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Abstract
We study a class of combinatorially defined polynomial
ideals that are generated byminors of a generic symmet-
ric matrix. Included within this class are the symmetric
determinantal ideals, the symmetric ladder determinan-
tal ideals, and the symmetric Schubert determinantal
ideals of A. Fink, J. Rajchgot, and S. Sullivant. Each
ideal in our class is a type C analog of a Kazhdan–
Lusztig ideal of A. Woo and A. Yong; that is, it is the
scheme-theoretic defining ideal of the intersection of a
type C Schubert variety with a type C opposite Schubert
cell, appropriately coordinatized. The Kazhdan–Lusztig
ideals that arise are exactly those where the opposite
cell is 123-avoiding. Our main results include Gröbner
bases for these ideals, prime decompositions of their
initial ideals (which are Stanley–Reisner ideals of sub-
word complexes), and combinatorial formulas for their
multigraded Hilbert series in terms of pipe dreams.
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1 INTRODUCTION

Let𝕂 be a field of characteristic zero. In this paper,we study a class of generalized symmetric deter-
minantal ideals. Each ideal in our class is defined by imposing certain combinatorial southwest
rank conditions on an 𝑛 × 𝑛 symmetric matrix𝑀 whose 𝑖, 𝑗 entry is either zero or an indetermi-
nate 𝑧𝑖𝑗 = 𝑧𝑗𝑖 and whose nonzero entries lie in a skew partition, in English conventions. Among
the ideals in our class are the symmetric determinantal ideals, the symmetric ladder determinan-
tal ideals [15, 16], and the symmetric Schubert determinantal ideals of [9]. We plan to describe in
detail the connection with symmetric ladder determinantal ideals in a separate paper.
Let 𝑅 = 𝕂[𝑧𝑖𝑗] be the polynomial ring in the variables appearing in a matrix 𝑀 as above. We

interpret this ring in terms of a type C opposite Schubert cell. Let 𝐺 be the symplectic group𝑆𝑝2𝑛(𝕂), represented as the group of 2𝑛 × 2𝑛 matrices preserving the form 𝑒1 ∧ 𝑒2𝑛 +⋯ + 𝑒𝑛 ∧𝑒𝑛+1. We will work with the following Borel subgroups of 𝐺:
𝐵+𝐺 ∶= {upper triangular matrices in 𝐺} and 𝐵−𝐺 ∶= {lower triangular matrices in 𝐺}.

The type C flag variety is 𝐺∕𝐵+𝐺 , and an opposite Schubert cell is a 𝐵−𝐺 -orbit in 𝐺∕𝐵+𝐺 . These
cells are indexed by elements of the Weyl group 𝐶𝑛 of 𝐺, which can be identified with the set
of permutations

𝐶𝑛 = {𝑣1 … 𝑣2𝑛 ∈ 𝑆2𝑛 ∶ 𝑣2𝑛+1−𝑖 = 2𝑛 + 1 − 𝑣𝑖 for 𝑖 = 1,… ,𝑛}.
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Then, the ring 𝑅 is the coordinate ring of a type C opposite Schubert cell associated to some 123-
avoiding permutation 𝑣 ∈ 𝐶𝑛, with an appropriate choice of coordinates (see Proposition 4.7).
From the point of view of Schubert cells in 𝐺∕𝐵+𝐺 , our choices of symplectic form and coordinates
have a long history. These coordinates were used extensively to study Schubert cells by W. Fulton
and P. Pragacz [13], who were likely aware of the connection to symmetric matrices at least in
some special cases.
This choice of coordinates allows us to study a large class of generalized symmetric determinan-

tal ideals from the point of view of Kazhdan–Lusztig varieties in 𝐺∕𝐵+𝐺 . Each ideal we encounter
is obtained by imposing southwest rank conditions on𝑀, using combinatorial rules encoded by
some 𝑤 ∈ 𝐶𝑛. Given 𝑣,𝑤 ∈ 𝐶𝑛, we denote by𝑣,𝑤 the affine variety associated to one of our ide-
als; these varieties form a subclass of type C Kazhdan–Lusztig varieties. A Schubert variety is a𝐵+𝐺 -orbit closure in 𝐺∕𝐵+𝐺 , and a Kazhdan–Lusztig variety is the intersection of a Schubert variety
with an opposite Schubert cell.
In general, Kazhdan–Lusztig varieties provide affine neighborhoods of the 𝑇-fixed points of

Schubert varieties, and they have been used to study singularities of Schubert varieties. One such
instance is [42], in which A. Woo and A. Yong introduced Kazhdan–Lusztig ideals of type A
for this purpose. Each Kazhdan–Lusztig ideal is the prime defining ideal of a type A Kazhdan–
Lusztig variety, appropriately coordinatized. In [43],Woo andYong showed that Kazhdan–Lusztig
ideals of type A possess nice Gröbner bases for which the corresponding initial ideals are
Stanley–Reisner ideals of vertex decomposable balls or spheres. They furthermore provedmultiple
combinatorial formulas for their multigraded Hilbert series.
Similarly, a type C Kazhdan–Lusztig ideal is the defining ideal of a type C Kazhdan–Lusztig

variety. In our main theorem, we use the interpretation of 𝑣,𝑤 as a type C Kazhdan–Lusztig
variety to give a Gröbner basis with squarefree initial terms for the ideals we encounter. We give𝑅 a term order which is diagonal. Roughly this means that the leading term of any minor is the
product of the diagonal entries of the submatrix it arises from. One example of a diagonal term
order is the lexicographic term order where 𝑧𝑖𝑗 > 𝑧𝑖′𝑗′ if and only if either 𝑖 > 𝑖′, or 𝑖 = 𝑖′ and𝑗 > 𝑗′. Our main result is as follows. It is stated precisely as Theorem 4.15 in the main body of the
paper.

Theorem. Let 𝑣,𝑤 ∈ 𝐶𝑛 and 𝑣 be 123-avoiding. The determinants defining the ideal of𝑣,𝑤 form
a Gröbner basis with respect to any diagonal term order.

This result is proved in Section 6 using 𝐾-polynomials and the subword complexes of A. Knut-
son and E. Miller [29, 30]. Note that our conventions are upside-down from those of Knutson and
Miller, so our diagonal term orders are indeed analogs of their antidiagonal term orders.
In [28], Knutson showed that the defining ideal of any Kazhdan–Lusztig variety has a Gröbner

basiswhose leading terms are squarefree, and, in [27], he determined that the resulting initial ideal
is the Stanley–Reisner ideal of a certain subword complex. However, he did not provide a Gröbner
basis. Up to sign, our coordinates agree with the Bott–Samelson coordinates of [28]. Hence, our
resultsmake [28, Theorem 7]more explicit by describing the coordinates and statingwhichminors
in the Gröbner basis arise from each element of the essential set (which corresponds to Knutson’s
“basic elements”).
In Section 7, we define type C pipe dreams and use them to give consequences to Theorem 4.15.

Namely, in Corollary 7.2, we give prime decompositions of the initial ideals, in Proposition 7.3, we
give combinatorial formulas for their multigraded Hilbert series, and in Proposition 7.4, we give
combinatorial formulas for their 𝐾-polynomials. Up to a change in convention, these formulas
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give, in the case where 𝑣 is 123-avoiding, combinatorial models of S. Billey’s formula [6] and its
extension to 𝐾-theory by W. Graham [17] and M. Willems [40] for a particular choice of reduced
word. (We note that Billey’s formula was first stated by H. Andersen, J. Jantzen, andW. Soergel [1]
and independently rediscovered in different but related context byBilley [6]; see J. Tymoczko’s sur-
vey paper [39] for details andmore recent developments.)We note that in recent work, E. Smirnov
andA. Tutubalina [37] have studied pipe dreams in all classical groups; these differ from ours even
in the special case we describe.
The polynomials given in these formulas also have an interpretation as a particular spe-

cialization of type C double Schubert and double Grothendieck polynomials, which are stable
equivariant Chow [21, Theorem 10.8] and K-theory [26, Theorem 2] classes of type C Schubert
varieties. Here, being stable classes means they are lifts of these classes, independent of the rank
of the ambient flag variety, which satisfy certain recurrences and boundary conditions parallel to
those holding in the type A case. From these polynomials, the multidegrees and K-polynomials of
Kazhdan–Lusztig varieties are obtained in two equivalentways, either geometrically by restricting
to affine patches, which is equivalent to localization at torus fixed points, or algebraically accord-
ing to particular restrictionmaps. T. Ikeda, L.Mihalcea, andH. Naruse [21] were the first to define
type C double Schubert polynomials, and they gave several formulas including two using divided
difference operators as well as an algebraic restriction map for recovering local classes. Type C
double Grothendieck polynomials were explicitly defined by A. Kirillov in [25]. The connection
to geometry was made by Kirillov and Naruse in [26]. Under this interpretation of our formu-
las as specializations of type C double Schubert and double Grothendieck polynomials, one can
consider these formulas as type C analogs of the type A specialization formulas of A. Buch and
R. Rimanyi [8].
Wenote that the symmetricmatrix Schubert varietiesdefined and studied byZ.Hamaker, E.Mar-

berg, and B. Pawlowski in [19, 34] are not special cases of the varieties that we consider in the
present paper. The varieties studied by Hamaker, Marberg, and Pawlowski are defined by impos-
ing northwest rank conditions on symmetricmatrices,whilewe impose southwest (andnortheast)
conditions. Correspondingly, the pipe dreams they introduce are symmetric across an axis perpen-
dicular to our axis of symmetry. The varieties in [19, 34] are related to Borel group orbit closures
in 𝐺∕𝐾 where 𝐺 = 𝐺𝐿𝑛 is a general linear group and 𝐾 = 𝑂𝑛 is an orthogonal subgroup of 𝐺.
Outline of this paper

In Section 2, we give the commutative algebra background for the paper. In Section 3, we estab-
lish the notation and setup for type C Kazhdan–Lusztig varieties. In Section 4, we introduce the
coordinates of Proposition 4.7which we use for opposite Schubert cells associated to 123-avoiding
permutations. Then, in Proposition 4.12, we use these coordinates to describe the defining ideal
of 𝑣,𝑤 as a generalized symmetric determinantal ideal. In preparation for computing the 𝐾-
polynomials of our ideals, we describe in Section 4.3 the weights of the coordinates with respect
to the action of the torus of diagonal matrices. In Section 5, we give background on subword com-
plexes, and, for the complexes related to our ideals, we describe how to label their vertices using
our coordinates. We also state the vertex decomposition of subword complexes, which we will use
to compare the 𝐾-polynomials of our ideals with the 𝐾-polynomials of the Stanley–Reisner ide-
als for subword complexes. We then proceed to prove Theorem 4.15 in Section 6. In Section 7, we
introduce type C pipe dreams for small patches and give various consequences to Theorem 4.15.
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Lastly, in Section 8, we show that our Gröbner basis result (Theorem 4.15) does not naturally
extend beyond the small patch setting to general type C Kazhdan–Lusztig ideals.

2 BACKGROUND

2.1 Gröbner bases and initial ideals

A term order < is a total order on the monomials in a polynomial ring 𝑅 with respect to which 1 is
minimal and such that if 𝑚,𝑚′,𝑚′′ are monomials such that 𝑚′ < 𝑚′′, then 𝑚𝑚′ < 𝑚𝑚′′. One
class of term orders we will use are lexicographic term orders. Given a total ordering 𝑥1 > ⋯ > 𝑥𝑘
on the variables of 𝑅, an exponent vector (𝑎1, … ,𝑎𝑘) ∈ ℕ𝑘 can be assigned to any monomial𝑚 = 𝑥𝑎11 ⋯𝑥𝑎𝑘𝑘 ; then two monomials compare in the lexicographic term order just as their expo-
nent vectors compare in the lexicographic order on ℕ𝑘. More precisely, 𝑥𝑎11 ⋯𝑥𝑎𝑘𝑘 < 𝑥𝑏11 ⋯𝑥𝑏𝑘𝑘 if
and only if there is some 1 ⩽ 𝑖 ⩽ 𝑘 so that 𝑎1 = 𝑏1,..., 𝑎𝑖−1 = 𝑏𝑖−1, and 𝑎𝑖 < 𝑏𝑖 . In particular, the
variables themselves still compare as 𝑥1 > ⋯ > 𝑥𝑘 in the lexicographic term order.
The initial term of a polynomial in 𝑅, with respect to a fixed term order <, is the maximum of

themonomials in its support. If 𝐼 is an ideal of 𝑅, then its initial ideal, denoted as in< 𝐼, is the ideal
generated by all initial terms of elements of 𝐼. A Gröbner basis for 𝐼 is a generating set for 𝐼 whose
initial terms generate in< 𝐼.
2.2 Torus actions, multigradings, and 𝑲-polynomials

One reference for the material in this section is [35, Chapter 8].
Suppose that a torus 𝑇 = (𝕂∗)𝑛 acts on affine space 𝔸𝑘 = Spec𝕂[𝑧1, … , 𝑧𝑘] with weights−𝑎1, … ,−𝑎𝑘 ∈ ℤ𝑛. This means that, given 𝑥 = (𝑥1, … ,𝑥𝑛) ∈ 𝑇 and 𝑝 ∈ 𝔸𝑘 with coordinates 𝑝 =∑𝑘𝑖=1 𝑧𝑖(𝑝)𝑓𝑖 (where {𝑓𝑖} denotes the dual basis to {𝑧𝑖}),

𝑥 ⋅ 𝑝 = 𝑘∑
𝑖=1 𝑥−𝑎𝑖𝑧𝑖(𝑝)𝑓𝑖 ,

where

𝑥−𝑎𝑖 = 𝑛∏
𝑗=1 𝑥−𝑎𝑖𝑗𝑗 .

Then 𝑇 acts on the coordinate functions 𝑧1, … , 𝑧𝑘 with weights 𝑎1, … ,𝑎𝑘 respectively. This action
induces a ℤ𝑛-grading on the ring 𝑅 = 𝕂[𝑧1, … , 𝑧𝑘] given by setting the degree of 𝑧𝑖 as 𝑎𝑖 , so thatdeg(𝑧𝑏11 ⋯ 𝑧𝑏𝑘𝑘 ) = ∑𝑘𝑖=1 𝑏𝑖𝑎𝑖 .
Given 𝑎 ∈ ℤ𝑛 and a graded𝑅-module𝑀, let𝑀𝑎 denote the ath-graded piece of𝑀. Suppose thatdim𝕂(𝑀𝑎) is finite for all 𝑎, which will be the case if 𝑎1, … ,𝑎𝑘 generate a pointed cone in ℤ𝑛 ⊗ ℝ

and𝑀 is finitely generated. Then define the Hilbert series of𝑀 to be

(𝑀; 𝐭) = ∑
𝑎∈ℤ𝑛 dim𝕂(𝑀𝑎) 𝐭𝑎.
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6 of 49 ESCOBAR et al.

Furthermore, define the 𝐾-polynomial of𝑀 as

(𝑀; 𝐭) = (𝑀; 𝐭) 𝑘∏
𝑖=1(1 − 𝐭deg(𝑧𝑖)).

This is a Laurent polynomial in the variables 𝑡𝑖 . Finally, the multidegree of 𝑀 with
its given multigrading, denoted as (𝑀; 𝐭), is the sum of all lowest degree terms in(𝑀; 1 − 𝑡1, … , 1 − 𝑡𝑘).
Note that an ideal and its initial ideal have equal 𝐾-polynomials and equal multidegrees. (This

is called the degenerative property in [35].) Furthermore, if 𝑁 ⊆ 𝑀 and (𝑁; 𝐭) = (𝑀; 𝐭), then𝑁 = 𝑀. Also, multidegrees are additive in the sense that the multidegree (𝑅∕𝐼; 𝐭) is the sum∑𝐽 (𝑅∕𝐽; 𝐭) where the sum is over those 𝐽 in a primary decomposition of 𝐼 such that √𝐽 is a
minimal prime of 𝐼 that has the same height as 𝐼 (see [35, §8.5]).
2.3 Simplicial complexes and Stanley–Reisner ideals

A simplicial complex ∆ on the vertex set 𝑉 is a set of subsets of 𝑉, called faces, such that if 𝐹 ∈ ∆,
then all subsets of 𝐹 are in∆. A facet of∆ is a maximal face under containment. If ∆ is a simplicial
complex on 𝑉, and 𝑧 ∉ 𝑉, then the cone cone𝑧 ∆ is the simplicial complex

{𝐹 ⊆ 𝑉 ∪ {𝑧} ∶ 𝐹 ∩ 𝑉 ∈ ∆}
on vertex set 𝑉 ∪ {𝑧}.
The Stanley–Reisner ideal of ∆ is the ideal 𝐼∆ of the polynomial ring 𝑅 = 𝕂[𝑉] generated by

products of variables that index nonfaces of ∆, that is,
𝐼∆ ∶= ⟨∏

𝑧∈𝑍 𝑧 ∶ 𝑍 ⊆ 𝑉,𝑍 ∉ ∆⟩.
3 KAZHDAN–LUSZTIG VARIETIES

In this section, we recall background on Schubert varieties in flag varieties of types 𝐴 and 𝐶.
In particular, we discuss Kazhdan–Lusztig varieties, which we define (following [42]) to
be the intersection of a Schubert variety with an opposite Schubert cell. These are affine
varieties.

3.1 Schubert cells and varieties

Fix an integer 𝑛 ⩾ 1, and let 𝐸 be the 2𝑛 × 2𝑛matrix
𝐸 ∶= [ 0 𝐽𝑛−𝐽𝑛 0 ] ,
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GRÖBNER BASES, SYMMETRIC MATRICES, AND TYPE C KAZHDAN-LUSZTIG VARIETIES 7 of 49

where 𝐽𝑛 is the 𝑛 × 𝑛 antidiagonal matrix with antidiagonal entries 1. The matrix 𝐸 determines a
nondegenerate, skew-symmetric bilinear form on 𝕂2𝑛. The symplectic group 𝑆𝑝2𝑛(𝕂) is

𝑆𝑝2𝑛(𝕂) ∶= {𝑀 ∈ 𝐺𝐿2𝑛(𝕂) ∶ 𝐸(𝑀t)−1𝐸−1 = 𝑀},
or, equivalently, it is the fixed point set of the involution

𝜎 ∶ 𝐺𝐿2𝑛(𝕂)→ 𝐺𝐿2𝑛(𝕂), 𝜎(𝑀) = 𝐸(𝑀t)−1𝐸−1.
Following [33, Chapter 6], we let 𝐻 ∶= 𝐺𝐿2𝑛(𝕂) and 𝐺 ∶= 𝑆𝑝2𝑛(𝕂). We will work with the
following Borel subgroups of𝐻:

𝐵+𝐻 ∶= {upper triangular matrices in𝐻} and 𝐵−𝐻 ∶= {lower triangular matrices in 𝐻}.
These give rise to the following Borel subgroups of 𝐺:

𝐵+𝐺 = (𝐵+𝐻)𝜎 and 𝐵−𝐺 = (𝐵−𝐻)𝜎.
Consider the type A flag variety 𝐻∕𝐵+𝐻 . A Schubert cell in this flag variety is a 𝐵+𝐻-orbit for the

left action of 𝐵+𝐻 on 𝐻∕𝐵+𝐻 by multiplication, and a Schubert variety is its closure. An opposite
Schubert cell is a 𝐵−𝐻-orbit in 𝐻∕𝐵+𝐻 and an opposite Schubert variety is its closure. In the type C
flag variety 𝐺∕𝐵+𝐺 , Schubert cells and varieties are defined analogously by replacing appearances
of𝐻 and 𝐵±𝐻 in the above definitions by 𝐺 and 𝐵±𝐺 , respectively.
Denote by 𝑆2𝑛 the Weyl group of𝐻. Given𝑤 ∈ 𝑆2𝑛, we denote by 𝑃(𝑤) the permutation matrix

having its nonzero entries in positions (𝑤(𝑗), 𝑗) for 𝑗 = 1,… ,𝑛. We use this convention to be
consistent with [43]. Each Schubert cell in the type A flag variety 𝐻∕𝐵+𝐻 is equal to some orbit𝐵+𝐻 ⋅ 𝑃(𝑤)𝐵+𝐻∕𝐵+𝐻 where 𝑤 ∈ 𝑆2𝑛. The analog is true for opposite Schubert cells: every opposite
Schubert cell in 𝐻∕𝐵+𝐻 equals

Ω𝐴◦𝑣 ∶= 𝐵−𝐻 ⋅ 𝑃(𝑣)𝐵+𝐻∕𝐵+𝐻
for some 𝑣 ∈ 𝑆2𝑛. We remark that here, and throughout the remainder of the paper, we use the
letter “𝑤” for permutations indexing Schubert cells or varieties, and we use the letter “𝑣” for
permutations indexing opposite Schubert cells.
The Weyl group 𝐶𝑛 of 𝐺 can be identified with the set of permutations

𝐶𝑛 = {𝑣1 … 𝑣2𝑛 ∈ 𝑆2𝑛 ∶ 𝑣𝑖 = 2𝑛 + 1 − 𝑣2𝑛+1−𝑖 for 𝑖 = 1,… ,𝑛}. (1)

Equivalently, 𝐶𝑛 consists of the 𝑣 ∈ 𝑆2𝑛 such that 𝑤0𝑣𝑤0 = 𝑣, where 𝑤0 is the longest element
of 𝑆2𝑛. In the type C flag variety 𝐺∕𝐵+𝐺 , Schubert and opposite Schubert cells and varieties are
indexed by elements of 𝐶𝑛. Concretely, given𝑤 ∈ 𝐶𝑛, the permutation matrix 𝑃(𝑤) is an element
of 𝐺, so 𝐵+𝐺 ⋅ 𝑃(𝑤)𝐵+𝐺∕𝐵+𝐺 is a Schubert cell, and every Schubert cell is of this form. The analogous
statements hold for Schubert varieties and opposite Schubert cells and varieties. We denote the
type C opposite Schubert cells by

Ω◦𝑣 ∶= 𝐵−𝐺 ⋅ 𝑃(𝑣)𝐵+𝐺∕𝐵+𝐺
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8 of 49 ESCOBAR et al.

for 𝑣 ∈ 𝐶𝑛.
It is useful to note that type C Schubert cells and varieties are the 𝜎-fixed point sets of type A

Schubert cells and varieties. See also the treatment in [9, Theorem 2.5].

Theorem 3.1. [33, Proposition 6.1.1.1] The involution 𝜎 induces a natural involution 𝜎 ∶ 𝐻∕𝐵+𝐻 →𝐻∕𝐵+𝐻 .† For 𝑣 ∈ 𝐶𝑛, the opposite Schubert cellΩ◦𝑣 is stable under 𝜎 andΩ◦𝑣 = (Ω𝐴◦𝑣 )𝜎.
In other words,Ω◦𝑣 consists of the 𝜎-fixed points of the type A opposite Schubert cellΩ𝐴◦𝑣 .

Let 𝑋𝐴𝑤 denote the type 𝐴 Schubert variety 𝐵+𝐻 ⋅ 𝑃(𝑤)𝐵+𝐻∕𝐵+𝐻 and let 𝑋𝑤 denote the type 𝐶
Schubert variety 𝐵+𝐺 ⋅ 𝑃(𝑤)𝐵+𝐺∕𝐵+𝐺 . Following [42] (see also [43]), we refer to the intersection of
a Schubert variety with an opposite Schubert cell as a Kazhdan–Lusztig variety. We denote the
type A Kazhdan–Lusztig variety as

𝐴𝑣,𝑤 = 𝑋𝐴𝑤 ∩ Ω𝐴◦𝑣 ,
and the type C Kazhdan–Lusztig variety as

𝑣,𝑤 = 𝑋𝐴𝑤 ∩ Ω◦𝑣. (2)

Despite the appearances of𝐻 = 𝐺𝐿2𝑛(𝕂) in the latter intersection above,𝑣,𝑤 is indeed equal to
the intersection of a type C Schubert variety with a type C opposite Schubert cell. This follows
immediately from [33, Proposition 6.1.1.2], which says that

𝑋𝑤 = 𝑋𝐴𝑤 ∩ 𝐺∕𝐵+𝐺 ,
as schemes, under the natural inclusion 𝐺∕𝐵+𝐺 ↪ 𝐻∕𝐵+𝐻 .
We remark thatKazhdan–Lusztig varieties are useful for studying singularities of Schubert vari-

eties using computational algebraicmethods. This is because a neighborhood of a torus fixed point
in a Schubert variety is isomorphic, up to a factor of an affine space, to a Kazhdan–Lusztig variety,
which is an affine variety. This isomorphism is due toD. Kazhdan andG. Lusztig [24, LemmaA.4],
and explained in [42, Section 3]. We will describe the prime defining ideals of Kazhdan–Lusztig
varieties in Section 3.4.

