
A method for detecting text of arbitrary shapes in natural scenes that improves

text spotting

Qitong Wang, Yi Zheng, and Margrit Betke

Boston University

Boston, MA 02215

{wqt1996, yizheng, betke}@bu.edu

Abstract

Understanding the meaning of text in images of natu-

ral scenes like highway signs or store front emblems is

particularly challenging if the text is foreshortened in the

image or the letters are artistically distorted. We intro-

duce a pipeline-based text spotting framework that can

both detect and recognize text in various fonts, shapes,

and orientations in natural scene images with complicated

backgrounds. The main contribution of our work is the

text detection component, which we call UHT, short for

UNet, Heatmap, and Textfill. UHT uses a UNet to com-

pute heatmaps for candidate text regions and a textfill algo-

rithm to produce tight polygonal boundaries around each

word in the candidate text. Our method trains the UNet

with groundtruth heatmaps that we obtain from text bound-

ing polygons provided by groundtruth annotations. Our

text spotting framework, called UHTA, combines UHT with

the state-of-the-art text recognition system ASTER. Exper-

iments on four challenging and public scene-text-detection

datasets (Total-Text, SCUT-CTW1500, MSRA-TD500, and

COCO-Text) show the effectiveness and generalization abil-

ity of UHT in detecting not only multilingual (potentially

rotated) straight but also curved text in scripts of multiple

languages. Our experimental results of UHTA on the Total-

Text dataset show that UHTA outperforms four state-of-the-

art text spotting frameworks by at least 9.1 percent points

in the F-measure, which suggests that UHTA may be used

as a complete text detection and recognition system in real

applications.

1. Introduction

Scene text detection is an important task in computer vi-

sion with application significance such as helping people

with visual impairments to understand text in images (e.g.,

of medicine bottles or supermarket shelves) or helping self-

driving cars understand the meaning of traffic and street

Figure 1. Polygonal text annotations of curved text in images are

often so imprecise (bottom left) that heat maps (bottom right),

computed as an intermediate step to interpret the text, yield inac-

curate results. The proposed UHT method computes and interprets

deep learned heat maps (top right) that result in much more accu-

rate polygonal text outlines (top left), which in turn yield better

text recognition results.

signs. Building computer vision systems that can detect text

is not easy due to the variety of sizes, fonts, styles, sizes, and

orientations in which text can occur in natural scene images

and their often complex backgrounds (e.g., Fig. 1).

In the past few years, computer vision researchers have

developed methods that identify oriented straight text in nat-

ural scene images accurately [14, 26, 45, 47, 48] (“oriented”

means not necessarily aligned with the image rows). More

recently, detection of arbitrarily-shaped text, such as curved

or deformed text, has received attention from computer vi-

sion researchers, not only because detecting such text is

1

more challenging than oriented straight text, but also be-

cause it commonly appears in daily life. For arbitrarily-

shaped text detection, for example, a weakly supervised

learning algorithm [7] was recently proposed to extract

character-based pseudo ground truth to help deep learning

models effectively extract each character of such a text in

a natural scene image. Whether it is detection of oriented

straight or curved text, we found that most state-of-the-art

methods rely on multiple deep-learned geometric proper-

ties of the text, such as angle attributes [24, 48] or text

center line regions [46]. Others use multiple output mod-

els [46] to produce high evaluation scores on widely-used

benchmarks. While state-of-the-art text detection meth-

ods can solve many challenging problems with these tech-

niques, as far as we know, there is no method that simply

and effectively uses a “text region feature map,” even when

given a variety of text shapes, sizes, and lengths. Moreover,

many words are located so close to each other in the images

that detection methods do not separate them correctly but

grouped into one consecutive-word text region. These chal-

lenges make relying on only the text region feature map to

effectively detect text in natural scene images seemingly im-

possible. But is it really impossible to accurately detect text

using only one text region feature map in the scene text de-

tection field? Our work shows that the answer is no. Using

only one channel, the text region feature map, our method

effectively detects text in images of natural scenes. With the

help of new pre-processing and post-processing algorithms,

we make accurately detecting text in images possible, rely-

ing on a relatively small amount of geometric information.

The contributions of our research work are five-fold:

• We propose a new text detection framework, called

UHT, that outputs only one text region heatmap channel.

UHT can solve challenging problems in the field of scene

text detection, such as accurately detecting and separating

multiple text regions that “stick” together.

• We propose a new text region feature map representa-

tion, which here is a special kind of heat map (Fig. 1), that

enables UHT to detect text in natural scene image.

• We propose a new algorithm called the Textfill Al-

gorithm that can accurately extract multi-vertex bounding

polygons that tightly define the outline of each word in the

scene text region.

• UHT obtained evaluation scores that are higher than

most of state-of-the-art scene text detection methods when

fine-tuned on specific benchmark datasets. UHT outper-

forms all state-of-the-art methods in its generalization abil-

ity, as shown in one of the experiments.

• “Spotting” text in images means detecting and recog-

nizing it. We introduce a complete pipeline-based text spot-

ting system, called UHTA, showing that our UHT can be

used for text spotting as long as an effective text recogni-

tion model is given.

Figure 2. Pipeline of UHT. The process of text detection of UHT

can be divided into three steps: 1) Pre-processing is used to gener-

ate a heatmap text region ground truth, which is used as a training

label of UHT-Net. 2) A trained UHT-Net can output predicted

text region heatmaps. 3) In the post-processing step, the Textfill

algorithm outputs the final predicted text bounding polygons in-

terpreting the outputs of the UHT-Net.

Our code is available at http://www.cs.bu.edu/faculty/

betke/UHT.

