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1 | INTRODUCTION

Let K be a field of characteristic zero. In this paper, we study a class of generalized symmetric deter-
minantal ideals. Each ideal in our class is defined by imposing certain combinatorial southwest
rank conditions on an n X n symmetric matrix M whose i, j entry is either zero or an indetermi-
nate z;; = z;; and whose nonzero entries lie in a skew partition, in English conventions. Among
the ideals in our class are the symmetric determinantal ideals, the symmetric ladder determinan-
tal ideals [15, 16], and the symmetric Schubert determinantal ideals of [9]. We plan to describe in
detail the connection with symmetric ladder determinantal ideals in a separate paper.

Let R = [K[z;;] be the polynomial ring in the variables appearing in a matrix M as above. We
interpret this ring in terms of a type C opposite Schubert cell. Let G be the symplectic group
Sp,,(K), represented as the group of 2n X 2n matrices preserving the form e; Ae,, + - +¢e, A
e,+1- We will work with the following Borel subgroups of G:

Bg := {upper triangular matrices in G} and B := {lower triangular matrices in G}.
The type C flag variety is G/B}, and an opposite Schubert cell is a B -orbit in G /Bg. These
cells are indexed by elements of the Weyl group C,, of G, which can be identified with the set

of permutations

C,=1{v;..05, €Sy, I Vg1 =2n+1-v;fori=1,..,n}
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Then, the ring R is the coordinate ring of a type C opposite Schubert cell associated to some 123-
avoiding permutation v € C,,, with an appropriate choice of coordinates (see Proposition 4.7).
From the point of view of Schubert cells in G /B, our choices of symplectic form and coordinates
have a long history. These coordinates were used extensively to study Schubert cells by W. Fulton
and P. Pragacz [13], who were likely aware of the connection to symmetric matrices at least in
some special cases.

This choice of coordinates allows us to study a large class of generalized symmetric determinan-
tal ideals from the point of view of Kazhdan-Lusztig varieties in G /B(‘;. Each ideal we encounter
is obtained by imposing southwest rank conditions on M, using combinatorial rules encoded by
some w € C,,. Given v,w € C,, we denote by N, , the affine variety associated to one of our ide-
als; these varieties form a subclass of type C Kazhdan-Lusztig varieties. A Schubert variety is a
Bg-orbit closure in G/B', and a Kazhdan-Lusztig variety is the intersection of a Schubert variety
with an opposite Schubert cell.

In general, Kazhdan-Lusztig varieties provide affine neighborhoods of the T-fixed points of
Schubert varieties, and they have been used to study singularities of Schubert varieties. One such
instance is [42], in which A. Woo and A. Yong introduced Kazhdan-Lusztig ideals of type A
for this purpose. Each Kazhdan-Lusztig ideal is the prime defining ideal of a type A Kazhdan-
Lusztig variety, appropriately coordinatized. In [43], Woo and Yong showed that Kazhdan-Lusztig
ideals of type A possess nice Grobner bases for which the corresponding initial ideals are
Stanley—Reisner ideals of vertex decomposable balls or spheres. They furthermore proved multiple
combinatorial formulas for their multigraded Hilbert series.

Similarly, a type C Kazhdan-Lusztig ideal is the defining ideal of a type C Kazhdan-Lusztig
variety. In our main theorem, we use the interpretation of N, , as a type C Kazhdan-Lusztig
variety to give a Grobner basis with squarefree initial terms for the ideals we encounter. We give
R a term order which is diagonal. Roughly this means that the leading term of any minor is the
product of the diagonal entries of the submatrix it arises from. One example of a diagonal term
order is the lexicographic term order where z;; > z;  if and only if either i > i’, or i =i’ and
j > j’. Our main result is as follows. It is stated precisely as Theorem 4.15 in the main body of the

paper.

Theorem. Let v,w € C, and v be 123-avoiding. The determinants defining the ideal of N, v Jorm
a Grobner basis with respect to any diagonal term order.

This result is proved in Section 6 using K-polynomials and the subword complexes of A. Knut-
son and E. Miller [29, 30]. Note that our conventions are upside-down from those of Knutson and
Miller, so our diagonal term orders are indeed analogs of their antidiagonal term orders.

In [28], Knutson showed that the defining ideal of any Kazhdan-Lusztig variety has a Grobner
basis whose leading terms are squarefree, and, in [27], he determined that the resulting initial ideal
is the Stanley-Reisner ideal of a certain subword complex. However, he did not provide a Grobner
basis. Up to sign, our coordinates agree with the Bott-Samelson coordinates of [28]. Hence, our
results make [28, Theorem 7] more explicit by describing the coordinates and stating which minors
in the Grobner basis arise from each element of the essential set (which corresponds to Knutson’s
“basic elements”).

In Section 7, we define type C pipe dreams and use them to give consequences to Theorem 4.15.
Namely, in Corollary 7.2, we give prime decompositions of the initial ideals, in Proposition 7.3, we
give combinatorial formulas for their multigraded Hilbert series, and in Proposition 7.4, we give
combinatorial formulas for their K-polynomials. Up to a change in convention, these formulas

A ‘T +TOT 0SLLE9YT

sdny wouy

sd1y) SUONIPUOD) PUT SWIST, 341 39 “[HZOT/Z0/6Z] UO ATEIqIT SUIUQ K[1AN *[00UDS ANSIOATUN UOIBUIYSEA £Q 9G8Z ["SWIT/Z I [ [01/10P/WOd Kaf1ar

a0y Ka[iav Kxeaqrou

P

95U991] SUOWWOs) 2ANEaI) d[qeardde oy £ PAUIGAOS I SAPILIE YO 198N JO SO[NI 10§ AIBAQY QUIUQ Ao[1A UO



40f 49 | ESCOBAR ET AL.

give, in the case where v is 123-avoiding, combinatorial models of S. Billey’s formula [6] and its
extension to K-theory by W. Graham [17] and M. Willems [40] for a particular choice of reduced
word. (We note that Billey’s formula was first stated by H. Andersen, J. Jantzen, and W. Soergel [1]
and independently rediscovered in different but related context by Billey [6]; see J. Tymoczko’s sur-
vey paper [39] for details and more recent developments.) We note that in recent work, E. Smirnov
and A. Tutubalina [37] have studied pipe dreams in all classical groups; these differ from ours even
in the special case we describe.

The polynomials given in these formulas also have an interpretation as a particular spe-
cialization of type C double Schubert and double Grothendieck polynomials, which are stable
equivariant Chow [21, Theorem 10.8] and K-theory [26, Theorem 2] classes of type C Schubert
varieties. Here, being stable classes means they are lifts of these classes, independent of the rank
of the ambient flag variety, which satisfy certain recurrences and boundary conditions parallel to
those holding in the type A case. From these polynomials, the multidegrees and K-polynomials of
Kazhdan-Lusztig varieties are obtained in two equivalent ways, either geometrically by restricting
to affine patches, which is equivalent to localization at torus fixed points, or algebraically accord-
ing to particular restriction maps. T. Ikeda, L. Mihalcea, and H. Naruse [21] were the first to define
type C double Schubert polynomials, and they gave several formulas including two using divided
difference operators as well as an algebraic restriction map for recovering local classes. Type C
double Grothendieck polynomials were explicitly defined by A. Kirillov in [25]. The connection
to geometry was made by Kirillov and Naruse in [26]. Under this interpretation of our formu-
las as specializations of type C double Schubert and double Grothendieck polynomials, one can
consider these formulas as type C analogs of the type A specialization formulas of A. Buch and
R. Rimanyi [8].

We note that the symmetric matrix Schubert varieties defined and studied by Z. Hamaker, E. Mar-
berg, and B. Pawlowski in [19, 34] are not special cases of the varieties that we consider in the
present paper. The varieties studied by Hamaker, Marberg, and Pawlowski are defined by impos-
ing northwest rank conditions on symmetric matrices, while we impose southwest (and northeast)
conditions. Correspondingly, the pipe dreams they introduce are symmetric across an axis perpen-
dicular to our axis of symmetry. The varieties in [19, 34] are related to Borel group orbit closures
in G/K where G = GL,, is a general linear group and K = O,, is an orthogonal subgroup of G.