3.2 Permutations and left–right weak order

The simple reflections in 𝑆𝑚 are the permutations 𝑠1, … , 𝑠𝑚−1, where 𝑠𝑖 transposes 𝑖 and 𝑖 + 1. In𝐶𝑛,
define the simple reflections to be 𝑐0, 𝑐1, … , 𝑐𝑛−1, where 𝑐0 ∈ 𝐶𝑛 is the permutation that transposes𝑛 and 𝑛 + 1, and for 𝑖 = 1,… ,𝑛 − 1, 𝑐𝑖 ∈ 𝐶𝑛 is the permutation that transposes 𝑛 + 𝑖with 𝑛 + 𝑖 + 1
(so, itmust also transpose𝑛 − 𝑖 and𝑛 − 𝑖 + 1).Wewarn the reader that these indexing conventions
for 𝑆𝑚 and 𝐶𝑛 are different: under the defining embedding 𝐶𝑛 ⊆ 𝑆2𝑛, the simple reflection 𝑐𝑖 is
†We abuse notation and use 𝜎 for both maps.
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GRÖBNER BASES, SYMMETRIC MATRICES, AND TYPE C KAZHDAN-LUSZTIG VARIETIES 9 of 49

identified with 𝑠𝑛 if 𝑖 = 0 or 𝑠𝑛−𝑖𝑠𝑛+𝑖 otherwise, not with something built from 𝑠𝑖 . Both 𝑆𝑚 and 𝐶𝑛
are generated by their sets of simple reflections.
If 𝑊 = 𝑆𝑚 (resp. 𝐶𝑛), a reduced word for 𝑣 ∈ 𝑊 is a sequence 𝑄 = (𝛼1, … ,𝛼𝓁) such that𝑣 = 𝑠𝛼1 ⋯ 𝑠𝛼𝓁 (resp. 𝑣 = 𝑐𝛼1 ⋯ 𝑐𝛼𝓁 ) and 𝓁 is minimized. We denote by 𝓁𝑊(𝑣) the length of any

reduced word for 𝑣 ∈ 𝑊. When there is no chance for confusion, we omit the subscript𝑊 from
our notation for length.
Throughout the paper, we let <R denote the right weak order on 𝑆𝑚; namely, 𝑢 ⩽R 𝑣 if some

initial substring of some reduced word for 𝑣 is a reduced word for 𝑢. Similarly, <L denotes
the left weak order on 𝑆𝑚, which is defined by declaring that 𝑢 ⩽L 𝑣 if some terminal sub-
string of some reduced word for 𝑣 is a reduced word for 𝑢. The left–right weak order on 𝑆𝑚 is
denoted throughout the paper by < and defined by 𝑢 ⩽ 𝑣 if 𝑣 = 𝑠𝛼1 ⋯ 𝑠𝛼𝑎𝑢𝑠𝛽1 ⋯ 𝑠𝛽𝑏 and 𝓁(𝑣) =
𝓁(𝑢) + 𝑎 + 𝑏. We write 𝑢 ⋖ 𝑣 if 𝑣 covers 𝑢 in left–right weak order. Both weak orders as well
as the two sided weak order on 𝐶𝑛 are induced by that on 𝑆2𝑛. Thus, we use the same notation
for them.
We let <Br denote the Bruhat order; namely, 𝑣 ⩾Br 𝑤 if some reduced word 𝑄 for 𝑣 has as a

subword a reduced word for 𝑤. If this holds for one reduced word 𝑄 then it holds for all such
reduced words.
A simple reflection 𝑐𝑘 is a (right) ascent of 𝑣 ∈ 𝐶𝑛 if 𝑣𝑐𝑘 >Br 𝑣 and a (right) descent of 𝑣 other-

wise, namely, if 𝑣𝑐𝑘 <Br 𝑣. The last ascent of 𝑣 is the ascent 𝑐𝑘 where 𝑘 is maximized. Note that 𝑣𝑐𝑘
and 𝑣 compare the same way in the Bruhat, right weak, and left–right weak orders: 𝑣𝑐𝑘 is either
greater than 𝑣 in all three or less than 𝑣 in all three.
Our convention for the (Rothe) diagram of a permutation 𝑤 ∈ 𝑆𝑚 is the set

𝐷(𝑤) = {(𝑤(𝑗), 𝑖) ∶ 𝑖 < 𝑗 and 𝑤(𝑖) < 𝑤(𝑗)}.
It is drawn by placing boxes in an 𝑛 × 𝑛matrix in the positions given by elements of 𝐷(𝑤). There
is a familiar pictorial procedure to obtain 𝐷(𝑤) from 𝑃(𝑤): one replaces each 1 by a ∙, deletes all
0s, and draws at each ∙ the “hook” that extends to the east and north of the ∙. The entries of the
matrix that no hook passes through are the elements of 𝐷(𝑤).
Example 3.2. The diagram of 𝑤 = 365 124 is

𝐷(𝑤) = {(4, 1), (5, 1), (6, 1), (2, 4), (4, 4), (4, 5)}
and it is drawn

Rothe diagrams are important to us for providing coordinates for opposite Schubert cells and
Kazhdan–Lusztig varieties, as we see in the next subsection.
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10 of 49 ESCOBAR et al.

3.3 Opposite Schubert cells as spaces of matrices

Let𝐻 = 𝐺𝐿𝑚(𝕂) and 𝐵+𝐻 ⊆ 𝐻 be the Borel subgroup of upper triangular matrices. For 𝑣 ∈ 𝑆𝑚, letΣ𝐴𝑣 ⊆ 𝐻 be the set of matrices𝑀 such that if 𝑃(𝑣)𝑖𝑗 = 1, then𝑀𝑖𝑗 = 1, and, otherwise, if (𝑖, 𝑗) ∉𝐷(𝑣), then𝑀𝑖𝑗 = 0.
Proposition 3.3. [12, Section 10.2] The map 𝜋𝐻 ∶ 𝐻 → 𝐻∕𝐵+𝐻 sending a matrix 𝑀 to its coset𝑀𝐵+𝐻∕𝐵+𝐻 induces a (scheme-theoretic) isomorphism from the space of matrices Σ𝐴𝑣 to the opposite
Schubert cellΩ𝐴◦𝑣 .

We can similarly identify each type C opposite Schubert cell with a space of matrices using the
map 𝜋𝐻 . We now do this explicitly, to prepare for the explicit coordinate-dependent presentation
needed in ourmain theorem. Thematerial discussed in this section follows fromgeneral theory on
algebraic groups and flag varieties, for example, [23, Chapter 13], and this particular presentation
features in [5].
Let 𝑣 ∈ 𝐶𝑛. Identifying Ω◦𝑣 as a closed subvariety of Ω𝐴◦𝑣 by Theorem 3.1, define the space of

matrices

Σ𝑣 ∶= 𝜋−1𝐻 (Ω◦𝑣), (3)

and note that Σ𝑣, which is a closed subvariety of Σ𝐴𝑣 , is isomorphic toΩ◦𝑣.
Furthermore, we identify Kazhdan–Lusztig varieties with spaces of matrices by letting

Σ𝐴𝑣,𝑤 ∶= 𝜋−1𝐻 (𝐴𝑣,𝑤)
and

Σ𝑣,𝑤 ∶= 𝜋−1𝐻 (𝑣,𝑤).
We now wish to describe Σ𝑣 as the set of 𝜎-fixed points of Σ𝐴𝑣 . This description

will follow from the containment 𝜎(Σ𝐴𝑣 ) ⊆ Σ𝐴𝑣 for 𝑣 ∈ 𝐶𝑛. In order to prove this con-
tainment, the following factorization of the matrices in Σ𝐴𝑣 is useful. Let 𝑈−𝑖 be the
unipotent subgroup of 𝐻 consisting of matrices with 1s along the diagonal, 0s in all
off-diagonal positions except for (𝑖 + 1, 𝑖), and an arbitrary element of 𝕂 in position(𝑖 + 1, 𝑖).
Proposition 3.4. Define Σ̃𝛼 ∶= 𝑃(𝑠𝛼)𝑈−𝛼 . Given 𝑣 ∈ 𝑆𝑚 and (𝛼1, … ,𝛼𝓁) a reduced word for 𝑤0𝑣,
the map

 ∶ Σ̃𝛼1 ×⋯ × Σ̃𝛼𝓁 → Σ𝐴𝑣 , (𝑎1, … ,𝑎𝓁)↦ 𝑃(𝑤0)𝑎1⋯𝑎𝓁
is an isomorphism.

Proof. We proceed by induction on 𝓁(𝑤0𝑣). The base case is when 𝑣 = 𝑤0, and it is clear that
the result holds in this case. For the inductive case, let 𝑣𝑠𝑖 ⋗ 𝑣 and write a reduced expression
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GRÖBNER BASES, SYMMETRIC MATRICES, AND TYPE C KAZHDAN-LUSZTIG VARIETIES 11 of 49

𝑤0𝑣𝑠𝑖 = 𝑠𝛼1 ⋯ 𝑠𝛼𝓁 . By induction,
 ∶ Σ̃𝛼1 ×⋯ × Σ̃𝛼𝓁 → Σ𝐴𝑣𝑠𝑖 , (𝑎1, … ,𝑎𝓁)↦ 𝑃(𝑤0)𝑎1⋯𝑎𝓁

is an isomorphism. So, it suffices to show that the image of the multiplication map

𝑚 ∶ Σ𝐴𝑣𝑠𝑖 × Σ̃𝑖 → 𝐻, (𝑎, 𝑏)↦ 𝑎𝑏 (4)

is Σ𝐴𝑣 and that it is an isomorphism upon restricting the codomain to Σ𝐴𝑣 . To see this, let 𝑎 ∈Σ𝐴𝑣𝑠𝑖 and 𝑏 ∈ Σ̃𝑖 . Assume that the (𝑖, 𝑖)-entry of the matrix 𝑏 is equal to 𝑡 ∈ 𝕂. Observe that 𝑎𝑏
is obtained from 𝑎 by performing two elementary column operations: first swap columns 𝑖 and𝑖 + 1, and then replace column 𝑖 by column 𝑖 plus 𝑡 times column 𝑖 + 1. Let 𝑎[𝑖,𝑖+1] and (𝑎𝑏)[𝑖,𝑖+1]
be the submatrices of 𝑎 and 𝑎𝑏, respectively, consisting of columns 𝑖 and 𝑖 + 1. Because 𝑣𝑠𝑖 ⋗ 𝑣,
after removing all rows of 𝑎[𝑖,𝑖+1] and (𝑎𝑏)[𝑖,𝑖+1] that do not have pivots, we are left with:

[0 11 0
]
(from 𝑎) and

[1 0𝑡 1
]
(from 𝑎𝑏).

Thus, everymatrix in the image of themap𝑚 of (4) can be factored uniquely as 𝑎𝑏, and so,𝑚 is an
isomorphism onto its image. Finally, a straightforward check shows that the locations of diagram
boxes in rows without pivots of 𝑎[𝑖,𝑖+1] and (𝑎𝑏)[𝑖,𝑖+1] coincide. (Alternatively, see [43, Lemma
6.5].) Hence, the image of 𝑚 is contained in Σ𝐴𝑣 . As 𝑚 is an isomorphism onto its image, and Σ𝐴𝑣
and the domain of𝑚 are affine spaces of the same dimension, the proposition is proved. □

Corollary 3.5. Let𝐻 = 𝐺𝐿2𝑛(𝕂). The map 𝜎 ∶ 𝐻 → 𝐻 restricts to an isomorphism

𝜎 ∶ Σ𝐴𝑣 → Σ𝐴𝑤0𝑣𝑤0 .
In particular, if 𝑣 ∈ 𝐶𝑛 ⊆ 𝑆2𝑛, then 𝜎 maps Σ𝐴𝑣 isomorphically onto itself.
Proof. We first observe, by a straightforward direct check, that 𝜎 maps Σ̃𝛼 isomorphically ontoΣ̃2𝑛−𝛼. Let 𝑣 ∈ 𝑆2𝑛 and let (𝛼1, … ,𝛼𝓁) be a reduced word for 𝑤0𝑣. By our observation, we have an
isomorphism,

Σ̃𝐴𝛼1 ×⋯ × Σ̃𝐴𝛼𝓁 → Σ̃𝐴2𝑛−𝛼1 ×⋯ × Σ̃𝐴2𝑛−𝛼𝓁 . (5)

Noting that (2𝑛 − 𝛼1, … , 2𝑛 − 𝛼𝓁) is a reduced word for 𝑤0(𝑤0𝑣)𝑤0 = 𝑣𝑤0, the first statement of
the corollary follows by applying Proposition 3.4, which states that the domain of (5) is isomorphic
to Σ𝐴𝑣 and the codomain is isomorphic to Σ𝐴𝑤0𝑣𝑤0 .
The second statement follows immediately since 𝑤0𝑣𝑤0 = 𝑣 for any 𝑣 ∈ 𝐶𝑛 ⊆ 𝑆2𝑛. □

Corollary 3.6. For 𝑣 ∈ 𝐶𝑛, Σ𝑣 = (Σ𝐴𝑣 )𝜎.
Proof. Let 𝑀 ∈ Σ𝑣. By (3) and Theorem 3.1, 𝑀𝐵+𝐻∕𝐵+𝐻 ∈ Ω◦𝑣 = (Ω𝐴◦𝑣 )𝜎. This implies that𝜎(𝑀)𝐵+𝐻∕𝐵+𝐻 = 𝑀𝐵+𝐻∕𝐵+𝐻 . Since𝑀 ∈ Σ𝐴𝑣 , by Corollary 3.5, 𝜎(𝑀) ∈ Σ𝐴𝑣 . We can then apply Propo-
sition 3.3 to deduce that 𝜎(𝑀) = 𝑀 and conclude that 𝑀 ∈ (Σ𝐴𝑣 )𝜎. Conversely, let 𝑀 ∈ (Σ𝐴𝑣 )𝜎.
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12 of 49 ESCOBAR et al.

Then, 𝜎(𝑀𝐵+𝐻∕𝐵+𝐻) = 𝜎(𝑀)𝐵+𝐻∕𝐵+𝐻 = 𝑀𝐵+𝐻∕𝐵+𝐻 . Furthermore, by Proposition 3.3, we have that𝑀𝐵+𝐻∕𝐵+𝐻 ∈ (Ω𝐴◦𝑣 )𝜎 = Ω◦𝑣. We conclude that𝑀 ∈ Σ𝑣 = 𝜋−1𝐻 (Ω◦𝑣). □

We endwith two examples of computing Σ𝑣. The first shows that, in general, the space ofmatri-
cesΣ𝑣 can be complicated. The second shows that for particular choices of 𝑣,Σ𝑣 is easy to describe.
From Section 4, we will generally restrict to only these nice Σ𝑣.
Example 3.7. Given 𝑣 = 231 645, we have that

Σ𝐴𝑣 = 𝜋−1𝐻 (Ω𝐴◦𝑣 ) =
⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 1 0 0 01 0 0 0 0 0𝑎 1 0 0 0 0𝑏 𝑐 𝑑 0 1 0𝑒 𝑓 g 0 ℎ 1𝑖 𝑗 𝑘 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

∶ 𝑎, 𝑏, … , 𝑘 ∈ 𝕂
⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪⎭

.

Since

𝜎
⎛
⎜
⎜
⎜
⎜
⎜
⎜⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 1 0 0 01 0 0 0 0 0𝑎 1 0 0 0 0𝑏 𝑐 𝑑 0 1 0𝑒 𝑓 g 0 ℎ 1𝑖 𝑗 𝑘 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

⎞
⎟
⎟
⎟
⎟
⎟
⎟⎠

=
⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 1 0 0 01 0 0 0 0 0−ℎ 1 0 0 0 0−𝑐ℎ + 𝑓 𝑐 𝑗 0 1 0−𝑎𝑓 + (𝑎𝑐 − 𝑏)ℎ + 𝑒 −𝑎𝑐 + 𝑏 −𝑎𝑗 + 𝑖 0 −𝑎 1−𝑑ℎ + g 𝑑 𝑘 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

,

we can equate the entries of 𝜎(𝑀) with the entries of 𝑀 ∈ Σ𝐴𝑣 to obtain the conditions definingΣ𝑣. It is straightforward to verify that

Σ𝑣 =
⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 1 0 0 01 0 0 0 0 0𝑎 1 0 0 0 0𝑏 𝑐 𝑑 0 1 0𝑒 −𝑎𝑐 + 𝑏 −𝑎𝑑 + 𝑖 0 −𝑎 1𝑖 𝑑 𝑘 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

∶ 𝑎, 𝑏, 𝑐,𝑑, 𝑒, 𝑖, 𝑘 ∈ 𝕂
⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪⎭

.

Example 3.8. By a similar computation to the one in the previous example, one can check that
the space of matrices Σ321 654 is naturally identified with the space of 3 × 3 symmetric matrices.
That is,

Σ321654 =
⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 1 0 0 00 1 0 0 0 01 0 0 0 0 0𝑧11 𝑧12 𝑧13 0 0 1𝑧12 𝑧22 𝑧23 0 1 0𝑧13 𝑧23 𝑧33 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

∶ 𝑧𝑖𝑗 ∈ 𝕂
⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪⎭

.
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3.4 Rank conditions on type C Kazhdan–Lusztig varieties

Given 𝑤 ∈ 𝑆2𝑛, let 𝑟𝑤 ∶ {1, … , 2𝑛} × {1, … , 2𝑛}→ {1, … , 2𝑛} be the rank function of 𝑤, defined by
𝑟𝑤(𝑝, 𝑞) = |{𝑖 ⩽ 𝑞 ∶ 𝑤(𝑖) ⩾ 𝑝}|,

so that 𝑟𝑤(𝑝, 𝑞) is the number of entries of 𝑤 weakly southwest of (𝑝, 𝑞).
Given amatrix𝑀, let 𝜏𝑝,𝑞(𝑀) denote the submatrix of entries of𝑀weakly southwest of position(𝑝, 𝑞). A matrix 𝑀 ∈ Σ𝐴𝑣 is in Σ𝐴𝑣,𝑤 if and only if, for all 𝑝, 𝑞 ∈ [2𝑛], 𝜏𝑝,𝑞(𝑀) has rank at most𝑟𝑤(𝑝, 𝑞). Not all of these rank conditions are necessary to determine Σ𝐴𝑣,𝑤. In type A, Fulton [11]

defined the essential set, which gives a smaller set of sufficient conditions, as the set of boxes on
the northeast † corners of the connected components of 𝐷(𝑤). To be precise, let

𝐸𝐴(𝑤) ∶= {(𝑝, 𝑞) ∈ 𝐷(𝑤) ∶ (𝑝 − 1, 𝑞), (𝑝, 𝑞 + 1) ∉ 𝐷(𝑤)}.
Equivalently, one can also define

𝐸𝐴(𝑤) = {(𝑝, 𝑞) ∶ 𝑤(𝑞) < 𝑝 ⩽ 𝑤(𝑞 + 1),𝑤−1(𝑝 − 1) ⩽ 𝑞 < 𝑤−1(𝑝)}.
Then𝑀 = Σ𝐴𝑣,𝑤 if and only if the size 𝑟𝑤(𝑝, 𝑞) + 1minors of 𝜏𝑝,𝑞(𝑀) vanish for all (𝑝, 𝑞) ∈ 𝐸𝐴(𝑤),
and, in fact, these equations defineΣ𝐴𝑣,𝑤 as a subvariety ofΣ𝐴𝑣 scheme theoretically [42, Proposition
3.1].

Example 3.9. Let 𝑤 = 465 213. We have

so, the (type A) essential set of 𝑤 is 𝐸𝐴(𝑤) = {(5, 1), (3, 5)}. Furthermore, 𝑟𝑤(5, 1) = 0 and𝑟𝑤(3, 5) = 3.
Suppose that 𝑣 = 231 645, as featured in Example 3.7. Then𝑀 ∈ Σ𝐴𝑣,𝑤 if and only if𝑀 ∈ Σ𝐴𝑣 and

the size 𝑟𝑤(𝑝, 𝑞) + 1minors of 𝜏𝑝,𝑞(𝑀) vanish for all (𝑝, 𝑞) ∈ 𝐸𝐴(𝑤). In particular, 𝑒 = 𝑖 = 0, and
we have five additional equations coming from the 4 × 4minors of

⎡
⎢
⎢
⎢
⎢⎣

𝑎 1 0 0 0𝑏 𝑐 𝑑 0 1𝑒 𝑓 g 0 ℎ𝑖 𝑗 𝑘 1 0
⎤
⎥
⎥
⎥
⎥⎦

.
†Note that Fulton uses different conventions to ours. His hooks emanate east and south rather than east and north, and
he works in 𝐵− ⧵ 𝐺 rather than 𝐺∕𝐵−, so his permutation matrices are the transpose of ours.
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14 of 49 ESCOBAR et al.

Recall from (2) that 𝑣,𝑤 is the intersection of Ω𝑣 with a type A Schubert variety. Hence,
the rank conditions defining Σ𝑣,𝑤 are the same as those defining Σ𝐴𝑣,𝑤, but now applied
to Σ𝑣 instead of Σ𝐴𝑣 . In type C, Anderson [2] showed that a smaller set suffices. (Some
details were made more explicit in [41, Section 4].) First, for a permutation 𝑤 ∈ 𝐶𝑛, boxes
of 𝐸𝐴(𝑤) always come in pairs. If (𝑝, 𝑞) ∈ 𝐸𝐴(𝑤), then (2𝑛 + 2 − 𝑝, 2𝑛 − 𝑞) ∈ 𝐸𝐴(𝑤), and,
furthermore,†

𝑟𝑤(2𝑛 + 2 − 𝑝, 2𝑛 − 𝑞) = 𝑝 − 𝑞 − 1 + 𝑟𝑤(𝑝, 𝑞).
We will choose one box out of each pair by requiring that 𝑝 ⩾ 𝑛 + 1, and, if𝑝 = 𝑛 + 1, 𝑞 ⩽ 𝑛. Furthermore, if (𝑝, 𝑞) and (𝑝, 2𝑛 − 𝑞) are both in 𝐸𝐴(𝑤) with𝑝 > 𝑛 + 1 and 𝑞 < 𝑛, and 𝑟𝑤(𝑝, 𝑞) = 𝑟𝑤(𝑝, 2𝑛 − 𝑞) − (𝑛 − 𝑞), then (𝑝, 2𝑛 − 𝑞) is
redundant.

Definition 3.10. Define 𝐸(𝑤) as the subset of 𝐸𝐴(𝑤) such that (𝑝, 𝑞) ∈ 𝐸𝐴(𝑤) is in 𝐸(𝑤) if and
only if both of the following conditions are satisfied: ‡∙ 𝑝 ⩾ 𝑛 + 1,∙ If 𝑞 ⩾ 𝑛 + 1 and (𝑝, 2𝑛 − 𝑞) is also in 𝐸𝐴(𝑤), then 𝑟𝑤(𝑝, 2𝑛 − 𝑞) > 𝑟𝑤(𝑝, 𝑞) + 𝑛 − 𝑞.
The second condition subsumes the redundancy condition for 𝑝 = 𝑛 + 1; we always will get

equality instead of the desired inequality in that case.

Example 3.11. Let𝑤 = 465 213 as inExample 3.9. The (typeC) essential set of𝑤 is𝐸(𝑤) = {(5, 1)}.
Suppose that 𝑣 = 321 654 as in Example 3.8. Then𝑀 ∈ Σ𝑣,𝑤 if and only if𝑀 ∈ Σ𝑣 and the size 1
minors of 𝜏5,1(𝑀) vanish. Thus,

Σ𝑣,𝑤 =
⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 1 0 0 00 1 0 0 0 01 0 0 0 0 0𝑧11 0 0 0 0 10 𝑧22 𝑧23 0 1 00 𝑧23 𝑧33 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

∶ 𝑧𝑖𝑗 ∈ 𝕂
⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪⎭

.

Example 3.12. Let 𝑤 = 426 153. The type A essential set of 𝑤 is 𝐸𝐴(𝑤) ={(3, 2), (3, 4), (5, 2), (5, 4)}. The first condition that 𝑝 ⩾ 𝑛 + 1 eliminates (3,2) and (3,4)
(whose conditions are equivalent to those given by (5,4) and, respectively, (5,2)).
Note that (𝑝, 𝑞) = (5, 4) does not satisfy the second condition, since 𝑞 = 4 ⩾ 𝑛 + 1,(𝑝, 2𝑛 − 𝑞) = (5, 2) ∈ 𝐸𝐴(𝑤), and 𝑟𝑤(5, 2) = 0 = 𝑟𝑤(5, 4) + 𝑛 − 𝑞 = 1 + 3 − 4. Hence,𝐸(𝑤) = {(5, 2)}.
If we let 𝑣 = 321654 as in Example 3.8, we see that the condition 𝑟𝑤(5, 2) = 0 forces 𝑧12 = 𝑧22 =𝑧13 = 𝑧23 = 0, and this automatically forces 𝑟𝑤(5, 4) = 1 (noting that 𝑧23 appears in two places in

†AW regrets his earlier failure in [41] in the perpetual quest to make an even number of sign errors.‡Anderson in [2, Definition 1.2] and AW in [41, Section 4] choose the leftmost box in each pair, rather than the lower box
as we do.
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GRÖBNER BASES, SYMMETRIC MATRICES, AND TYPE C KAZHDAN-LUSZTIG VARIETIES 15 of 49

the matrix), indicating that the condition from (5,4) is redundant. In particular,

Σ𝑣,𝑤 =
⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 1 0 0 00 1 0 0 0 01 0 0 0 0 0𝑧11 0 0 0 0 10 0 0 0 1 00 0 𝑧33 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

∶ 𝑧𝑖𝑗 ∈ 𝕂
⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪⎭

.

4 SMALL PATCHES

Let 𝑣□ ∈ 𝐶𝑛 denote the square word permutation, whose permutation matrix is
𝑃(𝑣□) = [𝐽𝑛 00 𝐽𝑛

] .
In this section, we discuss various properties of type C opposite Schubert cells Ω◦𝑣 where 𝑣 ⩾ 𝑣□
in left–right weak order. We refer to such opposite Schubert cells as small patches.
The purpose of this section is for us to fix explicit coordinates and conventions. In addition

to being crucial in our main theorem on Gröbner bases, our choice of coordinates yields a nat-
ural identification between small patches and symmetric ladders from the commutative algebra
literature [15, 16].