2. Related Works

The task of detecting text in images of everyday scenes,

also known as ”Scene Text Detection” is attracting more

and more attention from researchers in the computer vision

field. Initially, researchers focused on detecting oriented

straight text in scene images [48, 10, 47, 45, 14]. However,

detecting text with arbitrary shapes is more and more popu-

lar recently [24, 40, 41, 46, 7, 49, 42].

Before methodologies in deep learning field are widely

used in text detection field, SWT [11] and MSER [27]

were two eye-catching algorithms which had influenced

many text detection methodologies. In recent years,

modern methodologies, which make use of deep learn-

ing backbones, can be coarsely classified into two cate-

gories: regression-based methodologies and segmentation-

based methodologies.

Regression-based methodologies are largely influenced

by some popular general object detection frameworks such

as Faster-RCNN [30]. TextBoxes [18] was inspired by SSD

[20] and included “long” default boxes that had large as-

pect ratios to better detect text with different variation in

natural scene images. In the text detection branch of Mask-

TextSpotter [25], many text proposals were firstly generated

by region proposal network to get text candidate boxes, then

the RoI features of the text proposals were sent into the Fast

2

R-CNN module.

Segmentation-based methodologies are mainly in-

spired by FCN [23], The FCN classifies the image at the

pixel level, thus solving the problem of image segmentation

at the semantic level. In the text detection field, people see

text regions in natural scene images as positive samples and

background as negative samples. TextSnake [24] was pro-

posed to detect text in the natural scene by predicting the

text region and various geometry attributes of text to de-

tect oriented straight and curve text effectively. Recently,

instead of detecting whole text in images, CRAFT [7] was

proposed to detect individual characters, connecting them

to get each text bounding polygon. The proposed method

provides the character region score and the character affin-

ity score that, together, effectively cover various kinds of

text shapes. In this method, a weakly-supervised frame-

work was implemented to generate character-level pseudo

annotations.

As we can see, state-of-the-art frameworks make full use

of a large volume of geometric information to effectively

detect text in natural scene images. Our methodology, how-

ever, is based on only using text region information to ef-

fectively extract text bounding polygons from images.

3. Methodology

The pipeline of our model is shown in Figure 2. We now

introduce our methodology in detail.

3.1. Pre­processing: Heatmap Text Region
Groundtruth Generation

Our method represents each word or set of words in an

image as an arbitrary-length text skeleton surrounded by

a fixed-width region whose pixels have values defined by

their distance (“radius”) to the skeleton (Figure 3e). This

“heatmap” representation for text is sufficiently flexible to

represent both straight and curved text.

The way we generate heatmaps was inspired by previous

work [7, 28]. Instead of simply marking the pixels of the

text region as 1 and the background pixels as 0 (e.g., [24,

48]), our method assigns a probability to each pixel position

in the feature map, indicating the probability that this pixel

belongs to the text region (Figure 3e). Naturally, the closer

the pixel is to the center of the text, the closer the probability

is to 1, and the farther the pixel is to the center of the text,

the closer the probability is to 0.

Text Skeleton and Radius. Each annotated text poly-

gon is defined by K vertices, where K is an even num-

ber. First, we use a skeleton to represent each polygon. We

expand the original number of center points on the skele-

ton to σ = K + (m − 1) × (K − 2) points, where m
is a positive integer (see Figure 3b and 3c for more de-

tails). In our experiments, m is set to 5. We then pair the

Figure 3. Process of creating the heatmap groundtruth. (a) In-

put: Text bounding polygon annotation, defined here by K = 10
vertices. (b) This polygon consists of K−2

2
= 4 quadrilaterals

(shown in different colors). (c) Each quadrilateral is divided into

m equal parts, here m = 3. The Text Center Points (TCP) are

marked as red dots, and the Text Skeleton (TS) is drawn in or-

ange and coffee colors Using knowledge from mathematical ge-

ometry, we can get original text annotation points expanded to

σ = K + (m − 1)(K − 2) points, here 26. (d) To focus on the

text center region, we delete the two ends of the TS (orange lines).

This yields the final TS, here drawn in coffee color. The pink line

exemplifies the radius R in our text representation method (Equa-

tion 2). (e) The final heatmap ground truth. The range of the 2D

Gaussian kernel is set to [0.0, 1.0].

coordinates of the upper part of the vertices of the poly-

gon with the coordinates of the lower part of the vertices

of the polygon. This yields the following pairs of points:

(P
(1)
up , P

(1)
down), (P

(2)
up , P

(2)
down), ..., (P

(σ

2
)

up , P
(σ

2
)

down). For the

ith pair of points, we compute the center points as follows:

P
(i)
center =

P
(i)
up + P

(i)
down

2
. (1)

Then, P
(1)
center, P

(2)
center, ..., P

(σ

2
)

center are defined as

“Text Center Points (TCP).” The TCPs are essen-

tial for building the “Text Skeleton (TS).” We delete

the two end groups of TCPs, so that the TCP set

is changed from
{

P
(1)
center, P

(2)
center, ..., P

(σ

2
)

center

}

to
{

P
(3)
center, P

(4)
center, ..., P

(σ

2
−2)

center

}

. Connecting the center

points in the TCP set, then we compute the final polygon

skeleton. For each point in the TCP set, we also need their

“Radius (R).” For the ith pair of points, R(i) is defined as

follows:

R(i) =
dis(P

(i)
center, P

(i)
up) + dis(P

(i)
center, P

(i)
down)

2
, (2)

where function dis(A,B) is the Euclidean distance be-

tween A and B.

