives
x; = Hyxy + Hugn + ng. We introduce a variable t
to indicate the time lag between the arrival of the benign
signal at the defender and the arrival of the corresponding
AML perturbations. Accordingly, the signal received by the
defender becomes xj(7) = Hyxy + Hygn(t) + ng.

Several approaches can be used to generate 1. Such
approaches were studied in the context of computer vision
and natural language processing. In this paper, we apply these
approaches in the context of RF signal classification. Specifi-
cally, the attacker seeks to determine AML perturbations that,
when combined with the original signal, fall within an £°° ball
determined by € and that maximize the classification error.
More formally, the adversary would ideally solve:

méix ]I{f(xd; 0) # f(x]; 9)}

st Inllao <€ ey

where I is an indicator function that reflects the number
of misclassified labels in a given training set. We seek the

IWe use the legitimate receiver and the defender interchangeably in our
paper.
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smallest possible perturbations. To achieve this goal of find-
ing the perturbation efficiently, we add a constraint on 7.
Note that € > 0 is a user-defined parameter that limits the
power of the perturbation and ensures the attack is difficult
to identify by the defender. Instead of constraining 7, one can
also attempt to find the minimal 7 that is sufficient to change
the estimated label. This is done by solving the following
minimization problem:

n* =argmnin 71l o
st f(xas 0) # f(xg; 0). (@)

This type of perturbation, proposed by Moosavi-Dezfooli
et al. [25] is called the DeepFool attack.

Ill. DNN STRUCTURES

This section discusses the DNNs we consider for protocol and
modulation classification, as well as the datasets used to train
and test them.

A. DNNs FOR PROTOCOL CLASSIFICATION

We consider four DNN structures for protocol classifica-
tion, as shown in Figure 2. Three of these structures are
stacked RNNs, each made of dense layers as well as Long
Short-Term Memory (LSTM) and/or bidirectional LSTM
(BiLSTM) layers. The last DNN is a CNN, modified from
LeNet [36] by replacing the Conv2D of LeNet with ConviD
layers to efficiently transform and extract features from the
time-domain sequence. In addition, we remove the padding
layer from LeNet to improve the accuracy. The kernel size
for the ConviD layer is set to two, and its stride is set to
one. The activation functions for the ConvID and the fully
connected layers are scaled exponential linear units. The
output layer in each classifier is soft-max. To train and test
the protocol classifiers S1 to S4, we generate a dataset of
15,000 inputs (see Section VI), each containing 512 pairs
of I/Q samples. AWGN is added to the samples to achieve
a given signal-to-noise ratio (SNR).?> Approximately 60% of
the dataset is used for training, 20% for validation (i.e., early
stopping, hyperparameter tuning, etc.), and 20% for testing.
We monitor the cross-entropy and use early stopping with a
patience of three.

B. DNNs FOR MODULATION CLASSIFICATION

We also consider the modulation classifier proposed by
O’Shea et al. and apply it to the RML 2016.10a dataset [37].
We abbreviate O’Shea et al.’s DNN as VT-CNN2. VT-CNN2
is a four-layer CNN that uses two convolutional layers and
two fully connected layers. The hidden layer activations are
Rectified Linear unit (ReLu). The output layer is a soft-max.
The RML 2016.10a dataset comprises 220,000 data segments
(i.e., windows), representing 11 modulation schemes. There
are 20 SNR values that range from —18 dB to 20 dB in
steps of 2 dB. This results in 1,000 windows of samples per
modulation scheme per SNR. We use 50% of the data for

2Unless specificied otherwise, the SNR in this paper refers to the SNR for
the Tx-attacker channel, i.e., SNR7_4.
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FIGURE 2. DNNs considered in this work for RF signal
classification. Structures S;-S3 are RNN-based classifiers,
structures S, is a LeNet-based CNN classifier, and structure
S5 is the VI-CNN2 classifier.

training, 5% for validation and early stopping, and 45% for
testing. The RML 2016.10a dataset is available in windows
of 128 samples (I/Q pairs) each, with a stride of 64 samples,
i.e., two successive windows overlap by 64 samples.

IV. ADVERSARIAL ML ATTACKS

We consider three different approaches for generating adver-
sarial data: FGSM, PGD, and DeepFool. Although other
approaches have been proposed in the literature, these three
are often applied to wireless communication systems.

A. FGSM ATTACK

FGSM uses the gradients of a DNN to generate a perturbation
n and, subsequently, the adversarial data x,3y = x + 1
[23]. Ideally, the defender would predict the same class for
x and x4, if 1 is less than the given precision. However,
the adversary can craft n and cause the defender’s classifier
to change its decision on the perturbed data. We denote the
DNN’s mapping function as f : RN - [0, 11X with
parameters 6. Even though the difference between x,4, and x
is the small perturbation n, the difference f (x +7; 0) —f (x; 6)
is not linear in 7. In fact, the impact of n can be learned and
amplified by FGSM to change the label sign by calculating
backpropagated gradients. The adversarial perturbation is for-
mally given by n = esign(ViL(x,y; 6)), where L(x,y; 6)
is the loss function of the classifier (typically, cross-entropy)
with parameters 6 [23]. The adversarial data are generated by
maximizing the loss with respect to the classifier’s input x and
true label y based on the gradients V,L(x, y; 8). The authors
in [29] proposed a new parameter €,.. for adapting € during
the generation of the FGSM perturbations. In Section VII-F,
we compare the results in [29] with the unmodified FGSM
approach and show that both versions of FGSM lead to
reducing the defender’s accuracy.
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B. PGD ATTACK

FGSM can be interpreted as a one-step approach to maximize
the impact of the perturbations. PGD is a more powerful
variant of FGSM that uses multiple steps to project the
gradient on the negative loss function [24]. We consider
a constraint set Q for perturbation power €. Starting from
the initial point xp, PGD iterates over the equation x;411 =
Po(x; + asign(ViL(x,y; 0)) until a stopping condition is
met, where Py is a projection operator that ensures that the
output satisfies the constraint and ¢ is the iteration number,
t=0,1,2,...,T.Inother words, PGD generates the pertur-
bation in 7 iterations using a step size «. Clearly, the choice
of @ and T significantly impacts the performance of the PGD
attack. Section VII studies the classification performance of
PGD-based perturbations under different o and 7.

C. DeepFool Attack

In DeepFool [25] € is not set a priori; instead, the adversar-
ial perturbation is determined by the smallest n needed to
change the label f(x; ). We can calculate the perturbation
for x as in Equation (2). The same notation for f(x; 6) =
arg maxy (o (z)x) is used as in Section II. To show the changes
in o (z) with 7, let o (g(x; 6)) be the output activation function
that generates K outputs corresponding to the number of
classes. DeepFool continues until the accumulative perturba-
tion 1 changes the input’s label. For multi-class problems,
DeepFool updates the gradient changes between all other
labels and the label that the target model predicts, and chooses
the label with the smallest change as the direction to accumu-
late the perturbation. To find the closest possible perturbation
that would mislead the classifier, we need to calculate the gra-
dient of o (g(x; #)). Therefore, this work considers the pertur-
bation vector directed to the decision boundary between the
originally predicted label and a fake label y. The perturbation

GO G 0

| Votet:o5)]3
DeepFool returns 1 as the sum of perturbation at each step

(7). The DeepFool algorithm is summarized in Algorithm 1.