4.1 Small patches and symmetric matrices

To choose coordinates on type A opposite Schubert cells, it is enough to take a distinct indetermi-
nate for each element of 𝐷(𝑣) (see [43, Section 2.2]). In this section, we put specific coordinates
on type C opposite Schubert cells Ω◦𝑣 when 𝑣 ⩾ 𝑣□.
By Theorem 3.1, the type C opposite Schubert cellΩ◦𝑣 of 𝑣 ∈ 𝐶𝑛 consists of the 𝜎-fixed points of

the type A cell Ω𝐴◦𝑣 . For 𝑣□, the type A cell Ω𝐴◦𝑣□ is isomorphic to the set of matrices

Σ𝐴𝑣□ = {[𝐽𝑛 0𝑀 𝐽𝑛
] ∶ 𝑀 is any 𝑛 × 𝑛 matrix}.

Applying Corollary 3.6, we can directly compute the 𝜎-fixed points of Σ𝐴𝑣□ to show the following
result. (See Example 3.8 for the 𝑛 = 3 case).
Proposition 4.1. Σ𝑣□ = {[𝐽𝑛 0𝑍 𝐽𝑛] ∶ 𝑍 is a symmetric 𝑛 × 𝑛matrix}.

Our next goal is to give explicit coordinates for Σ𝑣 whenever 𝑣 ⩾ 𝑣□. This will show that, by
deleting certain rows and columns with no variables, matrices in Σ𝑣 can be identified with sym-
metric matrices with zeroes in prescribed entries, and our coordinates will be entries of these
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16 of 49 ESCOBAR et al.

matrices. For the rest of this paper, we restrict to such 𝑣. A permutation 𝑣 ∈ 𝑆𝑚 is 123-avoiding if
there do not exist 𝑖 < 𝑗 < 𝑘 such that 𝑣(𝑖) < 𝑣(𝑗) < 𝑣(𝑘). A left-to-right minimum of a permutation
is an index 𝑎 such that 𝑣(𝑖) > 𝑣(𝑎) for all 𝑖 < 𝑎; a right-to-left maximum is an index 𝑏 such that𝑣(𝑘) < 𝑣(𝑏) for all 𝑘 > 𝑏.
Lemma 4.2. If 𝑣 ∈ 𝐶𝑛, then 𝑣 is 123-avoiding if and only if there exist left-to-right minima 𝑎1 <
⋯ < 𝑎𝑛 such that 𝑎𝑖 ≠ 2𝑛 + 1 − 𝑎𝑗 for any 𝑖 and 𝑗. If we let 𝑏𝑖 = 2𝑛 + 1 − 𝑎𝑛+1−𝑖 for all 𝑖, then 𝑏1 <
⋯ < 𝑏𝑛 are right-to-left maxima.
Note that, by definition of left-to-right minima and right-to-left maxima, 𝑣(𝑎1) > ⋯ > 𝑣(𝑎𝑛)

and 𝑣(𝑏1) > ⋯ > 𝑣(𝑏𝑛).
Proof. It is well known that every index in a 123-avoiding permutation 𝑣 ∈ 𝑆𝑚 is a left-to-
right minimum or a right-to-left maximum. Indeed, if 𝑗 is neither, then there exists 𝑖 < 𝑗
with 𝑣(𝑖) < 𝑣(𝑗) and there exists 𝑘 > 𝑗 with 𝑣(𝑘) > 𝑣(𝑗), so 𝑣 is not 123-avoiding. For 𝑣 ∈𝐶𝑛, whenever 𝑎 is a right-to-left maximum, 2𝑛 + 1 − 𝑎 is a left-to-right minimum by def-
inition. Hence, for all 𝑗 with 1 ⩽ 𝑗 ⩽ 𝑛, if 𝑗 is a left-to-right minimum, we let 𝑗 be one
of the 𝑎𝑖 . Otherwise, 2𝑛 + 1 − 𝑗 is a left-to-right minimum and we let 2𝑛 + 1 − 𝑗 be one
of the 𝑎𝑖 . □

Proposition 4.3. If 𝑣 ∈ 𝐶𝑛, then 𝑣 ⩾ 𝑣□ if and only if 𝑣 is 123-avoiding. Moreover, if 𝑣 = 𝑢𝑙𝑣□𝑢𝑟,
𝓁(𝑣) = 𝓁(𝑢𝓁) + 𝓁(𝑣□) + 𝓁(𝑢𝑟), and we set 𝑎𝑖 = 𝑢−1𝑟 (𝑖) and 𝑏𝑖 = 𝑢−1𝑟 (𝑛 + 𝑖), then the 𝑎’s and 𝑏’s are
as in Lemma 4.2.

Proof. Supposing that 𝑣 ⩾ 𝑣□, we will prove that 𝑣 is 123-avoiding by induction on 𝓁(𝑣) − 𝓁(𝑣□).
Notice that the statement is true for 𝑣□. For the inductive step, suppose 𝑣 = 𝑢𝑙𝑣□𝑢𝑟 is 123-avoiding
and𝑤 ⋗ 𝑣 ⩾ 𝑣□. Then, there exists 𝑐𝑑 such that𝑤 = 𝑣𝑐𝑑 or𝑤 = 𝑐𝑑𝑣. First, suppose that𝑤 = 𝑣𝑐𝑑.
Since 𝑣𝑐𝑑 > 𝑣, we must have picked 𝑑 such that 𝑣(𝑛 − 𝑑) < 𝑣(𝑛 − 𝑑 + 1). Note 𝑛 − 𝑑 cannot be a
right-to-left maximum and 𝑛 − 𝑑 + 1 cannot be a left-to-right minimum, so 𝑛 − 𝑑 = 𝑎𝑗 and 𝑛 −𝑑 + 1 = 𝑏𝑛+1−𝑘 for some 𝑗, 𝑘 (which implies that 𝑛 + 𝑑 = 𝑎𝑘 and 𝑛 + 𝑑 + 1 = 𝑏𝑛+1−𝑗). Notice that
we obtain the desired sequences 𝑎′1 < ⋯ < 𝑎′𝑛 and 𝑏′1 < ⋯ < 𝑏′𝑛 for 𝑤 = 𝑣𝑐𝑑 by taking 𝑎′𝑖 = 𝑎𝑖
and 𝑏′𝑖 = 𝑏𝑖 for all 𝑖, except that 𝑎′𝑗 = 𝑛 − 𝑑 + 1, 𝑏′𝑛+1−𝑘 = 𝑛 − 𝑑, 𝑎′𝑘 = 𝑛 + 𝑑 + 1, and 𝑏′𝑛+1−𝑗 =𝑛 + 𝑑. We conclude that𝑤 = 𝑣𝑐𝑑 is 123-avoiding. Furthermore,𝑤 = 𝑢𝑙𝑣□𝑢′𝑟 where 𝑢′𝑟 = 𝑢𝑟𝑐𝑑, and
we have 𝑎′𝑖 = 𝑎𝑖 = 𝑢−1𝑟 (𝑖) = (𝑢′𝑟)−1(𝑖) for 𝑖 ≠ 𝑗, 𝑘, while 𝑎′𝑗 = 𝑛 − 𝑑 + 1 = 𝑐𝑑(𝑎𝑗) = 𝑐𝑑(𝑢−1𝑟 (𝑗)) =(𝑢′𝑟)−1(𝑗), and similarly, 𝑎′𝑘 = (𝑢′𝑟)−1(𝑘).
Continuing the inductive step, suppose that 𝑤 = 𝑐𝑑𝑣. Since 𝑐𝑑𝑣 > 𝑣, we must have picked 𝑑

such that 𝑣−1(𝑛 − 𝑑) < 𝑣−1(𝑛 − 𝑑 + 1). Since 𝑣(𝑣−1(𝑛 − 𝑑)) < 𝑣(𝑣−1(𝑛 − 𝑑 + 1)), then 𝑣−1(𝑛 − 𝑑)
is not a right-to-left maximum and 𝑣−1(𝑛 − 𝑑 + 1) is not a left-to-right minimum, so 𝑣−1(𝑛 −𝑑) = 𝑎𝑗 and 𝑣−1(𝑛 − 𝑑 + 1) = 𝑏𝑛+1−𝑘 for some 𝑗, 𝑘 (which implies that 𝑣(𝑎𝑘) = 𝑛 + 𝑑 and𝑣(𝑏𝑛+1−𝑗) = 𝑛 + 𝑑 + 1). Observe then that for all 𝑖, 𝑐𝑑𝑣(𝑎𝑖) > 𝑐𝑑𝑣(𝑎𝑖+1) and 𝑐𝑑𝑣(𝑏𝑖) > 𝑐𝑑𝑣(𝑏𝑖+1).
In this case, we obtain the desired sequences for 𝑤 = 𝑐𝑑𝑣 by keeping the 𝑎’s and 𝑏’s for 𝑣.
Note that 𝑢𝑟 is unchanged. This proves the second statement and the forward direction of the
first statement.
Now suppose that 𝑣 ∈ 𝐶𝑛 is 123-avoiding. Choose 𝑎’s and 𝑏’s for 𝑣, as in Lemma 4.2. We will

provide an algorithm that produces 𝛼1, … ,𝛼𝑠 and 𝛽1, … , 𝛽𝑡 such that 𝑣□ = 𝑐𝛼𝑠 ⋯ 𝑐𝛼1𝑣𝑐𝛽1 ⋯ 𝑐𝛽𝑡 and
𝓁(𝑣) = 𝓁(𝑣□) + 𝑠 + 𝑡, thus proving that 𝑣 ⩾ 𝑣□.
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•
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F IGURE 1 On the left, we have the diagram of 𝑣 = 462 513 > 𝑣□ and on the right its associated skew
partition.

We start by finding the 𝛼’s. If 𝑣(𝑎1) = 𝑛, we will have no 𝑐𝛼’s. Otherwise, since 𝑣(𝑎1) > ⋯ >𝑣(𝑎𝑛) ⩾ 1, we must have 𝑣(𝑎1) > 𝑛. Let 𝑗 = max{𝑘 ∈ [𝑛] ∶ 𝑣(𝑎𝑘) > 𝑛 + 1 − 𝑘}, and let 𝑐 ∈ 𝐶𝑛 be
the generator that transposes 𝑣(𝑎𝑗) − 1with 𝑣(𝑎𝑗) (so, it transposes 𝑣(2𝑛 + 1 − 𝑎𝑗)with 𝑣(2𝑛 + 1 −𝑎𝑗) + 1). Since 𝑎𝑗 is a left-to-right minimum, 𝑣−1(𝑣(𝑎𝑗) + 1) > 𝑎𝑗 , so 𝑐𝑣 < 𝑣. By the construction
of 𝑗, we have 𝑣(𝑎𝑗) − 1 ≠ 𝑣(𝑎𝑗+1), and hence, 𝑣−1(𝑣(𝑎𝑗) − 1) is not a left-to-right minimum for 𝑣.
Hence, 𝑐𝑣 is also 123-avoiding as witnessed by the same indices 𝑎𝑖 and 𝑏𝑖 . Set 𝛼1 so that 𝑐 = 𝑐𝛼1 .
Iterate this process, without changing the 𝑎𝑖 and 𝑏𝑖 , until 𝑣(𝑎𝑘) = 𝑛 + 1 − 𝑘 for all 𝑘 ∈ [𝑛].
Starting with the output 𝑣 of the previous paragraph, we now find the 𝛽’s. Note that this output

has the property that 𝑣(𝑎𝑖) = 𝑛 + 1 − 𝑖 (and 𝑣(𝑏𝑖) = 2𝑛 + 1 − 𝑖) for all 𝑖 ∈ [𝑛], and this property
will be maintained throughout the process. Let 𝑗 = min{𝑘 ∈ [𝑛] ∶ 𝑎𝑘 > 𝑘}, and let 𝑐 ∈ 𝐶𝑛 be the
generator that transposes 𝑎𝑗 with 𝑎𝑗 − 1 (so, it must also transpose 𝑏𝑛+1−𝑗 with 𝑏𝑛+1−𝑗 + 1). First,
note that since 𝑎𝑗 is a left-to-rightminimum, 𝑣(𝑎𝑗 − 1) > 𝑣(𝑎𝑗), so 𝑣𝑐 < 𝑣. Second, note that 𝑎𝑗 − 1
is not a left-to-right minimum by definition of 𝑗, so 𝑎𝑗 − 1 = 𝑏𝑘 for some 𝑘 ∈ [𝑛] and 𝑣(𝑎𝑗 − 1) >𝑛. Take 𝑎′𝑖 = 𝑎𝑖 and 𝑏′𝑖 = 𝑏𝑖 for all 𝑖, except that 𝑎′𝑗 = 𝑏𝑘, 𝑏′𝑘 = 𝑎𝑗 , 𝑎′𝑛+1−𝑘 = 𝑏𝑛+1−𝑗 , and 𝑏′𝑛+1−𝑗 =𝑎𝑛+1−𝑘. Then, 𝑣𝑐 is 123-avoiding and 𝑣𝑐(𝑎′𝑗) = 𝑛 + 1 − 𝑗 (and 𝑣𝑐(𝑏′𝑛+1−𝑗) = 2𝑛 + 1 − 𝑗). Set 𝛽1 to
be the index such that 𝑐 = 𝑐𝛽1 . Iterate the process starting with 𝑣𝑐𝛽𝑖 ⋯ 𝑐𝛽1 until no longer possible,
so until 𝑎𝑗 = 𝑗 for all 𝑗 ∈ [𝑛]. Note then that the algorithm terminateswith 𝑣□ and the proposition
follows. □

One can consider Proposition 4.3 as a type C analog of [7, Theorem 2.1], which characterizes
321-avoiding permutations as those smaller (in left–right weak order) than the maximal grass-
mannian permutation for some descent. Since 321-avoiding type C permutations are 321-avoiding
type A permutations, [7, Theorem 2.1] directly implies the “only if” direction of the first sentence
of Proposition 4.3, but in type A, the choice of maximal grassmannian permutation can depend
on 𝑣, whereas in type C, 𝑣□ is the only choice. Also unlike typeA, the conditions of Proposition 4.3
are not equivalent to𝑤0𝑣 being fully commutative: 𝑣 = 1324 ∈ 𝐶2 does not satisfy the proposition
although 𝑤0𝑣 = 4231 = 𝑐1𝑐0𝑐1 is fully commutative.
The following corollary describes the diagram for 𝑣 ⩾ 𝑣□; see Figure 1 for an example.

Corollary 4.4. If 𝑣 ∈ 𝐶𝑛, then 𝑣 ⩾ 𝑣□ if and only if𝐷(𝑣) becomes a skew partition after deleting all
the rows and columns that do not contain boxes of 𝐷(𝑣).
Proof. This is a direct consequence of the previous proposition together with the note following [7,
Theorem 2.1]. We remark that we obtain 123-avoiding permutations instead of 321-avoiding ones
due to the difference in our conventions for 𝐷(𝑣). □
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18 of 49 ESCOBAR et al.

Throughout the paper, we denote by 𝑣 a factorization 𝑣 = 𝑢𝑙𝑣□𝑢𝑟 such that 𝓁(𝑣) = 𝓁(𝑢𝑙) +
𝓁(𝑣□) + 𝓁(𝑢𝑟). We let

𝑅𝑣 = 𝕂[𝑧𝑖𝑗 ∶ 𝑖 ⩽ 𝑗, 𝑢−1𝑟 (𝑖) < 𝑢−1𝑟 (2𝑛 + 1 − 𝑗), 𝑢𝑙(𝑛 + 1 − 𝑖) < 𝑢𝑙(𝑛 + 𝑗)].
Furthermore, let 𝑀𝑣 be the matrix with 𝑧𝑖𝑗 as the entries at (𝑢𝑙(𝑛 + 𝑗),𝑢−1𝑟 (𝑖)) and (𝑢𝑙(𝑛 +𝑖),𝑢−1𝑟 (𝑗)) whenever 𝑢−1𝑟 (𝑖) < 𝑢−1𝑟 (2𝑛 + 1 − 𝑗) and 𝑢𝑙(𝑛 + 1 − 𝑖) < 𝑢𝑙(𝑛 + 𝑗), 1s at (𝑣(𝑖), 𝑖) for all𝑖, and 0s at all other positions. Note that the 𝑧𝑖𝑗 only appear within 𝐷(𝑣). For some examples, the
general element of Σ321654 in Example 3.8 and the matrix on the left-hand side of the equality in
Example 4.8 are both of the form𝑀𝑣.
Note that given 𝑣 ⩾ 𝑣□, a choice of 𝑎1, … ,𝑎𝑛 and 𝑏1, … , 𝑏𝑛 as in Lemma 4.2 is equivalent to

choosing a factorization 𝑣. In this language
𝑅𝑣 = 𝕂[𝑧𝑖𝑗 ∶ 𝑖 ⩽ 𝑗, 𝑎𝑖 < 𝑏𝑛+1−𝑗 , 𝑣(𝑎𝑖) < 𝑣(𝑏𝑛+1−𝑗)],

and 𝑀𝑣 is the matrix with 𝑧𝑖𝑗 as the entries at (𝑣(𝑏𝑛+1−𝑗), 𝑎𝑖) and (𝑣(𝑏𝑛+1−𝑖), 𝑎𝑗) whenever 𝑎𝑖 <𝑏𝑛+1−𝑗 and 𝑣(𝑎𝑖) < 𝑣(𝑏𝑛+1−𝑗), 1s at (𝑣(𝑖), 𝑖) for all 𝑖, and 0s at all other positions.
Example 4.5. This example shows how the labeling of the coordinates in 𝑅𝑣 depends on the
choice of our factorization 𝑣. The factorization 𝑣(1) corresponding to 𝑣 = 642 531 > 𝑣□, (𝑎∙) =(1, 2, 3), and (𝑏∙) = (4, 5, 6) is 𝑣(1) = 𝑢(1)𝑙 𝑣□𝑢(1)𝑟 where 𝑢(1)𝑙 = 246 135 and 𝑢(1)𝑟 = 123 456. Then,

𝑀𝑣(1) =
⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 0 0 0 10 0 1 0 0 00 0 𝑧23 0 1 00 1 0 0 0 00 𝑧23 𝑧33 1 0 01 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

.

By comparison, for (𝑎∙) = (2, 3, 6) and (𝑏∙) = (1, 4, 5), we have that 𝑣(2) = 𝑢(2)𝑙 𝑣□𝑢(2)𝑟 where 𝑢(2)𝑙 =124 356 and 𝑢(2)𝑟 = 412 563. Then
𝑀𝑣(2) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 0 0 0 10 0 1 0 0 00 0 𝑧12 0 1 00 1 0 0 0 00 𝑧12 𝑧22 1 0 01 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

.
One can relate the variables to the self-conjugate skew partition associated to 𝑣 by Corollary 4.4

as follows. If the skew partition has 𝑛 rows (or equivalently 𝑛 columns), then there is only one
choice for 𝑣, and 𝑧𝑖𝑗 is a variable if and only if (𝑖, 𝑗) (equivalently (𝑗, 𝑖)) is a box of the skew
partition. If the skew partition has fewer rows, then different choices of 𝑣 will give rise to dif-
ferent (but always self-conjugate) placements of the self-conjugate skew partition in an 𝑛 × 𝑛 box
corresponding to different coordinates.
The matrix𝑀𝑣 satisfies the following property.
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Proposition 4.6. If 1 ⩽ 𝛿 ⩽ 2𝑛 is a left-to-right minimum of 𝑣, then the only nonzero entry of𝑀𝑣
in row 𝑣(𝛿) is the 1 at position (𝑣(𝛿), 𝛿). Similarly, if 1 ⩽ 𝛿 ⩽ 2𝑛 is a right-to-left maximum of 𝑣, then
the only nonzero entry of𝑀𝑣 in column 𝛿 is the 1 at position (𝑣(𝛿), 𝛿).
Proof. Suppose that 1 ⩽ 𝛿 ⩽ 2𝑛 is a left-to-right minimum of 𝑣. Entries to the right of this posi-
tion lie on its hook, whereas an entry (𝜖, 𝛿) to its left lies on the hook extending from (𝜖, 𝑣−1(𝜖))
by the left-to-right minimum condition. An analogous argument proves the second part of the
lemma. □

We now give concrete coordinates for the coordinate ring of Σ𝑣.
Proposition 4.7. If 𝑣 ⩾ 𝑣□, then 𝑅𝑣 is a coordinate ring of Σ𝑣 and𝑀𝑣 is the generic matrix in Σ𝑣 .
(In other words, a matrix is in Σ𝑣 if and only if it can be obtained by setting each variable in𝑀𝑣 to
some element of 𝕂.) Furthermore, if 𝑣 = 𝑢𝑙𝑣□𝑢𝑟 and 𝓁(𝑣) = 𝓁(𝑢𝑙) + 𝓁(𝑣□) + 𝓁(𝑢𝑟), then the rule𝑀 ↦ 𝑃(𝑢−1𝑙 )𝑀𝑃(𝑢−1𝑟 ) induces the injective map from Σ𝑣 to Σ𝑣□ which identifies the entry named 𝑧𝑖𝑗
in𝑀𝑣 with the entry named 𝑧𝑖𝑗 in𝑀𝑣□ .
Notice that 𝑣  𝑣□ in Example 3.7, and indeed, the entries of the general matrix in Σ𝑣 in that

example cannot all be made to be variables. An interesting question is to describe the entries
of Σ𝑣 for general 𝑣 ∈ 𝐶𝑛 and give a Gröbner basis for Kazhdan–Lusztig varieties arising from
these cells.
Before proving this result, let us give an example and some necessary lemmas.

Example 4.8. Let 𝑣 = 462 513. Then 𝑐0𝑣□𝑐0𝑐1 = 𝑣. The following equality illustrates the
“furthermore” part of Proposition 4.7:

𝑃(𝑐0)
⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 0 0 1 00 0 1 0 0 00 0 𝑧12 0 𝑧13 11 0 0 0 0 0𝑧12 0 𝑧22 1 0 0𝑧13 1 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

𝑃(𝑐1𝑐0) =
⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 1 0 0 00 1 0 0 0 01 0 0 0 0 00 𝑧12 𝑧13 0 0 1𝑧12 𝑧22 0 0 1 0𝑧13 0 0 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

.

In general, the effect of right multiplication by 𝑃(𝑢−1𝑟 ) is to collect at the left side all columns
containing any variable 𝑧𝑖𝑗 , and similarly, leftmultiplication by𝑃(𝑢−1𝑙 ) collects rowswith variables
at the bottom.
The following lemmas will be used to prove Lemma 6.2. They are adaptations of [43, Lemma

6.5] to type C.

Lemma 4.9. Let 𝑣 ∈ 𝐶𝑛 and 𝑘 be such that 𝑣𝑐𝑘 ⋗ 𝑣 in right weak order. The diagram 𝐷(𝑣𝑐𝑘) is
obtained from 𝐷(𝑣) as follows: 𝐷(𝑣𝑐𝑘) agrees with 𝐷(𝑣) except in columns 𝑛 ± 𝑘 and 𝑛 ± 𝑘 + 1. To
obtain columns 𝑛 − 𝑘 and 𝑛 − 𝑘 + 1 of 𝐷(𝑣𝑐𝑘), move all the boxes of 𝐷(𝑣) in column 𝑛 − 𝑘 strictly
above row 𝑣(𝑛 − 𝑘 + 1) one unit to the right and delete the box in position (𝑣(𝑛 − 𝑘 + 1),𝑛 − 𝑘).
Repeat the analogous process in columns 𝑛 + 𝑘 and 𝑛 + 𝑘 + 1 (if 𝑘 ≠ 0).
We need the analogous lemma for left weak order as well:
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20 of 49 ESCOBAR et al.