Outline of this paper

In Section 2, we give the commutative algebra background for the paper. In Section 3, we estab-
lish the notation and setup for type C Kazhdan-Lusztig varieties. In Section 4, we introduce the
coordinates of Proposition 4.7 which we use for opposite Schubert cells associated to 123-avoiding
permutations. Then, in Proposition 4.12, we use these coordinates to describe the defining ideal
of NV}, as a generalized symmetric determinantal ideal. In preparation for computing the K-
polynomials of our ideals, we describe in Section 4.3 the weights of the coordinates with respect
to the action of the torus of diagonal matrices. In Section 5, we give background on subword com-
plexes, and, for the complexes related to our ideals, we describe how to label their vertices using
our coordinates. We also state the vertex decomposition of subword complexes, which we will use
to compare the K-polynomials of our ideals with the K-polynomials of the Stanley-Reisner ide-
als for subword complexes. We then proceed to prove Theorem 4.15 in Section 6. In Section 7, we
introduce type C pipe dreams for small patches and give various consequences to Theorem 4.15.

A ‘T +TOT 0SLLE9YT

sdny wouy

sd1y) SUONIPUOD) PUT SWIST, 341 39 “[HZOT/Z0/6Z] UO ATEIqIT SUIUQ K[1AN *[00UDS ANSIOATUN UOIBUIYSEA £Q 9G8Z ["SWIT/Z I [ [01/10P/WOd Kaf1ar

a0y Ka[iav Kxeaqrou

P

95U991] SUOWWOs) 2ANEaI) d[qeardde oy £ PAUIGAOS I SAPILIE YO 198N JO SO[NI 10§ AIBAQY QUIUQ Ao[1A UO



GROBNER BASES, SYMMETRIC MATRICES, AND TYPE C KAZHDAN-LUSZTIG VARIETIES | 50f49

Lastly, in Section 8, we show that our Grébner basis result (Theorem 4.15) does not naturally
extend beyond the small patch setting to general type C Kazhdan-Lusztig ideals.

2 | BACKGROUND
2.1 | Grobner bases and initial ideals

A term order < is a total order on the monomials in a polynomial ring R with respect to which 1is
minimal and such that if m, m’, m"" are monomials such that m’ < m'’, then mm’ < mm’’. One
class of term orders we will use are lexicographic term orders. Given a total ordering x; > --- > X,
on the variables of R, an exponent vector (aj, ..., a;) € Nk can be assigned to any monomial

m = xf Lo xZ" ; then two monomials compare in the lexicographic term order just as their expo-

nent vectors compare in the lexicographic order on N, More precisely, x‘fl xZ" < xf L. xi" if
and only if there is some 1 < i < k so that a; = by,..., a;_; = b;_;, and a; < b;. In particular, the
variables themselves still compare as x; > -+ > x; in the lexicographic term order.

The initial term of a polynomial in R, with respect to a fixed term order <, is the maximum of
the monomials in its support. If I is an ideal of R, then its initial ideal, denoted as in_ I, is the ideal
generated by all initial terms of elements of I. A Gribner basis for I is a generating set for I whose

initial terms generate in_ I.

2.2 | Torus actions, multigradings, and K-polynomials
One reference for the material in this section is [35, Chapter §].
Suppose that a torus T = (K*)" acts on affine space A* = SpecK|[z,,...,z;] with weights

—ay,...,—a; € Z". This means that, given x = (x;,...,x,) €T and p € Ak with coordinates p=
Zle z;(p) f; (where {f;} denotes the dual basis to {z;}),

k
X-p= Z x"izi(p) fi,
i=1

where

S

j=1
Then T acts on the coordinate functions z,, ..., z, with weights a,, ..., a; respectively. This action
induces a Z"-grading on the ring R = K[z, ..., 2] given by setting the degree of z; as a;, so that
b b k

deg(zll Zkk) = 21:1 ba;.

Given a € 7" and a graded R-module M, let M, denote the ath-graded piece of M. Suppose that
dimy (M) is finite for all a, which will be the case if a,, ..., g, generate a pointed cone in Z" @ R
and M is finitely generated. Then define the Hilbert series of M to be

H(M;t) = ) dimy (M,)t".

aezn
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6 0of 49 | ESCOBAR ET AL.

Furthermore, define the K-polynomial of M as

k
K(M;t) = H(M; t) H(l — tdeg@)y,

i=1

This is a Laurent polynomial in the variables t;. Finally, the multidegree of M with
its given multigrading, denoted as C(M;t), is the sum of all lowest degree terms in
KM;1—t,..,1—1t).

Note that an ideal and its initial ideal have equal K-polynomials and equal multidegrees. (This
is called the degenerative property in [35].) Furthermore, if N C M and KX(N;t) = K£(M;t), then
N = M. Also, multidegrees are additive in the sense that the multidegree C(R/I;t) is the sum
Y.; C(R/J;t) where the sum is over those J in a primary decomposition of I such that \/j isa
minimal prime of I that has the same height as I (see [35, §8.5]).

2.3 | Simplicial complexes and Stanley-Reisner ideals
A simplicial complex A on the vertex set V is a set of subsets of V, called faces, such thatif F € A,
then all subsets of F are in A. A facet of A is a maximal face under containment. If A is a simplicial
complex on V, and z ¢ V, then the cone cone, A is the simplicial complex

{FCVui{z}: FnV e A}
on vertex set V U {z}.

The Stanley-Reisner ideal of A is the ideal I, of the polynomial ring R = K[V'] generated by
products of variables that index nonfaces of A, that is,

IA:=<Hz:ZgV,Z§EA>.

zeZ

3 | KAZHDAN-LUSZTIG VARIETIES

In this section, we recall background on Schubert varieties in flag varieties of types A and C.
In particular, we discuss Kazhdan-Lusztig varieties, which we define (following [42]) to
be the intersection of a Schubert variety with an opposite Schubert cell. These are affine
varieties.

3.1 | Schubert cells and varieties

Fix an integer n > 1, and let E be the 2n X 2n matrix

A ‘T +TOT 0SLLE9YT
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where J,, is the n X n antidiagonal matrix with antidiagonal entries 1. The matrix E determines a
nondegenerate, skew-symmetric bilinear form on K?". The symplectic group Sp,,(K) is

Spou(K) :={M € GL,,(K) : EMY'E~! = M},
or, equivalently, it is the fixed point set of the involution
0 : GLy,(K) = GL,,(K), o(M)=EMYE™"

Following [33, Chapter 6], we let H := GL,,(K) and G := Sp,,(K). We will work with the
following Borel subgroups of H:

B+

;= {upper triangular matrices in H} and B}, := {lower triangular matrices in H}.

These give rise to the following Borel subgroups of G:
B. = (B and B; = (By)°.

Consider the type A flag variety H /B;}. A Schubert cell in this flag variety is a B;[I-orbit for the
left action of B}, on H/B;, by multiplication, and a Schubert variety is its closure. An opposite
Schubert cell is a By;-orbit in H /B}+1 and an opposite Schubert variety is its closure. In the type C
flag variety G/B, Schubert cells and varieties are defined analogously by replacing appearances
of H and By; in the above definitions by G and B, respectively.

Denote by S,,, the Weyl group of H. Given w € S,,,, we denote by P(w) the permutation matrix
having its nonzero entries in positions (w(j), j) for j = 1,...,n. We use this convention to be
consistent with [43]. Each Schubert cell in the type A flag variety H/B;, is equal to some orbit
B;; . P(w)BE /BIJ_} where w € S,,,. The analog is true for opposite Schubert cells: every opposite
Schubert cell in H/B}; equals

Q)° := By, - P()B},/B;;

for some v € S,,. We remark that here, and throughout the remainder of the paper, we use the
letter “w” for permutations indexing Schubert cells or varieties, and we use the letter “v” for
permutations indexing opposite Schubert cells.