at each ¢ can be written as: n; <

D. ENERGY OF PERTURBATIONS

In all the previously discussed perturbation methods, the
parameter € controls the power (or energy) of the perturba-
tions. This € is sometimes called the adversarial budget [38].
A larger € implies that the perturbations can have a larger
impact on the input, which results in a lower classification
accuracy of the adversarial dataset. A larger ¢ means the
adversary requires more energy. To reflect the energy level of
the perturbation, we define the Signal-to-Perturbation Ratio
(SPR) as the energy ratio between the received signal and
the perturbation: E(x)/E(n), where E(x) is the average signal
energy that received by the defender before the additive per-
turbation: E(x) = >y »x[n]l> = 30| L (Refx[n]}> +
Im{x[n]}z). Re{x[n]} and Im{x[n]} correspond to the I/Q
values contained in the nth input sample. E(n) is the energy of
the perturbation generated by the attacker without including
the channel impact between the attacker and defender. The
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Algorithm 1 DeepFool Attack (Multi-Class Classification)
Input: Input x, classifier f
Output: Perturbation n
Initialize t < 0, x; < x
while f (x;; 6) =f(x; 6) do
for k # f(x; 0) do
Vo (glxe; )k < Vo(glxr; 0k — Vo (glxs; 0))rx:0)
0 (g(xs; 0)), < 0(g(x; O — o (8(x15 0))r(x:0)

end for p——

~ . o(g(Xxss

Y < argmingas o) oo oo
o (g(x;0)),

N < | ~ Vo (g(x; 0))

| Vo (g0
Xt41 < Xr + 1t
t<—t+1

end while

return n = >, 1,

relationship between SPR and € is not in closed form because
the energy of each window of samples varies from one win-
dow to another, and the perturbation vector differs for each
class of data. As a result, to obtain the SPR as a function of ¢,
we must first generate the perturbations and then compare the
average energy between the benign signals and perturbations.
We show such relationships in Figure 3(a)-(b). It can be
observed that the SPR drops quickly with € at the beginning.
This trend slows down when € is large.

25 30
—~20 —
o m 20
z z
x 15 g
o

10
&) 10 (2]

5 0
005 01 015 02 025 0.001 0.002 0.003 0.004 0.005

€ €
() (b)

FIGURE 3. Relationship between the SPR and ¢ for: (a) protocol
classification dataset, and (b) RML 2016.10a dataset.

Recent research proposed ML approaches for detecting
low-power interference [39], [40]. According to the method
in [39], an adversarial signal can be detected when the
interference power is 10 dB below the benign signal. There-
fore, the adversarial perturbations will be hidden if the SPR
exceeds 10 dB. According to Figures 3(a)-(b), an SPR >
10 dB corresponds to € < 0.25 and € < 0.002, for the protocol
and modulation datasets, respectively.

Indeed, the range of values for € depends on the specific
dataset used. In our experiments, the samples in the two
datasets exhibit significantly different amplitudes, as shown
in the examples in Figure 4. Thus, for the same ¢, the
impact of the perturbations will be greater on the modula-
tion classifier than on the protocol classifier. This is why
we evaluated AML attacks on the modulation classifier
using € € [0.0005, 0.005] and on the protocol classifier using
€ €10.05,0.3].

265



EE IEEE Transactions on

—~IEEE @ IEEE e Oy B ey
COMPUTER Signal = Machine Learning in

1.5
0.0104
1.09 Q

BN

-1.01

0.0054

\
0.0004

—0.0054

Amplitude
Amplitude

Q

T T T T T —0.010- T T T T T T T
100 200 300 400 500 0 20 40 60 80 100 120
Index of 1/Q pairs Index of 1/Q pairs

(@ (b)

FIGURE 4. Amplitude for a segment of I/Q samples: (a) 5G
waveform in the protocol dataset, (b) 64-QAM waveform in the
RML 2016.10a dataset.

V. ADVERSARIAL ATTACKS WITH LIMITED
KNOWLEDGE

In this section, we assess the impact of the attacker’s knowl-
edge of the defender’s classifier on the effectiveness of an
AML attack, considering the aforementioned three tech-
niques for generating AML perturbations. A white-box attack
(full knowledge) is expected to cause the most degradation
in the defender’s classification accuracy. What is less clear
is how much reduction in the attack’s effectiveness, if any,
results from limiting the amount of information available
to the attacker. Accordingly, we consider scenarios where
the attacker possesses only partial information about the
defender. We divide such knowledge into classifier and data
domains, and consider different levels of knowledge for
the attacker in both domains. Under partial knowledge, the
attacker’s DNN ends up being different in structure and/or
trainable weights than the defender’s DNN. Even with such
differences, our results show that the attack is still effective,
but such effectiveness depends on the similarity between the
surrogate and defender classifiers. This observation confirms
the concept of attack transferability, defined as the ability of
an attack generated using one DNN classifier to impact the
performance of another DNN classifer [41], [42]. However,
the level of transferability is a function of the dissimilarity
between the two DNNs. Recent studies [43], [44] corroborate
our findings, prompting the authors of these works to suggest
applying transformations and input diversity during the train-
ing of the attacker’s DNN so as to improve the efficacy of
attack transferability.

A. LIMITED KNOWLEDGE OF DEFENDER’S CLASSIFIER
We consider realistic scenarios in which the attacker trains
a classifier f,(x; 6,) that is not identical to the defender’s
classifier f;(x; 64). In this case, the loss can be represented
by L(x}, ya; 04) because the label for the corresponding input
needs to be estimated by the attacker’s classifier. The dif-
ference between f,(x; 6,) and f;(x; 67) has a direct impact
on the loss function. We study the following four levels
of the attacker’s knowledge and test their impacts on the
perturbations.

Attack Ay: In this scenario, the attacker knows the hyper-
parameters of the defender (i.e., the network type, number of
hidden neurons, activation functions, etc), but does not know
the exact values of the defender’s trained weights. This may
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result from using different random initializations or different
learning rates during the training. As a result, the adversary’s
and defender’s classifiers will have different weights and
biases even if they have the same classification performance.
For our simulations, we use two different sets of random seeds
to initialize two classifiers before training them and keep all
other settings the same.

Attack Aj: In this attack, the adversary knows the overall
structure of the defender’s DNN but does not know other
hyperparameters. For example, the attacker may know that
the defender’s classifier uses a seven-layer CNN model with
ConviD as the first two layers, but the attacker does not
know the filter numbers of these layers. For our simulations,
we assume that the attacker knows the number of layers, their
types, and their order but does not know these layers’ filter
numbers (or unit numbers for RNNs).

Attack Asz: In this case, the attacker knows the type of
classifier that the defender uses (e.g., CNN or RNN), but
not its structure. To study this attack, we use a differently
structured classifier of the attacker to generate the adversar-
ial perturbations. Sometimes, we consider the same type of
DNN but with different layer numbers (e.g., we use a three-
layer RNN structure S; for the defender but use a two-layer
structure S3 for the attacker).

Attack A4: In this attack, the attacker knows nothing about
the defender’s classifier. The mapping function f, can dif-
fer significantly with classifier types, especially if a CNN
represents features differently than an RNN. In this sce-
nario, we consider the situation when the attacker uses RNN
structure S; as the classifier to generate the adversarial per-
turbations. Still, the defender uses the CNN structure S4 as
the detector and vice versa.

B. LIMITED KNOWLEDGE OF DEFENDER’S TRAINING
DATA

In a practical wireless setting, the benign samples received
by the attacker, x, = Hyxp + n, and those received by
the defender, x;, = Hyyxy + n, are different due to chan-
nel impact. The attacker trains its classifier f, based on the
dataset x,. Because the training data sets at the attacker and
defender differ, the parameters 6, and 6, will differ. As a
result, the adversarial perturbations must be generated with
fa(x; 04). The loss function L(x}, y4; 64) is approximated by
L(Xa, Ya; 0a) + 17 Vi, L(xa, Ya; 02)- We denote this type of
attack as Ay,..