Lemma 4.10. Let 𝑣 ∈ 𝐶𝑛 and 𝑘 be such that 𝑐𝑘𝑣 ⋗ 𝑣 in left weak order. The diagram 𝐷(𝑐𝑘𝑣) is
obtained from𝐷(𝑣) as follows:𝐷(𝑐𝑘𝑣) agreeswith𝐷(𝑣) except in rows𝑛 ± 𝑘 and𝑛 ± 𝑘 + 1. To obtain
rows 𝑛 − 𝑘 and 𝑛 − 𝑘 + 1 of 𝐷(𝑐𝑘𝑣), move all the boxes of 𝐷(𝑣) in row 𝑛 + 1 − 𝑘 strictly right of
column 𝑣−1(𝑛 − 𝑘) one unit up and delete the box in position (𝑛 + 1 − 𝑘, 𝑣−1(𝑛 − 𝑘)). Repeat the
analogous process in rows 𝑛 + 𝑘 and 𝑛 + 𝑘 + 1 (if 𝑘 ≠ 0).
Proof of Proposition 4.7. To prove that 𝑀𝑣 is the generic matrix in Σ𝑣, it suffices to show that𝜎(𝑀𝑣) = 𝑀𝑣 and the entries of𝑀𝑣 are as in the beginning of Section 3.3, implying that, regardless
how we evaluate the 𝑧𝑖𝑗 in𝑀𝑣, we get a matrix in Σ𝐴𝑣 . The second statement follows by definition,
since (𝑀𝑣)𝑖𝑗 = 1 whenever 𝑃(𝑣)𝑖𝑗 = 1 and (𝑀𝑣)𝑖𝑗 = 0 whenever (𝑖, 𝑗) ∉ 𝐷(𝑣). For the first state-
ment, we proceed by induction on 𝓁(𝑣). The base case, when 𝑣 = 𝑣□, is trivial. For the inductive
case, consider some 𝑣 > 𝑣□, and let 𝑐𝑘 be a simple reflection such that either 𝑣𝑐𝑘 ⋗ 𝑣 or 𝑐𝑘𝑣 ⋗ 𝑣.
By the inductive hypothesis,𝑀𝑣 is the generic matrix in Σ𝑣. Throughout the proof, we will fix a
factorization 𝑣 = 𝑢𝑙𝑣□𝑢𝑟 with corresponding sequences (𝑎∙) and (𝑏∙).
First suppose that 𝑣𝑐𝑘 ⋗ 𝑣 so that 𝑣(𝑛 − 𝑘) < 𝑣(𝑛 − 𝑘 + 1) and 𝑣(𝑛 + 𝑘) < 𝑣(𝑛 + 𝑘 + 1). Let 𝑣𝑐𝑘

be the factorization (𝑢𝑙)𝑣□(𝑢𝑟𝑐𝑘). Since 𝑣 is 123-avoiding, 𝑛 ± 𝑘 are left-to-right minima, and 𝑛 ±𝑘 + 1 are right-to-left maxima. Therefore, (𝑣(𝑛 − 𝑘 + 1),𝑛 − 𝑘) = (𝑣(𝑏𝑛+1−𝑗), 𝑎𝑖) and (𝑣(𝑛 + 𝑘 +1),𝑛 + 𝑘) = (𝑣(𝑏𝑛+1−𝑖), 𝑎𝑗) for some 𝑖, 𝑗, and the corresponding entries in (𝑀𝑣) are the variable𝑧𝑖𝑗 or 𝑧𝑗𝑖 . Without loss of generality, we assume that 𝑖 ⩽ 𝑗. Our goal is to show that 𝑀𝑣𝑐𝑘𝑃(𝑐𝑘)
is obtained from 𝑀𝑣 by setting 𝑧𝑖𝑗 = 0. Right multiplication by 𝑃(𝑐𝑘) swaps column 𝑛 + 𝑘 with𝑛 + 𝑘 + 1 and column 𝑛 − 𝑘 with 𝑛 − 𝑘 + 1. Since 𝑃(𝑣𝑐𝑘)𝑃(𝑐𝑘) = 𝑃(𝑣), then the positions of the
1s in𝑀𝑣𝑐𝑘𝑃(𝑐𝑘) and𝑀𝑣 agree. By Lemma 4.9,

𝐷(𝑣𝑐𝑘) ⧵ [𝑛] × {𝑛 ± 𝑘,𝑛 ± 𝑘 + 1} = 𝐷(𝑣) ⧵ [𝑛] × {𝑛 ± 𝑘,𝑛 ± 𝑘 + 1},
and therefore, the positions of 0 entries in𝑀𝑣𝑐𝑘𝑃(𝑐𝑘) and𝑀𝑣 agree on all columns, except possibly
columns 𝑛 ± 𝑘,𝑛 ± 𝑘 + 1. This lemma also implies that, for 𝛿 ∈ {𝑛 ± 𝑘,𝑛 ± 𝑘 + 1}, if (𝑀𝑣)𝜖𝛿 = 0,
then (𝑀𝑣𝑐𝑘𝑃(𝑐𝑘))𝜖𝛿 = 0.
It remains to analyze the variable entries of 𝑀𝑣. Since 𝑛 ± 𝑘 + 1 are right-to-left maxima for𝑣, columns 𝑛 ± 𝑘 + 1 of 𝑀𝑣 do not contain any variables. Similarly, since 𝑛 ± 𝑘 are right-to-left

maxima for 𝑣𝑐𝑘, columns 𝑛 ± 𝑘 + 1 of 𝑀𝑣𝑃(𝑐𝑘) do not contain any variables and are therefore
equal to columns 𝑛 ± 𝑘 + 1 of𝑀𝑣. Note that the sequences (𝑎′∙) and (𝑏′∙) from Proposition 4.3 for𝑣𝑐𝑘 agree with the sequences (𝑎∙) and (𝑏∙) everywhere except

𝑎′𝑖 = 𝑏𝑛+1−𝑗 = 𝑛 − 𝑘 + 1, 𝑏′𝑛+1−𝑗 = 𝑎𝑖 = 𝑛 − 𝑘, 𝑎′𝑗 = 𝑏𝑛+1−𝑖 = 𝑛 + 𝑘 + 1, and𝑏′𝑛+1−𝑖 = 𝑎𝑗 = 𝑛 + 𝑘.
If 𝛿 ≠ 𝑛 ± 𝑘,𝑛 + 1 ± 𝑘 and (𝑀𝑣)𝜖𝛿 = 𝑧𝑖′𝑗′ , then (𝜖, 𝛿) ∈ 𝐷(𝑣) and (𝜖, 𝛿) ∈{(𝑣(𝑏𝑛+1−𝑗′), 𝑎𝑖′), (𝑣(𝑏𝑛+1−𝑖′), 𝑎𝑗′)}. Combining (𝜖, 𝛿) ∈ 𝐷(𝑣𝑐𝑘), which follows from Lemma 4.9,
with 𝑣𝑐𝑘(𝑏′𝑚) = 𝑣(𝑏𝑚) for all 𝑚, we have that (𝜖, 𝛿) ∈ {(𝑣𝑐𝑘(𝑏′𝑛+1−𝑗′), 𝑎′𝑖′), (𝑣𝑐𝑘(𝑏′𝑛+1−𝑖′), 𝑎′𝑗′)}.
It follows that (𝑀𝑣𝑐𝑘 )𝜖𝛿 = 𝑧𝑖′𝑗′ . Finally, assume 𝛿 = 𝑛 ± 𝑘 and (𝑀𝑣)𝜖𝛿 = 𝑧𝑖′𝑗′ so that(𝜖, 𝛿) ∈ 𝐷(𝑣) and by Lemma 4.9 (𝜖, 𝛿 + 1) ∈ 𝐷(𝑣𝑐𝑘), except if 𝜖 = 𝑣(𝛿). If 𝜖 = 𝑣(𝛿), then𝑧𝑖′𝑗′ = 𝑧𝑖𝑗 and we obtain (𝑀𝑣𝑐𝑘𝑃(𝑐𝑘))𝜖𝛿 by setting 𝑧𝑖𝑗 = 0, as desired. If 𝜖 ≠ 𝑣(𝛿), then𝜖 ∈ {𝑣(𝑏𝑛+1−𝑗′), 𝑣(𝑏𝑛+1−𝑖′)} = {𝑣𝑐𝑘(𝑏′𝑛+1−𝑗′), 𝑣𝑐𝑘(𝑏′𝑛+1−𝑖′)}, and therefore, (𝑀𝑣𝑐𝑘 )𝜖𝛿 = 𝑧𝑖′𝑗′ .
We conclude that 𝑀𝑣𝑐𝑘𝑃(𝑐𝑘) is obtained from 𝑀𝑣 by setting 𝑧𝑖𝑗 = 0 if it lies in positions(𝑣(𝑛 ± 𝑘 + 1),𝑛 ± 𝑘).
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We are left with proving that 𝜎(𝑀𝑣𝑐𝑘 ) = 𝑀𝑣𝑐𝑘 . However, by induction, 𝜎(𝑀𝑣) = 𝑀𝑣, and there-
fore, 𝜎(𝑀𝑣𝑐𝑘𝑃(𝑐𝑘)) = 𝑀𝑣𝑐𝑘𝑃(𝑐𝑘) by the argument above. Hence, since 𝜎 is a group homomorphism
and 𝜎(𝑃(𝑐𝑘)) = 𝑃(𝑐𝑘), we conclude 𝜎(𝑀𝑣𝑐𝑘 ) = 𝑀𝑣𝑐𝑘 . Finally, returning to the case 𝑐𝑘𝑣 ⋗ 𝑣, using
Lemma 4.10 and other similar arguments, one can show that in this case, 𝑃(𝑐𝑘)𝑀𝑐𝑘𝑣 is obtained
from𝑀𝑣 by setting 𝑧𝑖𝑗 = 0 if it lies in positions (𝑛 ± 𝑘 + 1, 𝑣−1(𝑛 ± 𝑘)), and 𝜎(𝑀𝑐𝑘𝑣) = 𝑀𝑐𝑘𝑣. □

Given 𝑣 ∈ 𝐶𝑛, 𝑣 ⩾ 𝑣□, let𝑉𝑣 be the set of variables of 𝑅𝑣, that is, the set of variables that appear
as entries of𝑀𝑣.
Corollary 4.11. Fix a factorization 𝑣 = 𝑢𝑙𝑣□𝑢𝑟. If 𝑐𝑘 is an ascent of 𝑣 andwe set 𝑣𝑐𝑘 = (𝑢𝑙)𝑣□(𝑢𝑟𝑐𝑘),
then𝑉𝑣𝑐𝑘 ⊆ 𝑉𝑣 and𝑉𝑣 ⧵ 𝑉𝑣𝑐𝑘 = {𝑧𝑖𝑗}, where 𝑧𝑖𝑗 is the entry of𝑀𝑣 in positions (𝑣(𝑛 ± 𝑘 + 1),𝑛 ± 𝑘).
Proof. This follows from the inductive step in Proposition 4.7. □

4.2 Equations for type C Kazhdan–Lusztig varieties

Let𝑅𝑣 and𝑅𝐴𝑣 denote, respectively, the coordinate rings 𝕜[Σ𝑣] and 𝕜[Σ𝐴𝑣 ]. Similarly, let𝑀𝑣 and𝑀𝐴𝑣
denote, respectively, the generic matrices in 𝕜[Σ𝑣] and 𝕜[Σ𝐴𝑣 ]. Let 𝐼𝑣,𝑤 be the ideal of 𝑅𝑣 generated
by the size 𝑟𝑤(𝑝, 𝑞) + 1minors of 𝜏𝑝,𝑞(𝑀𝑣) over all (𝑝, 𝑞) in 𝐸(𝑤). We call 𝐼𝑣,𝑤 a Kazhdan–Lusztig
ideal.

Proposition 4.12. We have Σ𝑣,𝑤 = Spec(𝑅𝑣∕𝐼𝑣,𝑤).
Theorem 4.15 will give an independent proof of this proposition in the case 𝑣 ⩾ 𝑣□.

Proof. The discussion of rank conditions in Section 3.4 proves equality as sets. Equality as schemes
follows from [42, Proposition 3.1], which gives the analogous scheme-theoretic equality in type A,
and Theorem 3.1 along with Equation (2) (which follows from [33, Proposition 6.1.1.2]). □

Note that, for type B, the analogs of Proposition 4.12 and the statements from [33] it
depends on are true only set-theoretically, not necessarily scheme-theoretically, so our work
cannot be extended to that case. See Example 8.3 for an illustration of the potential difficulties
in type B.
We now define the term orders we use in this paper. A diagonal term order on 𝑅𝑣 is one

where, given any minor in 𝑀𝑣 where the diagonal term is nonzero, the diagonal term is the
leading term. In notation, this means that, if 𝜖1 < ⋯ < 𝜖𝑟, 𝛿1 < ⋯ < 𝛿𝑟, 𝐷 is the minor of 𝑀𝑣
using rows {𝜖1, … , 𝜖𝑟} and columns {𝛿1, … , 𝛿𝑟}, and ∏𝑟𝑖=1(𝑀𝑣)𝜖𝑖𝛿𝑖 is nonzero, then this prod-
uct is the leading term of 𝐷. Note that there can be multiple distinct diagonal term orders.
However, even if the diagonal term is zero for a given minor, there are restrictions on which
term can be its leading term under a diagonal term order, since the condition applies to every
subminor of the minor in question. As we are taking southwest minors rather than north-
west minors in defining 𝐼𝑣,𝑤, our diagonal term orders are equivalent to the antidiagonal term
orders of [30].
We note that our diagonal term orders on different sets of variables are compatible with each

other.

 14697750, 2024, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12856 by W

ashington U
niversity School, W

iley O
nline Library on [29/02/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



22 of 49 ESCOBAR et al.

Proposition 4.13. Let 𝑐𝑘 be an ascent of 𝑣, let≺ be a diagonal term order on 𝑅𝑣 , and let≺′ = ≺∣𝑅𝑣𝑐𝑘
be the restriction of ≺ to 𝑅𝑣𝑐𝑘 . Then, ≺′ is a diagonal term order on 𝑅𝑣𝑐𝑘 .
Proof. Suppose that𝐷′ is aminor of𝑀𝑣𝑐𝑘 with nonzero diagonal term using rows 𝜖1 < ⋯ < 𝜖𝑠 and
columns 𝛿1 < ⋯ < 𝛿𝑠. Let 𝐷 be the minor of 𝑀𝑣 using rows 𝜖1 < ⋯ < 𝜖𝑠 and columns 𝑐𝑘(𝛿1) <
⋯ < 𝑐𝑘(𝛿𝑠). If 𝐷′ involves only one of the columns 𝑛 − 𝑘 and 𝑛 − 𝑘 + 1, and 𝐷′ involves only one
of the columns 𝑛 + 𝑘 and 𝑛 + 𝑘 + 1, then the diagonal term of𝐷 in𝑀𝑣 is the same as the diagonal
term of 𝐷′ in𝑀𝑣𝑐𝑘 , as the rows and columns are ordered in the same way. Note that the variable𝑧𝑖𝑗 in𝑉𝑣 ⧵ 𝑉𝑣𝑐𝑘 cannot appear in the diagonal term of𝐷, as that would imply the diagonal term of𝐷 is zero. Hence, the leading term of 𝐷 under ≺′ must be the diagonal term, as the leading term
of 𝐷′ under ≺ is the diagonal term.
Otherwise, if 𝐷′ involves both columns 𝑛 − 𝑘 and 𝑛 − 𝑘 + 1 in𝑀𝑣, then, since 𝑐𝑘 is an ascent

of 𝑣, there is a right-to-left maximum in column 𝑛 − 𝑘 + 1 of𝑀𝑣 and column 𝑛 − 𝑘 of𝑀𝑣𝑐𝑘 . So,
by Proposition 4.6, 𝐷′ = ±𝐷′ where 𝐷′ is the minor formed by removing column 𝑛 − 𝑘 and row𝑣𝑐𝑘(𝑛 − 𝑘) from𝐷′. Similarly,𝐷 = ±𝐷̃ where 𝐷̃ is theminor formed by removing column 𝑛 − 𝑘 +1 and row 𝑣(𝑛 − 𝑘 + 1) from𝐷. Now the argument in the previous paragraph applies to 𝐷̃ and𝐷′.
A similar argument applies if 𝐷′ involves both columns 𝑛 + 𝑘 and 𝑛 + 𝑘 + 1. □

We show that there is at least one diagonal term order, namely, the lexicographic term order≺lex where 𝑧𝑖𝑗 > 𝑧𝑖′𝑗′ if and only if either 𝑖 > 𝑖′, or 𝑖 = 𝑖′ and 𝑗 > 𝑗′. One can see from the next
section that ≺lex is the term order used in [27], made explicit for this case.

Proposition 4.14. The term order ≺lex is a diagonal term order.

Proof. We prove this by downward induction in length. The base case is where 𝑣 = 𝑤0, where𝑅𝑣 has no variables, and hence, the statement is vacuously true. Let 𝑐𝑘 be the last ascent of 𝑣. By
Corollary 4.11, 𝑉𝑣 ⧵ 𝑉𝑣𝑐𝑘 = {𝑧𝑖𝑗}, where 𝑧𝑖𝑗 is the entry of 𝑀𝑣 in positions (𝑣(𝑛 ± 𝑘 + 1),𝑛 ± 𝑘).
Moreover, 𝑧𝑖𝑗 must appear as the south-most nonzero entry in its column, and the 1 appearing
immediately to its right is a right-to-left maximum. Hence, there are no variables southeast of
(either appearance, if there are two, of) 𝑧𝑖𝑗 in 𝑀𝑣. It follows that 𝑧𝑖𝑗 is the largest variable in 𝑅𝑣
under ≺lex .
By induction, ≺lex restricted to 𝑅𝑣𝑐𝑘 is a diagonal term order. By Proposition 4.13, it suffices to

show that if 𝑧𝑖𝑗 appears in aminor of𝑀𝑣 with a nonzero diagonal term, then it must appear in the
diagonal term. Since there are no variables southeast of 𝑧𝑖𝑗 in𝑀𝑣, any minor of𝑀𝑣 with nonzero
diagonal term and such that 𝑧𝑖𝑗 does not appear on the diagonal term must have as its southeast
entry the 1 directly to the right of 𝑧𝑖𝑗 . By Proposition 4.6, the only nonzero entry of the rightmost
column of the minor is this 1. It follows that 𝑧𝑖𝑗 does not appear in any term of the minor. □

We now state our main theorem.

Theorem 4.15. Given 𝑣 ⩾ 𝑣□, the size 𝑟𝑤(𝑝, 𝑞) + 1minors of 𝜏𝑝,𝑞(𝑀𝑣) over all (𝑝, 𝑞) in 𝐸(𝑤) form
a Gröbner basis for 𝐼𝑣,𝑤 with respect to any diagonal term order.

The proof appears in Section 6. The main technique is to show that 𝐾-polynomials of subword
complexes, suitablyweighted, satisfy theKostant–Kumar recursion. (This technique follows [27].)
Examples 8.1 and 8.2 show that Theorem 4.15 can fail when the 𝑣 ⩾ 𝑣□ hypothesis is dropped.
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4.3 Torus action of type C Kazhdan–Lusztig varieties and the weights
for 𝒗 ⩾ 𝒗□

Let𝑇 be the torus consisting of the diagonalmatrices in 𝑆𝑝2𝑛(𝕂). Since any (𝑡𝑖𝑗) ∈ 𝑇 is fixed under𝜎, it satisfies 𝑡𝑖𝑖 = 𝑡−12𝑛+1−𝑖,2𝑛+1−𝑖 for all 𝑖. The torus 𝑇 acts onΩ◦𝑣 by left multiplication, that is, given
matrices𝑀 ∈ 𝑆𝑝2𝑛(𝕂) and 𝑁 ∈ 𝑇,

𝑁 ∙ (𝑀𝐵+𝐺∕𝐵+𝐺 ) ∶= (𝑁𝑀)𝐵+𝐺∕𝐵+𝐺 .
This action induces the following torus action on Σ𝑣: for𝑀 ∈ Σ𝑣 and𝑁 ∈ 𝑇,𝑁 ∙𝑣 𝑀 is the matrix
in Σ𝑣 representing (𝑁𝑀)𝐵+𝐺∕𝐵+𝐺 . Let us describe the action more concretely. Notice that in gen-
eral 𝑁𝑀 ∉ Σ𝑣 because the entry of 𝑁𝑀 in position (𝜋(𝑗), 𝑗) need not equal 1. Thus, to obtain an
element of Σ𝑣, we need to multiply on the right by the appropriate element of 𝑇 to make these
entries 1.
It will be most convenient for us to denote by (𝑥1, … ,𝑥𝑛) the element of 𝑇 where

(𝑥1, … ,𝑥𝑛) ∶= diag(𝑥𝑛, … ,𝑥1,𝑥−11 … ,𝑥−1𝑛 ), (6)

the diagonal matrix with diagonal entries 𝑥𝑛, … ,𝑥1,𝑥−11 … ,𝑥−1𝑛 from northeast to southwest.

Example 4.16. We describe the action of 𝑇 on Σ𝑣□ for 𝑣□ = 321 654:

(𝑥1,𝑥2,𝑥3) ∙𝑣
⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 1 0 0 00 1 0 0 0 01 0 0 0 0 0𝑧11 𝑧12 𝑧13 0 0 1𝑧12 𝑧22 𝑧23 0 1 0𝑧13 𝑧23 𝑧33 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

= (𝑥1,𝑥2,𝑥3)
⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 1 0 0 00 1 0 0 0 01 0 0 0 0 0𝑧11 𝑧12 𝑧13 0 0 1𝑧12 𝑧22 𝑧23 0 1 0𝑧13 𝑧23 𝑧33 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

(𝑥−13 ,𝑥−12 ,𝑥−11 )

=
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 1 0 0 00 1 0 0 0 01 0 0 0 0 0𝑥−21 𝑧11 𝑥−11 𝑥−12 𝑧12 𝑥−11 𝑥−13 𝑧13 0 0 1𝑥−11 𝑥−12 𝑧12 𝑥−22 𝑧22 𝑥−12 𝑥−13 𝑧23 0 1 0𝑥−11 𝑥−13 𝑧13 𝑥−12 𝑥−13 𝑧23 𝑥−23 𝑧33 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

.

Since 𝑇 acts by left multiplication on each Schubert variety and on each opposite Schu-
bert cell, the torus 𝑇 also acts by left multiplication on each Kazhdan–Lusztig variety𝑣,𝑤.
Let us now restrict to 𝑣 ⩾ 𝑣□ and explicitly compute the weights on the coor-

dinates 𝑧𝑖𝑗 of the action. We adopt the convention that the weight 𝑒𝑖 denotes the
homomorphism in Hom(𝑇,𝕂) that sends the element (𝑥1, … ,𝑥𝑛) to 𝑥𝑖 . We will write
weights additively. In addition, we will let 𝑡𝑖 = exp(𝑒𝑖) denote the formal exponen-
tial of the weight 𝑒𝑖 , so that the group operation on the 𝑡𝑖 (and monomials therein) is
multiplication.
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24 of 49 ESCOBAR et al.

Lemma 4.17. The coordinate function 𝑧𝑖𝑗 on𝑀𝑣□ has weight 𝑒𝑖 + 𝑒𝑗 .
Proof. As one can see from Example 4.16, acting on𝑀 ∈ Σ𝑣□ by (𝑥1, … ,𝑥𝑛) multiplies the entry𝑧𝑖𝑗(𝑀) by 𝑥−1𝑖 𝑥−1𝑗 . Hence, the weight of the action on 𝑧𝑖𝑗 , the coordinate function on this entry, is𝑒𝑖 + 𝑒𝑗 . □

We next see that the analog of Lemma 4.17 holds for any 𝑣 ⩾ 𝑣□. To do so, we
need to consider the action of 𝐶𝑛 on the weights induced from permuting the diag-
onal entries of (𝑥1, … ,𝑥𝑛). Notice that given 𝑢 ∈ 𝐶𝑛, the induced action is so that
for 𝑖 ⩽ 𝑛,

𝑢 ⋅ 𝑒𝑖 = {−𝑒𝑛+1−𝑢(𝑛+𝑖) if 𝑢(𝑛 + 𝑖) ⩽ 𝑛,𝑒𝑢(𝑛+𝑖)−𝑛 if 𝑢(𝑛 + 𝑖) ⩾ 𝑛 + 1.
Proposition 4.18. Let 𝑣 ⩾ 𝑣□ with 𝑣 = 𝑢𝑙𝑣□𝑢𝑟 . The weight of a coordinate function of𝑀𝑣 depends
only on its position (and not on 𝑣). Furthermore, the coordinate function 𝑧𝑖𝑗 on𝑀𝑣 has weight 𝑢𝑙 ⋅𝑒𝑖 + 𝑢𝑙 ⋅ 𝑒𝑗 .
Note that for 𝑣 = 𝑢𝑙𝑣□𝑢𝑟 and 𝑖 ⩽ 𝑛, in the notation of Lemma 4.2, we have 𝑢𝑙(𝑖) = 𝑣(𝑎𝑛+1−𝑖)

and 𝑢𝑙(𝑛 + 𝑖) = 𝑣(𝑏𝑛+1−𝑖).
Proof. Define 𝑦𝑛+𝑖 ∶= 𝑥−1𝑖 and 𝑦𝑛+1−𝑖 ∶= 𝑥𝑖 , 1 ⩽ 𝑖 ⩽ 𝑛, so that diag(𝑦1, … , 𝑦2𝑛) = (𝑥1, … ,𝑥𝑛).
Then, the action of 𝑇 on Σ𝑣, 𝑣 ∈ 𝐶𝑛, is given by

𝐲 ∙𝑣 𝑀 = diag(𝑦1, … , 𝑦2𝑛)𝑀 diag(𝑦−1𝑣(1), … , 𝑦−1𝑣(2𝑛)), 𝐲 ∈ 𝑇, 𝑀 ∈ Σ𝑣.
Therefore, the weight for the coordinate function in position (𝜖, 𝛿) is the weight corresponding to𝑦𝜖𝑦−1𝑣(𝛿), which depends only on (𝜖, 𝛿) and not on 𝑣.
Suppose that 𝑣 ⩾ 𝑣□ and 𝑣 = 𝑢𝑙𝑣□𝑢𝑟. Let 𝑀 ∈ Σ𝑣 and 𝐲 ∈ 𝑇. Given 𝑖 ⩽ 𝑗, the variable 𝑧𝑖𝑗

appears as entries (𝑣(𝑏𝑛+1−𝑗), 𝑎𝑖) and (𝑣(𝑏𝑛+1−𝑖), 𝑎𝑗) of𝑀. The entries in positions (𝑣(𝑏𝑛+1−𝑗), 𝑎𝑖)
and (𝑣(𝑏𝑛+1−𝑖), 𝑎𝑗) of 𝐲 ∙𝑣 𝑀 are

𝑦𝑣(𝑏𝑛+1−𝑗)𝑦−1𝑣(𝑎𝑖)𝑧𝑖𝑗 = 𝑦𝑢𝑙(𝑛+𝑗)𝑦−1𝑢𝑙(𝑛+1−𝑖)𝑧𝑖𝑗 and 𝑦𝑣(𝑏𝑛+1−𝑖)𝑦−1𝑣(𝑎𝑗)𝑧𝑖𝑗 = 𝑦𝑢𝑙(𝑛+𝑖)𝑦−1𝑢𝑙(𝑛+1−𝑗)𝑧𝑖𝑗 ,
respectively. By definition of 𝐲 and the fact 𝑢𝑙 ∈ 𝐶𝑛,

𝑦𝑢𝑙(𝑛+𝑗)𝑦−1𝑢𝑙(𝑛+1−𝑖) = 𝑦𝑢𝑙(𝑛+𝑗)𝑦𝑢𝑙(𝑛+𝑖) = 𝑦𝑢𝑙(𝑛+𝑖)𝑦−1𝑢𝑙(𝑛+1−𝑗).
Again by definition of 𝐲, we conclude that the weight of 𝑧𝑖𝑗 is 𝑢𝑙 ⋅ 𝑒𝑖 + 𝑢𝑙 ⋅ 𝑒𝑗 . □