3

2D Gaussian Heatmap Ground Truth Representa-

tion. First we need to compute every point of TS using

the Bresenham algorithm [1], which yields the “All Text

Skeleton Points Set (ATSPS)”. Given the set R, which is
{

R(3), R(4), ...R(σ

2
−2)

}

, and a 2D Gaussian kernel, we can

compute the heatmap representation for each text bounding

polygon. In addition, the range of the values of the gener-

ated Heatmap Text Region Groundtruth is set to [0.0, 1.0].
These are then used as training labels for the UHT-Net.

Since the generated heatmap groundtruth is the text

skeleton convolved with several 2D Gaussian kernels, each

text region is proportional to the length of its text skele-

ton. So due to our pre-processing algorithm, we suggest

that UHT has the potential to be more accurate than other

methods when detecting long text regions.

3.2. UHT­Net Architecture and Training Objectives

UHT-Net is a UNet-based [31] network that predicts

score heatmaps of text regions. First, images are contracted

to different feature maps. In the expanding process, our

method employs either VGG-16 [34] or ResNet-50 [13] as

backbone networks. Then these feature maps are gradually

bilinearly expanded to the original size and mixed with the

corresponding output of the previous stage in order to accu-

rately detect text of different sizes.

UHT-Net uses an end-to-end training strategy. The defi-

nition of the loss function is

L = Lreg + λ1Lcenter + λ2Lregion, (3)

where λ1 and λ2 are both set to 1.0.

We define Lreg as the weighted MSE-Loss (because the
ratio between positive and negative samples is unbalanced
in the scene text detection datasets), which is defined for an
input image χ to be:

Lreg =

∑
text∑

text
+
∑

BG

(YBG − fθ(χBG))
2

+

∑
BG∑

text
+
∑

BG

(Ytext − fθ(χtext))
2
,

(4)

where text denotes the positive pixels in the heatmap, BG

denotes the negative pixels in the heatmap,
∑

text denotes

the total number of positive pixels in the heatmap,
∑

BG

denotes the total number of negative pixels in the heatmap,

Y means pixels in the groundtruth heatmap generated by

the pre-process, and fθ(χ) means pixels in the output of the

UHT-Net, where θ are parameters in the UHT-Net.

The dice loss [36] for the text center and text region is

denoted by Lcenter and Lregion respectively. The text cen-

ter is defined as the text region pixels in the output of the

UHT-Net and generated groundtruth heatmap pixels that

are higher than 0.9. The text region is defined as the text

region pixels in the output of the UHT-Net and generated

Algorithm 1 Textfill Algorithm

1: Input: Output heatmap H from UHT-Net; thresholds

Ttop, Tend.

2: // Extract center points for each text region:

3: Set pixel values in regions where heatmap H pixel val-

ues > Ttop to 1.0, otherwise to 0.0. These regions are

defined as CR.

4: Find center points CP for each CR.

5: // Extract text region:

6: V = []

7: for each CP do

8: Initialize zero-valued canvas A with same shape as

heatmap H .

9: stack=set(A[x][y]).
10: while stack do

11: x, y = stack.pop()

12: if judgeF low(x− 1, y, x, y) then

13: stack.add((x− 1, y))

14: if judgeF low(x+ 1, y, x, y) then

15: stack.add((x+ 1, y))

16: if judgeF low(x, y − 1, x, y) then

17: stack.add((x, y − 1))

18: if judgeF low(x, y + 1, x, y) then

19: stack.add((x, y + 1))

20: A[stack] = 1.0

21: C = findCoutour(A)

22: V .append(contourExpand(C))

23: Output: Polygon vertices V

groundtruth heatmap pixels that are higher than 0.05, which

are:

Lcenter = 1−
2 |fθ(χcenter)

⋂

Ycenter|

|fθ(χcenter)|+ |Ycenter|
, (5)

Lregion = 1−
2 |fθ(χregion)

⋂

Yregion|

|fθ(χregion)|+ |Yregion|
. (6)

3.3. Post­processing: Textfill Algorithm

Extracting the final predicted text bounding polygons

from the output of the UHT-Net is accomplished by

our novel post-processing method, the Textfill Algorithm,

which is inspired by the floodfill algorithm [2]. De-

tails are shown in Algorithm 1, which uses computer vi-

sion tools that can be found in OpenCV. The function

judgeF low(x1, y1, x2, y2) is used to expand CR in Al-

gorithm 1 to compute the complete text bounding poly-

gon. The definition of CR is at Line 3 of Algo-

rithm 1. Function judgeF low(x1, y1, x2, y2) returns true

if H[x1][y1] <= H[x2][y2] and H[x1][y1] > Tend, or re-

turn true if H[x1][y1] >= Tend/2, where the H[x][y] de-

notes the pixel in the output from the UHT-Net. Function

4

contourExpand is defined as a dilating process (see mor-

phology tools in OpenCV) with the following kernel:

k =

{

8 + S
750 S ∈ (0, 2× 104]

35 S > 2× 104,

where S is the pixel area of the polygonal region A.

4. Experiments

In this section1, we introduce details of our experiments,

including the datasets we use and our training strategy, and

provide experimental results and their analysis.

4.1. Text Detection Datasets Used in Experiments

SynthText [12] is a large scale dataset with 800k syn-

thetic images that are created by adding English oriented

straight text with random fonts, sizes, colors, and orienta-

tions to natural images. These synthetic images are quite

similar to natural scene images with text.

Total-Text [8] is a dataset with images that contain ori-

ented straight and curved text and whose labels are anno-

tated by bounding polygons. The image backgrounds are

quite similar to real scenes. This dataset contains 1,255

training and 300 testing images.

SCUT-CTW1500 [21] is another text detection dataset

which includes both English and Chinese scripts. SCUT-

CTW1500 contains 1,000 training and 500 testing images

in which text shape is arbitrary (as for Total-Text). Each

text annotation is marked as polygon containing 14 points.