C. IMPERFECT SYNCHRONIZATION BETWEEN
PERTURBATIONS AND BENIGN DATA AT DEFENDER

Due to differences in propagation delays, as well as pro-
cessing delays of benign data at the attacker, the adversary
cannot guarantee that its perturbations will be perfectly syn-
chronized with the benign data received by the defender [37].
We study such imperfect synchronization and analyze its
impact on the defender’s classification performance. In our
setup, the defender’s waveform is sampled by a fixed-length
moving window before being sent to the classifier. Therefore,
we consider two situations: intra- and inter-window shifts,
as shown in Figures 5(a) and 5(b). Note that our study of the
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impact of imperfect synchronization does not mean that the
defender has any way to control or even estimate the degree of
mis-synchronization.

One window

- Benign signals - Perturbations

©

FIGURE 5. Examples of imperfect synchronization and
incomplete sequences of perturbations. (a) Intra-window
perturbation shift, (b) inter-window perturbation shift,

(c) Incomplete-window perturbations.

D. INCOMPLETE SEQUENCES OF PERTURBATIONS

The adversary may act intermittently to prevent being
detected, generating its perturbations for only a fraction of
the time, as shown in Figure 5(c). In this setting, the attacker
listens to the channel at the beginning of the transmission
and sends part of the perturbation to be superposed with
the benign signal at the defender. For simplicity, we assume
that during its active periods, the attacker’s perturbations are
synchronized with the benign signal.

E. LIMITED ENERGY RATIO BETWEEN PERTURBATIONS
AND CHANNEL IMPACT

Previously, we depicted the relationship between the SPR
and € before accounting for channel effects (see Figures 3).
We also study the channel impact between the attacker and
the defender, assuming AWGN channels. In this case, the
total interference received by the defender is the sum of
the adversary’s perturbations and the channel noise. The
Perturbation-to-Noise Ratio (PNR) was introduced to mea-
sure the relationship between the transmitted power of the
adversarial perturbations and the noise/fading of the channel
between the attacker and defender. In Section I, we expressed
the perturbations received by the defender as H,yn + ng4.
The PNR, denoted as E(H,4n)/E(ng), is averaged over all
received baseband I/Q pairs. To evaluate the channel impact
between the attacker and defender, we treat the received
signal at the defender without attack as benign. Note the
benign signals already include the AWGN noise between the
transmitter and defender. To further determine the channel
noise between the attacker and defender, we use the energy
of the benign signals as the reference and vary such channel
noise in several levels. After determining the channel noise
between the attacker and defender, we further vary perturba-
tions to evaluate their impact under different PNRs. The SNR

VOLUME 2, 2024

in the attacker-defender channel is related to SPR and PNR
as SNR = SPR x PNR or, equivalently, SNR [dB] = SPR
[dB] + PNR [dB]. Therefore, if the attacker wants to ensure
the perturbations are undetectable, it should have a PNR value
below SNR —10 dB.

VI. DATASETS

For protocol datasets, the Matlab Wi-Fi, LTE, and 5G Tool-
boxes were used to generate signals. Of the various possible
features, we use the baseband I/Q samples at the defender
(with AGWN) as input to the classifier. I/Q samples are
obtained before decoding the signal, providing a rich repre-
sentation of the actual waveform. The simulated waveforms
are divided into multiple sequences by applying a sliding
window with a step size of one, each consisting of 512 I/Q
pairs. Simulated transmissions are sent at the same center
frequency, over a 20 MHz channel. In addition, we consider
the LTE, Wi-Fi, and 5G NR as the classes of signals transmit-
ted under an AWGN channel with SNR = 15 dB. The Wi-Fi
waveforms are transmitted by generating baseband samples
of 802.11ac (VHT) with BPSK modulation and 1/2 coding
rate. The LTE waveforms are generated by downlink with
reference channel R.9, which uses a 64 QAM modulation. We
also generate 5G waveforms using 5G DL FRC with QPSK
modulation and a coding rate of 1/3 with a subcarrier spacing
of 15 kHz. These sequences form the datasets to train and test
the four protocol classifiers. We generate a dataset of 15,000
inputs, with approximately 5,000 samples for each label
(Wi-Fi, LTE, and 5G).

In addition to the 15,000 windows of samples, we also
consider a much larger set of 220,000 windows. Specifically,
to better illustrate the impact of adversarial perturbations on
classification accuracy, we consider the publicly available
RML 2016.10a dataset for modulation classification [37].
This dataset comprises noisy I/Q samples for 11 modulation
schemes: 8PSK, BPSK, QPSK, QAM16, QAM64, CPFSK,
GFSK, PAM4, WBFM, AM-DSB, and AM-SSB. Each mod-
ulation scheme is represented in 1,000 windows of samples
for each given SNR, with the SNR varying from —18 dB
to 20 dB in steps of 2 dB. Thus, the RML 2016.10a dataset
includes 220,000 windows of samples (20,000 windows per
modulation scheme), each consisting of 128 1/Q pairs.

VIl. PERFORMANCE EVALUATION

In this section, we evaluate the impact of FGSM, PGD,
and DeepFool attacks when the attacker possesses differ-
ent knowledge levels about the defender. We then test the
impact of mis-synchronization attack, persistence, and chan-
nel noise, considering FGSM as a representative example.
We apply our evaluation to both protocol and modulation
datasets.

A. FGSM ATTACKS

Figure 6 depicts the classification performance at the
defender vs. €, considering FGSM attacks on the pro-
tocol dataset. As shown in Figure 6(a), the RNN struc-
tures S1-S3 achieve approximately 91% accuracy under
benign AWGN perturbations. In contrast, the CNN structure
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FIGURE 6. Accuracy of proposed DNN classifiers under benign and FGSM-based perturbations: (a) All four DNNs under white-box
attacks, (b) RNN under limited-knowledge attacks, (c) CNN under limited-knowledge attacks.

S4 achieves 97% accuracy (refer to the dashed lines for benign
performance). The three RNN structures S;-S3 have com-
parable performance but have various bidirectional LSTM
designs. The accuracy drops for all four classifiers as we
increase the budget of the adversarial FGSM perturbations
via €. Note these are white-box attacks where the adversary
is capable of the most damage. We also observe that structure
S1 has the highest average accuracy over all € settings among
the three proposed RNN models. Therefore, we use structure
S in later evaluation to represent the RNN classifier. Even
though the CNN performs best under benign perturbations,
it suffers more from AML attacks. When ¢ exceeds 0.1,
the CNN model performs the least accurately among the
different structures. All the models’ accuracy saturates when
€ is higher than 0.2, indicating that the white-box attack can
mislead the defender’s classifier with limited power control.
These results demonstrate an accurate classifier is not neces-
sarily a robust classifier.

After evaluating the white-box attacks, we consider attack
scenarios where the attacker has incomplete knowledge (as
described in Section V) of the defender’s classifier and/or
the training dataset used by the defender. The accuracy for
RNN (i.e., structure S7) is shown in Figure 6(b). The impact
of attack A; is close to the white-box attack. This result is
expected because the attacker has the same hyperparameters
as the defender. Although the classifiers are trained with dif-
ferent seeds, one can still inherit most of the properties from
the other. Attack A, exchanges the filter number of the first
two layers, and attack A3 uses one less layer (e.g., remove the
third layer of structure Sp) for the attacker. Both show similar
performance as the defender, which means these hyperpa-
rameters are relatively important for generating adversarial
perturbations. Attack A4 has the weakest attack effect. This is
because the attacker applies the CNN structure S4 to generate
the adversarial signals for the RNN model (i.e., the adversary
does not know the structure of the defender). Even though
both classifier types can classify the waveforms accurately,
the actual trained model differs significantly from the others.
Therefore, a well-crafted perturbation for the CNN may not
achieve the expected effect on RNNs. Attack A, uses the
different training datasets to generate the perturbations. Thus,
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it shows more variance than other attacks. It has an equivalent
trend with attacks A, and A3, but slows when € exceeds 0.15.