Example 4.19. Let 𝑣 = 642 531 and 𝑣 be the factorization associated to (𝑎∙) = (1, 2, 3), and(𝑏∙) = (4, 5, 6). We describe the weights of the coordinate functions of 𝑀𝑣 via an explicit
computation:
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(𝑥1,𝑥2,𝑥3) ⋅
⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 0 0 0 10 0 1 0 0 00 0 𝑧23 0 1 00 1 0 0 0 00 𝑧23 𝑧33 1 0 01 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

= (𝑥1,𝑥2,𝑥3)
⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 0 0 0 10 0 1 0 0 00 0 𝑧23 0 1 00 1 0 0 0 00 𝑧23 𝑧33 1 0 01 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

(𝑥−12 ,𝑥1,𝑥3)

=
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 0 0 0 𝑥30 0 𝑥2 0 0 00 0 𝑥1𝑧23 0 𝑥1 00 𝑥−11 0 0 0 00 𝑥−12 𝑧23 𝑥−12 𝑧33 𝑥−12 0 0𝑥−13 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

(𝑥−12 ,𝑥1,𝑥3)

=
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 0 0 0 10 0 1 0 0 00 0 𝑥−12 𝑥1𝑧23 0 1 00 1 0 0 0 00 𝑥1𝑥−12 𝑧23 𝑥−12 𝑥−12 𝑧33 1 0 01 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

.
Thus, the weight of 𝑧23 is −𝑒1 + 𝑒2 and the weight of 𝑧33 is −𝑒2 − 𝑒2. We verify that for 𝑧23, this
agrees with Proposition 4.18. Since 𝑣(𝑏𝑛+1−2) ⩽ 𝑛 and 𝑣(𝑏𝑛+1−3) ⩾ 𝑛 + 1, we have 𝑢𝑙 ⋅ 𝑒2 = −𝑒1
and 𝑢𝑙 ⋅ 𝑒3 = 𝑒2. One can verify that if we now take 𝑣 to be the factorization associated to (𝑎∙) =(2, 3, 6) and (𝑏∙) = (1, 4, 5) (as in the second part of Example 4.5), the weight of 𝑧12 is−𝑒1 + 𝑒2 and
the weight of 𝑧22 is −𝑒2 − 𝑒2.
We end by noting that this multigrading is positive, so that the only elements in 𝑅𝑣 which have

degree 𝟎 are the constants.
Corollary 4.20. Let 𝑣 ⩾ 𝑣□ with 𝑣 = 𝑢𝑙𝑣□𝑢𝑟 . The multigrading on 𝑅𝑣 that assigns degree 𝑢𝑙 ⋅ 𝑒𝑖 +𝑢𝑙 ⋅ 𝑒𝑗 to coordinate function 𝑧𝑖𝑗 is a positive multigrading.
Proof. The set of all vectors 𝑒𝑖 + 𝑒𝑗 generates a pointed cone, so the images of these vectors under
the action of a fixed 𝑢𝑙 do also. □

5 TYPE 𝑪 SUBWORD COMPLEXES AND VERTEX
DECOMPOSITION

5.1 Subword complexes

In [29, 30], A. Knutson and E. Miller defined a family of simplicial complexes, called sub-
word complexes, for arbitrary Coxeter groups. Let 𝑄 = (𝛼1, … ,𝛼𝓁) be a reduced word for 𝑣 ∈𝐶𝑛, as defined in Section 3.2. The subword complex 𝑆(𝑄,𝑤) associated to 𝑄 and 𝑤 ∈ 𝐶𝑛 is the
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simplicial complex on the vertex set [𝓁] = {1, … ,𝓁} whose maximal faces are the sets [𝓁] ⧵{𝑖1, … , 𝑖𝑘} such that the subword (𝛼𝑖1 , … ,𝛼𝑖𝑘 ) of 𝑄 is a reduced word for 𝑤. If 𝑣 ̸⩾Br 𝑤, then𝑆(𝑄,𝑤) = ∅ is the simplicial complex with no faces. This must be distinguished from the complex{∅}, which is 𝑆(𝑄, 𝑣) whenever 𝑄 is a reduced word for 𝑣.
The next theorem is the key fact we use about subword complexes, describing their vertex

decomposition, first proved as [30, Theorem E] (for every Coxeter group).

Theorem 5.1. Let 𝑣,𝑤 ∈ 𝐶𝑛, and let𝑄 = (𝛼1, … ,𝛼𝓁) be a reduced word for 𝑣. Assume that 𝑣 ⩾Br 𝑤.
If 𝑣 = 1, then𝑤 = 1,𝑄 = (), and 𝑆(𝑄,𝑤) = {∅}. Otherwise𝓁 > 0. Let𝑄′ = (𝛼1, … ,𝛼𝓁−1) and 𝑖 = 𝛼𝓁 .
Then,

𝑆(𝑄,𝑤) = cone𝓁 𝑆(𝑄′,𝑤) ∪ 𝑆(𝑄′,𝑤𝑐𝑖).
5.2 Labeling the vertices with variables

Recall that 𝑉𝑣 denotes the set of variables of 𝑅𝑣, that is, the set of variables that appear as entries
of𝑀𝑣.
Lemma 5.2. Let 𝑐𝑘 be an ascent of 𝑣, 𝑣 = 𝑢𝑙𝑣□𝑢𝑟, 𝑣𝑐𝑘 = (𝑢𝑙)𝑣□(𝑢𝑟𝑐𝑘), and𝑉𝑣 ⧵ 𝑉𝑣𝑐𝑘 = {𝑧𝑖𝑗}. Then,𝑘 = 𝑗 − 𝑖.
Proof. By Corollary 4.11, 𝑧𝑖𝑗 is in positions (𝑣(𝑛 ± 𝑘 + 1),𝑛 ± 𝑘) of 𝑀𝑣. We also have that 𝑧𝑖𝑗
is in position (𝑣(𝑏𝑛+1−𝑖), 𝑎𝑗) and therefore 𝑎𝑗 = 𝑛 + 𝑘, 𝑏𝑛+1−𝑖 = 𝑛 + 𝑘 + 1. Since the number of
columns to the right of column 𝑛 + 𝑘 is counted by both |{𝑎𝑖+1, … ,𝑎𝑛}| + |{𝑏𝑛+1−𝑗 , … , 𝑏𝑛}| and2𝑛 − (𝑛 + 𝑘) = 𝑛 − 𝑘, we have

𝑛 − 𝑘 = |{𝑎𝑖+1, … ,𝑎𝑛}| + |{𝑏𝑛+1−𝑗 , … , 𝑏𝑛}| = 𝑛 − 𝑖 + 𝑗.
We conclude that 𝑘 = 𝑗 − 𝑖. □

Proposition 5.3. Let 𝑄 be the word (𝑗1 − 𝑖1, … , 𝑗𝓁 − 𝑖𝓁), where 𝑧𝑖1𝑗1 ≺lex ⋯ ≺lex 𝑧𝑖𝓁𝑗𝓁 are the
variables in 𝑉𝑣 . The word 𝑄 is a reduced word for 𝑤0𝑣.
Proof. Let 𝑣 = 𝑢𝑙𝑣□𝑢𝑟. We proceed by induction on 𝓁(𝑤0𝑣). The base case 𝑣 = 𝑤0 is trivial. For
the inductive case, let 𝑄′ equal 𝑄 without the last letter, which we denote by 𝛼𝓁 . By construction𝛼𝓁 = 𝑗 − 𝑖 where 𝑧𝑖𝑗 is the last variable in 𝑉𝑣 under ≺lex . Let the lowest box of 𝐷(𝑣) containing𝑧𝑖𝑗 be in the (𝑛 + 𝑘)th column. Since 𝑧𝑖𝑗 is the last variable in 𝑉𝑣, there are no boxes of 𝐷(𝑣)
weakly southeast of this box. This implies that 𝑐𝑘 is the last ascent of 𝑣 and, by Corollary 4.11, that𝑉𝑣 ⧵ 𝑉𝑣𝑐𝑘 = {𝑧𝑖𝑗}, where 𝑘 = 𝑗 − 𝑖 by Lemma 5.2. (As in the proof of Proposition 4.7, 𝑣𝑐𝑘 denotes
the factorization (𝑢𝓁)𝑣□(𝑢𝑟𝑐𝑘), where 𝑢𝓁𝑣□𝑢𝑟 is the factorization denoted by 𝑣.) Therefore, 𝑄′
is the word constructed from the variables in 𝑉𝑣𝑐𝑘 . By the induction hypothesis, 𝑄′ is a reduced
word for𝑤0𝑣𝑐𝑘. Because 𝑐𝛼𝓁 is an ascent of 𝑣𝑐𝛼𝓁 , that is, 𝓁((𝑤0𝑣𝑐𝛼𝓁 )𝑠𝑗−𝑖) = 𝓁(𝑤0𝑣𝑐𝛼𝓁 ) + 1, we can
append 𝛼𝓁 = 𝑗 − 𝑖 to a reduced word for 𝑤0𝑣𝑐𝛼𝓁 to obtain a reduced word for 𝑤0𝑣𝑐𝛼𝓁 𝑠𝑗−𝑖 = 𝑤0𝑣.
It follows that 𝑄 is a reduced word for 𝑤0𝑣. □
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F IGURE 2 The simplicial complex ∆𝑣𝑐0,𝑤 for 𝑣 = 321 654 and 𝑤 = 635 241.
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F IGURE 3 The simplicial complex ∆𝑣,𝑤 = cone𝑧33 ∆𝑣𝑐0,𝑤 ∪ ∆𝑣𝑐0,𝑤𝑐0 for 𝑣 = 321 654 and 𝑤 = 632 541.
Define 𝜁 ∶ [𝓁]→ 𝑉𝑣 to be the map that associates to 𝑘 the 𝑘th smallest variable in 𝑉𝑣 under≺lex . Let

∆𝑣,𝑤 = {𝜁(𝐹) ∶ 𝐹 ∈ 𝑆(𝑄,𝑤0𝑤)},
where 𝑄 is the reduced word for 𝑤0𝑣 defined in Proposition 5.3. This is a simplicial complex
isomorphic to 𝑆(𝑄,𝑤0𝑤) but relabeled, so its vertex set is 𝑉𝑣.
Proposition 5.4 translates Theorem 5.1 to the notation∆𝑣,𝑤, and breaks it into the cases that will

appear in our proofs (which are also parallel to the cases in the statement of Theorem 6.8).

Proposition 5.4. Let 𝑣,𝑤 ∈ 𝐶𝑛 and 𝑣 = 𝑢𝑙𝑣□𝑢𝑟.∙ If 𝑣 ̸⩽Br 𝑤, then ∆𝑣,𝑤 = ∅.∙ If 𝑣 = 𝑤0, then 𝑤 = 𝑤0 (or we are in the previous case), and ∆𝑣,𝑤 = {∅}.∙ Otherwise, let 𝑘 be the last ascent of 𝑣, so 𝑣𝑐𝑘 >Br 𝑣, and let 𝑣𝑐𝑘 = 𝑢𝑙𝑣□(𝑢𝑟𝑐𝑘).
(1) If 𝑘 is a descent of 𝑤, so 𝑤𝑐𝑘 <Br 𝑤, then

∆𝑣,𝑤 = cone𝑧𝑖𝑗 ∆𝑣𝑐𝑘 ,𝑤,
where 𝑧𝑖𝑗 is the largest variable with respect to ≺lex on 𝑅𝑣 .

(2) If 𝑘 is an ascent of 𝑤, so 𝑤𝑐𝑘 >Br 𝑤, then
∆𝑣,𝑤 = cone𝑧𝑖𝑗 (∆𝑣𝑐𝑘 ,𝑤) ∪ ∆𝑣𝑐𝑘 ,𝑤𝑐𝑘 .

Example 5.5. For 𝑣 = 𝑣□ = 321 654 and 𝑤 = 635 241, we have that 𝑄 = (0, 1, 2, 0, 1, 0) and𝑤0𝑤 = 𝑐0𝑐1. The last ascent of 𝑣 is 𝑐0 and this is a descent of𝑤. In this case, ∆𝑣,𝑤 = cone𝑧33 ∆𝑣𝑐0,𝑤,
and ∆𝑣𝑐0,𝑤 is pictured in Figure 2.
Example 5.6. For 𝑣 = 𝑣□ = 321 654 and 𝑤 = 632 541, we have that 𝑄 = (0, 1, 2, 0, 1, 0) and𝑤0𝑤 = 𝑐0𝑐1𝑐0. The last ascent of 𝑣 is 𝑐0 and this is an ascent of 𝑤. In this case, ∆𝑣,𝑤 =cone𝑧33 (∆𝑣𝑐0,𝑤) ∪ ∆𝑣𝑐𝑘 ,𝑤𝑐𝑘 as one can see in Figure 3.
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Let𝐾𝑣,𝑤 be the Stanley–Reisner ideal of∆𝑣,𝑤. This is the ideal generated by themonomials that
are the nonfaces of ∆𝑣,𝑤, so

𝐾𝑣,𝑤 = ⟨∏
𝑧∈𝑍 𝑧 ∶ 𝑍 ⊆ 𝑉𝑣,𝑍 ∉ ∆𝑣,𝑤⟩.

Translating Proposition 5.4 to be in terms of 𝐾𝑣,𝑤 gives the following.
Proposition 5.7. Let 𝑣,𝑤 ∈ 𝐶𝑛 and 𝑣 = 𝑢𝑙𝑣□𝑢𝑟.∙ If 𝑣 ⩽̸Br 𝑤, then 𝐾𝑣,𝑤 = ⟨1⟩.∙ If 𝑣 = 𝑤0, then 𝑤 = 𝑤0 (or we are in the previous case), and 𝐾𝑣,𝑤 = ⟨0⟩.∙ Otherwise, let 𝑘 be the last ascent of 𝑣, so 𝑣𝑐𝑘 >Br 𝑣, and let 𝑣𝑐𝑘 = 𝑢𝑙𝑣□(𝑢𝑟𝑐𝑘). Let 𝑧𝑖𝑗 be the largest
variable with respect to ≺lex on 𝑅𝑣 .
(1) If 𝑘 is a descent of 𝑤, so 𝑤𝑐𝑘 <Br 𝑤, then

𝐾𝑣,𝑤 = 𝐾𝑣𝑐𝑘 ,𝑤𝑅𝑣.
(2) If 𝑘 is an ascent of 𝑤, so 𝑤𝑐𝑘 >Br 𝑤, then

𝐾𝑣,𝑤 = ⟨𝑧𝑖𝑗𝑚 ∶ 𝑚 ∈ 𝐾𝑣𝑐𝑘 ,𝑤⟩ + 𝐾𝑣𝑐𝑘 ,𝑤𝑐𝑘𝑅𝑣.
Example 5.8. In this example, we verify (1) and (2) in the proposition above. First, let 𝑣 and𝑤 be
as in Example 5.5. We compute that both ideals are generated by 𝑧11𝑧22, 𝑧11𝑧23, 𝑧12𝑧23, although
for 𝐾𝑣,𝑤, these generators are interpreted in the ring 𝕂[𝑧11, 𝑧12, 𝑧13, 𝑧22, 𝑧23, 𝑧33], and for 𝐾𝑣𝑐𝑘 ,𝑤 in
the ring 𝕂[𝑧11, 𝑧12, 𝑧13, 𝑧22, 𝑧23].
Now, let 𝑣 and 𝑤 be as in Example 5.6. Direct computation shows that

𝐾𝑣,𝑤 = ⟨𝑧11𝑧33, 𝑧12𝑧33, 𝑧22𝑧33, 𝑧11𝑧22, 𝑧11𝑧23, 𝑧12𝑧23⟩,
and 𝐾𝑣𝑐0,𝑤 = ⟨𝑧11, 𝑧12, 𝑧22⟩, and 𝐾𝑣𝑐0,𝑤𝑐0 = ⟨𝑧11𝑧22, 𝑧11𝑧23, 𝑧12𝑧23⟩. Then, 𝐾𝑣,𝑤 = 𝑧33𝐾𝑣𝑐0,𝑤 +𝐾𝑣𝑐0,𝑤𝑐0 .
6 PROOF OF THEOREM 4.15

In this section, we prove Theorem 4.15. We explain the overall structure of the proof now, and
dedicate subsections to the details.
Given 𝑣,𝑤 ∈ 𝐶𝑛 with 𝑣 ⩾ 𝑣□ in left–right weak order, a factorization 𝑣 for 𝑣, and a diago-

nal term order ≺ on 𝑅𝑣, let 𝑣,𝑤,≺ be the set of initial monomials of the generators we used to
define 𝐼𝑣,𝑤. We recall that these generators are the size 𝑟𝑤(𝑝, 𝑞) + 1minors of the truncatedmatrix𝜏𝑝,𝑞(𝑀𝑣), running over all (𝑝, 𝑞) in 𝐸(𝑤). Let 𝐽𝑣,𝑤,≺ be the ideal generated by 𝑣,𝑤,≺. We will show
that

𝐾𝑣,𝑤 ⊆ 𝐽𝑣,𝑤,≺ ⊆ in≺ 𝐼𝑣,𝑤,
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the former containment being Proposition 6.7 below and the latter clear from the definition
of 𝐽𝑣,𝑤. In Proposition 6.9, wewill prove that the𝐾-polynomials(𝑅𝑣∕𝐾𝑣,𝑤; 𝐭) and(𝑅𝑣∕𝐼𝑣,𝑤; 𝐭) =(𝑅𝑣∕ in≺ 𝐼𝑣,𝑤; 𝐭) are equal. The containments above then imply

𝐾𝑣,𝑤 = 𝐽𝑣,𝑤,≺ = in≺ 𝐼𝑣,𝑤,
and the latter equality is the statement of Theorem 4.15. Note that this shows that 𝐽𝑣,𝑤,≺ is
independent of the choice of diagonal term order ≺.
6.1 The Stanley–Reisner ideal is contained in the initial ideal

This subsection proves the containment 𝐾𝑣,𝑤 ⊆ 𝐽𝑣,𝑤,≺, which is Proposition 6.7. The proof will
be by induction on the length 𝓁(𝑤0𝑣). A factorization 𝑣 = 𝑢𝑙𝑣□𝑢𝑟, where 𝓁(𝑣) = 𝓁(𝑢𝑙) + 𝓁(𝑣□) +
𝓁(𝑢𝑟), can be extended to a factorization𝑤0 = 𝑢𝑙𝑣□𝑢𝑟(𝑤0𝑣)−1, and if the inductionwere unrolled,
it would descend to 𝑣 from its base case 𝑣 = 𝑤0 in right weak order by acting by simple reflections
at the right of this factorization. Thus, we can use right weak order to induct down from𝑤0 to any
123-avoiding permutation where every permutation along the way is 123-avoiding.
Throughout this section, we let 𝑣 be the factorization 𝑣 = 𝑢𝑙𝑣□𝑢𝑟, and, for 𝑐𝑘 an ascent of 𝑣, we

let 𝑣𝑐𝑘 be the factorization 𝑣 = 𝑢𝑙𝑣□(𝑢𝑟𝑐𝑘).
Every term of the Leibniz formula for a minor of𝑀𝑣 is zero or a signed monomial in the vari-

ables 𝑧𝑖𝑗 . Our proofs in this section will rely on the fact that there are no cancelations among these
terms. This is essentially the fact known in spectral graph theory as the Harary–Sachs theorem
[20, 36].

Lemma 6.1. Every coefficient of anyminor of𝑀𝑣 is a signed power of 2. If∏𝑟𝑗=1(𝑀𝑣)𝑝𝑗𝑞𝑗 is nonzero,
then it is a monomial contained in the support of the ({𝑝1, … ,𝑝𝑟}, {𝑞1, … , 𝑞𝑟})minor of𝑀𝑣 .
Proof. If a square submatrix𝑁 of𝑀𝑣 contains an entry 1, then by Proposition 4.6, expansion along
either its row or column shows that every nonzero term in det𝑁 involves that entry 1 and 𝑁 has
the same determinant as a smaller submatrix, up to sign. So, wemay assume that𝑁 contains no 1s.
Give the rows of 𝑁 the names 𝜖1, … , 𝜖𝑟 and its columns the names 𝛿1, … , 𝛿𝑟, in such a way that

whenever𝑁 contains a row and column that contribute the same weight to the action of 𝑇 on Σ𝑣
(see Proposition 4.18), then this row and column are 𝜖𝑖 and 𝛿𝑖 for some 𝑖. This ensures that, if a
variable is repeated in 𝑁, the two positions at which it appears are (𝜖𝑖 , 𝛿𝑗) and (𝜖𝑗 , 𝛿𝑖) for some 𝑖
and 𝑗.
We have

±det(𝑁) = ∑
𝑢∈𝑆𝑟 sgn(𝑢)∏𝑗 𝑁𝜖𝑗𝛿𝑢(𝑗) .

Suppose 𝑢,𝑢′ ∈ 𝑆𝑟 index terms of this sum which are both equal, up to sign, to a monomial 𝑚.
Because each nonzero entry of 𝑁 is a variable, the multisets of variables entering the product for𝑢 and that for 𝑢′ must be equal. Thus, for every 𝑖, 𝑗 ∈ [𝑟], if 𝑢(𝑖) = 𝑗, then 𝑢′(𝑖) = 𝑗 or 𝑢′(𝑗) = 𝑖
(and if 𝑢(𝑖) = 𝑗 and 𝑢(𝑗) = 𝑖, then 𝑢′(𝑖) = 𝑗 and 𝑢′(𝑗) = 𝑖). It follows that 𝑢′ is obtained from 𝑢 by
inverting some of the cycles in its disjoint cycle decomposition. A cycle and its inverse have the
same sign, so sgn(𝑢) is constant over all terms with∏𝑗 𝑁𝜖𝑗𝛿𝑢(𝑗) = 𝑚. The coefficient of𝑚 in det𝑁
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30 of 49 ESCOBAR et al.

is sgn(𝑢) times the number of such terms. Because any set of disjoint cycles can be inverted inde-
pendently, this number is 2𝑘, where 𝑘 is the number of cycles𝐶with∏𝑗∈𝐶 𝑁𝜖𝑗𝛿𝑐(𝑗) = ∏𝑗∈𝐶 𝑁𝜖𝑐(𝑗)𝛿𝑗 .
This is nonzero in 𝕂 because char𝕂 ≠ 2. □

We now prove the main technical lemma of this section.

Lemma 6.2. Fix a diagonal termorder≺ on𝑅𝑣 . Let 𝑐𝑘 be the last ascent of 𝑣 and fix≺′, the restriction
of≺, as our diagonal term order on𝑅𝑣𝑐𝑘 . Suppose that𝑚 is the leading term (with respect to≺′) of the
minor of𝑀𝑣𝑐𝑘 on row set 𝐴 = {𝜖1, … , 𝜖𝑟} and column set 𝐵 = {𝛿1, … , 𝛿𝑟}, labeled so that the entries
giving the leading term are the (𝜖𝑗 , 𝛿𝑗) entries, that is, 𝑚 = ∏𝑟𝑗=1(𝑀𝑣𝑐𝑘 )𝜖𝑗𝛿𝑗 . Let 𝑝, 𝑞 be such that𝐴 ⊂ [2𝑛] ⧵ [𝑝 − 1] and 𝐵 ⊂ [𝑞], and assume that row 𝜖𝑗 of 𝜏𝑝,𝑞(𝑀𝑣𝑐𝑘 ) contains an entry 1 exactly
when 𝑗 = 𝑠 + 1,… , 𝑟. Define

𝐵′ = {𝑐𝑘(𝛿1), … , 𝑐𝑘(𝛿𝑠), 𝑣−1(𝜖𝑠+1), … , 𝑣−1(𝜖𝑟)}.
(1) The leading term𝑚′ (with respect to≺) of theminor of𝑀𝑣 on row set𝐴 and column set𝐵′ divides𝑚.
(2) If 𝑐𝑘 is a descent of 𝑤,𝑚 ∈ 𝑣𝑐𝑘 ,𝑤,≺′ , (𝑝, 𝑞) ∈ 𝐸(𝑤), and 𝑟 = 𝑟𝑤(𝑝, 𝑞) + 1 then𝑚′ ∈ 𝑣,𝑤,≺.
(3) If 𝑐𝑘 is an ascent of 𝑤, 𝑚 ∈ 𝑣𝑐𝑘 ,𝑤,≺′ , (𝑝, 𝑞) ∈ 𝐸(𝑤), 𝑟 = 𝑟𝑤(𝑝, 𝑞) + 1, and 𝑉𝑣 ⧵ 𝑉𝑣𝑐𝑘 = {𝑧𝑖𝑗},

then there exists𝑚′′ ∈ 𝑣,𝑤,≺ with𝑚′′ ∣ 𝑧𝑖𝑗𝑚′.
Proof. Let 1 ⩽ 𝛿 ⩽ 2𝑛 be a column index. By Proposition 4.6, in any minor of𝑀𝑣 using row 𝑣(𝛿)
and column 𝛿, all nonvanishing terms use the (𝑣(𝛿), 𝛿) entry. Applied to the (𝐴,𝐵′)minor of𝑀𝑣,
we conclude that this minor equals, up to sign, the

({𝜖1, … , 𝜖𝑠}, {𝑐𝑘(𝛿1), … , 𝑐𝑘(𝛿𝑠)})
minor of𝑀𝑣.
Let us first show that the ({𝜖1, … , 𝜖𝑠}, {𝑐𝑘(𝛿1), … , 𝑐𝑘(𝛿𝑠)}) minor of 𝑀𝑣 equals, up to sign, the({𝜖1, … , 𝜖𝑠}, {𝛿1, … , 𝛿𝑠})minor of𝑀𝑣𝑐𝑘 . By Corollary 4.11,𝑀𝑣𝑐𝑘 is obtained from𝑀𝑣𝑃(𝑐𝑘) by setting

a single variable 𝑧𝑖𝑗 to 0, which appears in columns 𝑛 ± 𝑘 of𝑀𝑣. Proposition 4.7 shows that none
of the other variables change names. Therefore, the claim is straightforward except in the case
where 𝑧𝑖𝑗 shows up in the ({𝜖1, … , 𝜖𝑠}, {𝑐𝑘(𝛿1), … , 𝑐𝑘(𝛿𝑠)})minor of𝑀𝑣. This occurs if 𝑛 ± 𝑘 + 1 ∈{𝛿1, … , 𝛿𝑠}.Without loss of generality, let 𝛿1 = 𝑛 ± 𝑘 + 1; wemust then have 𝑣𝑐𝑘(𝛿1) = 𝑣(𝛿1 − 1) ∈{𝜖1, … , 𝜖𝑠}. Let 𝜖𝑡 = 𝑣(𝛿1 − 1). Since 𝛿1 ⩽ 𝑞 and 𝑝 ⩽ 𝜖𝑖 , 𝜏𝑝,𝑞(𝑀𝑣) contains a 1 in row 𝜖𝑡, namely, at(𝜖𝑡, 𝛿1). This contradicts the definition of 𝑠 and we can thus conclude that 𝑛 ± 𝑘 + 1 ∉ {𝛿1, … , 𝛿𝑠}.
Let 𝜇 = ∏𝑠𝑙=1(𝑀𝑣𝑐𝑘 )𝜖𝑙𝛿𝑙 and note 𝑚∕𝜇 = ∏𝑟𝑙=𝑠+1(𝑀𝑣𝑐𝑘 )𝜖𝑙𝛿𝑙 . We now show the leading term 𝑚′

of the minor in the previous paragraph must be 𝜇. This is because any term𝑚′′ of this minor can
be extended to a term𝑚′′𝑚∕𝜇 of the (𝐴,𝐵)minor of𝑀𝑣𝑐𝑘 . Therefore,𝑚 = 𝑚′′𝑚∕𝜇 for some term𝑚′′ of the smaller minor, that is, 𝑚′′ = 𝜇. The fact that monomial orders respect multiplication
implies that𝑚′ = 𝜇. We conclude that𝑚′ ∣ 𝑚 and (1) follows.
We now show (2). Suppose that 𝑐𝑘 is a descent of 𝑤 and𝑚 ∈ 𝑣𝑐𝑘 ,𝑤,≺′ . Since (𝑝, 𝑞) ∈ 𝐸(𝑤), we

cannot have 𝑞 = 𝑛 ± 𝑘 and it follows that 𝐵′ ⊂ [𝑞]. We therefore have that𝑚′ is the leading term
of a minor of 𝜏𝑝,𝑞(𝑀𝑣) of size 𝑟𝑤(𝑝, 𝑞) + 1 and (2) follows.
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(i)

b q
a z♦♥ . . . z♦j

...
...