MSRA-TD500 [44] focuses on multilingual oriented

straight text in natural scenes. It contains 500 images with

English and Chinese scripts, which are split into 300 train-

ing and 200 testing images. Text region annotations are

marked as rotated rectangles.

COCO-Text [39] is one of the challenges of ICDAR

2017 Robust Reading Competition. Its text instances in the

images are English straight text regions distributed in vari-

ous orientations. It contains 63,686 images in total.

4.2. Implementation Details

Data Augmentation. The process of training UHT-Net

can be divided into two steps: 1) Pretraining with the Synth-

Text dataset, and 2) fine-tuning using the Total-Text, SCUT-

CTW1500, MSRA-TD500 or COCO-Text datasets respec-

tively. To further improve training, we randomly rotated the

training images and cropped with areas ranging from 0.24 to

1.0 and aspect ratios ranging from 0.33 to 3. Data augmen-

tation is implemented in both pretraining and fine-tuning

processes.

Training Strategy of UHT-Net. Our methodology

was implemented in Pytorch 1.0.1 [29]. UHT-Net was

1In tables of this section, UHT V16 denotes UHT with VGG-16 back-

bone; UHT R50 denotes UHT with ResNet-50 backbone.

pre-trained on SynthText with one epoch and then fine-

tuned using Total-Text, SCUT-CTW1500, MSRA-TD500,

or COCO-Text. We adopted the Adam optimizer [17] as the

learning rate scheme. In the pretraining process, inspired by

Smith [35], we set the initial learning rate to 3 × 10−5 for

VGG-16 based UHT and 10−4 for ResNet-50 based UHT.

We did not change it during the pretraining process. In the

fine-tuning process, except for COCO-Text, we set the ini-

tial learning rate to 10−4 (the fine-tuning learning rate for

COCO-Text is set to 5 × 10−4). The decay rate was 0.8

every 10 epochs. Single-scale training was used. In the pre-

training and fine-tuning training processes, we set the batch

size to 8 on a single RTX-2080Ti GPU. In the evaluation

process, the batch size was set to 1 on a single RTX-2080Ti

GPU.

Hyperparameters of Textfill Algorithm. To show gen-

eral results across datasets, two sets of thresholds Ttop, Tend

were tested: (0.7, 0.2) for Total-Text & SCUT-CTW1500

and (0.75, 0.2) for MSRA-TD500 & COCO-Text.

4.3. Experimental Results

4.3.1 Results on Curved Text Detection

Our results on the benchmarks Total-Text [8] and SCUT-

CTW1500 [21] are given in Tables 1 and 2, respectively. We

found that some state-of-the-art methods [42, 46] included

multi-scale testing. To conduct a peer comparison, we ran

experiments on curved text detection datasets with single-

scale and multi-scale testing (abbreviated as “MS” below)

separately. Except for the baselines [8, 21], listed methods

without + used the same pre-training and fine-tuning data

as we did, otherwise were different.

Results on Total-Text Dataset (Table 1). Fine-tuning

on Total-Text stops at 300 epochs. During the testing pro-

cess, each image is set to 700 × 700. In single-scale test-

ing, our UHT beats all of the state-of-the-art methodologies

and keeps the same F-measure score with the newest and

most competitive model, CharNet H-88 [42]. UHT V16

even yields a higher recall rate than all the other state-of-

the-art methods, 85.6%. This indicates that UHT is able to

detect text that is missed by other methods.

Results on SCUT-CTW1500 Dataset (Table 2) Fine-

tuning on SCUT-CTW1500 stops at 307 epochs for UHT

V16 and 300 epochs for UHT R50. During the testing pro-

cess, each image is set to 512 × 512 because the average

size of images in SCUT-CTW1500 is relatively smaller than

that of Total-Text. Experimental results show that UHT

also performs well on SCUT-CTW1500. Surprisingly, UHT

found image text that did not appear in the ground truth

annotation (see Figure 4). We fixed the SCUT-CTW1500

ground truth to include missed words. To ensure fairness in

evaluation, we ran experiments on two different versions of

text annotations on the SCUT-CTW1500 dataset, with and

without updated ground truth (Table 2). After the ground

5

Methodology Venue P (%) R (%) F (%)

Single-scale Testing

Poly-FRCNN-3 [8] IJDAR-2019 78.0 68.0 73.0

TextSnake [24] ECCV-2018 82.7 74.5 78.4

CSE+ [22] CVPR-2019 81.4 79.7 80.2

TextField [43] TIP-2019 81.2 79.9 80.6

PSENet-1s+ [40] CVPR-2019 84.02 77.96 80.87

FTSN [9] ICPR-2018 84.7 78.0 81.3

ICG [38] PR-2019 82.9 80.9 81.5

LOMO [46] CVPR-2019 88.6 75.7 81.6

CRAFT+ [7] CVPR-2019 87.6 79.9 83.6

PSENet v2 [41] ICCV-2019 89.3 81.0 85.0

CharNet H-88 [42] ICCV-2019 89.9 81.7 85.6

UHT V16 (Ours) - 88.8 82.6 85.6

UHT R50 (Ours) - 88.2 81.8 84.9

Multi-scale Testing

LOMO MS [46] CVPR-2019 87.6 79.3 83.3

CharNet H-88 MS [42] ICCV-2019 88.0 85.0 86.5

UHT V16 MS (Ours) - 85.0 85.6 85.3

UHT R50 MS (Ours) - 85.4 84.2 84.8

Table 1. Experimental results on the Total-Text dataset. “P” means

Precision, “R” Recall, “F” F-measure, ∗ denotes results on updated

groundtruth annotations, and “MS” multi-scale testing.