The Weyl group C,, of G can be identified with the set of permutations

C,=1{v1..05, €Sy, 1V, =2n+1—0y,,_;fori=1,..,n} @

Equivalently, C,, consists of the v € S,,, such that wyvw, = v, where w, is the longest element
of S,,. In the type C flag variety G/B, Schubert and opposite Schubert cells and varieties are
indexed by elements of C,,. Concretely, given w € C,,, the permutation matrix P(w) is an element
of G, so Bg . P(w)Bg /Bg is a Schubert cell, and every Schubert cell is of this form. The analogous
statements hold for Schubert varieties and opposite Schubert cells and varieties. We denote the
type C opposite Schubert cells by

Q¢ :=Bj - P(v)B}/B},
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8 0f49 | ESCOBAR ET AL.

forv e C,.
It is useful to note that type C Schubert cells and varieties are the o-fixed point sets of type A
Schubert cells and varieties. See also the treatment in [9, Theorem 2.5].

Theorem 3.1. [33, Proposition 6.1.1.1] The involution ¢ induces a natural involution o : H /B;_; -
H /B;_f[.+ Forv € C,, the opposite Schubert cell Q is stable under o and

o __ Ao
Q3 = (Q°.

In other words, Q] consists of the o-fixed points of the type A opposite Schubert cell Q’lj‘°.

Let X/ denote the type A Schubert variety B}, - P(w)B;;/B;, and let X,, denote the type C

Schubert variety B/, - P(w)B/, /B Following [42] (see also [43]), we refer to the intersection of
a Schubert variety with an opposite Schubert cell as a Kazhdan-Lusztig variety. We denote the
type A Kazhdan-Lusztig variety as

A _ vA Ao
Nv,w - Xw n QU ’
and the type C Kazhdan-Lusztig variety as
Now =Xy 0 Q. @

Despite the appearances of H = GL,,(K) in the latter intersection above, NV, , is indeed equal to
the intersection of a type C Schubert variety with a type C opposite Schubert cell. This follows
immediately from [33, Proposition 6.1.1.2], which says that

X, =X,nG/B},

as schemes, under the natural inclusion G/ Bg}' S H /BE.

We remark that Kazhdan-Lusztig varieties are useful for studying singularities of Schubert vari-
eties using computational algebraic methods. This is because a neighborhood of a torus fixed point
in a Schubert variety is isomorphic, up to a factor of an affine space, to a Kazhdan-Lusztig variety,
which is an affine variety. This isomorphism is due to D. Kazhdan and G. Lusztig [24, Lemma A.4],
and explained in [42, Section 3]. We will describe the prime defining ideals of Kazhdan-Lusztig
varieties in Section 3.4.

3.2 | Permutations and left-right weak order

The simple reflectionsin S,, are the permutations sy, ..., S,,_;, where s; transposesiandi + 1.InC,,
define the simple reflections to be ¢y, ¢y, ..., ¢,,_;, Where ¢, € C,, is the permutation that transposes
nandn +1,andfori =1,..,n —1,c; € C, is the permutation that transposesn + i withn +i +1
(so, it mustalso transpose n — i and n — i + 1). We warn the reader that these indexing conventions
for S,, and C,, are different: under the defining embedding C,, C S,,,, the simple reflection c; is

'We abuse notation and use o for both maps.

A ‘T +TOT 0SLLE9YT
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GROBNER BASES, SYMMETRIC MATRICES, AND TYPE C KAZHDAN-LUSZTIG VARIETIES | 9 of 49

identified with s, if i = 0 or s,,_;5,,,; otherwise, not with something built from s;. Both S,, and C,
are generated by their sets of simple reflections.

If W=S,, (resp. C,,), a reduced word for v € W is a sequence Q = («,...,a,) such that
U =Sy, Sq, (resp. v =g ¢, ) and £ is minimized. We denote by ¢y, (v) the length of any
reduced word for v € W. When there is no chance for confusion, we omit the subscript W from
our notation for length.

Throughout the paper, we let <; denote the right weak order on S,,; namely, u <z v if some
initial substring of some reduced word for v is a reduced word for u. Similarly, <; denotes
the left weak order on S,,, which is defined by declaring that u <; v if some terminal sub-
string of some reduced word for v is a reduced word for u. The left-right weak order on S,, is
denoted throughout the paper by < and defined by u < v if v =5, -5, usg --sg, and £(v) =
¢(u) + a+b. We write u < v if v covers u in left-right weak order. Both weak orders as well
as the two sided weak order on C, are induced by that on S,,,. Thus, we use the same notation
for them.

We let <, denote the Bruhat order; namely, v >5, w if some reduced word Q for v has as a
subword a reduced word for w. If this holds for one reduced word Q then it holds for all such
reduced words.

A simple reflection c, is a (right) ascent of v € C,, if vc;, >5, v and a (right) descent of v other-
wise, namely, if v, <g, v. The last ascent of v is the ascent ¢, where k is maximized. Note that vc;,
and v compare the same way in the Bruhat, right weak, and left-right weak orders: vc, is either
greater than v in all three or less than v in all three.

Our convention for the (Rothe) diagram of a permutation w € S,, is the set

D(w) = {w()),i) : i < jand w(i) <w(j)}
It is drawn by placing boxes in an n X n matrix in the positions given by elements of D(w). There
is a familiar pictorial procedure to obtain D(w) from P(w): one replaces each 1 by a », deletes all
0s, and draws at each « the “hook” that extends to the east and north of the «. The entries of the
matrix that no hook passes through are the elements of D(w).
Example 3.2. The diagram of w = 365124 is

D(w) = {(4,1),(5,1),(6,1),(2,4),(4,4), (4, 5)}

and it is drawn

L]
(114

Rothe diagrams are important to us for providing coordinates for opposite Schubert cells and
Kazhdan-Lusztig varieties, as we see in the next subsection.
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3.3 | Opposite Schubert cells as spaces of matrices

Let H = GL,,,(K) and B} C H be the Borel subgroup of upper triangular matrices. For v € S,,, let
2‘;‘ C H be the set of matrices M such that if P(v), = 1, then M; j= 1, and, otherwise, if (i, j) &
D(U), then Ml] =0.

Proposition 3.3. [12, Section 10.2] The map ny : H — H/Bj, sending a matrix M to its coset
MBITI /BE induces a (scheme-theoretic) isomorphism from the space of matrices Z‘;‘ to the opposite
Schubert cell Q2°.

We can similarly identify each type C opposite Schubert cell with a space of matrices using the
map 7. We now do this explicitly, to prepare for the explicit coordinate-dependent presentation
needed in our main theorem. The material discussed in this section follows from general theory on
algebraic groups and flag varieties, for example, [23, Chapter 13], and this particular presentation
features in [5].

Let v € C,. Identifying Q7 as a closed subvariety of Qﬁ“ by Theorem 3.1, define the space of
matrices

2, 1= 15 (Q0), 3

and note that X, which is a closed subvariety of Z‘;‘, is isomorphic to Q7.
Furthermore, we identify Kazhdan-Lusztig varieties with spaces of matrices by letting

A o -1 A
Zv,w T 7TH (Nv,w)
and
Do i= T (N )

We now wish to describe X, as the set of o-fixed points of Z‘;‘. This description
will follow from the containment o(22)C Z# for v € C,. In order to prove this con-
tainment, the following factorization of the matrices in Z’lj‘ is useful. Let Ui‘ be the
unipotent subgroup of H consisting of matrices with 1s along the diagonal, Os in all
off-diagonal positions except for (i+1,i), and an arbitrary element of K in position
(i+1,0).

Proposition 3.4. Define £, := P(s,)U;. Given v € S,,, and (ay, ..., a,) a reduced word for wyv,
the map

M T, X XZ,, = E, (ay,...,az) = P(wy)a, -+ a,

is an isomorphism.