The accuracy of CNN (i.e., structure S4) is shown in
Figure 6(c). Similar to the RNN observations, the attack’s
impact depends heavily on the adversary’s level of knowledge
about the defender. In the simulation, attack A, exchanges
the filter number of the two ConvID layers, and attack
A3 removes the second ConvID layer at the attacker side.
Compared to the RNN, the layer and filter number setting
play a more critical role in CNNs. As a result, attacks A3 and
A4 show different trends with varying €. In contrast, attack A;,
shows a strong similarity with attack A, which implies the
CNN model can suffer a more severe attack than the RNN,
even when the attacker has limited knowledge of the data.

We then show the impact of FGSM under the white-box
attacks using the RML 2016.10a dataset. We use VT-CNN2
as the benchmark classifier for the defender. The adversarial
budget, €, varies from 0.00025 to 0.005. As € increases,
the perturbations exhibit higher power (i.e., lower SPR),
and reduce more accuracy of the defender. We evaluate the
defender under different SNRs and summarize the results in
Figure 7(a). In addition to the white-box attack, we study
FGSM perturbations under four limited-knowledge attacks.
To keep the energy of the perturbation low, we explore the
FGSM attacks with € = 0.001 as an example. As shown in
Figure 7(b), limited-knowledge attacks A; and A, show close
accuracy with the white-box attack. This result suggests that
a small structure change may not heavily impact the FGSM
adversarial signals for VI-CNN2 on RML 2016.10a dataset.
However, when the attacker’s knowledge is further reduced,
the impact of FGSM becomes weaker (shown as the attacks
Az and Ay). This indicates that the attack can be significantly
weakened if the defender’s knowledge is less than a certain
level. However, these imperfect knowledge attacks are still
stronger than AWGN with equivalent power.

B. PGD ATTACKS

Due to the CNNs and RNNs having similar accuracy trends
under FGSM attacks as shown in Figure 6(b) and 6(c), we use
RNN (structure Sp) as the classifier for the protocol dataset
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FIGURE 7. Classification accuracy vs. SNRs for VI-CNN2 using RML 2016.10a dataset. (a) FSGM, PGD, and
DeepFool under white-box attacks (several values for ¢ are considered), (b) FSGM and AWGN under

limited-knowledge attacks (¢ = 0.001).

to show the remainder of the attack schemes. We first study
the impact of step sizes and maximum iteration numbers
on PGD-based perturbations. Under the white-box attack,
we test the classification accuracy of the defender’s classifier
while fixing € = 0.15. Recall that the PGD attack is com-
puted over multiple steps (iterations) of gradient descent, and
is parameterized by € and «. The parameter € regulates the
power budget (same as FGSM), whereas « controls the step
size. @ can be chosen from a wide range because the projec-
tion in PGD always pushes the perturbed signal into the con-
straints of €, as described in Section IV-B. While a larger € can
strengthen the attack, a larger o does not guarantee a stronger
attack, which was also observed in [45] and [46]. Using the
CIFAR-10 dataset, Croce and Hein [45] showed that when
o is twice the value of ¢, the PGD attack becomes weaker
than when using smaller values of «. Figure 8(a) depicts the
classification accuracy under PGD perturbations versus the
number of iterations for three values of o with ¢ = 0.15
(protocol dataset). The defender’s accuracy does not decrease
when « goes from 0.2 to 0.3 because « is larger than €.
We observe that PGD with ¢ = 0.1 achieves the lowest
accuracy after ten iterations. Accordingly, we chose o =
0.1 for PGD and evaluated this attack for different values of
€. Figure 8(b) shows the defender’s classification accuracy
under FGSM and PGD attacks. PGD attacks are stronger
than FGSM attacks when € ranges from 0.05 to 0.3. These
results suggest that PGD may be more effective at generating
perturbations.

Comparable trends are observed in VI-CNN2 using RML
2016.10a dataset. To ensure that PGD attacks result in per-
turbations with limited energy, we fix ¢ = 0.0025, and vary
a from 0.001 to 0.005. Figure 8(c) shows the classification
accuracy for different values of «. When « is close to €,
the value of T has a visible impact on the effectiveness of
the PGD attack, particularly when 7" increases from 1 to 2.
After a few iterations, the impact becomes less significant.
Similar trends are observed under the other two small values
of a. Moreover, we evaluate the accuracy of the defender’s
classifier under attacks as a function of € when testing SNR
is 16 dB, as shown in Figure 8(d). FGSM and PGD are quite
effective in degrading the defender’s classification accuracy.
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As expected, the accuracy goes down with a larger €. Gen-
erally, PGD is an iterative attack and can impact the classifi-
cation accuracy more than the one-round FGSM attack. We
compared and summarized the impact of FGSM and PGD
attacks in Figure 7(a), where we allow a sufficient iteration
number for the PGD attacks for comparison. When € is very
small, PGD similarly impacts the classification performance
as FGSM. As ¢ increases, the difference between PGD and
FGSM is more pronounced. In our case, the accuracy gap
between PGD and FGSM only grows when € increases from
0.00025 to 0.001, but drops after that point (i.e., as € further
increases).

In addition to PGD under white-box attacks, we evaluate
the limited knowledge adversary for the protocol dataset
in Figure 9 and for RML 2016.10a dataset in Figure 10.
Figure 9 compares the different knowledge levels of PGD
attacks with « = 0.1 and T = 20 to the AWGN attack.
The PGD-based attacks significantly impact the defender’s
classifier when we allow a larger ¢ value. Similar to the
FGSM trends, the limited-knowledge PGD attacks show a
weaker impact. Attacks A; and A, are closer than other
attacks. This performance is because they have the closest
knowledge of the defender. Attacks A> and Az have similar
performance as the defender, which is consistent with FGSM
results in Figure 6(b).

In Figure 10, we explore the PGD attacks with ¢ =
0.001, « = 0.01, and T = 20, under different SNRs
for RML 2016.10a dataset. We observe the attacks become
weaker with less knowledge of the defender, similar to FGSM
in Figure 7(b). The attacker in A; and A loses a little
information about the defender’s classifier, and has the clos-
est classification accuracy to the white-box attack. Attacks
Az and A4 become weaker due to the imperfect adversary’s
knowledge.

C. DeepFool ATTACKS

We first compare FGSM and DeepFool in terms of the
defender’s accuracy and SPR, assuming a white-box attack.
A range of € is considered for FGSM. DeepFool is not
parameterized by €, so it has only one entry in Table 1. From
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this table, we observe that FGSM with a larger € reduces the
defender’s accuracy but requires more energy (lower SPR).
This observation is in line with the observations in [30] and
[33]. FGSM with € = 0.2 has the closest SPR to DeepFool’s.
Therefore, in Table 2, we fix € to 0.2 and compare FGSM and
DeepFool under different knowledge levels. The DeepFool
attack results in a classification accuracy of 8.13%, compared
to 12.82% for the FGSM attack. Even if we consider the
FGSM attack with a higher € value, for instance ¢ = 0.25,
which gives rise to a lower SPR, DeepFool is still a stronger
attack.
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TABLE 1. Comparison between DeepFool and FGSM with
different ¢ values (white-box attack) using the protocol dataset.