ϵs+1 zi♥ . . . zij

(ii)

b q
a 0 . . . (̸= 0)

...
...

v(b) 1 . . . 0
...

...
ϵs+1 zi♥ . . . zij

F IGURE 4 The entries of𝑀𝑣 in relevant rows and columns.

To show (3), first note that, if 𝐵′ ⊆ [𝑞], then, as in (2),𝑚′ is the leading term of a minor of size𝑟𝑤(𝑝, 𝑞) + 1 lying inside 𝜏𝑝,𝑞(𝑀𝑣), so we can take𝑚′′ = 𝑚′, and𝑚′′ ∣ 𝑧𝑖𝑗𝑚′.
If𝐵′ ⊈ [𝑞], thenwemust have 𝑞 = 𝑛 ± 𝑘. Since 𝑐𝑘 is an ascent of 𝑣, wehave 𝑣𝑞 < 𝑣𝑞+1, so 𝑞 + 1 is

not a left-to-right minimum of 𝑣. Hence, 𝑞 + 1 is a right-to-left maximum of 𝑣 by Lemma 4.2, and,
by Proposition 4.6, the only nonzero entry in column 𝑞 + 1 of is a 1 in position (𝑣(𝑞 + 1), 𝑞 + 1).
This implies that 𝑣−1(𝑞 + 1) = 𝜖𝑗 for some 𝑗 > 𝑠. Without loss of generality, suppose 𝑣(𝜖𝑠+1) =𝑞 + 1.
Let𝐵′′ = 𝐵′ ⧵ {𝑞 + 1} ∪ {𝑞}. Note that#𝐵′′ = 𝑟𝑤(𝑝, 𝑞) + 1 since 𝑞 ∉ 𝐵′ as 𝑐𝑘(𝑞) = 𝑞 + 1 > 𝑞. Let𝛿𝑠+1 = 𝑞, so 𝑐𝑘(𝛿𝑠+1) = 𝑞 + 1. We have (𝑀𝑣)𝜖𝑠 ,𝑐𝑘(𝛿𝑠+1) = 𝑧𝑖𝑗 .
We now construct a row set 𝐴′ so that the (𝐴′,𝐵′′)-minor of 𝜏𝑝,𝑞(𝑀𝑣) has leading term 𝑚′′

such that 𝑚′′ ∣ 𝑧𝑖𝑗𝑚′. Without loss of generality, assume 𝑝 ⩽ 𝑣𝑐𝑘(𝛿𝑗) < 𝜖𝑠+1 when 𝑗 ⩽ 𝑡, and𝑝 > 𝑣𝑐𝑘(𝛿𝑗) or 𝑣𝑐𝑘(𝛿𝑗) ⩾ 𝜖𝑠+1 when 𝑡 < 𝑗 ⩽ 𝑠. Now let 𝐴′ = {𝑣𝑐𝑘(𝛿1), … , 𝑣𝑐𝑘(𝛿𝑡), 𝜖𝑡+1, … , 𝜖𝑟}. We
show that the leading term of the (𝐴′,𝐵′′)-minor of 𝑀𝑣 is 𝑚′′ = ∏𝑠+1

𝓁=𝑡+1(𝑀𝑣)𝜖𝓁𝑐𝑘(𝛿𝓁) and that𝑚′′ ∣ 𝑧𝑖𝑗𝑚′.
First, we show by contradiction that (𝑀𝑣)𝜖𝑠+1𝑐𝑘(𝛿𝑠+1) = 𝑧𝑖𝑗 must be part of the leading term.

Since 𝑐𝑘 is the last ascent, every entry in column 𝑐𝑘(𝛿𝑠+1) = 𝑞 below row 𝜖𝑠+1 must be 0. Hence,
if the leading term of the (𝐴′,𝐵′′)-minor of 𝑀𝑣 does not contain 𝑧𝑖𝑗 , then there must exist
some row 𝑎 ∈ 𝐴′ with 𝑎 < 𝜖𝑠+1 and some column 𝑏 ∈ 𝐵′′ with 𝑏 < 𝑞 such that the (𝑎, 𝑞) and(𝜖𝑠+1, 𝑏) entries are in the leading term of the minor. Now note that (𝑀𝑣)𝑎𝑏 = 0, as, otherwise,
by the diagonalness of the term order, this entry and 𝑧𝑖𝑗 would give a larger term, as seen in
Figure 4(i). Since (𝑀𝑣)𝑎𝑏 = 0 but (𝑀𝑣)𝑎𝑞 ≠ 0 and (𝑀𝑣)𝜖𝑠+1𝑏 ≠ 0, we must have that 𝑎 < 𝑣(𝑏) <𝜖𝑠+1, as seen in Figure 4(ii). By our labeling, we must have 𝑏 = 𝑐𝑘(𝛿𝑗) for some 𝑗 ⩽ 𝑡, and𝑣(𝑏) ∈ 𝐴′. Now note that 𝑏 must be a left-to-right minimum, so the only nonzero entry in row𝑣(𝑏) is the 1 at (𝑣(𝑏), 𝑏). This contradicts our assumption that the (𝜖𝑠+1, 𝑏) entry of 𝑀𝑣 is in the
leading term.
Next, note that 𝑚̃ = ∏𝑠

𝓁=𝑡+1(𝑀𝑣)𝜖𝓁𝑐𝑘(𝛿𝓁) must be the leading term of the ({𝜖𝑡+1, … , 𝜖𝑠},{𝑐𝑘(𝛿𝑡+1), … , 𝑐𝑘(𝛿𝑠)})minor of𝑀𝑣, because any other term 𝑚̃′ can be extended to a term 𝑚̃′𝑚′∕𝑚̃
of the (𝐴,𝐵′)minor of𝑀𝑣 bymultiplying by𝑚′∕𝑚̃ = ∏𝑡

𝓁=1(𝑀𝑣)𝜖𝓁𝑐𝑘(𝛿𝓁), but𝑚′ ⩾ 𝑚̃′𝑚′∕𝑚̃ by (1),
and the fact that monomial orders respect multiplication implies that 𝑚̃ ⩾ 𝑚̃′.
We have left-to-right minima at 𝑐𝑘(𝛿1), … , 𝑐𝑘(𝛿𝑡). Hence, by Proposition 4.6, every term in the(𝐴′,𝐵′′) minor of 𝑀𝑣 must use the (𝑣𝑐𝑘(𝛿𝓁), 𝑐𝑘(𝛿𝓁))th entries, which are all 1s. Therefore, the

leading term is 𝑧𝑖𝑗𝑚̃. By definition,𝑚′′ = 𝑧𝑖𝑗𝑚̃. By construction, we have𝑚′′ ∣ 𝑧𝑖𝑗𝑚′. □

Example 6.3. Let 𝑣 = 326 154 and 𝑤 = 465 213 in 𝐶3. Then, the last ascent of 𝑣 is 𝑐1: that is, in
our one-line notation for 𝑣, position 4 = 3 + 1 is the rightmost position of a digit that is followed
by a larger digit. Since 𝑤 has a descent at 𝑐1, we are in part (2) of Lemma 6.2. We have
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32 of 49 ESCOBAR et al.

𝑀𝑣 =
⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 0 1 0 00 1 0 0 0 01 0 0 0 0 0𝑧11 𝑧12 0 𝑧13 0 1𝑧12 𝑧22 0 𝑧23 1 0𝑧13 𝑧23 1 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

, 𝑀𝑣𝑐1 =
⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 0 0 1 00 0 1 0 0 01 0 0 0 0 0𝑧11 0 𝑧12 0 𝑧13 1𝑧12 0 𝑧22 1 0 0𝑧13 1 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

,

So, the type C essential set of𝑤 is 𝐸(𝑤) = {(5, 1)}. Thus, 𝑣,𝑤 = {𝑧13, 𝑧12} = 𝑣𝑐1,𝑤 in this case, and
so, each element of 𝑣𝑐1,𝑤 is divisible by an element of 𝑣,𝑤.
Example 6.4. Let 𝑣 = 𝑣□𝑐0 ∈ 𝐶5 and let 𝑤 = a937 654 821, where a = 10. Then, 𝐸(𝑤) = {(8, 7)},𝑟𝑤(8, 7) = 2, the last ascent of 𝑣 is 𝑐1, and this is a descent of 𝑤. We have

𝜏8,7(𝑀𝑣) = ⎡
⎢
⎢
⎢⎣

𝑧13 𝑧23 𝑧33 𝑧34 0 𝑧35 0𝑧14 𝑧24 𝑧34 𝑧44 0 𝑧45 1𝑧15 𝑧25 𝑧35 𝑧45 1 0 0
⎤
⎥
⎥
⎥⎦

and

𝜏8,7(𝑀𝑣𝑐1 ) = ⎡
⎢
⎢
⎢⎣

𝑧13 𝑧23 𝑧33 0 𝑧34 0 𝑧35𝑧14 𝑧24 𝑧34 0 𝑧44 1 0𝑧15 𝑧25 𝑧35 1 0 0 0
⎤
⎥
⎥
⎥⎦
.

Observe that the 3 × 3 minor of 𝜏8,7(𝑀𝑣𝑐1 ) coming from columns 3,5,7 is 𝑧35𝑧44𝑧35, so that this
term is in 𝑣𝑐1,𝑤,≺′ (no matter what ≺ is). This term is not in 𝑣,𝑤,≺. In the proof of Lemma 6.2(1),
we take the minor from the last three columns of 𝜏8,7(𝑀𝑣), which constitute 𝐵′. This minor is 𝑧35,
which divides 𝑧35𝑧44𝑧35.
Example 6.5. Let 𝑣 = 𝑐1𝑐0𝑣□ = 6 4218 753 ∈ 𝐶4 and 𝑤 = 87 436 521. Then, 𝐸(𝑤) = {(5, 4)},𝑟𝑤(5, 4) = 2, the last ascent of 𝑣 is 𝑐0, and this is an ascent of 𝑤. We have:

𝜏5,4(𝑀𝑣) =
⎡
⎢
⎢
⎢
⎢
⎢⎣

0 𝑧22 𝑧23 𝑧241 0 0 0𝑧13 𝑧23 𝑧33 𝑧34𝑧14 𝑧24 𝑧34 𝑧44
⎤
⎥
⎥
⎥
⎥
⎥⎦
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and

𝜏5,4(𝑀𝑣𝑐0 ) =
⎡
⎢
⎢
⎢
⎢
⎢⎣

0 𝑧22 𝑧23 01 0 0 0𝑧13 𝑧23 𝑧33 0𝑧14 𝑧24 𝑧34 1
⎤
⎥
⎥
⎥
⎥
⎥⎦

.
Observe that the 3 × 3minor of 𝜏5,4(𝑀𝑣𝑐𝑘 )using columns 1, 3, and 4 and rows 5, 7, and 8 is 𝑧13𝑧23.

The leading term of the corresponding minor in𝑀𝑣 uses column 5, which is outside 𝜏5,4(𝑀𝑣). In
the proof of Lemma 6.2(3), we first replace column 5 with column 4, then row 7 with row 6. The
leading term of this minor of 𝜏5,4(𝑀𝑣) is 𝑧23𝑧44, which divides 𝑧13𝑧23𝑧44.
Lemma 6.6. Let 𝑤 ∈ 𝐶𝑛 and 𝑐𝑘 be an ascent of 𝑤. Let (𝑝, 𝑞) ∈ 𝐸(𝑤𝑐𝑘).
(i) If 𝑞 ≠ 𝑛 + 𝑘 + 1 and 𝑞 ≠ 𝑛 + 1 − 𝑘, then (𝑝, 𝑞) ∈ 𝐸(𝑤) and 𝑟𝑤(𝑝, 𝑞) = 𝑟𝑤𝑐𝑘 (𝑝, 𝑞).
(ii) If 𝑞 = 𝑛 + 𝑘 + 1 or 𝑞 = 𝑛 + 1 − 𝑘 and (𝑝, 𝑞 − 1) ∈ 𝐷(𝑤𝑐𝑘), then (𝑝, 𝑞) ∈ 𝐸(𝑤) and 𝑟𝑤(𝑝, 𝑞) =𝑟𝑤𝑐𝑘 (𝑝, 𝑞).
(iii) If 𝑞 = 𝑛 + 𝑘 + 1 or 𝑞 = 𝑛 + 1 − 𝑘 and (𝑝, 𝑞 − 1) ∉ 𝐷(𝑤𝑐𝑘), then (𝑝, 𝑞 − 1) ∈ 𝐸(𝑤) and𝑟𝑤(𝑝, 𝑞 − 1) = 𝑟𝑤𝑐𝑘 (𝑝, 𝑞) − 1.
Proof. Note that we cannot have 𝑞 = 𝑛 + 𝑘 or 𝑞 = 𝑛 − 𝑘 since 𝑐𝑘 is a descent of 𝑤𝑐𝑘. The first
statement then follows from Lemma 4.9.
Suppose 𝑞 = 𝑛 + 𝑘 + 1 or 𝑞 = 𝑛 + 1 − 𝑘 and (𝑝, 𝑞 − 1) ∈ 𝐷(𝑤𝑐𝑘). Since (𝑝, 𝑞) ∈ 𝐸𝐴(𝑤𝑐𝑘),𝑤𝑐𝑘(𝑞) < 𝑝 ⩽ 𝑤𝑐𝑘(𝑞 + 1). Since (𝑝, 𝑞 − 1) ∈ 𝐷(𝑤𝑐𝑘), 𝑤𝑐𝑘(𝑞 − 1) < 𝑝. Hence, 𝑤(𝑞) = 𝑤𝑐𝑘(𝑞 −1) < 𝑝 ⩽ 𝑤(𝑞 + 1) = 𝑤𝑐𝑘(𝑞 + 1), and (𝑝, 𝑞) ∈ 𝐸𝐴(𝑤). Also, 𝑟𝑤(𝑝, 𝑞) = 𝑟𝑤𝑐𝑘 (𝑝, 𝑞). Since (𝑝, 𝑞) ∈𝐸(𝑤𝑐𝑘), 𝑝 ⩾ 𝑛 + 1. Furthermore, if 𝑞 = 𝑛 + 𝑘 + 1 and (𝑝, 2𝑛 − 𝑞) = (𝑝,𝑛 − 𝑘 − 1) ∈ 𝐸𝐴(𝑤), then(𝑝,𝑛 − 𝑘 − 1) ∈ 𝐸𝐴(𝑤𝑐𝑘). Applying the second condition of Definition 3.10 to (𝑝, 𝑞) ∈ 𝐸(𝑤𝑐𝑘),

we have that 𝑟𝑤𝑐𝑘 (𝑝,𝑛 − 𝑘 − 1) > 𝑟𝑤𝑐𝑘 (𝑝,𝑛 + 𝑘 + 1) − 𝑘 − 1. Since 𝑟𝑤(𝑝,𝑛 − 𝑘 − 1) = 𝑟𝑤𝑐𝑘 (𝑝,𝑛 −𝑘 − 1), we also have 𝑟𝑤(𝑝, 2𝑛 − 𝑞) > 𝑟𝑤(𝑝, 𝑞) + 𝑛 − 𝑞. Hence, (𝑝, 𝑞) ∈ 𝐸(𝑤).
Now suppose 𝑞 = 𝑛 + 𝑘 + 1 or 𝑞 = 𝑛 + 1 − 𝑘 and (𝑝, 𝑞 − 1) ∉ 𝐷(𝑤𝑐𝑘). Then, 𝑤(𝑞) = 𝑤𝑐𝑘(𝑞 −1) > 𝑝. Hence, 𝑤(𝑞 − 1) < 𝑝 < 𝑤(𝑞), and (𝑝, 𝑞 − 1) ∈ 𝐸𝐴(𝑤). Also, 𝑟𝑤(𝑝, 𝑞 − 1) = 𝑟𝑤𝑐𝑘 (𝑝, 𝑞) − 1.

If 𝑞 = 𝑛 + 𝑘 + 1 and (𝑝, 2𝑛 − (𝑞 − 1)) = (𝑝,𝑛 − 𝑘) ∈ 𝐸𝐴(𝑤), then 𝑤(𝑛 + 1 − 𝑘) ⩾ 𝑝, so 𝑤𝑐𝑘(𝑛 −𝑘) ⩾ 𝑝. We first wish to show that (𝑝,𝑛 − 1 − 𝑘) ∈ 𝐸𝐴(𝑤𝑐𝑘). Since (𝑝,𝑛 + 𝑘 + 1) ∈ 𝐸(𝑤𝑐𝑘), we
have 𝑤𝑐𝑘(𝑛 + 𝑘 + 2) ⩾ 𝑝 > 𝑛. Using the symmetry of type C permutations, as noted in (1),𝑤𝑐𝑘(𝑛 − 1 − 𝑘) ⩽ 𝑛 < 𝑝. This implies (𝑝,𝑛 − 1 − 𝑘) ∈ 𝐷(𝑤𝑐𝑘) and (𝑝,𝑛 − 𝑘) ∉ 𝐷(𝑤𝑐𝑘). To con-
clude that (𝑝,𝑛 − 1 − 𝑘) ∈ 𝐸𝐴(𝑤𝑐𝑘), we must show that (𝑝 − 1,𝑛 − 1 − 𝑘) ∉ 𝐷(𝑤𝑐𝑘). Note that(𝑝 − 1,𝑛 − 1 − 𝑘) ∉ 𝐷(𝑤𝑐𝑘) if and only if (𝑝 − 1,𝑛 − 1 − 𝑘) ∉ 𝐷(𝑤).We are assuming that (𝑝,𝑛 −𝑘) ∈ 𝐸𝐴(𝑤). Therefore, 𝑤(𝑗) ≠ 𝑝 − 1 for 𝑗 > 𝑛 − 𝑘, and thus, we can only have (𝑝 − 1,𝑛 − 1 −𝑘) ∈ 𝐷(𝑤) if 𝑤(𝑛 − 𝑘) = 𝑝 − 1. However, since 𝑤(𝑞) > 𝑝 > 𝑛 and 𝑤(𝑛 − 𝑘) = 𝑤(2𝑛 + 1 − 𝑞), (1)
implies that 𝑤(𝑛 − 𝑘) < 𝑛 ⩽ 𝑝 − 1. It follows that (𝑝,𝑛 − 1 − 𝑘) ∈ 𝐸𝐴(𝑤𝑐𝑘).
Applying the second condition of Definition 3.10 to (𝑝, 𝑞) ∈ 𝐸(𝑤𝑐𝑘), we have that 𝑟𝑤𝑐𝑘 (𝑝,𝑛 −1 − 𝑘) > 𝑟𝑤𝑐𝑘 (𝑝,𝑛 + 𝑘 + 1) − 𝑘 − 1. Since 𝑟𝑤(𝑝,𝑛 − 𝑘) = 𝑟𝑤(𝑝,𝑛 − 𝑘 − 1) = 𝑟𝑤𝑐𝑘 (𝑝,𝑛 − 𝑘 − 1)

and 𝑟𝑤(𝑝,𝑛 + 𝑘) = 𝑟𝑤𝑐𝑘 (𝑝,𝑛 + 𝑘 + 1) − 1, we see that 𝑟𝑤(𝑝,𝑛 − 𝑘) > 𝑟𝑤(𝑝,𝑛 + 𝑘) − 𝑘, and(𝑝, 𝑞 − 1) ∈ 𝐸(𝑤). □

Proposition 6.7. Let 𝑣 ⩾ 𝑣□ and 𝑤 ∈ 𝐶𝑛. Then, 𝐾𝑣,𝑤 ⊆ 𝐽𝑣,𝑤,≺ for any diagonal term order ≺.
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Proof. We induct on 𝓁(𝑤0𝑣). In the base case, 𝑣 = 𝑤0, these are both ideals of the polynomial ring𝑅𝑤0 = 𝕂 in zero variables, namely, the zero ideal if 𝑤 = 𝑤0 and the unit ideal otherwise.
If 𝑣 ≠ 𝑤0, then it may occur that 𝑣  𝑤 so that 𝐾𝑣,𝑤 is the unit ideal. In this case, 𝑟𝑣(𝑝, 𝑞) >𝑟𝑤(𝑝, 𝑞) for some (𝑝, 𝑞) ∈ 𝐸(𝑤). Hence, there will be at least 𝑟𝑤(𝑝, 𝑞) + 1 entries equal to 1 in𝜏𝑝,𝑞(𝑀𝑣). Taking a size 𝑟𝑤(𝑝, 𝑞) + 1 minor of 𝜏𝑝,𝑞(𝑀𝑣) that contains a 1 in each column, we see

that the minor evaluates to 1 (every entry above and to the right of a 1 being 0). Thus, 1 ∈ 𝐽𝑣,𝑤
as desired.
Henceforth, we assume 𝑣 ⩽ 𝑤. Let 𝑐𝑘 be the last ascent of 𝑣, let {𝑧𝑖𝑗} = 𝑉𝑣 ⧵ 𝑉𝑣𝑐𝑘 , and let ≺′

be the restriction of ≺ to 𝑅𝑣𝑐𝑘 . We consider two cases according to whether 𝑐𝑘 is an ascent or a
descent of 𝑤. If a descent, Proposition 5.7 says𝐾𝑣,𝑤 = 𝐾𝑣𝑐𝑘 ,𝑤𝑅𝑣.
By induction,𝐾𝑣𝑐𝑘 ,𝑤 ⊆ 𝐽𝑣𝑐𝑘 ,𝑤,≺′ , since≺′ is a diagonal term order by Proposition 4.13. So, it suffices
to show that 𝐽𝑣𝑐𝑘 ,𝑤,≺′𝑅𝑣 ⊆ 𝐽𝑣,𝑤,≺; but this is part (2) of Lemma 6.2.
If 𝑐𝑘 is an ascent of 𝑤, then Proposition 5.7 says𝐾𝑣,𝑤 = ⟨𝑧𝑖𝑗𝑚 ∶ 𝑚 ∈ 𝐾𝑣𝑐𝑘 ,𝑤⟩ + 𝐾𝑣𝑐𝑘 ,𝑤𝑐𝑘𝑅𝑣. (7)