Proof. We proceed by induction on #(w,v). The base case is when v = w,, and it is clear that
the result holds in this case. For the inductive case, let vs; > v and write a reduced expression
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WoLS; = Sg, -+ Sq,- By induction,
M E, XX B, = Efsi, (aq,...,a,) — P(wy)ay - a,
is an isomorphism. So, it suffices to show that the image of the multiplication map
m: Zfs,xf}i—)H, (a,b) = ab 4)

is 25‘ and that it is an isomorphism upon restricting the codomain to 2‘3. To see this, let a €
Eg‘si and b € £;. Assume that the (i,i)-entry of the matrix b is equal to ¢ € K. Observe that ab
is obtained from a by performing two elementary column operations: first swap columns i and
i + 1, and then replace column i by column i plus ¢ times column i + 1. Let aj; ;) and (ab)y; j11j
be the submatrices of a and ab, respectively, consisting of columns i and i + 1. Because vs; > v,
after removing all rows of a; ;17 and (ab)[; ;41 that do not have pivots, we are left with:

01(f ) and 10(f )
L o roma) an - rom ab).

Thus, every matrix in the image of the map m of (4) can be factored uniquely as ab, and so, m is an
isomorphism onto its image. Finally, a straightforward check shows that the locations of diagram
boxes in rows without pivots of aj; ;1) and (ab)y;;41) coincide. (Alternatively, see [43, Lemma
6.5].) Hence, the image of m is contained in Zf}. As m is an isomorphism onto its image, and Z’lj‘
and the domain of m are affine spaces of the same dimension, the proposition is proved. O

Corollary 3.5. Let H = GL,,,(K). The map o : H — H restricts to an isomorphism

. yA A
olX— Zwouwo.

In particular, ifv € C,, C S,,,, then 0 maps Z’;‘ isomorphically onto itself.

Proof. We first observe, by a straightforward direct check, that o maps £, isomorphically onto
2 g Letv € S,, and let (a, ..., ;) be a reduced word for w,v. By our observation, we have an
isomorphism,

S A SA <A S A

Eal X -os X Eaf - Zzn_al X oo X EZn_af. (5)
Noting that 2n — a4, ..., 2n — ;) is a reduced word for w,(wyv)w, = vw,, the first statement of
the corollary follows by applying Proposition 3.4, which states that the domain of (5) is isomorphic
to £4 and the codomain is isomorphic to ZAO

wovwy
The second statement follows immediately since wyvw, = v foranyv € C,, C S,,,. O

Corollary 3.6. Forv € C,, £, = (Z2)°.
Proof. Let M €X,. By (3) and Theorem 3.1, MB},/B} € Q7 = (Q;°)°. This implies that

o(M)B}, /B, = MB}, /B}.. Since M € £, by Corollary 3.5, 5(M) € Z. We can then apply Propo-
sition 3.3 to deduce that o(M) = M and conclude that M € (Z’;‘)" . Conversely, let M € (ZS‘)".
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Then, o(MB},/B},) = o(M)B},/B}, = MB}, /B},. Furthermore, by Proposition 3.3, we have that
MB}, /B, € (Q;°)° = QF. We conclude that M € X, = 7;'(Q9). O

We end with two examples of computing Z . The first shows that, in general, the space of matri-
ces X, can be complicated. The second shows that for particular choices of v, X, is easy to describe.
From Section 4, we will generally restrict to only these nice X,,.

Example 3.7. Given v = 231645, we have that

a 3

[0 0 1 0 0 O]
1 0 0 0 0 O
1 0 0 0 O
A = i@ty = ¢ s a,b,...keK}.
o =T @)=y ¢ g 0 1 of @b (
e f g 0 h 1
i j kK 1 0 0]
Since
[0 0 1 0 0 O] [ 0 1 0 0 O]
1 0 0 0 0 O 1 0 0 0O 0 O
O'6110000_ —h 1 0 0O 0 O
b ¢ d o0 1 of|l —ch+ f c j 0 1 of
e f g 0 h 1 —af +(ac—bh+e —ac+b —-aj+i 0 —a 1
i j k 1 0 o] —dh+g d k 1 0 O]

we can equate the entries of o(M) with the entries of M € Z‘;‘ to obtain the conditions defining
%, It is straightforward to verify that

[0 0 1 0 0 O]
1 0 0 0O 0O O
a 1 0 0O O O .
T, =1 b . d o 1 o :a,b,c,d,e,i,k € Kp.
e —ac+b —ad+i 0 —a 1
i d k 1 0 o0

\ J

Example 3.8. By a similar computation to the one in the previous example, one can check that
the space of matrices X3,; 454 is naturally identified with the space of 3 X 3 symmetric matrices.
That is,

[ 0 0 1 0 0 O]
0 1 0O 0 0 O
1 0 0O 0 0 O
> = czs € Kop.
321654 = Zy 2z, z;3 0 0 1 Zij -
Ziy Zyp Zz 0 1 0
[Z13 Z33 Z33 1 0 0]
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3.4 | Rank conditions on type C Kazhdan-Lusztig varieties
Givenw € S,,, letr,, : {1,...,2n} x {1,...,2n} — {1, ..., 2n} be the rank function of w, defined by
ro(p,@) = l{i <q : w@ > pil,
so that r,(p, q) is the number of entries of w weakly southwest of (p, q).
Given a matrix M, let 7, ,(M) denote the submatrix of entries of M weakly southwest of position
(p,q). A matrix M € 2 is in Eﬁw if and only if, for all p,q € [2n], 7, ,(M) has rank at most
r,(p, q). Not all of these rank conditions are necessary to determine Z‘;"w. In type A, Fulton [11]

defined the essential set, which gives a smaller set of sufficient conditions, as the set of boxes on
the northeast * corners of the connected components of D(w). To be precise, let

E4w) :={(p,q) € DW) : (p—1,9),(p,q +1) & D(w)}.
Equivalently, one can also define
E4w) ={(p,) : w@) <p<w@+D,w(p-D<g<w (p}
Then M = Z’;‘,w if and only if the size r,(p, g) + 1 minors of Tp’q(M) vanish for all (p, q) € E4(w),
and, in fact, these equations define Zﬁw as asubvariety of Z;j‘ scheme theoretically [42, Proposition

3.1].

Example 3.9. Let w = 465213. We have

LT
(1]
| —

so, the (type A) essential set of w is E4(w) = {(5,1),(3,5)}. Furthermore, r,(5,1) =0 and
r,(3,5) = 3.

Suppose that v = 231 645, as featured in Example 3.7. Then M € Zf,w ifandonlyif M € Z‘;‘ and
the size r,(p, q) + 1 minors of rp’q(M) vanish for all (p, q) € E4(w). In particular, e = i = 0, and
we have five additional equations coming from the 4 X 4 minors of

D(w) =

- Q8 o Q
~ S 0 =
e Qo
_= o O O
S S = O

 Note that Fulton uses different conventions to ours. His hooks emanate east and south rather than east and north, and
he works in B~ \ G rather than G/B~, so his permutation matrices are the transpose of ours.
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Recall from (2) that N, v 18 the intersection of Q, with a type A Schubert variety. Hence,
the rank conditions defining %, are the same as those defining Z‘liw, but now applied
to X, instead of Z;‘. In type C, Anderson [2] showed that a smaller set suffices. (Some
details were made more explicit in [41, Section 4].) First, for a permutation w € C,, boxes
of E4(w) always come in pairs. If (p,q) € E4(w), then (2n+ 2 — p,2n —q) € E4(w), and,

furthermore,’

ro@Cn+2—-p2n—q)=p—-q—1+r,(p, 9.

We will choose one box out of each pair by requiring that p>n+1, and, if
p=n+1, q<n. Furthermore, if (p,q) and (p,2n—q) are both in E4(w) with
p>n+1 and g<n, and ry(p,q)=r,(p,2n—q)—(m—q), then (p,2n—gq) is
redundant.

Definition 3.10. Define E(w) as the subset of E4(w) such that (p,q) € EA(w) is in E(w) if and
only if both of the following conditions are satisfied: *

*pzn+1l,
« Ifg > n+1and (p,2n — q) is also in E4(w), then r,(p,2n — q) > r,(p,q) + n —q.