Adversarial Scheme | SPR (dB) | Accuracy under Attack

FGSM with € = 0.05 24.14 62.03%
FGSM with € = 0.10 18.11 44.49%
FGSM with € = 0.15 14.60 28.74%

DeepFool 12.12 8.13%
FGSM with € = 0.2 12.10 12.82%
FGSM with € = 0.25 10.17 10.97%

Table 2 summarizes the SPR and accuracy under
limited-knowledge attacks Aj-As4 (previously defined in
Section V-A). We observe that the FGSM attack becomes
more effective with more knowledge, as the defender’s accu-
racy drops from 48.35% under attack A4 to 19.69% under
attack A;. The SPR under limited-knowledge FGSM attacks
remains the same because € is fixed when generating the
FGSM perturbations. In the case of DeepFool, although an
attack with more knowledge is supposed to cause more harm,
this is not always the case. For example, DeepFool attack
Ajz is more impactful than DeepFool attack Aj, although it
has less knowledge of the defender. Moreover, the SPR in
DeepFool varies with knowledge levels since the attack does
not have an € parameter that can be directly controlled. While
DeepFool’s perturbations force classification errors at the
defender, the attack is not guaranteed to be more effective
than FGSM, especially in the limited-knowledge scenarios.
Under limited knowledge, the difference between estimated
and actual classifiers may be amplified during the itera-
tions of the DeepFool algorithm. In attack Ay, even though
we keep the same classifier structure for both attacker and
defender, the different seeds for training initialization can
still make the attacker’s network slightly different in the final
mapping function. As a result, the perturbation generated
based on the attacker’s classifier may not perform as expected
on the defender’s classifier. Attacks A>, Az, and A4 are less
effective than attack A;. This is expected given that such
attack scenarios consider less information about the defender.

From the point of view of interference power, DeepFool-
based perturbations exhibit more fluctuations in their SPR.
Specifically, in attacks A», Az, and A4, DeepFool perturba-
tions exhibit lower SPR than their FGSM counterparts but are
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TABLE 2. Comparison between DeepFool and FGSM with ¢ = 0.2
(limited-knowledge attacks) using the protocol dataset.

Adversarial Scheme | SPR (dB) | Accuracy under Attack
DeepFool Ay 20.00 76.97%
DeepFool Aj 10.22 57.99%
DeepFool A, 11.41 61.87%
DeepFool A 11.16 38.42%

FGSM A4 12.10 48.35%
FGSM A3 12.10 35.56%
FGSM A, 12.10 34.78%
FGSM A, 12.10 19.69%

TABLE 3. Comparison between DeepFool attacks under different
knowledge levels using the modulation dataset.

Adversarial Scheme SPR (dB) | Accuracy under Attack
DeepFool Ay 14.59 63.23%
DeepFool Aj 8.34 47.17%
DeepFool As 13.18 46.64%
DeepFool A; 15.65 43.70%

DeepFool white-box attack 15.74 17.32%

still less effective than FGSM in terms of degrading the accu-
racy. One justification for this observation is that DeepFool
calculates the gradient changes for all the possible labels and
chooses the shortest direction among these labels to update
the perturbation at each step. However, the estimation of
the boundary between different labels heavily relies on the
anticipated outcome of the defender’s classifier, which is only
partially known by the attacker. As a result, the imperfect
knowledge of the attacker can weaken DeepFool more than
FGSM.

We further consider the DeepFool for VI-CNN2 on RML
2016.10a dataset and show the limited-knowledge attacks
over all SNRs. As shown in Figure 11, DeepFool attack relies
more on the information of the defender. Even DeepFool
attack is stronger than FGSM and PGD with € = 0.001 under
the white-box assumption, it becomes weaker with imperfect
knowledge. The attacker has significant knowledge of the
defender in attack A;. Nevertheless, the reduction in perfor-
mance is not as much as the white-box attack. The limitation
of the knowledge weakens the impact of DeepFool. Even
though, DeepFool can still outperform the AWGN attack on
a similar power level by 15% in the worst situation (attack
A4). We then show that DeepFool attack has very low energy
of the generated perturbation. The results of different attack
schemes tested under 16 dB are summarized in Table 3.
All these attacks can reduce the accuracy of the defender’s
classifier while maintaining the high SPR. Such reduction
changes are based on the knowledge level of the attacker.
When the attacker’s classifier performs more similarly to the
defender, the generated perturbations can be more effective.
Under the least-knowledge attack A4, the attacker uses the
RNN classifier to generate the perturbation and applies it to
the VI-CNN2 classifier on the defender side. It still decreases
the classification by approximately 20% with minimal pertur-
bation energy (i.e., the SPR is still high).

D. IMPACT OF SYNCHRONIZATION

We evaluate the accuracy of the defender under intra- and
inter-window shifted perturbations to simulate the imperfect
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synchronization. The results on the protocol dataset are
shown in Figure 12(a) and (b). Both intra- and inter-window
shifts weaken the strength of the FGSM attack; however, the
shifted FGSM attacks still degrade the performance further
than AWGN. The equivalent AWGN means that the attacker
transmits the AWGN noise instead of FGSM perturbation,
where AWGN has the same energy as the FSGM attack under
given €. The intra-window shifted attack can be weakened
a lot even only has one sample step shift, as shown in
Figure 12(a). The shift between the signals and perturbations
can further reduce the attack performance until the shift size
reaches around 100 samples. Similarly, the first several steps
for the inter-window shift have a more significant impact on
the attack, as shown in Figure 12(b). When the shift step
achieves around 50 windows, the effect of shifted attack
starts to converge. In an actual attack, the attacker cannot
control such synchronizations; however, our results can be
used as the referring point to understand the impact of the
asynchronization and estimate the defender accuracy for the
attacker.

We further evaluate the impact of perturbation shifts on
the RML 2016.10a dataset. We train classifiers with the data
over whole SNRs and analyze the performance for testing
data under different SNRs. We consider testing data with the
highest SNR (18 dB) and use it as an example scenario to
show the impact of synchronization, and later for complete-
ness, and channel effect. Figure 12(d) and (e) show the impact
of synchronization for RML dataset. We consider a smaller
range of the sample shifts than the protocol classification
dataset because the window length of the RML dataset is
128, other than 512. Similar to the protocol classification
dataset results, the first several steps drop the attack strength
a lot for the intra-window shift as shown in Figure 12(d).
The shifted perturbations perform comparably when the shift
step exceeds ten samples. The FGSM attack with low €
(e.g., € =0.001) has a similar effect as the equivalent AWGN
attack when the intra-window shift is greater than ten steps.
For the inter-window attack as shown in Figure 12(e), the
effectiveness of the FGSM attack is reduced even with one
window shift. However, the further shift does not degrade
the attack more. This is because the testing data in the RML
2016.10a dataset is shuffled by default, and the impact of
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FIGURE 12. Impact of imperfect synchronization and incomplete sequences of perturbations: (a) Intra-window
perturbation shifts (protocol dataset), (b) inter-window perturbation shifts (protocol dataset), (c) incomplete-window
perturbations (protocol dataset), (d) intra-window perturbation shifts (RML 2016.10a dataset), (e) inter-window
perturbation shifts (RML 2016.10a dataset), (f) incomplete-window perturbations (RML 2016.10a dataset).

an inter-window shift larger than one step is the same as a
random-step shift. The order of I/Q pairs is unknown, so the
inter-window shifted perturbations are similar to the shuffle.
Overall, the FGSM attack with larger € suffers less for both
the intra-window and inter-window shifts.

E. IMPACT OF COMPLETENESS

In an ideal attack, the attacker can continue to send
the streaming of perturbations that are superposed to the
defender’s signal. However, it can be stealthier if the attacker
sends the perturbation discontinuously. The impact of the
perturbation completeness for the protocol dataset is explored
and summarized in Figure 12(c). The attack can still be effec-
tive even after losing some perturbation samples, especially
when missing parts are less than 50. With more perturba-
tions missing, the attack becomes weaker. Nevertheless, the
incomplete attack with 300 samples losing is still more sub-
stantial than the equivalent AWGN attack (shown as dashed
lines above). Note that our full sample length is 512 for
the protocol classification problem, indicating that the AML
attack with half perturbation interrupted is still effective. The
impact of the completeness for RML 2016.10a dataset is
summarized in Figure 12(f). Both the AWGN and FGSM
attacks are impaired due to truncation. The impairment has a
near-linear relationship with the number of missing samples
when the missing amount exceeds ten. Even if the FGSM
attack degrades with losing samples, it can still be more
powerful than the AWGN attack with the equivalent energy.