Methodology Venue P (%) R (%) F (%)

Single-scale Testing

CTD [21] PR-2019 74.3 65.2 69.5

CTD+TLOC [21] PR-2019 74.3 69.8 73.4

TextSnake [24] ECCV-2018 67.9 85.3 75.6

CSE+ [22] CVPR-2019 78.7 76.1 77.4

LOMO [46] CVPR-2019 89.2 69.6 78.4

ICG [38] PR-2019 82.8 79.8 81.3

TextField [43] TIP-2019 83.0 79.8 81.4

CRAFT [7] CVPR-2019 86.0 81.1 83.5

PSENet v2 [41] ICCV-2019 86.4 81.2 83.7

PAN Mask R-CNN+ [15] WACV-2019 86.8 83.2 85.0

UHT V16 (Ours) - 84.3 84.8 84.5

UHT V16* (Ours) - 86.2 84.1 85.2

UHT R50 (Ours) - 85.9 83.3 84.6

UHT R50* (Ours) - 87.4 82.3 84.8

Multi-scale Testing

LOMO MS [46] CVPR-2019 85.7 76.5 80.8

UHT V16 MS (Ours) - 83.3 85.4 84.4

UHT V16 MS* (Ours) - 85.2 84.7 85.0

UHT R50 MS (Ours) - 81.9 86.1 84.0

UHT R50 MS* (Ours) - 84.0 85.5 84.7

Table 2. Experimental results on the SCUT-CTW1500 dataset: “P”

means Precision, “R” Recall, “F” F-measure, ∗ denotes results on

updated groundtruth annotations, and “MS” multi-scale testing.

truth was updated, the recall score of UHT is almost un-

changed but the precision score improves a little. We wel-

come other researchers to run experiments on the updated

SCUT-CTW1500 and therefore make it publicly available,

see http://www.cs.bu.edu/faculty/betke/UHT.

Analysis on Multi-scale Testing. We tested our model

with images of different sizes (500×500, 700×700, and

900×900), relying on the Fast NMS algorithm to screen out

excess text bounding polygons. A reason for the increase

of the recall score of multi-scale compared to single-scale

Figure 4. Examples of updated ground truth annotations: Left: The

groundtruth annotation in SCUT-CTW1500 missed “89” (top) and

“ c©Roberto Herrett” (bottom). Right: Our updated annotations.

testing may be that multi-scale testing combines image in-

formation of different sizes, making it easier for UHT to

detect text regions that are difficult to detect in single-scale

testing. However, false-positive samples are more likely to

appear in multi-scale testing. We think that might be caused

by the effort of the Fast NMS algorithm or text detection ef-

fect on very large images, all of which cause decrease of

precision score of multi-scale testing (see Tables 1 and 2).

4.3.2 Results for Oriented Straight Text Detection

Results on MSRA-TD500 Dataset (Table 3). Fine-

tuning on MSRA-TD500 stops at 200 epochs. During the

testing process, each image is set to 512 × 512. For UHT,

only single-scale texting is implemented in this experiment.

The results show that our UHT beats most of the state-of-

the-art methods on MSRA-TD500.

Results on COCO-Text Dataset (Table 4). With the

help of the official COCO-Text API, we extracted 15,124

training images and 3,346 validation images, all of which

contain at least one text region. However, testing images

cannot be extracted. So in the experiments with COCO-

Text, experimental results are given based on tests on the

validation images for state-of-the-art frameworks and UHT.

Fine-tuning on COCO-Text stops at 300 epochs. During the

testing process, each image is set to 768 × 768. For UHT,

only single-scale testing is implemented in this experiment.

The results (Table 4) show that our UHT beats state-of-the-

art methods when fine-tuned on COCO-Text training im-

ages. For more details of the fine-tuning experiments on

6

Methodology Venue P (%) R (%) F (%)

Zhang et al. [47] CVPR-2016 83 67 74

He et al. [14] CVPR-2017 77 70 74

EAST† [48] CVPR-2017 87.3 67.4 76.1

SegLink [32] CVPR-2017 86 70 77

PixelLink† [10] AAAI-2018 83.0 73.2 77.8

TextSnake [24] ECCV-2018 83.2 73.9 78.3

RRD† [19] CVPR-2018 87 73 79

Lyu et al.† [26] CVPR-2018 87.6 76.2 81.5

CRAFT [7] CVPR-2019 88.2 78.2 82.9

UHT V16 (Ours) - 84.2 76.2 80.0

UHT R50 (Ours) - 83.2 77.0 80.0

Table 3. Experimental results on MSRA-TD500; “P” means Preci-

sion, “R” Recall, “F” F-measure. † denotes multi-scale testing. In

this table, training data and testing scale of different methods may

not be the same, which inadvertently hinders comparison.

Methodology Venue P (%) R (%) F (%)

Fine-tuned using COCO-Text

TextSnake[24] ECCV-2018 54.7 36.3 43.6

UHT V16 (Ours) - 62.2 47.7 54.0

UHT R50 (Ours) - 60.8 49.0 54.2

Fine-tuned using IC13 and IC17-MLT

TextSnake[24] ECCV-2018 35.3 33.7 34.5

CRAFT[7] CVPR-2019 44.0 28.9 34.9

UHT V16 (Ours) - 43.8 43.1 43.4

UHT R50 (Ours) - 46.4 41.5 43.8

Table 4. Experimental results on COCO-Text; “P” means Preci-

sion, “R” Recall, “F” F-measure. As far as we know, no new work

conducted experiments on testing datasets of COCO-Text since

2019. So in this table, instead of copying directly from other pa-

pers, experimental results from state-of-the-art methodologies are

reimplemented by us using their official code [7] and [3].

IC13 and IC17-MLT datasets, please refer to Section 4.3.3.