Let 𝑚̂ be a monomial generator of 𝐾𝑣,𝑤. We split into two cases again according to whether 𝑚̂ ∈𝐾𝑣𝑐𝑘 ,𝑤𝑐𝑘 .
If 𝑚̂ ∈ 𝐾𝑣𝑐𝑘 ,𝑤𝑐𝑘 , then by induction, 𝑚̂ ∈ 𝐽𝑣𝑐𝑘 ,𝑤𝑐𝑘 ,≺′ . Hence, there exists𝑚 ∈ 𝑣𝑐𝑘 ,𝑤𝑐𝑘 ,≺′ dividing𝑚̂. Since 𝑐𝑘 is an ascent of 𝑤, it is a descent of 𝑤𝑐𝑘, and therefore, by Lemma 6.2, there exists𝑚′ ∈ 𝑣,𝑤𝑐𝑘 ,≺ dividing 𝑚 and hence 𝑚̂. Since 𝑚′ ∈ 𝑣,𝑤𝑐𝑘 ,≺, it is the leading term of some minor

of 𝜏𝑝,𝑞(𝑀𝑣), of size 𝑟𝑤𝑐𝑘 (𝑝, 𝑞) + 1, for some (𝑝, 𝑞) ∈ 𝐸(𝑤𝑐𝑘). Call this minor 𝐷. We now apply
Lemma 6.6, breaking the argument into its three cases.
If 𝑞 ≠ 𝑛 ± 𝑘 + 1, then (𝑝, 𝑞) ∈ 𝐸(𝑤) and 𝑟𝑤(𝑝, 𝑞) = 𝑟𝑤𝑐𝑘 (𝑝, 𝑞), so 𝐷 ∈ 𝐼𝑣,𝑤, 𝑚′ ∈ 𝑣,𝑤,≺, and

therefore,𝑚 ∈ 𝐽𝑣,𝑤,≺. Similarly, if 𝑞 = 𝑛 ± 𝑘 + 1 and (𝑝, 𝑞 − 1) ∈ 𝐷(𝑤𝑐𝑘), then𝑚 ∈ 𝐽𝑣,𝑤,≺. Lastly,
if 𝑞 = 𝑛 ± 𝑘 + 1 and (𝑝, 𝑞 − 1) ∉ 𝐷(𝑤𝑐𝑘), the lemma implies that (𝑝, 𝑞 − 1) ∈ 𝐸(𝑤) and 𝑟𝑤(𝑝, 𝑞 −1) = 𝑟𝑤𝑐𝑘 (𝑝, 𝑞) − 1. If column 𝑞 is not used in 𝐷, then 𝐷 is a minor of 𝜏𝑝,𝑞−1(𝑀𝑣) of size 𝑟𝑤(𝑝, 𝑞 −1) + 2. By Laplace expansion, 𝑚′, being the leading term of 𝐷, is divisible by the leading term𝑚′′ of some minor of size 𝑟𝑤(𝑝, 𝑞 − 1) + 1. Hence,𝑚′′ ∈ 𝑣,𝑤,≺ and 𝑚̂ ∈ 𝐽𝑣,𝑤,≺. Otherwise, if col-
umn 𝑞 is used in 𝐷, let (𝑎, 𝑞) be the position in column 𝑞 appearing in the leading term. Then𝑚′′ ∶= 𝑚′∕(𝑀𝑣)𝑎,𝑞 is the leading term of the minor of size 𝑟𝑤𝑐𝑘 (𝑝, 𝑞) − 1 obtained by omitting
row 𝑎 and column 𝑞. Therefore,𝑚′′ ∈ 𝑣,𝑤,≺ and 𝑚̂ ∈ 𝐽𝑣,𝑤,≺.
If instead 𝑚̂ ∉ 𝐾𝑣𝑐𝑘 ,𝑤𝑐𝑘 , then 𝑚̂∕𝑧𝑖𝑗 ∈ 𝐾𝑣𝑐𝑘 ,𝑤 and by induction 𝑚̂∕𝑧𝑖𝑗 ∈ 𝐽𝑣𝑐𝑘 ,𝑤,≺′ . Let𝑚 ∈ 𝑣𝑐𝑘 ,𝑤

be a generator dividing 𝑚̂∕𝑧𝑖𝑗 , arising from a minor of 𝜏𝑝,𝑞(𝑀𝑣𝑐𝑘 ). Part (1) of Lemma 6.2 (which
does not literally apply because 𝑐𝑘 is not a descent of𝑤) produces aminor𝐷 of𝑀𝑣 of size 𝑟𝑤(𝑝, 𝑞) +1with a leading term𝑚′ that divides𝑚, and part (3) produces𝑚′′ ∈ 𝑣,𝑤,≺ dividing 𝑧𝑖𝑗𝑚′. Hence,
we have𝑚′′ ∣ 𝑧𝑖𝑗𝑚′ ∣ 𝑧𝑖𝑗𝑚 ∣ 𝑚̂, and 𝑚̂ ∈ 𝐽𝑣,𝑤,≺. □

6.2 Equality of 𝑲-polynomials

We wish to show that, with respect to the weighting of the variables on 𝑅𝑣 introduced in Sec-
tion 4.3, the 𝐾-polynomial of the 𝑅𝑣-module 𝑅𝑣∕𝐼𝑣,𝑤 is equal to the 𝐾-polynomial of 𝑅𝑣∕𝐾𝑣,𝑤. We
do this by showing that the 𝐾-polynomial of 𝑅𝑣∕𝐾𝑣,𝑤 satisfies the recursion of the next theorem,
due to B. Kostant and S. Kumar [31, Proposition 2.4]. Kumar showed that the local𝐾-classes of𝑋𝑤,
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and hence, the𝐾-polynomials of 𝑅𝑣∕𝐼𝑣,𝑤, follow this recursion. The version below is due to Knut-
son (see [27, Theorem 1]) and has been translated to our specific setting. See also [43, Theorem
6.12] for the type A analog of the statement below.
Throughout this subsection, we assume that 𝕂 = ℂ as the recursion on 𝐾-polynomials that

we reference is only proved in that setting. In the next subsection, we show that, despite this
assumption, Theorem 4.15 holds over arbitrary 𝕂 of characteristic zero.

Theorem 6.8. Let 𝑣,𝑤 ∈ 𝐶𝑛.∙ If 𝑣  𝑤, then
(𝑅𝑣∕𝐼𝑣,𝑤; 𝐭) = 0.

∙ If 𝑣 = 𝑤0, then 𝑤 = 𝑤0 (or we are in the previous case). Then,
(𝑅𝑣∕𝐼𝑣,𝑤; 𝐭) = 1.

∙ Otherwise, let 𝑘 be the last right ascent of 𝑣, so 𝑣𝑠𝑘 > 𝑣.
(1) If 𝑘 is a descent of 𝑤, so 𝑐𝑠𝑘 < 𝑤, then

(𝑅𝑣∕𝐼𝑣,𝑤; 𝐭) = (𝑅𝑣𝑐𝑘∕𝐼𝑣𝑐𝑘 ,𝑤; 𝐭).
(2) If 𝑘 is an ascent of 𝑤, so 𝑐𝑠𝑘 > 𝑤, then
𝐾(𝑅𝑣∕𝐼𝑣,𝑤; 𝐭) = (𝑅𝑣𝑐𝑘∕𝐼𝑣𝑐𝑘 ,𝑤; 𝐭) + (1 − 𝑡𝑖𝑡𝑗)(𝑅𝑣𝑐𝑘∕𝐼𝑣𝑐𝑘 ,𝑤𝑐𝑘 ; 𝐭) − (1 − 𝑡𝑖𝑡𝑗)(𝑅𝑣𝑐𝑘∕𝐼𝑣𝑐𝑘 ,𝑤; 𝐭),
where (𝑖, 𝑗) is such that 𝑧𝑖𝑗 is the smallest variable with respect to ≺lex on 𝑅𝑣 .

Proof. This is [27, Theorem 1] in the type C setting, but we should explain two changes that arise
in translating the statement to our setting.
First, the original statement is about the pullback of the class [𝑋𝑤 ] ∈ 𝐾𝑇(𝐺∕𝐵+𝐺 ) to𝐾𝑇(𝑣𝐵+𝐺∕𝐵+𝐺 ), where 𝑣𝐵+𝐺∕𝐵+𝐺 is the point in the stratification of 𝐺∕𝐵+𝐺 . In commutative algebra

terms, this is
∑
𝑖 (−1)𝑖[Tor𝑖(𝑋𝑤 ,𝑣𝐵+𝐺∕𝐵+𝐺 )] ∈ 𝐾𝑇(𝑣𝐵+𝐺∕𝐵+𝐺 ).

A class in 𝐾𝑇(pt) can be identified with its formal character. On the other hand, since 𝑣𝐵+𝐺∕𝐵+𝐺 is
the point in 𝑀𝑣 with all coordinates set to 0, taking Tor with 𝑣𝐵+𝐺∕𝐵+𝐺 is the same as taking the𝐾-polynomial.
Second, we need to match 𝑒𝑣(𝛼) with 𝑡𝑖𝑡𝑗 . As shown in the proof of Proposition 4.7, we have𝑛 + 𝑖 = 𝑣(𝑛 + 𝑘 + 1) and 𝑛 + 1 − 𝑗 = 𝑣(𝑛 + 𝑘), so 𝑣(𝑒𝑘) = −𝑒𝑗 and 𝑣(𝑒𝑘+1) = 𝑒𝑖 . Since 𝛼 = 𝑒𝑘+1 −𝑒𝑘, 𝑣(𝛼) = 𝑒𝑖 + 𝑒𝑗 , so 𝑒𝑣(𝛼) = 𝑡𝑖𝑡𝑗 . (To be precise, there are two canceling sign differences from

the original statement, one from our definition of 𝑋𝑤 as 𝐵+𝐺 -orbit closures rather than 𝐵−𝐺 -orbit
closures, and the second from our use of 𝑤0𝑣 instead of 𝑣.) □
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Proposition 6.9. Given 𝑣,𝑤 ∈ 𝐶𝑛,
(𝑅𝑣∕𝐼𝑣,𝑤; 𝐭) = (𝑅𝑣∕𝐾𝑣,𝑤; 𝐭).

Proof. [35, Theorem 1.13] implies that given a simplicial complex ∆ on the vertex set 𝑉 ∪̇ {𝑧} with
its vertex decomposition at 𝑧, say ∆ = cone𝑧 Λ ∪ Π where Λ ⊆ Π are simplicial complexes on 𝑉
(respectively, the link and deletion of 𝑧 in ∆), we have
(𝑅[𝑉 ∪ {𝑧}]∕𝐼∆; 𝐭) = (𝑅[𝑉]∕𝐼Λ; 𝐭) + (1 − 𝐭deg(𝑧))(𝑅[𝑉]∕𝐼Π; 𝐭) − (1 − 𝐭deg(𝑧))(𝑅[𝑉]∕𝐼Λ; 𝐭).
Applied to Proposition 5.4, this produces a recursive formula for (𝑅∕𝐾𝑣,𝑤; 𝐭),
which comes out identical to Theorem 6.8 with every appearance of 𝐼 replaced
by 𝐾. Thus, (𝑅∕𝐼𝑣,𝑤; 𝐭) and (𝑅∕𝐾𝑣,𝑤; 𝐭) satisfy the same recursion, and so are the
same. □

6.3 Proof of Theorem 4.15

Proof. We first assume 𝕂 = ℂ, and return to an arbitrary field of characteristic zero in the last
paragraph. Fix a diagonal term order ≺. By Proposition 6.7, 𝐾𝑣,𝑤 ⊆ 𝐽𝑣,𝑤,≺. By definition, 𝐽𝑣,𝑤,≺ ⊆in≺ 𝐼𝑣,𝑤. Hence, we have surjections𝑅∕𝐾𝑣,𝑤 ↠ 𝑅∕𝐽𝑣,𝑤,≺ ↠ 𝑅∕ in≺ 𝐼𝑣,𝑤.
Now Proposition 6.9 states that

(𝑅𝑣∕𝐼𝑣,𝑤; 𝐭) = (𝑅𝑣∕𝐾𝑣,𝑤; 𝐭).
Since

(𝑅𝑣∕𝐼𝑣,𝑤; 𝐭) = (𝑅𝑣∕ in≺ 𝐼𝑣,𝑤; 𝐭),
the above containments are actually equalities, and

𝐽𝑣,𝑤,≺ = in≺ 𝐼𝑣,𝑤,
as desired.
To complete the proof, we note that since the essential minors in 𝐼𝑣,𝑤 are polynomials withℤ coefficients, the essential minors are a Gröbner basis over any field 𝕂 of characteristic zero.

Indeed, if 𝑓 and g are essential minors, then the 𝑆-polynomial 𝑆(𝑓, g) reduces to 0 under divi-
sion by the essential minors when working over ℚ; hence, it does over any field of characteristic
zero. □

The above proof also gives the following corollary.

Corollary 6.10. Under any diagonal term order, the initial ideal of 𝐼𝑣,𝑤 is 𝐾𝑣,𝑤 .
By Lemma 6.1, all coefficients of essential minors are powers of 2.
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1
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1 4 3 2

F IGURE 5 The pipe dream on the left is reduced and contains the pipe dream on the right, which is not
reduced. These are both pipe dreams for 1432.

Conjecture 6.11. Theorem 4.15 holds over an arbitrary field 𝕂 of characteristic not 2.

7 𝑲-POLYNOMIAL FORMULAS VIA PIPE DREAMS

7.1 Type C pipe dreams on small patches

In this section, we recall the notion of pipe dreams associated to pairs of type A permutations 𝑣,𝑤.
We then define a closely related notion of type C pipe dreams, specifically for pairs of permuta-
tions 𝑣,𝑤 ∈ 𝐶𝑛 with 𝑣 ⩾ 𝑣□. These are simply type A pipe dreams with symmetry imposed about
the diagonal.
We begin with pipe dream complexes for pairs of permutations in 𝑆𝑚. Pipe dreams were

invented by S. Fomin andA. Kirillov in [10] and further studied byN. Bergeron and S. Billey in [4].
Knutson and Miller [29, 30] endowed them with the structure of a simplicial complex, namely, a
subword complex. A (type A) pipe dream is a tiling of the entries in the southwest triangle of an𝑚 ×𝑚 matrix with the tiles cross , elbow , and half elbow such that:

(1) the diagonal is tiled with , and
(2) the weak southwest triangle only uses and .

A pipe dream 𝜌 induces an arrangement of 𝑚 pseudolines and 𝜌 is reduced if no two pseudo-
lines cross twice. A pipe dream 𝜌 is contained in another pipe dream 𝜌′ if the set of positions
of the elbows of 𝜌 is contained in the set of positions of the elbows of 𝜌′: see Figure 5 for
an example.
Label the west ends of the pseudolines 1, … ,𝑚 bottom to top in the order of their incidence

with the west boundary, as in Figure 5. Also label the south ends of the pseudolines with 1, … ,𝑚
by transporting the west labels along the pseudolines, except ignoring all crossings subsequent to
the first between each pair of pseudolines, that is, moving the labels as if such crosses were elbows
instead. Then, a pipe dream for 𝑤 ∈ 𝑆𝑚 is a pipe dream whose labels along the south boundary
read 𝑤. See Figure 5 for two examples of pipe dreams for 1432.
Let 𝑣 ∈ 𝑆𝑚 and consider the pictorial description for𝐷(𝑣) described in Section 3.2. Let us denote

by 𝐷𝖫(𝑣) the diagram obtained from 𝐷(𝑣) after left-aligning. The (type A) pipe dream complex𝑃𝐷𝐴𝑣,𝑤 for 𝑣,𝑤 ∈ 𝑆𝑚 is the simplicial complex with vertices given by the boxes of 𝐷𝖫(𝑣), and one
facet for each reduced pipe dream 𝜌 for𝑤 whose crosses are contained in𝐷𝖫(𝑣), the set of vertices
in the facet being the set of positions of elbows in 𝜌. We will abuse notation and reuse the name𝜌 ∈ 𝑃𝐷𝐴𝑣,𝑤 for the facet. In Figure 6, we give an example of 𝐷𝖫(𝑣), and in Figure 7 an example of𝑃𝐷𝐴𝑣,𝑤.
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D(v) =
•

•

•

•

•

• DL(v) = ρ =

F IGURE 6 The diagram 𝐷(𝑣), left-aligned diagram 𝐷𝖫(𝑣), and corresponding reduced pipe dream 𝜌 for𝑣 = 426 153. The word 𝑄𝐴(𝜌) corresponding to 𝜌 is (2,4,5,1,3,4,2) that is a reduced word for 𝑤0𝑣.
•

• • •

F IGURE 7 The above simplicial complex is the pipe dream complex 𝑃𝐷𝐴𝑣,𝑤 for 𝑣 = 426 153 and 𝑤 = 456 231.
The two shaded triangles are the maximal faces, and each is labeled with an appropriate reduced pipe dream.

The type A Demazure product 𝐝(𝑄) of a word 𝑄 = (𝛼1, … ,𝛼𝑘) in the symbols 1, … , 2𝑛 − 1 is an
element of 𝑆2𝑛 defined recursively by

𝐝(𝑄) = {𝐝(𝑄′)𝑠𝛼𝑘 if 𝓁(𝐝(𝑄′)𝑠𝛼𝑘 ) > 𝓁(𝐝(𝑄′))𝐝(𝑄′) if 𝓁(𝐝(𝑄′)𝑠𝛼𝑘 ) < 𝓁(𝐝(𝑄′))
where 𝑄′ = (𝛼1, … ,𝛼𝑘−1), with the base case that the Demazure product of the empty word is
the identity permutation. Compare [29, Definition 3.1]. The Demazure product models ignoring
crossings subsequent to the first, as in a pipe dream; in [43], the nilHecke algebra is used for the
same purpose.
Associate to a pipe dream 𝜌 a word 𝑄𝐴(𝜌) in the symbols 1, … , 2𝑛 − 1 as follows. To a cross tile

in position (𝑖, 𝑗), we associate the symbol 𝑖 − 𝑗. (This has the effect of making all instances of the
symbol 𝑘 associated to cross tiles on the 𝑘th diagonal below the main diagonal.) Then, we obtain
the word 𝑄𝐴(𝜌) by reading the symbols associated to cross tiles in the leftmost column from top
to bottom, then the next column from top to bottom, and so on. See Figure 6 for an example of𝑄𝐴(𝜌). We remark that if 𝜌 is a pipe dream for 𝑤 ∈ 𝑆𝑚, then 𝐝(𝑄𝐴(𝜌)) = 𝑤0𝑤, and that the pipe
dream with crosses exactly in 𝐷𝖫(𝑣) is a reduced pipe dream for 𝑣.
We now describe type C pipe dream complexes for permutations 𝑣 ⩾ 𝑣□ and 𝑤. A type C pipe

dream is a (type A) pipe dreamwhose crosses lie within𝐷𝖫(𝑣□) = 𝐷(𝑣□) and which is symmetric
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1
2
3

4 5 6

1 4 2
5
3
6

1
2
3

4 5 6

1 4 2
5
3
6

F IGURE 8 The diagram on the left is a type C pipe dream for 635 241; however, the diagram on the right is
not.

c0
c1 c0
c2 c1 c0
c3 c2 c1 c0

ρ =

1
2
3
4

5 6 7 8

4 6 7 1
8
2
3
5

F IGURE 9 On the left is the assignment of generators to the weak lower triangular part of 𝐷(𝑣□). On the
right is a reduced type C pipe dream 𝜌 for 𝑣 = 53 281 764. The word corresponding to 𝜌 is 𝑐1𝑐2𝑐3𝑐0𝑐1𝑐2𝑐0𝑐1 that is a
reduced expression for 𝑤0𝑣.
about the diagonal of 𝐷(𝑣□). Since all the tiles outside of 𝐷(𝑣□) are elbows, we only draw the
tiles inside this region, which is an 𝑛 × 𝑛 square (Figure 8). We give the positions in this region
coordinates from (1,1) to (𝑛,𝑛), rather than using the coordinates (𝑛 + 1, 1) to (2𝑛,𝑛) they would
inherit from their inclusion in the diagrams for type A pipe dreams.
The type C Demazure product of a word 𝑄 in the symbols 0, … ,𝑛 − 1 is the type 𝐴 Demazure

product of the word obtained from 𝑄 by replacing each 0 with 𝑛 and each other symbol 𝑖 with
the two consecutive entries 𝑛 − 𝑖,𝑛 + 𝑖. This is an element of 𝐶𝑛 There being no possibility of
confusion, we will also denote this by 𝐝(𝑄).
Just as in the type A case, we associate to a type C pipe dream 𝜌 a word 𝑄𝐶(𝜌) in the

symbols 0, … ,𝑛 − 1. We start by associating the symbol 𝑗 − 𝑖 to the positions (𝑗, 𝑖) and (𝑖, 𝑗)
in 𝐷(𝑣□), these being the positions where the variable 𝑧𝑖𝑗 appears in the southwest quarter
of 𝑀𝑣□ . Next, given a type C pipe dream 𝜌, assign to each cross the symbol corresponding to
the position of the cross. Last, for each cross in the weak lower triangular part of 𝐷(𝑣□), read
the generators in the leftmost column from top to bottom, then the next column from top to
bottom, and so on. We define 𝑄𝐶(𝜌) to be the resulting word. We say that 𝜌 is a type C pipe
dream for 𝑤 ∈ 𝐶𝑛 if 𝐝(𝑄𝐶(𝜌)) = 𝑤0𝑤. A type C pipe dream is reduced if the word 𝑄𝐶(𝜌) is
reduced. We will prove in Section 7.3 that, just as for type A, if we transport labels 1, … , 2𝑛
from the north and west sides of the picture along the pseudolines, ignoring all crossings sub-
sequent to the first between each pair of pseudolines, the resulting labels on the south side
read 𝑤.
Let 𝑣 ∈ 𝐶𝑛 with 𝑣 ⩾ 𝑣□. Note that there is at least one type C pipe dream for 𝑣. For example, a

factorization 𝑣 of 𝑣 gives a type C pipe dream, which we will call 𝜌(𝑣), consisting of crosses in the
positions of 𝑧𝑖𝑗 in the southwest quarter of𝑀𝑣□ for each 𝑧𝑖𝑗 ∈ 𝑉𝑣.
Given a type C pipe dream 𝜌, we denote by 𝜌L the set of positions of its crosses in the weak

lower triangular part of 𝐷(𝑣□). Given a reduced pipe dream 𝜌 for 𝑣 and some 𝑤 ∈ 𝐶𝑛, the type C
pipe dream complex 𝑃𝐷𝐶𝜌,𝑤 is the simplicial complex whose vertices are the boxes in 𝜌L (Figure 10).
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• • • •

F IGURE 1 0 The type C pipe dream complex 𝑃𝐷𝐶𝜌,𝑤 for 𝑤 = 58 372 615 and 𝜌 the pipe dream in Figure 9 is
obtained from the simplicial complex above by coning the vertex corresponding to the elbow in position (4,2).

The vertices of 𝑃𝐷𝐶𝑣,𝑤 are thus a subset of the entries in the weak lower triangular part of 𝐷(𝑣□).
The facets of 𝑃𝐷𝐶𝜌,𝑤 correspond to the reduced type C pipe dreams 𝜎 for 𝑤 such that 𝜌 ⊂ 𝜎; the
vertices in such a facet are the positions of the elbows of 𝜎 that lie in 𝜌L. If 𝜌 = 𝜌(𝑣), we abbreviate𝑃𝐷𝐶𝜌(𝑣),𝑤 to 𝑃𝐷𝐶𝑣,𝑤. From the definition, we see that type C pipe dreams that contain a type C pipe
dream for a reduced type C word for 𝑤 are in bijection with faces of ∆𝑣,𝑤.
The following lemma follows from the definition of 𝑃𝐷𝐶𝜌,𝑤.

Lemma 7.1. The simplicial complex 𝑃𝐷𝐶𝑣,𝑤 is the image of ∆𝑣,𝑤 under the isomorphism acting on
vertices as 𝑧𝑖𝑗 ↦ (𝑗, 𝑖). In particular, the facet 𝐹 of ∆𝑣,𝑤 corresponds to the facet {(𝑝, 𝑞) ∈ 𝜌(𝑣)L ∶𝑧𝑞𝑝 ∈ 𝐹} of 𝑃𝐷𝐶𝑣,𝑤 .
7.2 Multidegrees and K-polynomials

In analogy with the type A setting [43, Theorem 3.2], we have that the prime components of the
diagonal initial ideal of each 𝐼𝑣,𝑤, with 𝑣 ⩾ 𝑣□ in left–right weak order, are indexed by type C pipe
dreams.

Corollary 7.2. For any diagonal termorder≺, the initial ideal in≺ 𝐼𝑣,𝑤 has the prime decompositionin≺ 𝐼𝑣,𝑤 = ⋂
𝜌 ⟨𝑧𝑞𝑝 ∶ (𝑝, 𝑞) ∈ 𝜌L⟩,

where 𝜌 ranges over all reduced elements of 𝑃𝐷𝐶𝑣,𝑤 .
Proof. By Corollary 6.10, we have in≺ 𝐼𝑣,𝑤 = 𝐾𝑣,𝑤, the latter of which is the Stanley–Reisner ideal
of the (type C) subword complex ∆𝑣,𝑤. Consequently,in≺ 𝐼𝑣,𝑤 = ⋂

𝐹∈Facets(∆𝑣,𝑤)⟨𝜁([𝓁] ⧵ 𝐹)⟩,
where 𝜁 ∶ [𝓁]→ 𝑉𝑣 is as defined immediately after the proof of Proposition 5.3. The result now
follows by Lemma 7.1. □

Our next goal is to provide multidegree and 𝐾-polynomial formulas for our type C Kazhdan–
Lusztig varieties 𝑋𝑣,𝑤, 𝑣 ⩾ 𝑣□ in terms of type C pipe dreams. Our formulas are in the variables𝑡1, … , 𝑡𝑛 discussed in Section 4.3. We recall the action of 𝐶𝑛 on this variable set described there:
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given 𝑢 ∈ 𝐶𝑛, the action is so that for 𝑖 ⩽ 𝑛,
𝑢 ⊙ 𝑡−1𝑖 = ⎧

⎪
⎨
⎪⎩

𝑡𝑛+1−𝑢(𝑛+𝑖) if 𝑢(𝑖 + 𝑛) ⩽ 𝑛,𝑡−1𝑢(𝑛+𝑖)−𝑛 if 𝑢(𝑖 + 𝑛) ⩾ 𝑛 + 1.
We will also want an additive version of this action:

𝑢 ⊕ −𝑡𝑖 = {𝑡𝑛+1−𝑢(𝑛+𝑖) if 𝑢(𝑖 + 𝑛) ⩽ 𝑛,−𝑡𝑢(𝑛+𝑖)−𝑛 if 𝑢(𝑖 + 𝑛) ⩾ 𝑛 + 1.
Corollary 7.2 immediately implies a positive multidegree formula for our type C Kazhdan–

Lusztig varieties 𝑋𝑣,𝑤, 𝑣 ⩾ 𝑣□ in terms of type C pipe dreams. Note that this formula can also
be recovered from the 𝐾-polynomial formula given below in Proposition 7.4.