F. CHANNEL IMPACT

The efficacy of an AML attack depends on both the channel
type (e.g., Raleigh fading vs. AWGN) as well as channel

272

conditions. We assume that all three channels (Tx-attacker,
Tx-defender, and attacker-defender) are AWGN, and we eval-
uate the effect of the channel conditions between the attacker
and defender. To do that, we first obtain the power of the
received (benign) signal at the input to the attacker based
on the power of the transmitted benign signal and the given
SNR value for the TX-attacker channel (SNRy_4). For the
protocol dataset, we set SNRr_4 to 15 dB during training
and testing. For the RML 2016.10a dataset, AWGN is already
embedded in the signal at different SNR7_4 values, so during
training we use the average of all the samples in this dataset
(over all SNR7_4 values) to determine the average power of
the received benign signal. Testing of the modulation classi-
fieris done at SNR7_4 = 18 dB (the highest SNR in the RML
dataset). For both protocol and modulation classification,
let B denote the ratio between the (average) power of the
incoming signal at the attacker and the noise power of the
attacker-defender channel. For a fixed 8, (hence, fixed noise
power, E,, of the attacker-defender channel), we vary the
power of the perturbations by varying the PNR. Recall that the
‘N’ in the PNR refers to the AWGN of the attacker-defender
channel. Figure 13 below depicts the classification accuracy
versus PNR for different values of 8. It is clear from the
figure that for a given B, the noise of the attacker-defender
channel impacts the effectiveness of the attack. This can
be observed for all values of B. Another key observation
is that for small to medium values of f, the attack is still
significant even at small PNR values. For example, when
B = 0 dB (very noisy attacker-defender channel, relative to
the power of the received benign signal) and a PNR of —5 dB
(perturbations power is 5 dB less than attacker-defender noise
power), the classification accuracy is about 20% for both
protocol and modulation classifiers. Even with lower PNR
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values (e.g., —10 and —15 dB for the protocol classifier), the
attack is still significant.

For both the protocol and RML 2016.10a datasets, we
consider the B from 0 dB to 15 dB with a step size of 5 dB.
The defender’s accuracy reduces when PNR increases for all
values of 8. When 8 is low, the channel noise between the
attacker and defender can degrade the classification accuracy
even with slight perturbations. Channel noise here can be
regarded as the traditional jamming attack. In Figure 13(a),
such noise makes the accuracy of the defender drop to around
70%. As the B increases, the channel condition improves, and
the defender’s accuracy also rises. For example, when PNR
is around —10 dB, the defender’s accuracy performs better
under larger 8. As B increases, the channel noise decreases.
As shown in Figure 13(b), when 8 = 15 dB, the defender has
an accuracy of 80%, which aligns with the observation under
the benign data.

p=0dB

—— p=0dB
= p=5dB
—e— $=10dB
—— p=150d8

Classification Accuracy(%)
Classification Accuracy(%)

-3 -25 -20 -15 -10 -5 0 5 10

L T
PNR (dB) PNR (dB)

(@ (b)

FIGURE 13. Accuracy of the defender classifier under different
PNRs when the power of channel noise is fixed. (a) Protocol
dataset with embedded AWGN noise (test SNRy_4 = 15 dB),
(b) RML 2016.10a dataset with embedded AWGN noise (test
SNRy_4 = 18 dB).

As previously mentioned, the authors in [29] modified
the FGSM attack and evaluated its performance under dif-
ferent SNR values. Their study was conducted using the
RML 2016.10a dataset and the VI-CNN?2 classifier, assum-
ing an AWGN channel and a white-box attack. In their results
(Figure 2 in [29]), the defender’s accuracy dropped to 0%
when SNR = 10 dB and PNR = 0 dB. Our results in
Figure 13(b) show that the unmodified FGSM attack reduces
the defender’s accuracy to around 40% when g = 10 dB
and PNR = 0 dB. This implies that even the (unmodi-
fied) FGSM algorithm can significantly reduce the defender’s
accuracy, although not to the level achieved by the € adaption
approach in [29]. Our findings on FGSM are aligned with
other works, e.g., [31], which also showed the efficacy of the
original FGSM attack. Note that channel information may
be leveraged to design very effective (channel-dependent)
AML attacks, as done in [33] and [32]. However, even when
the technique used to generate the perturbations is channel-
agnostic (e.g., the classical FGSM), our results above show
that the attack is still impactful over a wide range of SNR and
SPR values.

It is important to note that different studies in the literature
were conducted under different simulation settings; some
rooted in hardware experiments, while others consider spe-
cific channel models and types of attacks (e.g., UAP attacks).
For instance, the study of channel effects in [32], [33], and
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[34] is based on a Rayleigh fading model, whereas our study
considers an AWGN channel. Intuitively, the success of an
attack depends on both the channel model (e.g., AWGN
vs. Rayleigh fading) as well as channel conditions. These
disparities can lead to variations in the AML attack efficacy.
For instance, unmodified AML attacks might become less
effective in a fading channel; however, their potency increases
if the attacker and defender are in close proximity. Conse-
quently, a meaningful comparison necessitates applying a
similar setup.

VIll. DEFENSE AGAINST ADVERSARIAL ATTACKS

In this section, we investigate several defense mechanisms
against AML attacks. First, we provide a summary of related
work on this topic.

A. RELATED WORK ON DEFENSE MECHANISMS
Recently, several defenses have been proposed against AML
attacks on DNN models [8], [47], [48], [49], [50], [51], [52].
Olowononi et al. [47] presented an encryption mechanism
to hide the DNN internal weights, parameters, and training
data from an adversary. They also presented three techniques
to improve the defender’s robustness: input pre-processing,
adversarial training, and post-processing. He et al. [48] eval-
uated adversarial training, randomization, defensive distil-
lation, and gradient masking to defend against adversarial
attacks. Adesina et al. [8] presented statistical approaches
to monitor metrics such as the peak-to-average power ratio
(PAPR), the distribution of softmax outputs of the DNN clas-
sifier, and median absolute deviation (MAD) of the data for
adversarial signal detection. They also evaluated the efficacy
of adversarial training and randomization to mitigate AML
attacks. Of the various defense mechanisms proposed in the
literature, adversarial training remains one of the most robust
methods [53], [54]. Moreover, some methods in [47] and [48]
may not be effective for broadcasted RF signals due to their
vulnerability to eavesdropping. Accordingly, we present a
novel adversarial training approach to improve the robustness
of protocol and modulation classifiers.

Several new defense mechanisms have recently been pro-
posed in the literature (e.g., [26], [45], [55]), but were often
countered by more potent attacks that are capable of bypass-
ing these defenses. In principle, certified defenses (CD)
ensures that a given classifier is robust to adversarial pertur-
bations as long as these perturbations are constrained by a
given bound. The authors in [56], [57], and [58] proposed CD
mechanisms that offer robustness guarantees against norm-
bounded attacks. Recent research employs techniques like
convex outer approximation [56], semi-definite relaxation
[57], and differential privacy [58] to efficiently determine
upper bounds on the worst-case loss. Random smoothing,
a prevalent CD method [59], [60], introduces noise to input
data and employs statistical approaches to measure the
model’s resilience to perturbations and provide probabilistic
guarantees on its resistance to bounded perturbations. The
widespread adoption of CD stems from the simplicity and
effectiveness of this approach across diverse models and input
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variations. Lipschitz-based methods [61], [62] are variants
of CD that also gained attention. These methods center on
regulating the network’s Lipschitz constant — a metric of a
function’s sensitivity to input changes. By ensuring minimal
output variations in response to slight input perturbations,
these methods train networks to inherently maintain stabil-
ity and robustness. Despite the versatility of CD techniques
against various attacks, their practical use in the wireless
domain is limited because of the difficulty of establishing
a meaningful bound on the attacker’s perturbations, which
undermines the efficacy of these techniques.