The second condition subsumes the redundancy condition for p = n + 1; we always will get
equality instead of the desired inequality in that case.

Example 3.11. Letw = 465213 asin Example 3.9. The (type C) essential set of w is E(w) = {(5, 1)}.
Suppose that v = 321654 as in Example 3.8. Then M € %, , if and only if M € X, and the size 1
minors of 75 ; (M) vanish. Thus,

[ 0 0 1 0 0 O]
0 1 0 0 0 O
1 0 0 0 0 O
2 =3 z; €K
v =z, 0 0 0 0 1| FED(
0 zyp 2,3 01 0
[ 0 Zp3 z33 1 0 0]

J

Example 3.12. Let w =426153. The type A essential set of w is E4(w)=
{(3,2),(3,4),(5,2),(5,4)}. The first condition that p>n+1 eliminates (3,2) and (3,4)
(whose conditions are equivalent to those given by (5,4) and, respectively, (5,2)).
Note that (p,q) =(5,4) does not satisfy the second condition, since g=4>n+1,
(p,2n—q) =(5,2) € EA(w), and r,(52)=0=r,(54)+n—qg=1+3—4.  Hence,
E(w) ={(5,2)}k

If we let v = 321654 as in Example 3.8, we see that the condition 7,,(5,2) = 0 forces z,, = z,, =
Zy3 = 2,3 = 0, and this automatically forces r,(5,4) = 1 (noting that z,; appears in two places in

T AW regrets his earlier failure in [41] in the perpetual quest to make an even number of sign errors.

¥ Anderson in [2, Definition 1.2] and AW in [41, Section 4] choose the leftmost box in each pair, rather than the lower box
as we do.
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the matrix), indicating that the condition from (5,4) is redundant. In particular,

[0 0 1 0 0 0]

01 0 000

1 0 0 00 0
Zow = zi: €Ky
ew =z, 0 0 o0 0 1| %

0 0 0 010

[0 0 z; 1 0 0]

4 | SMALL PATCHES

Let v € C,, denote the square word permutation, whose permutation matrix is

J, 0
0o J,
In this section, we discuss various properties of type C opposite Schubert cells QS where v > v
in left-right weak order. We refer to such opposite Schubert cells as small patches.
The purpose of this section is for us to fix explicit coordinates and conventions. In addition
to being crucial in our main theorem on Grobner bases, our choice of coordinates yields a nat-

ural identification between small patches and symmetric ladders from the commutative algebra
literature [15, 16].

4.1 | Small patches and symmetric matrices

To choose coordinates on type A opposite Schubert cells, it is enough to take a distinct indetermi-
nate for each element of D(v) (see [43, Section 2.2]). In this section, we put specific coordinates
on type C opposite Schubert cells Q7 when v > v.

By Theorem 3.1, the type C opposite Schubert cell Q7 of v € C), consists of the o-fixed points of
the type A cell Qg“. For v, the type A cell Qg‘D" is isomorphic to the set of matrices

A Jn 0 : .
o= : M isany n X n matrix p.
o M J,

Applying Corollary 3.6, we can directly compute the o-fixed points of Z‘;‘D to show the following
result. (See Example 3.8 for the n = 3 case).

J

e 0 . . .
Proposition 4.1. ZUD = { [ " ] 1 Zisasymmetricn X n matrlx}.

z I,

Our next goal is to give explicit coordinates for X, whenever v > v. This will show that, by
deleting certain rows and columns with no variables, matrices in X, can be identified with sym-
metric matrices with zeroes in prescribed entries, and our coordinates will be entries of these
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matrices. For the rest of this paper, we restrict to such v. A permutation v € S,, is 123-avoiding if
there do not existi < j < k such that v(i) < v(j) < v(k). A left-to-right minimum of a permutation
is an index a such that v(i) > v(a) for all i < a; a right-to-left maximum is an index b such that
v(k) < v(b) for all k > b.

Lemma 4.2. Ifv € C,, then v is 123-avoiding if and only if there exist left-to-right minima a; <
- < a,suchthata; #2n+1—a;foranyiand j. Ifweletb; =2n+1—a,,,_; foralli, then b, <
.-+ < b, are right-to-left maxima.

Note that, by definition of left-to-right minima and right-to-left maxima, v(a;) > --- > v(a,)
and v(b;) > --- > v(b,).

Proof. 1t is well known that every index in a 123-avoiding permutation v € S,, is a left-to-
right minimum or a right-to-left maximum. Indeed, if j is neither, then there exists i < j
with v(i) < v(j) and there exists k > j with v(k) > v(j), so v is not 123-avoiding. For v €
C,, whenever a is a right-to-left maximum, 2n+1—a is a left-to-right minimum by def-
inition. Hence, for all j with 1< j < n, if j is a left-to-right minimum, we let j be one
of the a;. Otherwise, 2n+1—j is a left-to-right minimum and we let 2n+1— j be one
of the a;. O

Proposition 4.3. Ifv € C,, then v > v if and only if v is 123-avoiding. Moreover, if v = WU,
2(v) = £(uy) + £(vy) + £(u,), and we set a; = u'(i) and b; = u; ' (n + i), then the a’s and b’s are
as in Lemma 4.2.

Proof. Supposing that v > v, we will prove that v is 123-avoiding by induction on #(v) — £(v).
Notice that the statement is true for v. For the inductive step, suppose v = u;u5u, is 123-avoiding
and w > v > v. Then, there exists ¢; such that w = vcy or w = c4v. First, suppose that w = vey.
Since vey > v, we must have picked d such that v(n — d) < v(n — d + 1). Note n — d cannot be a
right-to-left maximum and n — d + 1 cannot be a left-to-right minimum, son —d = a f and n —
d+1=b,,_ forsome j, k (which implies thatn + d = ay andn + d + 1 = b,,,;_;). Notice that
we obtain the desired sequences a] < --- < a], and b] < --- < b}, for w = ve,; by taking a = q
and blf = b; for all i, except that aj. =n—-d+1, bl’1+1_k =n-—d, a;{ =n+d+1, and b1/1+1—j =
n + d. We conclude that w = vc, is 123-avoiding. Furthermore, w = w;vju, where u. = u,c4, and
we have a] = a; = u (i) = (W) ~'(i) for i # j,k, while a;. =n—d+1=cy(a;)=cyu'(j)) =
(u/)1(j), and similarly, a = ()~ (k).

Continuing the inductive step, suppose that w = c4v. Since c;v > v, we must have picked d
suchthatv™!(n —d) < v™'(n —d + 1).Since v(v™'(n — d)) < V(v (n —d + 1)), thenv~1(n — d)
is not a right-to-left maximum and v='(n — d + 1) is not a left-to-right minimum, so v=(n —
d)= a; and v!(n—d+1)=b, ,_; for some j,k (which implies that v(a;) =n+d and
U(b,41-j) = n+d+1). Observe then that for all i, c;u(a;) > cqu(a;,) and cqu(b;) > cqu(b;y).
In this case, we obtain the desired sequences for w = c;v by keeping the a’s and b’s for v.
Note that u, is unchanged. This proves the second statement and the forward direction of the
first statement.

Now suppose that v € C,, is 123-avoiding. Choose a’s and b’s for v, as in Lemma 4.2. We will
provide an algorithm that produces a;, ..., a; and §;, ..., §; such that vy = ¢, -+ ¢, vCg, -+ Cg and
£(v) = £(vg) + s + t, thus proving that v > v.
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LI e

SE :

FIGURE 1 On the left, we have the diagram of v = 462 513 > v and on the right its associated skew
partition.