4.3.3 Generalization Ability

A powerful text detection framework should have good

generalization ability instead of just overfitting to a partic-

ular dataset and reaching high evaluation scores for that

dataset. To further verify the generalization ability of

UHT, we conducted two additional experiments: (1) we

pre-trained and fine-tuned our model on datasets without

curved text, here ICDAR-2015 [16] with 200 epochs, and

then evaluated it on the Total-Text and SCUT-CUW1500

datasets. We chose state-of-the-art baselines which were

also only fine-tuned on ICDAR-2015 [16]. (2) We fine-

tuned TextSnake[24] and UHT using the same fine-tuning

data as CRAFT[7].

Experimental results (Table 5) show that UHT method

performs well on two curved and one oriented straight text

datasets, even if it is not fine-tuned on them. It outperforms

all listed state-of-the-art baseline methods. We suggest that

the powerful generalization ability of UHT is due to its flex-

ibility in text expression as well as the effectiveness of the

Textfill Algorithm in extracting text bounding polygons by

making full use of the UHT-Net output.

Dataset Total-Text SCUT-CTW1500

Methodology Venue P (%) R (%) F (%) P (%) R (%) F (%)

SegLink [32] CVPR-2017 35.6 33.2 34.4 33.0 28.4 30.5

EAST [48] CVPR-2017 49.0 43.1 45.9 46.7 37.2 41.4

PixelLink [10] AAAI-2018 53.5 52.7 53.1 50.6 42.8 46.4

TextSnake [24] ECCV-2018 61.5 67.9 64.6 65.4 63.4 64.4

CRAFT [7] CVPR-2019 63.0 72.9 67.6 64.5 62.0 63.3

CRAFT* [7] CVPR-2019 - - - 65.5 61.3 63.3

UHT V16 (Ours) - 71.3 70.2 70.7 73.1 75.3 74.2

UHT V16* (Ours) - - - - 74.5 74.7 74.6

UHT R50 (Ours) - 72.7 65.8 69.1 73.2 74.3 73.7

UHT R50* (Ours) - - - - 74.5 73.5 74.0

Table 5. Generalization ability on Total-Text and SCUT-CTW1500

datasets Results of Seglink [32], EAST [48], PixelLink [10] and

TextSnake [24] were reported by Long et al. [24]. Results of

CRAFT [7] are from the official CRAFT model [4], which we

fine-tuned on the ICDAR-2015 dataset. ∗ denotes results with re-

spect to the annotations that we modified for SCUT-CTW1500.

We used single-scale testing.

Figure 5. Pipeline of the proposed text spotting model UHTA. The

model first calls the proposed UHT Detector and then converts

UHT’s polygonal output regions into horizontally-aligned rectan-

gular regions of text. These text regions are then passed to the

state-of-the-art text recognition model ASTER [33], which can ac-

curately recognize the text in these regions and output text strings.

So, like a person, UHTA does not only know where the text re-

gions are, but also recognize the content of each text region.

4.4. Experimental Results on Text Spotting

So far, we have shown that the proposed UHT model can

accurately localize text in natural scene images. The appli-

cation range of UHT can be widen when it is embedded into

a text recognition framework (Fig. 5). After all, a sighted

person would not stop at the task of localizing text but also

aim to identify its content. To provide a computer vision

system who can take on both tasks of detecting and recog-

nizing text in images, we here propose the model UHTA

(short for UHT + ASTER [33]).

We now present a peer comparison for UHTA, showing

7

Methodology Venue F-measure (%)

Textboxes [18] AAAI-2017 36.3

Mask TextSpotter [25] ECCV-2018 52.9

TextNet [37] ACCV-2018 54.0

CharNet H-88 [42] ICCV-2019 66.6

TSA [24, 33] ECCV-2018 58.1

UHTA V16 (Ours) [33] - 75.7

UHTA R50 (Ours) [33] - 77.6

Table 6. Experimental results of TSA and UHTA on the Total-Text

Dataset. Pretrained ASTER [33] model is downloaded from offi-

cial pytorch reimplementation [5]. Evaluation method for UHTA

and TSA is end-to-end recognition from [6]. Annotations are

horizontal text-bounding rectangles because UHT and TextSnake

outputs horizontal text-bounding rectangles in UHTA and TSA.

No distinction between uppercase and lowercase was made when

we evaluated UHTA and TSA. The listed F-measures of the prior

works were reported in their original papers. UHTA V16 denotes

UHTA with VGG-16backbone; UHTA R50 denotes UHTA with

ResNet-50 backbone.

the contribution of UHT in a second text spotting system,

called TSA (TextSnake [24] + ASTER [33]) that applies the

pretrained TextSnake model [3] with the same training data

as UHT. The reason why we use ASTER as our text recog-

nizor is that it can efficiently recognize curved and straight

text and its code is available.

We ran experiments using the Total-Text dataset, where

annotations of text spotting are included. Single-scale and

lexicon-free testing were implemented in the evaluation for

all models. Experimental results are detailed in Table 6,

which show that UHTA has a powerful ability to spot text

and outperforms state-of-the-art text spotting systems on the

Total-Text dataset. Moreover, since the same conditions

were applied for UHTA and TSA, the superior results of

UHTA shows the effectiveness of UHT as the text detection

module of the text spotting pipeline.

4.5. Analysis and Discussion

Framework Features. UHT is robust to different scales

and shapes of text from natural scene images. UHT treats

the text in the natural scene images directly as positive re-

gions instead of the composition of different geometry at-

tributes, whether it is oriented straight text or curved text.

Textfill algorithm can also flexibly and accurately extract

the text in the images according to the output of UHT-Net.