B. ADVERSARIAL TRAINING

Adversarial training [23], in which a network is trained
on adversarial examples, is one of the few defenses against
adversarial attacks that withstand strong attacks. As a result,
instead of updating the loss function based on a benign
input x, the new loss function at the trained defender classifier
is calculated based on both benign and adversarial inputs,
as follows:

L(x,y;0) = yL(x,y;0) + (1 — y)L(Xaav, y; 0).  (3)

The key idea behind this strategy is to increase the model’s
robustness by ensuring that the model predicts the same class
for legitimate and perturbed examples. Considering the same
attack generation method previously described: the defender
first trains a DNN, denoted as DNNpaive, using benign data
then the attacker steals DNN’s structure, including all the
weights and biases. In our defense mechanism, the defender
uses DNNpgive to develop its AML perturbations and com-
bines them with benign data to retrain its DNN. The retraining
dataset consists of the original and the self-perturbed data,
resulting in a data augmentation compared to the DNNyaive
training. The retrained DNN is denoted by DNNgefense- TO
balance the impact between benign and adversarial data
(i.e., the losses for both types of data), we set the sample
number of both parts the same. As a result, portion parameter
y is 0.5, and the retrained DNN can have relatively good
accuracy on both the benign and the perturbed data.

One important aspect of adversarial training is setting the
parameters of the AML generator. For FGSM, this would
be the value of €. First, we consider a scenario where the
defender uses a fixed value of €, irrespective of the € used dur-
ing the attack (testing) phase. Considering the RML dataset
and the VT-CNN2 network as a basis, we study the clas-
sification accuracy of the defender’s DNN (DNNgefense) in
three scenarios: (1) DNNgefense 1S trained using benign data
(i.e., DNNgefense and DNNaive are identical), (2) DNNgefense
is retrained using a combination of benign and AML data,
where the FGSM perturbations used for retraining are pro-
duced using € = 0.005, and (3) DNNgefenge 1S retrained using
a combination of benign and AML data, where the FGSM
perturbations used for retraining are produced using the same
€ using by the adversary during the test phase. Note that in the
second scenario, the choice of € = 0.005 is triggered by our
interest in considering a reasonably small € that leads to high
SPR values, i.e., stealth attacks. The third scenario reflects
the best-case performance of the defender, as it requires the
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defender to learn the specific € used by the attacker, which is
hard to obtain in a real attack.

BN Training under Benign Data
80 e Training under Benign and Adversarial Data (c = 0.005)
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FIGURE 14. Classification accuracy when the defender’s DNN is
trained using benign or benign + AML data vs. € of the attacker’s
FGSM perturbations. RML 2016.a dataset with SNR = 16 dB.

Figure 14 shows the defender’s classification performance
for the three scenarios for different values € used in the
attacker’s AML perturbations, i.e., the € of the test dataset. In
scenario one (blue bars), the higher € of the attacker’s AML
data, the stronger the attack, and, hence, the worse the perfor-
mance of the defender’s classifier. Scenario two is presented
in the orange bars. Interestingly, the inclusion of AML pertur-
bations as part of the defender’s training dataset improves the
defender’s classification performance only when the value of
€ used by the attacker is close enough to the €é=0.005 used in
the defender’s AML training dataset (the accuracy increases
from blue to orange bars). To improve the performance under
benign-only training data, the defender need not exactly pin-
point the attacker’s €, i.e., a coarse estimate of € is sufficient.
For example, the performance under scenario two is better
than that of scenario one when € = 0.0025 and € = 0.001.
This is because the € in the FGSM attack only impacts the
energy of the perturbation. In other words, the perturbation
vectors generated under € = 0.0025 and € = 0.005 points
in the same direction but at different scales. The adversarial
samples with high € help the DNN know the direction of the
perturbations. They can help improve the accuracy for lower
€ by providing the same perturbation direction. When € of
the defender’s training set is significantly different from e
of the attacker’s testing set, the performance in scenario two
can be worse than scenario one, i.e., the AML training data
poisons the original (benign) dataset. In scenario three, shown
in green bars, we assume that the defender and attacker use
the same value of €. This is a strong assumption since it is hard
for the defender to know attacker’s € in advance. However,
the results indicate that the classification performance can be
improved if the defender can estimate €.

We build a two-step structure for robust classification even
under adversarial data. Figure 15 shows that the adversarial
signal detector first approximates the € value of the received
signal and then assigns the signal to the corresponding mod-
ulation classifier. These classifiers are adversarially trained
with a specific € to perform well when receiving the same €
adversarial signals. We start with the design of the detector.
Different neural networks, including CNN and RNN, are
considered. We train the detector to predict the € of the
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received signal from one of four possible values, where € €
{0, 0.001, 0.003, 0.005}. Figure 15 shows the LSTM network
that achieves the best performance with an accuracy of 72%.
The confusion matrix of the LSTM-based detector is shown
in Figure 16. Although there are incorrect classifications, the
misclassified are typically mostly drop in the adjacent values
of €. If we consider the accuracy as the sum of correct and
adjacent labels, the average accuracy can achieve 96.75%.
It indicates the detector can reasonably estimate the € of the
received signals.

Ensemble of Modulation Classifiers

€ Estimator

Input  LSTM Max Dense Dense Dense
2x128 512 Pooling 64 32 (N classes)

FIGURE 15. Two-step structure for robust classification of the
received adversarial signals.

e = 0 (benign)

e=0.001

True Label

e=0.003 4

¢=0.005

Predicted Label

FIGURE 16. Confusion matrix of the LSTM-based detector.

Figure 17 compares the classification accuracy between
VT-CNN2 and our approach, where the solid lines represent
the testing accuracy for the VI-CNN2 and the dashed lines
are for the proposed two-step defense mechanism. When the
SNR is high, the accuracy of benign data is approximately
76%. This performance is lower than VI-CNN2, especially
when the SNR is from —10 to 10 dB. However, the slight
decrease in the performance from the adversarial information
is negligible compared to the increase in the accuracy of
the adversarial data. In other words, although adversarial
training slightly sacrifices some accuracy on benign data
to defend the attacks, the retrained model outperforms the
original VT-CNN?2 across all adversarial perturbations. For
example, VI-CNN2 only achieves 10% accuracy when € is
high (e.g., ¢ = 0.005). In contrast, the adversarially trained
model achieves approximately 60% accuracy on adversarial
data with different values of €. Overall, our structure com-
bines the benefit of all the classifiers in the second step and
is robust to all four adversarial signals we considered.
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We study a defense mechanism that is based on training
the defender’s classifier using either FGSM- or Deepfool-
based perturbations, under DeepFool attacks. We summarize
the results in Figure 18. The black and blue plots show
the accuracy of the original VI-CNN2 modulation classifier,
while the grey, red, and orange plots are for the retrained
VT-CNN2 classifier and the proposed defense mechanism.
It is anticipated that training with FGSM perturbations but
testing it under DeepFool attacks yields a relatively lower
accuracy improvement than testing it under FGSM attacks.
This is attributed to the dissimilar nature of perturbations
generated by these two attacks. For SNR greater than 0 dB,
the proposed defense with FGSM-based adversarial training
provides 8% improvement in accuracy relative to the orig-
inal VI-CNN2 classifier when the attacker uses DeepFool
perturbations. When we retrain the two-step defense mech-
anism with DeepFool perturbations and test under DeepFool
attacks, we observe that the defender’s accuracy significantly
increases to 57% at high SNRs, as shown in the red plot.
Similar to the orange line (trained and tested under FGSM),
the defense mechanism’s accuracy greatly improves when
training and testing are done using the same attack type.
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FIGURE 17. Comparison between VT-CNN2 and the proposed ¢
prediction mechanism on classification accuracy vs. testing
SNRs with adversarial data using different ¢. y = 0 is used for
adversarial training.
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FIGURE 18. Evaluation of the proposed defense mechanism
under FGSM and DeepFool attacks for different SNRs, when
adversarial training is done using FGSM or DeepFool
perturbations.