We start by finding the a’s. If v(a;) = n, we will have no c_’s. Otherwise, since v(a;) > - >
v(a,) > 1, we must have v(a,) > n. Let j = max{k € [n] : v(a;) >n+1—k},and letc € C, be
the generator that transposes v(a j) — 1withv(a j) (so,ittransposesv(2n +1 —a j)with v2n+1-—
aj) + 1). Since a;isa left-to-right minimum, U_l(v(aj) +1)> a;,socv <v.By the construction
of j, we have v(aj) —-1# v(aj+1), and hence, v‘l(v(aj) — 1) is not a left-to-right minimum for v.
Hence, cv is also 123-avoiding as witnessed by the same indices a; and b;. Set a; so thatc = ¢, .
Iterate this process, without changing the a; and b;, until v(a;) = n + 1 — k for all k € [n].

Starting with the output v of the previous paragraph, we now find the ’s. Note that this output
has the property that v(a;) =n+1—i(and v(b;) = 2n + 1 —i) for all i € [n], and this property
will be maintained throughout the process. Let j = min{k € [n] : a; > k}, and let c € C,, be the
generator that transposes a; with a; — 1 (so, it must also transpose b,,_; with b,,,_; + 1). First,
note thatsince a; is a left-to-right minimum, v(a ;i — 1) > v(a j), sovc < v.Second, note thata; — 1
is not a left-to-right minimum by definition of j, so a; — 1 = by for some k € [n] and v(a = 1) >
n.Take a/ = a; and b] = b; for all i, except that a;. =by, b, =aja  =Dby_jand b;H_j =
@,,+1_k- Then, ve is 123-avoiding and vc(a;.) =n+1-j(and vc(b;lH_j) =2n+1-j).Setf; to
be the index such that ¢ = ¢, . Iterate the process starting with vcg, -+ ¢ until no longer possible,
sountila; = jforall j € [n]. Note then that the algorithm terminates with v and the proposition

follows. O

One can consider Proposition 4.3 as a type C analog of [7, Theorem 2.1], which characterizes
321-avoiding permutations as those smaller (in left-right weak order) than the maximal grass-
mannian permutation for some descent. Since 321-avoiding type C permutations are 321-avoiding
type A permutations, [7, Theorem 2.1] directly implies the “only if” direction of the first sentence
of Proposition 4.3, but in type A, the choice of maximal grassmannian permutation can depend
on v, whereas in type C, v is the only choice. Also unlike type A, the conditions of Proposition 4.3
are not equivalent to w,v being fully commutative: v = 1324 € C, does not satisfy the proposition
although wyv = 4231 = ¢;¢yc; is fully commutative.

The following corollary describes the diagram for v > v; see Figure 1 for an example.

Corollary 4.4. Ifv € C,, then v > v if and only if D(v) becomes a skew partition after deleting all
the rows and columns that do not contain boxes of D(v).

Proof. Thisis a direct consequence of the previous proposition together with the note following [7,
Theorem 2.1]. We remark that we obtain 123-avoiding permutations instead of 321-avoiding ones
due to the difference in our conventions for D(v). O
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Throughout the paper, we denote by v a factorization v = u;uqu, such that #(v) = £(w) +
() + £ (u,). We let

i< ut@<u @+ 1= ), wn+1-i) <wn+ )l

Furthermore, let My be the matrix with z;; as the entries at (w(n + j),u, 1(i)) and (w(n +
i),u~'(j)) whenever u'(i) < u~'(2n + 1 — j) and wy(n + 1 — i) < wy(n + j), 1s at (v(i), i) for all
i, and Os at all other positions. Note that the z;; only appear within D(v). For some examples, the
general element of 3,45, in Example 3.8 and the matrix on the left-hand side of the equality in
Example 4.8 are both of the form M.

Note that given v > U, @ choice of ay, ...,a, and by, ..., b, as in Lemma 4.2 is equivalent to
choosing a factorization v. In this language

RU = K[Zij : l S j, ai < bn+1—j! U(ai) < U(bn+l—j)]’

and My is the matrix with z;; as the entries at (v(b41—), @;) and (v(b,.,1_;), a;) whenever a; <
b,41—jand v(a;) < v(b,41-j), Is at (v(i), 1) for all i, and Os at all other positions.

Example 4.5. This example shows how the labeling of the coordinates in R; depends on the

choice of our factorization v. The factorization v( )

(1,2,3),and (b,) = (4,5,6) is oV = ul(l)vDu(l) where u(l) = 246135 and u(l) = 123456. Then,

corresponding to v = 642531 > v, (a.) =

0 0 0 00 1

0 0 1 000

0 0 z. 01 0
M_q) = 23 )
@Tlo 1 0 0 0 0
0 zp3 z33 1 0 O
1 0 0 0 0 O]

By comparison, for (a,) = (2,3,6) and (b,) = (1,4, 5), we have that o' = “5 )v ”(2) where ”§2) =

124356 and u'® = 412 563. Then

00 0 00 1
0 0 1 00 0
0 0 z, 01 0
M ) = 12 .
@Tlo 1 0 0 0 0
0 z15b 250 1 0 O
1 0 0o 0 o0 O]

One can relate the variables to the self-conjugate skew partition associated to v by Corollary 4.4
as follows. If the skew partition has n rows (or equivalently n columns), then there is only one
choice for v, and z;; is a variable if and only if (i, j) (equivalently (j,1)) is a box of the skew
partition. If the skew partition has fewer rows, then different choices of v will give rise to dif-
ferent (but always self-conjugate) placements of the self-conjugate skew partition in an n X n box
corresponding to different coordinates.

The matrix M5 satisfies the following property.
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Proposition 4.6. If1 < § < 2n is a left-to-right minimum of v, then the only nonzero entry of My
in row v(6) is the 1 at position (v(6), §). Similarly, if 1 < § < 2n is a right-to-left maximum of v, then
the only nonzero entry of My in column & is the 1 at position (v(5), 5).

Proof. Suppose that 1 < § < 2n is a left-to-right minimum of v. Entries to the right of this posi-
tion lie on its hook, whereas an entry (¢, §) to its left lies on the hook extending from (e, v"(¢))
by the left-to-right minimum condition. An analogous argument proves the second part of the
lemma. O

We now give concrete coordinates for the coordinate ring of Z,,.

Proposition 4.7. Ifv > v, then Ry is a coordinate ring of T, and Mg is the generic matrix in Z,,.
(In other words, a matrix is in X, if and only if it can be obtained by setting each variable in My to
some element of K.) Furthermore, if v = wjvqu, and ¢(v) = £(w) + £(vy) + £(u,), then the rule
M- P(ul‘l)MP(ur_ 1Y induces the injective map from £, to Zug which identifies the entry named z;;
in Mg with the entry named z;; in M

Notice that v 2 v in Example 3.7, and indeed, the entries of the general matrix in 2, in that
example cannot all be made to be variables. An interesting question is to describe the entries
of X, for general v € C,, and give a Grobner basis for Kazhdan-Lusztig varieties arising from
these cells.

Before proving this result, let us give an example and some necessary lemmas.

Example 4.8. Let v =462513. Then cyucoc; = v. The following equality illustrates the
“furthermore” part of Proposition 4.7:

00 0 0 1 0 0 0 1 000
00 1 0 0 0 0O 1 0 000
0 0 z, 0 z5 1 1 0 0 00 0
P 12 13 P —
@] 1 o 0 0 o offD=|o ., z, 0 0 1
Z;p 0 250 1 0 O Z1y Zp 0 0 1 O
z, 1 0 0 0 o z, 0 0 1 0 o]

In general, the effect of right multiplication by P(u; ") is to collect at the left side all columns
containing any variable z; ;, and similarly, left multiplication by P(ul_l) collects rows with variables
at the bottom.

The following lemmas will be used to prove Lemma 6.2. They are adaptations of [43, Lemma
6.5] to type C.

ij2

Lemma 4.9. Let v € C,, and k be such that vcy > v in right weak order. The diagram D(vcy,) is
obtained from D(v) as follows: D(vc,) agrees with D(v) except in columnsn +k andn +k + 1. To
obtain columns n — k and n — k + 1 of D(vc;.), move all the boxes of D(v) in column n — k strictly
above row v(n — k + 1) one unit to the right and delete the box in position (v(n —k + 1), n — k).
Repeat the analogous process in columnsn + k andn + k + 1 (ifk # 0).