Proposition 7.3. The multidegree of 𝑅𝑣∕𝐼𝑣,𝑤 is
(𝑅𝑣∕𝐼𝑣,𝑤; 𝐭) = ∑

𝜌
∏

(𝑖,𝑗) is a
cross in 𝜌L

((𝑢𝑙 ⊕ −𝑡𝑖) + (𝑢𝑙 ⊕ −𝑡𝑗)),
where 𝜌 ranges over all reduced elements of 𝑃𝐷𝐶𝑣,𝑤 .
As noted in the introduction, Ikeda, Mihalcea, and Naruse also give formulas for these mul-

tidegrees [21, Theorem 1.1, Definition 6.1]. To aid the reader in aligning conventions, we observe
that the multidegree of our 𝐼𝑣,𝑤 is what is called in [21] the localization of 𝔖𝑤0𝑤 at 𝑤0𝑣, but our
work and theirs agree on the meaning of 𝑡𝑖 .
Remark. Our pipe dream formula specializes to a formula for multiplicities: since each 𝑣 ⩾ 𝑣□ is
123-avoiding, each ideal 𝐼𝑣,𝑤 is homogeneous with respect to the standard grading. Consequently,
the multiplicity mult𝑃(𝑣)(𝑋𝑤) of the Schubert variety 𝑋𝑤 at the point 𝑃(𝑣)𝐵+𝐺∕𝐵+𝐺 is equal to the
number of reduced type𝐶 pipe dreams in𝑃𝐷𝐶𝑣,𝑤. See [43, Fact 5.1] for the analog of this observation
in the type 𝐴 setting.
We note that other combinatorial formulas for multiplicities in type 𝐶 in special cases can be

found in theworks [3, 14, 22] and [32]. For example, in the recent paper [3], Anderson, Ikeda, Jeon,
and Kawago provide a combinatorial formula for the multiplicity of a singularity of a covexillary
Schubert variety (in a classical-type flag variety) in terms of excited Young diagrams.

Our next goal is to give a formula for the 𝐾-polynomial of 𝑅𝑣∕𝐼𝑣,𝑤 in terms of type C pipe
dreams.

Proposition 7.4. Let 𝜌 be the reduced pipe dream for 𝑣 associated to the factorization 𝑣 = 𝑢𝑙𝑣□𝑢𝑟.
The 𝐾-polynomial of 𝑅𝑣∕𝐼𝑣,𝑤 is

(𝑅𝑣∕𝐼𝑣,𝑤; 𝐭) = ∑

𝜎∈𝑃𝐷𝐶𝑣,𝑤(−1)cr(𝜎L)−𝓁(𝑤0𝑤)
∏

(𝑖,𝑗) is a
cross in 𝜎L

(1 − (𝑢𝑙 ⊙ 𝑡−1𝑖 )(𝑢𝑙 ⊙ 𝑡−1𝑗 )),
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where cr(𝜎L) is the number of crosses in 𝜎L, and the sum is over the nonboundary faces of 𝑃𝐷𝐶𝑣,𝑤 .
Note that all factorizations of 𝑣 yield the same 𝐾-polynomial.

Proof. By [29, Theorem 4.1], the 𝐾-polynomial of the Stanley–Reisner ideal 𝐼 of the subword
complex 𝑆(𝑄,𝑤0𝑤) is

(𝑅∕𝐼; 𝐭) = ∑
𝐹 (−1)|𝑄⧵𝐹|−𝓁(𝑤0𝑤)∏𝑖∉𝐹 (1 − 𝐭deg(𝑖))

where the sum is over the faces 𝐹 of 𝑆(𝑄,𝑤) such that 𝐝(𝑄 ⧵ 𝐹) = 𝑤0𝑤. This is the same index
set as in the proposition by [29, Theorem 3.7]. By Lemma 7.1, 𝑃𝐷𝐶𝑣,𝑤 is isomorphic to ∆𝑣,𝑤, which,
in turn, is a relabeling of a subword complex 𝑆(𝑄,𝑤0𝑤), as in Section 5.2. We obtain the expres-
sion in the proposition by translating the equation above into the language of type C pipe dream
complexes. Explicitly, for 𝜎 the pipe dream in 𝑃𝐷𝐶𝑣,𝑤 associated to the face 𝐹 in 𝑆(𝑄,𝑤0𝑤):∙ 𝜎 is a pipe dream for 𝑤 if and only if 𝐝(𝑄 ⧵ 𝐹) = 𝑤0𝑤,∙ |𝑄 ⧵ 𝐹| = cr(𝜎L), and∙ by Proposition 4.18, if (𝑖, 𝑗) is a cross in 𝜎L, then 𝐭deg(𝑖,𝑗) = (𝑢𝑙 ⊙ 𝑡−1𝑖 )(𝑢𝑙 ⊙ 𝑡−1𝑗 ).

□

We can also give a formula without the signs of Proposition 7.4. As noted in the previous proof,𝑃𝐷𝐶𝑣,𝑤 is isomorphic to the subword complex 𝑆(𝑄,𝑤0𝑤), which is a shellable simplicial complex
[29, Theorem 2.5]. That is, there exists a shelling order 𝐹1, … ,𝐹𝑚 of the facets of 𝑃𝐷𝐶𝑣,𝑤, namely,
an order such that, for each 𝑖 = 2,… ,𝑚, the intersection of 𝐹𝑖 with⋂𝑗<𝑖 𝐹𝑗 is pure of dimensiondim(𝑃𝐷𝐶𝑣,𝑤) − 1.
Proposition 7.5. With notation as in Proposition 7.4, let 𝐹1, … ,𝐹𝑚 be a shelling order for 𝑃𝐷𝐶𝑣,𝑤 .
Then, the 𝐾-polynomial of 𝑅𝑣∕𝐼𝑣,𝑤 is
(𝑅𝑣∕𝐼𝑣,𝑤; 𝐭) = 𝑚∑

𝑘=1
∏

(𝑖,𝑗) is a
cross in (𝐹𝑘)L

(1 − (𝑢𝑙 ⊙ 𝑡−1𝑖 )(𝑢𝑙 ⊙ 𝑡−1𝑗 )) ∏
(𝑖,𝑗)∈Abs(𝐹𝑘)

((𝑢𝑙 ⊙ 𝑡−1𝑖 )(𝑢𝑙 ⊙ 𝑡−1𝑗 )),
where Abs(𝐹𝑘) is the set of elbows in (𝑖, 𝑗) ∈ 𝐹𝑘 such that 𝐹𝑘 ⧵ (𝑖, 𝑗) ⊂ 𝐹𝓁 for some 𝓁 < 𝑘.
The corresponding result in [29] is Theorem 4.4, which uses the language of subword complexes

and describes Abs(𝐹𝑘) differently: see [29, Remark 4.5].
Proof. This follows from Proposition 7.4 by collecting, for each 𝑘 = 1,… ,𝑚, the summands
indexed by faces 𝜎 of the form 𝜎 = ⋂

𝓁∈𝐿 𝐹𝓁 where 𝑘 = max 𝐿, as described in the ungraded case
in [38, Proposition 2.3]. □

In the case inwhich 𝑣 ⩾𝑅 𝑣□, we can always take a factorization 𝑣with𝑢𝑙 = id, which simplifies
the appearance of the product in the formula in Proposition 7.4. A similar simplification can be
written down for Proposition 7.5.
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Corollary 7.6. For 𝑣 ⩾𝑅 𝑣□ the K-polynomial of 𝑅𝑣∕𝐼𝑣,𝑤 is
(𝑅𝑣∕𝐼𝑣,𝑤; 𝐭) = ∑

𝜎∈𝑃𝐷𝐶𝑣,𝑤(−1)|𝜎L|−𝓁(𝑤0𝑤)
∏

(𝑖,𝑗)∈𝜎L
(1 − 𝑡−1𝑖 𝑡−1𝑗 ).

The following example shows that this type C 𝐾-polynomial is not simply obtained from the
type A 𝐾-polynomial by substituting the weights as suggested by the embedding of maximal tori
from 𝑆𝑝2𝑛(𝕂) to 𝐺𝐿2𝑛(𝕂).
Example 7.7. Let 𝑣 = 𝑣□ = 2143,𝑤 = 3412 in𝐶2. Notice that the only pipe dream for𝑤 in 𝑃𝐷𝐶𝑣,𝑤
is

and therefore,

(𝑅𝑣∕𝐼𝑣,𝑤; 𝐭) = 1 − 𝑡−11 𝑡−12 .
We now compare this to the type A 𝐾-polynomial using the embedding of tori above. To avoid

confusion, let us denote the variables of the𝐾-polynomials of typeAKazhdan–Lusztig varieties by𝑡𝐴1 , 𝑡𝐴2 , 𝑡𝐴3 , 𝑡𝐴4 , where 𝑡𝐴𝑖 corresponds to the 𝑖-th entry of the torus 𝑇 consisting of diagonal matrices
in 𝐺𝐿2𝑛(𝕂). The pipe dream pictured above is also the only pipe dream for 𝑤 in 𝑃𝐷𝐴𝑣,𝑤. By the
typeA version of [29, Theorem 4.1], we have that the𝐾-polynomial of the typeAKazhdan–Lusztig
variety associated to 𝑣,𝑤 is (1 − 𝑡𝐴3 (𝑡𝐴1 )−1)(1 − 𝑡𝐴4 (𝑡𝐴2 )−1). The embedding of the torus in 𝑆𝑝4(𝕂)
is given by the substitution

𝑡𝐴1 = 𝑡2, 𝑡𝐴2 = 𝑡1, 𝑡𝐴3 = 𝑡−11 , 𝑡𝐴4 = 𝑡−12 .
Therefore,(𝑅𝑣∕𝐼𝑣,𝑤; 𝐭) is not the substitution of the type A 𝐾-polynomial.
7.3 Combinatorics of type C pipe dreams

In this section, we discuss the combinatorics of type C pipe dreams. We begin by showing that we
can recognize type C pipe dreams for 𝑤 by following pseudolines, mirroring type A pipe dreams.

Proposition 7.8. A type C pipe dream is a pipe dream for𝑤 if and only if when we transport labels1, … , 2𝑛 from the north and west sides of the picture along the pseudolines, ignoring all crossings
subsequent to the first between each pair of pseudolines, the resulting labels on the south side read𝑤.
Proof. Let 𝜌 be a type C pipe dream for 𝑤, meaning that its associated word 𝑄𝐶(𝜌) = (𝛼1, … ,𝛼𝓁)
is a word with type 𝐶 Demazure product 𝑤0𝑤. Let 𝑄𝐴 be the word obtained by replacing each 𝛼𝑘
with either one or two entries as follows:

𝛼𝑖 ↦ {𝑛 if 𝛼𝑘 = 0,𝑛 − 𝛼𝑘,𝑛 + 𝛼𝑘 if 𝛼𝑘 ≠ 0. (8)
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q

p

qp

F IGURE 1 1 Partway through applying commutation relations, in the proof of Proposition 7.8.

Note that if 𝛼𝑘 corresponds to a cross of 𝜌 in position (𝑝, 𝑞) of 𝐷(𝑣□), then 𝛼𝑘 = 𝑝 − 𝑞, and as a
type A pipe dream, 𝜌 has crosses at positions (𝑛 + 𝑝, 𝑞) and (𝑛 + 𝑞,𝑝).
If 𝑄′ = (𝛼1, … ,𝛼𝑗 ,𝛼𝑗+1, … ,𝛼𝑘), 𝑄′′ = (𝛼1, … ,𝛼𝑗+1,𝛼𝑗 , … ,𝛼𝑘), and |𝛼𝑗+1 − 𝛼𝑗| ⩾ 2, then𝐝(𝑄′) = 𝐝(𝑄′′); this is known as the commutation relation for the Demazure product.
Our goal is to use commutation relations to transform 𝑄𝐴 into the word 𝑄𝐴(𝜌). Note then that

the “only if” part of the proposition will follow from the combinatorics of type A pipe dreams.
The first entry of𝑄𝐴(𝜌) is 𝑛 + 𝑞 − 𝑝 = 𝑛 − 𝛼1, which is also the first entry of𝑄𝐴. Now consider𝑛 − 𝛼𝑘 and suppose that for 𝑖 = 1,… , 𝑘 − 1, we have used the commutation relation tomove𝑛 − 𝛼𝑖

in 𝑄𝐴 to the correct position in 𝑄𝐴(𝜌). We wish to move 𝑛 − 𝛼𝑘 = 𝑛 + 𝑞 − 𝑝 to the position in𝑄𝐴(𝜌) associated to the cross in position (𝑛 + 𝑞,𝑝). If 𝛼𝑘 = 0, this is already the case, so let us sup-
pose that 𝛼𝑘 ≠ 0. We are allowed to use the commutation relation as long as we do not encounter𝑛 + 𝑞 − 𝑝 + 1 or 𝑛 + 𝑞 − 𝑝 − 1. In Figure 11, the blue boxes represent the positions of the crosses
that contribute𝑛 + 𝑞 − 𝑝 ± 1 to𝑄𝐴(𝜌). For 𝑖 = 1,… , 𝑘 − 1 an𝑛 − 𝛼𝑖 corresponding to a cross in the
gray-shaded region has been moved to the correct position in 𝑄𝐴(𝜌). Note that all the blue boxes
outside the gray region correspond to entries in 𝑄𝐴 that appear after 𝑛 ± 𝛼𝑘. Therefore, we can
use commutation relations tomove 𝑛 − 𝛼𝑘 to the left until it reaches the correct position in𝑄𝐴(𝜌).
Continuing with this process, we transform 𝑄𝐴 into 𝑄𝐴(𝜌) using only commutation relations.
Now let 𝜌 be a type C pipe dream such that following the pseudolines yields𝑤. Let𝑄𝐴(𝜌) be the

word associated to 𝜌 considered as a type A pipe dream. By undoing the process described above,
we can transform 𝑄𝐴(𝜌) into 𝑄𝐴 and lastly to 𝑄𝐶(𝜌) by undoing the substitution (8). We leave the
details to the reader. □

8 BEYOND SMALL PATCHES

In [28], Knutson showed that the defining ideal of any Kazhdan–Lusztig variety has a Gröbner
basis whose leading terms are squarefree, and, in [27], he determined that the resulting initial
ideal is the Stanley–Reisner ideal of the subword complex 𝑆(𝑄,𝑤0𝑤), where 𝑄 is a reduced word
for 𝑤0𝑣. For small patches, our coordinates agree up to sign with the Bott–Samelson coordinates
in [28], and our monomial order≺lex agrees with the monomial order in [28]. Thus, Theorem 4.15
shows that the type C essential minors are a Gröbner basis in Knutson’s setup. (Knutson does not
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provide a Gröbner basis in [28].) In this short section, we show that things are more mysterious
beyond the case of small patches as the essential minors are not typically a Gröbner basis.

Example 8.1. Let 𝑣 = 231 645 as in Example 3.7. Observe that 𝑄 = (0, 1, 0, 2, 1, 0, 2) is a reduced
word for 𝑤0𝑣. Let

𝐶(𝑖)0 =
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

1 0 0 0 0 00 1 0 0 0 00 0 𝑎𝑖 −1 0 00 0 1 0 0 00 0 0 0 1 00 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

, 𝐶(𝑖)1 =
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

1 0 0 0 0 00 𝑏𝑖 −1 0 0 00 1 0 0 0 00 0 0 𝑏𝑖 1 00 0 0 −1 0 00 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

, 𝐶(𝑖)2 =
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

𝑐𝑖 −1 0 0 0 01 0 0 0 0 00 0 1 0 0 00 0 0 1 0 00 0 0 0 𝑐𝑖 10 0 0 0 −1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

,

so that in Bott–Samelson coordinates, the opposite cell associated to 𝑣 is identified with the space
of matrices

𝑤0𝐶(1)0 𝐶(1)1 𝐶(2)0 𝐶(1)2 𝐶(2)1 𝐶(3)0 𝐶(2)2 =
⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 1 0 0 0−1 0 0 0 0 0𝑐2 −1 0 0 0 0𝑐2𝑎1 − 𝑏1 −𝑎1 𝑐1 0 1 0𝑐2𝑏1 − 𝑎2 −𝑏1 𝑏2 0 𝑐2 1𝑐2𝑐1 − 𝑏2 −𝑐1 𝑎3 −1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

,

where each 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 can take arbitrary values in 𝕂. Let 𝑤 = 462 513. Then, now treating 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖
as indeterminates, we see that the type C essential set (see Definition 3.10) is {(5, 1), (5, 3)}, and
so, the type C essential minors are:

 = {𝑐2𝑐1 − 𝑏2, 𝑐2𝑏1 − 𝑎2, 2 × 2minors of [𝑐2𝑏1 − 𝑎2 −𝑏1 𝑏2𝑐2𝑐1 − 𝑏2 −𝑐1 𝑎3
]}.

Using the lexicographic monomial order 𝑐2 > 𝑎3 > 𝑏2 > 𝑐1 > 𝑎2 > 𝑏1 > 𝑎1, which is compatible
with the vertex decomposition of the subword complex 𝑆(𝑄,𝑤0𝑤) described in Section 5.1, we see
that∙ the initial ideal of the Kazhdan–Lusztig ideal ⟨⟩ is the Stanley–Reisner ideal of 𝑆(𝑄,𝑤0𝑤) as
expected, yet∙  is not a Gröbner basis.

Nevertheless, the set of type A essential minors is a Gröbner basis. There also exists a Gröbner
basis consisting of typeC essentialminors that differ from the conventions introduced in Section 5,
namely, the minors given by choosing the essential boxes {(5, 1), (3, 3)}.
In the next example, we see that unlike in the previous example, the type A essential minors

need not be a Gröbner basis either.

Example 8.2. Consider 𝑣 = 213 465 so that 𝑄 = (0, 1, 0, 2, 1, 0, 2, 1) is a reduced word for 𝑤0𝑣.
Let 𝐶(𝑖)0 ,𝐶(𝑖)1 ,𝐶(𝑖)2 as in the previous example. Then, the opposite Schubert cell associated to 𝑣 is
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identified with the space of matrices

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 1 0 0 0 0−1 0 0 0 0 0𝑐2 −𝑏3 1 0 0 0𝑐2𝑎1 − 𝑏1 −𝑏3𝑎1 + 𝑐1 𝑎1 −1 0 0𝑐2𝑏1 − 𝑎2 −𝑏3𝑏1 + 𝑏2 𝑏1 −𝑐2 0 1𝑐2𝑐1 − 𝑏2 −𝑏3𝑐1 + 𝑎3 𝑐1 −𝑏3 −1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

, (9)

where 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 ∈ 𝕂. Let 𝑤 = 632 541. There is a unique (type A or type C) essential box {(4, 3)}. If
we treat 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 as indeterminates, the essential minors are then the 2 × 2 minors of the south-
west 3 × 3 submatrix of (9). For the lexicographic monomial order with 𝑏3 > 𝑐2 > 𝑎3 > 𝑏2 > 𝑐1 >𝑎2 > 𝑏1 > 𝑎1, we see that the ideal generated by the essential minors has initial ideal equal to the
Stanley–Reisner ideal of 𝑆(𝑄,𝑤0𝑤), yet the set of essential minors is not a Gröbner basis.
Consequently, it is still an open problem to find combinatorially defined Gröbner basis for

type C Kazhdan–Lusztig ideals𝑣,𝑤 when 𝑣 ≱ 𝑣□ in left–right weak order.
In type B, our methods fail because the analog of [33, Proposition 6.1.1.2] does not hold

scheme-theoretically. In some cases, imposing the determinantal equations on the patches yields
nonreduced schemes. If we apply our methods to type B small patches, we see that we end up tak-
ing the determinants of some skew-symmetric matrices, and the obvious solution to this problem
is to take the pfaffians of those skew-symmetric matrices instead. We expect that results similar
to ours can be proven with this modification in that case.
Beyond small patches in type B, some unpublished preliminary work of the fourth author and

Alexander Yong suggests that the appropriate equations would still form a Gröbner basis under
a diagonal term order, but we need to impose rank conditions on some submatrices that are non-
trivially similar to a skew-symmetric one. Note that all formulas for the pfaffian require knowing
the basis with respect towhich amatrix is skew-symmetric, andwewere not able to systematically
determine the change of basis that turned these “secretly skew-symmetric” matrices into actually
skew-symmetric matrices. The following example illustrates some of the difficulties.

Example 8.3. In this example, we work with the type B Weyl group. We embed 𝐵4 into the sym-
metric group 𝑆9 via 𝑏0 = 𝑠4𝑠5𝑠4, 𝑏1 = 𝑠3𝑠6, 𝑏2 = 𝑠2𝑠7, and 𝑏3 = 𝑠1𝑠8. Consider 𝑣 = 13 2456 879 ∈ 𝑆9
and observe that 𝑄 = (0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 0, 1, 2, 3) is a reduced word for 𝑤0𝑣. Let

𝐵(𝑖)0 =
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

1 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 00 0 1 0 0 0 0 0 00 0 0 − 12𝑎2𝑖 𝑎𝑖 1 0 0 00 0 0 𝑎𝑖 −1 0 0 0 00 0 0 1 0 0 0 0 00 0 0 0 0 0 1 0 00 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

, 𝐵(𝑖)1 =
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

1 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 00 0 𝑏𝑖 −1 0 0 0 0 00 0 1 0 0 0 0 0 00 0 0 0 1 0 0 0 00 0 0 0 0 𝑏𝑖 1 0 00 0 0 0 0 −1 0 0 00 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

,
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𝐵(𝑖)2 =
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

1 0 0 0 0 0 0 0 00 𝑐𝑖 −1 0 0 0 0 0 00 1 0 0 0 0 0 0 00 0 0 1 0 0 0 0 00 0 0 0 1 0 0 0 00 0 0 0 0 1 0 0 00 0 0 0 0 0 𝑐𝑖 1 00 0 0 0 0 0 −1 0 00 0 0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

, 𝐵(𝑖)3 =
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

𝑑𝑖 −1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0 00 0 0 1 0 0 0 0 00 0 0 0 1 0 0 0 00 0 0 0 0 1 0 0 00 0 0 0 0 0 1 0 00 0 0 0 0 0 0 𝑑𝑖 10 0 0 0 0 0 0 −1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

.

Then, using these Bott–Samelson coordinates, the opposite cell associated to 𝑣 is identified with
the space of matrices𝑀𝑄 = 𝑤0𝐵(1)0 𝐵(1)1 𝐵(1)2 𝐵(1)3 𝐵(2)0 𝐵(2)1 𝐵(2)2 𝐵(2)3 𝐵(3)0 𝐵(3)1 𝐵(3)2 𝐵(4)0 𝐵(4)1 𝐵(4)2 𝐵(4)3 .
Let 𝑤 = 381 654 927 ∈ 𝑆9. The type B essential set for 𝑤 (which can be calculated in a similar

way to the type C essential set; see also [2]) consists of three boxes in locations (7, 6), (7, 8), and
(9,6). Taking the associated essential minors of 𝑀𝑄, where 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 ,𝑑𝑖 appearing in 𝑀𝑄 are con-
sidered as indeterminates, we obtain an ideal generated by 107minors. Using Macaulay2 [18], we
see that this ideal can be presented as:

𝐼 = ⟨𝑑1, 𝑐2, 𝑏4, 𝑏3, 𝑎4, 𝑐3𝑐4 − 𝑑2𝑑4, 𝑐1𝑐4 − 𝑏1𝑑4, 𝑎3𝑐4 − 𝑎2𝑑4, 𝑏1𝑐3 − 𝑐1𝑑2, 𝑎2𝑐3 − 𝑎3𝑑2,𝑎3𝑏1 − 𝑎2𝑐1, 𝑎2𝑎3𝑑4 + 2 𝑏2𝑑4, 𝑎22𝑑4 + 2 𝑏2𝑐4, 𝑎23𝑑2 + 2 𝑏2𝑐3, 𝑎2𝑎3𝑑2 + 2 𝑏2𝑑2, 𝑎2𝑎3𝑐1 + 2 𝑏2𝑐1,𝑎22𝑐1 + 2 𝑏1𝑏2, 𝑎2𝑎3𝑏2 + 2 𝑏22, 𝑎2𝑎23 + 2𝑎3𝑏2, 𝑎22𝑎3 + 2𝑎2𝑏2⟩.
This ideal is not radical, and hence, does not scheme-theoretically define a Kazhdan–Lusztig vari-
ety. So, in particular, the type B analog of Proposition 4.12 is false. We note that radical of the ideal𝐼 above is:
⟨𝑑1, 𝑐2, 𝑏4, 𝑏3, 𝑎4, 𝑐3𝑐4 − 𝑑2𝑑4, 𝑐1𝑐4 − 𝑏1𝑑4, 𝑎3𝑐4 − 𝑎2𝑑4, 𝑏1𝑐3 − 𝑐1𝑑2, 𝑎2𝑐3 − 𝑎3𝑑2, 𝑎3𝑏1 − 𝑎2𝑐1,𝑎2𝑎3 + 2 𝑏2⟩.
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