Even if text regions are very close to each other, UHT can

accurately separate words, outperforming most of the state-

of-the-art methodologies in the text detection field.

Multilingual Ability. SCUT-CTW1500 and MSRA-T-

D500 contain English and Chinese scripts. Our results show

the effectiveness of UHT in detecting scripts in a Latin lan-

guage like English and Sino-Tibetan language like Chinese.

Generalization Ability. UHT outperforms state-of-the-

art text detection frameworks by at least 1.5 percent points

Backbone Total-Text SCUT-CTW1500 MSRA-TD500 COCO-Text

UHT V16 1.6 2.1 2.6 5.2

UHT R50 1.9 1.8 3.7 4.5

Table 7. Speed of UHT. The unit of measure is FPS.

in the F-measure of Total-Text [8] (Table 5), at least 10.4

percent points in the F-measure of SCUT-CTW1500 [21]

(Table 5), and 8.5 percent points in the F-measure of

COCO-Text [39] (Table 4), even when not fine-tuned on

them. This shows that UHT not only performs well when

fine-tuned to a specific dataset, but also performs well when

not. We thus conclude that UHT is robust and has a strong

generalization ability.

Speed Analysis. Table 7 reveals that the speed of UHT

when dealing with curved text is slower than with oriented

straight text. We think this might be caused by the origi-

nal ground truth representation of the text region. Oriented

straight text is represented by a rectangle but curved text by

a more complicated multi-vertex polygon.

The backbone UHT-Net. Interestingly, analyzing all

experimental results, we found that usually UHT R50 per-

forms slightly better than UHT V16; but sometimes the op-

posite occurs. We think this might be caused by the hyper-

parameter setting: our choice of hyperparameters may not

allow UHT V16 or UHT R50 to exert their optimal abilities

compared with another model for a particular dataset.

Text Spotting Analysis. The strong experimental results

of UHTA (Table 6) show the strength of UHT as an applica-

tion – UHT performs excellent when used as a text detector

in a pipeline-based text spotting system.

5. Conclusion

In this paper, we proposed a new text detection model

called UHT that, with little information, can effectively de-

tect text in natural scene images. UHT performs well in

experiments with publicly available datasets. This includes

experiments when UHT is fined-tuned and tested on a spe-

cific dataset and when fine-tuned and tested on different

datasets. We fixed ground truth annotation errors of the

SCUT-CTW1500 dataset and make the corrected ground

truth publicly available. We further showed the scope of

UHT by implementing a pipeline-based text spotting sys-

tem that improves the results of other state-of-the-art text

spotting frameworks by a range of 9.1–41.3 percent points

in the F-measure. In the future, we plan to explore the pos-

sibility of detecting scripts of languages other than English

and Chinese, such as Korean and Arabic, with UHT.

Acknowledgements

This work has been partially supported by the National

Science Foundation, grant 1838193, and the Boston Univer-

sity Hariri Institute for Computing.

8

References

[1] https://en.wikipedia.org/wiki/

Bresenham$%$27s_line_algorithm. 4

[2] https://en.wikipedia.org/wiki/Flood_

fill. 4

[3] https://github.com/princewang1994/

TextSnake.pytorch. 7, 8

[4] https://github.com/clovaai/

CRAFT-pytorch. 7

[5] https://github.com/ayumiymk/aster.

pytorch. 8

[6] https://github.com/liuheng92/OCR_

EVALUATION. 8

[7] Y. Baek, B. Lee, D. Han, S. Yun, and H. Lee. Character

region awareness for text detection. CoRR, abs/1904.01941,

2019. 2, 3, 6, 7

[8] C. K. Chng and C. S. Chan. Total-text: A comprehen-

sive dataset for scene text detection and recognition. CoRR,

abs/1710.10400, 2017. 5, 6, 8

[9] Y. Dai, Z. Huang, Y. Gao, and K. Chen. Fused text segmenta-

tion networks for multi-oriented scene text detection. CoRR,

abs/1709.03272, 2017. 6

[10] D. Deng, H. Liu, X. Li, and D. Cai. Pixellink: De-

tecting scene text via instance segmentation. CoRR,

abs/1801.01315, 2018. 2, 7

[11] B. Epshtein, E. Ofek, and Y. Wexler. Detecting text in natu-

ral scenes with stroke width transform. 2010 IEEE Computer

Society Conference on Computer Vision and Pattern Recog-

nition, pages 2963–2970, 2010. 2

[12] A. Gupta, A. Vedaldi, and A. Zisserman. Synthetic data for

text localisation in natural images. CoRR, abs/1604.06646,

2016. 5

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. CoRR, abs/1512.03385, 2015. 4

[14] W. He, X. Zhang, F. Yin, and C. Liu. Deep direct re-

gression for multi-oriented scene text detection. CoRR,

abs/1703.08289, 2017. 1, 2, 7

[15] Z. Huang, Z. Zhong, L. Sun, and Q. Huo. Mask R-CNN with

pyramid attention network for scene text detection. CoRR,

abs/1811.09058, 2018. 6

[16] D. Karatzas, L. Gomez-Bigorda, A. Nicolaou, S. Ghosh,

A. Bagdanov, M. Iwamura, J. Matas, L. Neumann, V. R.

Chandrasekhar, S. Lu, et al. Icdar 2015 competition on

robust reading. In 2015 13th International Conference on

Document Analysis and Recognition (ICDAR), pages 1156–

1160. IEEE, 2015. 7

[17] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014. 5

[18] M. Liao, B. Shi, X. Bai, X. Wang, and W. Liu. Textboxes: A

fast text detector with a single deep neural network. CoRR,

abs/1611.06779, 2016. 2, 8

[19] M. Liao, Z. Zhu, B. Shi, G. Xia, and X. Bai. Rotation-

sensitive regression for oriented scene text detection. CoRR,

abs/1803.05265, 2018. 7

[20] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed,

C. Fu, and A. C. Berg. SSD: single shot multibox detector.

CoRR, abs/1512.02325, 2015. 2

[21] Y. Liu, L. Jin, S. Zhang, and S. Zhang. Detecting curve

text in the wild: New dataset and new solution. CoRR,

abs/1712.02170, 2017. 5, 6, 8

[22] Z. Liu, G. Lin, S. Yang, F. Liu, W. Lin, and W. L. Goh. To-

wards robust curve text detection with conditional spatial ex-

pansion. CoRR, abs/1903.08836, 2019. 6

[23] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. CoRR, abs/1411.4038,

2014. 3

[24] S. Long, J. Ruan, W. Zhang, X. He, W. Wu, and C. Yao.