We need the analogous lemma for left weak order as well:
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Lemma 4.10. Let v € C,, and k be such that c,v > v in left weak order. The diagram D(c,v) is
obtained from D(v) as follows: D(c; v) agrees with D(v) exceptin rows n + k andn + k + 1. To obtain
rows n — k and n —k + 1 of D(c;.v), move all the boxes of D(v) in row n + 1 — k strictly right of
column v~Y(n — k) one unit up and delete the box in position (n + 1 — k,v~Y(n — k)). Repeat the
analogous process inrows n + k andn + k + 1 (ifk # 0).

Proof of Proposition 4.7. To prove that My is the generic matrix in X, it suffices to show that
o(My) = My and the entries of My are as in the beginning of Section 3.3, implying that, regardless
how we evaluate the z;; in M7, we get a matrix in ¥4, The second statement follows by definition,
since (Ma)ij = 1 whenever P(v)ij =1and (Ma)ij = 0 whenever (i, j) ¢ D(v). For the first state-
ment, we proceed by induction on #(v). The base case, when v = Uy is trivial. For the inductive
case, consider some v > v, and let ¢ be a simple reflection such that either vy > v or ¢ v > v.
By the inductive hypothesis, My is the generic matrix in Z,. Throughout the proof, we will fix a
factorization v = w;uqu, with corresponding sequences (a,) and (b,).

First suppose that ve, > vsothatv(n — k) < v(n — k + 1) andv(n + k) < v(n + k + 1). Let vcy,.
be the factorization (u;)v(u,¢;). Since v is 123-avoiding, n + k are left-to-right minima, and n +
k + 1 are right-to-left maxima. Therefore, (v(n —k +1),n — k) = (v(bn+1_j), a;) and (v(n + k +
1,n+k)= @b, ) a j) for some i, j, and the corresponding entries in (My) are the variable
z;j or zj;. Without loss of generality, we assume that i < j. Our goal is to show that M@P(Ck)
is obtained from Mz by setting z;; = 0. Right multiplication by P(c;) swaps column n + k with
n+k + 1 and column n — k with n — k + 1. Since P(vc;)P(c;) = P(v), then the positions of the
1s in MgzP(c;) and My agree. By Lemma 4.9,

D)\ [nlx{ntk,n+k+1} =DW)\ [n]x{n+xk,nx+k+1}

and therefore, the positions of 0 entries in MWP(ck) and My agree on all columns, except possibly
columns n + k,n + k + 1. This lemma also implies that, for § € {n + k,n + k + 1}, if (M3).5s = 0,
then (M@P(Ck))ea =0.

It remains to analyze the variable entries of Mg. Since n + k + 1 are right-to-left maxima for
v, columns n + k + 1 of My do not contain any variables. Similarly, since n + k are right-to-left
maxima for vcy, columns n + k + 1 of MzP(c,) do not contain any variables and are therefore
equal to columns n + k + 1 of M5. Note that the sequences (a’) and (b) from Proposition 4.3 for
vc, agree with the sequences (a,) and (b, ) everywhere except

aj =by_j=n-k+1, b, ;=a=n-k da;=b, ;=n+k+1, and

by, =a;=n+k.

If é#nxkn+lxk and (Mg)s=2zyy, then (¢,6)€D() and (¢,6)€
{(v(bn+1_j,), ay), Wby, aj,)}. Combining (e, d) € D(vcy), which follows from Lemma 4.9,
with ve (b)) = v(b,,) for all m, we have that (¢,9) € {(vck(b:lﬂ_j,), alf,), (vck(b:lﬂ_i,), a;.,)}.
It follows that (Mgg)es =2zyp. Finally, assume §=nzxk and (Mg),=zyy so that
(e,6) € D(v) and by Lemma 4.9 (¢,8 + 1) € D(vcy), except if € =v(5). If € =v(5), then
zyj =z;; and we obtain (Mg P(c))s by setting z; =0, as desired. If € # v(6), then
€ € {U(byyr-j), V(bpy1_i)} = {vck(b;H_J.,), ver(d!,, )b and  therefore, (Mgg)es =z jr-
We conclude that Mg -P(c;) is obtained from Mg by setting z;; =0 if it lies in positions

(vin+xk+1),n+k).
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We are left with proving that o(Mgz) = Mgz, However, by induction, o(M7) = Mg, and there-
fore, o(Myz- P(ck)) = My 5e—P(c;) by the argument above. Hence, since o is a group homomorphism
and a(P(ck)) = P(cy), we conclude o(Mgg) = My Finally, returning to the case ¢, > v, using
Lemma 4.10 and other similar arguments, one can show that in this case, P(¢; )Mz is obtained
from Mg by setting z;; = 0 if it lies in positions (n £ k + 1, v~ l(n +k)), and O'(Mckv) Mzz. O

Givenv € Cy,, v > v, let Vi be the set of variables of Ry, that is, the set of variables that appear
as entries of Mg.

Corollary 4.11. Fixa factorizationv = wvu,. If ¢ is an ascent of v and we set vey, = (u))v(u,cy),
then V- € Vi and Vi \ Vi = {z;;}, where z; is the entry of M5 in positions (v(n £ k + 1), n £ k).

ueye

Proof. This follows from the inductive step in Proposition 4.7. O

4.2 | Equations for type C Kazhdan-Lusztig varieties

Let Ry and R/ denote, respectively, the coordinate rings k[£, ] and k[7']. Similarly, let M; and M2
denote, respectively, the generic matrices in k[Z, ] and k[Z7]. Let I; ,, be the ideal of R; generated
by the size r,(p, q) + 1 minors of rp’q(Mg) over all (p, q) in E(w). We call I; , a Kazhdan-Lusztig
ideal.

Proposition 4.12. We have T, ,, = Spec(R;/I5 ;).
Theorem 4.15 will give an independent proof of this proposition in the case v > vp.

Proof. The discussion of rank conditions in Section 3.4 proves equality as sets. Equality as schemes
follows from [42, Proposition 3.1], which gives the analogous scheme-theoretic equality in type A,
and Theorem 3.1 along with Equation (2) (which follows from [33, Proposition 6.1.1.2]). O

Note that, for type B, the analogs of Proposition 4.12 and the statements from [33] it
depends on are true only set-theoretically, not necessarily scheme-theoretically, so our work
cannot be extended to that case. See Example 8.3 for an illustration of the potential difficulties
in type B.

We now define the term orders we use in this paper. A diagonal term order on Ry is one
where, given any minor in My where the diagonal term is nonzero, the diagonal term is the
leading term. In notation, this means that, if ¢; < -+ <¢,, §; < -+ < §,, D is the minor of My
using rows {ej,...,€,} and columns {§;,...,d,}, and Hirzl(MU)eiéi is nonzero, then this prod-
uct is the leading term of D. Note that there can be multiple distinct diagonal term orders.
However, even if the diagonal term is zero for a given minor, there are restrictions on which
term can be its leading term under a diagonal term order, since the condition applies to every
subminor of the minor in question. As we are taking southwest minors rather than north-
west minors in defining I ,, our diagonal term orders are equivalent to the antidiagonal term
orders of [30].

We note that our diagonal term orders on different sets of variables are compatible with each
other.
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Proposition 4.13. Let ¢, be an ascent of v, let < be a diagonal term order on R, and let <' = <| Ror
k

be the restriction of < to Roe Then, <’ is a diagonal term order on Roe

Proof. Suppose that D’ is a minor of Mge: with nonzero diagonal term using rows ¢; < -+ < €, and
columns §; < --- < §,. Let D be the minor of Mg using rows ¢; < --- < ¢; and columns ¢; (8;) <
-+ < ¢ (8,). If D involves only one of the columns n — k and n — k + 1, and D’ involves only one
of the columns n + k and n + k + 1, then the diagonal term of D in My is the same as the diagonal
term of D’ in Mg, as the rows and columns are ordered in the same way. Note that the variable
zjjin Vg \ Ve, cannot appear in the diagonal term of D, as that would imply the diagonal term of
D is zero. Hence, the leading term of D under <’ must be the diagonal term, as the leading term
of D’ under < is the diagonal term.