C. AUTOENCODER-BASED DEFENSE

The authors in [49] and [50] use an autoencoder before RF
classifier to mitigate the impact of additive perturbations.
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We utilize the autoencoder-based defense mechanism as
described in [49] and [50]. Specifically, the denoising autoen-
coder (DA) architecture is chosen to be a fully connected
DNN with 256-128-64-128-256 neurons at each layer. Note
this is the same structure as Sahay et al. [49]. The DA was
trained to minimize the mean squared error over 100 epochs.
At evaluation time, the adversarial and benign signals are
passed through the DA and then passed through the modula-
tion classifier. Ideally, the DA would remove the adversarial
perturbations without causing degradation to the classifier’s
performance under benign input.

Figure 19(a) shows the amplitudes of the original and
DA-reconstructed waveform for the RML 2016.10a dataset,
respectively. Visually, the denoised signal in blue is similar
to the original signal in grey. This observation demonstrates
that the DA successfully reconstructs the input. Then, the
FGSM signals are passed to the DA using different values
of €. As shown in Figure 19(b)-(d), the denoised signal (in
blue) is similar to the grey line when € is small (0.001).
As € increases, the reconstructed signal deviates further
from the original signal. The perturbation can have larger
amplitudes with larger € values, which results in the benign
and adversarial signals deviating further. Unfortunately, the
DA fails to denoise data perfectly. The DA’s reconstruc-
tion error shows that the approach is ineffective under large
perturbations.
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FIGURE 19. Examples of an FGSM perturbed and DA
reconstructed signal in the RML 2016.10a dataset for: (a) e =0
(benign), (b) e = 0.001, (c) ¢ = 0.003, and (d) ¢ = 0.005.
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Figure 20 compares the DA defense and our proposed
defense under FGSM attacks. The DA defense improves the
defender’s accuracy when € = 0.001 to 50% at high SNRs;
however, the defender’s accuracy degrades to near 10% as
€ increases. In contrast, our proposed approach outperforms
the DA method, and can improve the accuracy to more than
65% under attacks (except € = 0, i.e., no attack). Although
the results in [49] and [50] show the DA’s effectiveness, their
perturbations use small values of €. Our results show that the
DA may not be a suitable defense mechanism for larger €.
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FIGURE 20. Comparison between the proposed and
autoencoder-based defenses against FGSM attacks for various
testing SNRs and e.

D. ENSEMBLE-BASED DEFENSE

We extend our evaluation to include an ensemble-based
defense approach. Inspired by [51], we train three DNN
models: a fully connected neural network (FCNN), a CNN,
and an RNN. Additionally, we consider both the original
time-domain I/Q data as well as a frequency-domain version
obtained using the discrete Fourier transform (DFT). Thus,
we end up with six trained classifiers: three DNNs trained
in the time domain and three DNNs trained in the frequency
domain. The outputs of six classifiers are averaged to form an
ensemble prediction, following the strategy outlined in [51].

80
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FIGURE 21. Comparison between the CNNs trained under benign
raw I/Q data and DFT transformed data on classification
accuracy vs. testing SNRs.

While the authors of [51] demonstrated impressive accu-
racy for their classifier leveraging both time and frequency
representations, our observations show that the DNN clas-
sifiers trained on frequency-domain transformed data do
not attain the same accuracy as the time-domain models.
Figure 21 shows the CNN’s accuracy that is trained with [/Q
and the DFT data. The two classifiers have similar accuracy
when the SNR is less than —8 dB; however, the CNN trained
with I/Q data has better accuracy than their DFT counterpart
as the SNR increases.

A potential explanation for the disparities in our findings
and those of [51] could stem from differences in the datasets.
Specifically, the datasets employed in [51] include only four
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modulation types. In contrast, our study of modulation clas-
sification is based on the full RML 2016.10a dataset, which
consists of 11 modulation types, including two amplitude
modulation schemes (AM-DSB and AM-SSB). These two
modulation schemes were not a part of the dataset used in
[51]. Applying DFT to amplitude modulation data can poten-
tially lead to the loss of crucial temporal features, resulting
in lower accuracy for a DFT-trained classifier compared to
a classifier trained on raw (time-domain) I/Q data. Further-
more, irrespective of whether the data are processed in the
time or frequency domain, including additional classes in the
dataset adds complexity to the decision boundary, which can
lead to class overlap and reduction in accuracy.

-+- Ensemble defense, tested with benign :T!t:_-:g
Ensemble defense, tested with-e = 0.001

—+— Proposed defense, tested with benign
Proposed defense, tested with e = 0.001

» )}
o o
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FIGURE 22. Comparison between the proposed defense
mechanism and ensemble-based defense on classification
accuracy vs. testing SNRs with adversarial data using ¢ = 0.001.

Figure 22 compares our defense to the ensemble-based
approach. The ensemble strategy surpasses our defense
(depicted by solid lines) when the SNR ranges from —10 to
5 dB. The trend is reversed for SNR > 5 dB. The ensemble
defense’s accuracy is nearly 50% in high SNR scenarios
under FGSM attacks with € = 0.001. Our defense exhibits
an accuracy exceeding 60% in such scenarios, establishing
a more effective safeguard than the ensemble approach for
these experiments.

IX. CONCLUSION

Machine learning, particularly deep learning, plays an
increasingly important role in wireless communications and
can achieve state-of-the-art performances without hand-
crafted features. While these DNNs achieve satisfactory
performance, they are also vulnerable to adversarial pertur-
bations, limiting the classifiers’ robustness. Most of these
perturbations are undetectable at the input to the deep learn-
ing classifier; however, the classifier’s output has significant
changes. Thus, the strength of the attack is strong if the
performance goes down and the SPR keeps high, which also
makes the perturbation hard to detect.

This work studied the vulnerability of DNN-based clas-
sifiers to AML-based jamming attacks for signal clas-
sification datasets. We considered two different signal
classification types, namely, protocol and modulation clas-
sification. By adding different types of AML-based per-
turbations while maintaining a relatively high SPR level,
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all DNNs significantly reduce the classification accuracy.
We considered various adversarial approaches, including the
FGSM, PGD, and DeepFool attacks. The decrease in perfor-
mance when the adversarial signals have a high SPR, further
shows that highly successful attacks can be challenging to
detect [63].

The results show that these attacks can negatively impact
the defender’s accuracy. We observed similar trends on
the DNN-based classifier for the protocol and modulation
datasets. The effectiveness of the AML perturbations depends
on the amount of information the adversary has regarding
the structure and training dataset of the defender’s classifier.
Accordingly, we studied different attack scenarios with vary-
ing levels of knowledge. In one extreme, an attacker with full
knowledge of the defender (white-box attack) significantly
degrades the defender’s accuracy. Compared to traditional
jamming, where the attacker transmits only AWGN noise,
the proposed AML-based attack requires much less transmit
power to mislead the classifiers.

We also observed that DNNs are vulnerable to these attacks
even if the attacker has imperfect synchronization, incom-
plete sequence, or under the noisy channel, of both the
protocol and modulation classification. We generate attacks
under these more practical cases and evaluate the impact of
attacks of different synchronization, sequence length, and
channel noise levels. We show that these imperfect attacks
can still effectively drop the defender’s accuracy in a certain
imperfection range.

Finally, we propose the counter measurements for AML
attacks and address one limitation of adversarial training.
The proposed mechanism splits the defense into two steps:
€ estimation and classifier retraining. In the first step, the €
estimator accurately estimates €, and the adversarial training
in the second step can counter a more specific attack. The pro-
posed structure combines the benefit of all the classifiers in
the second step. As aresult, the two-step defense shows better
robustness and effectively improves the defender’s accuracy
under different budget settings of attacks compared to the
single-classifier retraining.
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