Textsnake: A flexible representation for detecting text of ar-

bitrary shapes. In The European Conference on Computer

Vision (ECCV), September 2018. 2, 3, 6, 7, 8

[25] P. Lyu, M. Liao, C. Yao, W. Wu, and X. Bai. Mask textspot-

ter: An end-to-end trainable neural network for spotting text

with arbitrary shapes. CoRR, abs/1807.02242, 2018. 2, 8

[26] P. Lyu, C. Yao, W. Wu, S. Yan, and X. Bai. Multi-oriented

scene text detection via corner localization and region seg-

mentation. CoRR, abs/1802.08948, 2018. 1, 7

[27] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-

baseline stereo from maximally stable extremal regions. Im-

age and vision computing, 22(10):761–767, 2004. 2

[28] A. Newell, K. Yang, and J. Deng. Stacked hourglass net-

works for human pose estimation. CoRR, abs/1603.06937,

2016. 3

[29] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-

Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-

matic differentiation in pytorch. 2017. 5

[30] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN:

towards real-time object detection with region proposal net-

works. CoRR, abs/1506.01497, 2015. 2

[31] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolu-

tional networks for biomedical image segmentation. CoRR,

abs/1505.04597, 2015. 4

[32] B. Shi, X. Bai, and S. J. Belongie. Detecting oriented text in

natural images by linking segments. CoRR, abs/1703.06520,

2017. 7

[33] B. Shi, M. Yang, X. Wang, P. Lyu, C. Yao, and X. Bai. Aster:

An attentional scene text recognizer with flexible rectifica-

tion. IEEE transactions on pattern analysis and machine

intelligence, 2018. 7, 8

[34] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 4

[35] L. N. Smith. No more pesky learning rate guessing games.

CoRR, abs/1506.01186, 2015. 5

[36] C. H. Sudre, W. Li, T. Vercauteren, S. Ourselin, and M. J.

Cardoso. Generalised dice overlap as a deep learning

loss function for highly unbalanced segmentations. CoRR,

abs/1707.03237, 2017. 4

[37] Y. Sun, C. Zhang, Z. Huang, J. Liu, J. Han, and E. Ding.

Textnet: Irregular text reading from images with an end-to-

end trainable network. CoRR, abs/1812.09900, 2018. 8

[38] J. Tang, Z. Yang, Y. Wang, Q. Zheng, Y. Xu, and X. Bai.

Detecting dense and arbitrary-shaped scene text by instance-

aware component grouping. Pattern Recognition, 2019. 6

9

[39] A. Veit, T. Matera, L. Neumann, J. Matas, and S. Be-

longie. Coco-text: Dataset and benchmark for text detec-

tion and recognition in natural images. In arXiv preprint

arXiv:1601.07140, 2016. 5, 8

[40] W. Wang, E. Xie, X. Li, W. Hou, T. Lu, G. Yu, and S. Shao.

Shape robust text detection with progressive scale expansion

network. CoRR, abs/1903.12473, 2019. 2, 6

[41] W. Wang, E. Xie, X. Song, Y. Zang, W. Wang, T. Lu, G. Yu,

and C. Shen. Efficient and accurate arbitrary-shaped text

detection with pixel aggregation network. arXiv preprint

arXiv:1908.05900, 2019. 2, 6

[42] L. Xing, Z. Tian, W. Huang, and M. R. Scott. Convolutional

character networks. arXiv preprint arXiv:1910.07954, 2019.

2, 5, 6, 8

[43] Y. Xu, Y. Wang, W. Zhou, Y. Wang, Z. Yang, and X. Bai.

Textfield: Learning A deep direction field for irregular scene

text detection. CoRR, abs/1812.01393, 2018. 6

[44] C. Yao, X. Bai, W. Liu, Y. Ma, and Z. Tu. Detecting texts of

arbitrary orientations in natural images. In 2012 IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

1083–1090, June 2012. 5

[45] C. Yao, X. Bai, N. Sang, X. Zhou, S. Zhou, and Z. Cao.

Scene text detection via holistic, multi-channel prediction.

CoRR, abs/1606.09002, 2016. 1, 2

[46] C. Zhang, B. Liang, Z. Huang, M. En, J. Han, E. Ding, and

X. Ding. Look more than once: An accurate detector for text

of arbitrary shapes. CoRR, abs/1904.06535, 2019. 2, 5, 6

[47] Z. Zhang, C. Zhang, W. Shen, C. Yao, W. Liu, and X. Bai.

Multi-oriented text detection with fully convolutional net-

works. CoRR, abs/1604.04018, 2016. 1, 2, 7

[48] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and

J. Liang. East: An efficient and accurate scene text detector.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), July 2017. 1, 2, 3, 7

[49] Y. Zhu and J. Du. Textmountain: Accurate scene text de-

tection via instance segmentation. CoRR, abs/1811.12786,

2018. 2

10