Otherwise, if D' involves both columns n — k and n — k + 1 in Mg, then, since ¢, is an ascent
of v, there is a right-to-left maximum in column n — k + 1 of My and column n — k of M@' So,
by Proposition 4.6, D’ = +D’ where D’ is the minor formed by removing column n — k and row
veg(n — k) from D’. Similarly, D = +D where D is the minor formed by removing column n — k +
1 and row v(n — k + 1) from D. Now the argument in the previous paragraph applies to D and D'

A similar argument applies if D’ involves both columns n + k and n + k + 1. O

We show that there is at least one diagonal term order, namely, the lexicographic term order
<lex Where z;; > z; ; if and only if either i > i, or i = i’ and j > j’. One can see from the next
section that <., is the term order used in [27], made explicit for this case.

Proposition 4.14. The term order <., is a diagonal term order.

Proof. We prove this by downward induction in length. The base case is where v = w,, where
Ry has no variables, and hence, the statement is vacuously true. Let ¢, be the last ascent of v. By
Corollary 4.11, V3 \ Ve = {z;}, where z;; is the entry of My in positions (v(n + k + 1), n + k).
Moreover, z;; must appear as the south-most nonzero entry in its column, and the 1 appearing
immediately to its right is a right-to-left maximum. Hence, there are no variables southeast of
(either appearance, if there are two, of) z;; in Mg. It follows that z;; is the largest variable in Ry
under <qy.

By induction, <, restricted to Ry~ is a diagonal term order. By Proposition 4.13, it suffices to
show thatif z;; appears in a minor of M with a nonzero diagonal term, then it must appear in the
diagonal term. Since there are no variables southeast of z;; in Mg, any minor of Mg with nonzero
diagonal term and such that z;; does not appear on the diagonal term must have as its southeast
entry the 1 directly to the right of z;;. By Proposition 4.6, the only nonzero entry of the rightmost
column of the minor is this 1. It follows that z;; does not appear in any term of the minor. [

‘We now state our main theorem.

Theorem 4.15. Given v > v, the sizer,(p, q) + 1 minors of 7, ,(Mg) over all (p, q) in E(w) form
a Gribner basis for I;; ,, with respect to any diagonal term order.

The proof appears in Section 6. The main technique is to show that K-polynomials of subword
complexes, suitably weighted, satisfy the Kostant-Kumar recursion. (This technique follows [27].)
Examples 8.1 and 8.2 show that Theorem 4.15 can fail when the v > v hypothesis is dropped.
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4.3 | Torus action of type C Kazhdan-Lusztig varieties and the weights
forv > U

Let T be the torus consisting of the diagonal matrices in Sp,,(I). Since any (¢;;) € T is fixed under
o,itsatisfies t;; = tz_nl +1-ians1—; foralli. The torus T acts on Q; by left multiplication, that s, given
matrices M € Sp,,(K)and N €T,

N « (MB},/B}) := (NM)B}, /BY.

This action induces the following torus actionon X : forM € X and N € T, N «, M is the matrix
in X, representing (NM)B, /B/;. Let us describe the action more concretely. Notice that in gen-
eral NM ¢ X, because the entry of NM in position (7(j), j) need not equal 1. Thus, to obtain an
element of X, we need to multiply on the right by the appropriate element of T to make these
entries 1.

It will be most convenient for us to denote by (x, ..., x,,) the element of T where

(X1, e X,) 1= diag(x,, .., xp, %7 o, x 1), 6)

1

the diagonal matrix with diagonal entries x,,, ..., X, X[ Xy, ! from northeast to southwest.

Example 4.16. We describe the action of T on P for vy = 321654:

0 0 1 0 0 O 0 0 1 0 0 O
0 1 0 0 O 0 1 0 0 O
1 0 0 000 1 0 0 00 0|, 1
X1, Xy Xo) @ =(x;,%,, X x7L ol x
(X1, X2, %3) # Zy, Zyp Z;3 0 0 1 (X1, X2, %) Zy Zyp Z;3 0 0 1 (37X %)
Zip Zyp Zp 0 1 0 Zip Zy Zp 0 1 0
[Z13 Z3 2Z33 1 0 0] [Z13 Z3 233 1 0 O]
[0 0 1 0 0 0
0 1 0 0O 0 O
1 0 0 0 0 O
= x%z;; x'xy'z, o x'xi'z; 0 0 1.
x7'xtzy, o X%z, x3'xglzs 00100
x7'xglzs xxSlz X%z 1 00

Since T acts by left multiplication on each Schubert variety and on each opposite Schu-
bert cell, the torus T also acts by left multiplication on each Kazhdan-Lusztig variety
N

Let us now restrict to v> v and explicitly compute the weights on the coor-
dinates z;; of the action. We adopt the convention that the weight e; denotes the
homomorphism in Hom(T,K) that sends the element (x;,..,x,) to x;. We will write
weights additively. In addition, we will let f; = exp(e;) denote the formal exponen-
tial of the weight e;, so that the group operation on the t; (and monomials therein) is

multiplication.
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Lemma 4.17. The coordinate function z;; on Mg has weight e; + e;.

Proof. As one can see from Example 4.16, actingon M € X, by (x,, ..., x,,) multiplies the entry
i
Zjj (M) by xi‘lxj‘l. Hence, the weight of the action on z; i the coordinate function on this entry, is

e +e;. U

We next see that the analog of Lemma 4.17 holds for any v > v To do so, we
need to consider the action of C, on the weights induced from permuting the diag-
onal entries of (x;,..,x,). Notice that given u € C,, the induced action is so that
fori < n,

—e, 1 n if u(n+i
u-el-z{ n+1—u(n+i) (

)<n,
€y(n+i)—n ifu(n+i)>n

+ 1.

Proposition 4.18. Letv > vy with v = wvqu,. The weight of a coordinate function of My depends
only on its position (and not on v). Furthermore, the coordinate function z;; on My has weight u, -
e +u-e;

Note that for v = wjuqu, and i < n, in the notation of Lemma 4.2, we have (i) = v(a,11_;)
and u;(n +1) = v(b,11_;)

Proof. Define y,,; := xl.‘1 and y,,1_; :=x;, 1 <i<n, so that diag(yy, ..., ¥,) = (X1, ..., X,).

Then, the action of T on 2, v € C,,, is given by

y op M = diag(yy,...,y,,) M diag(yg(ll),... ,yU_(IZn)), yeT, MEZ,

Therefore, the weight for the coordinate function in position (e, ) is the weight corresponding to
yey;(la), which depends only on (g, §) and not on v.

Suppose that v > v and v = uu,. Let M €%, and y € T. Given i < j, the variable z;;
appears as entries (v(bn+1_j), a;) and (v(b,11_;), aj) of M. The entries in positions (v(bn+1_j), a;)
and (v(b,41-),a;) of y «, M are

Yobpar—VotapZii = Yutnt Vg inp1-pyZij 2nd yv(bm_l—)yl}fzj)zij = Va4V (na1- )%l
respectively. By definition of y and the factu; € C,,,
Yuy(n+ j)y;;nﬂ_i) = Yutn+j)Yuy(n+i) = yul(n+i)y;l%n +1-j)"
Again by definition of y, we conclude that the weight of z;; isu; - ¢; + u; - e;. O
Example 4.19. Let v = 642531 and v be the factorization associated to (a.) = (1,2, 3), and

(b.,) =(4,5,6). We describe the weights of the coordinate functions of My via an explicit
computation:
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0 0 0 00 1 00 0 00 1
00 1 000 00 1 000
0 0 z3; 010 0 0 zy3 0 1 0f, _,
Cxpx3) |0 1 0 0 0 olT®rX2X)y 1 o o o o2 XX
0 z,3 z33 1 0 O 0 z,3 z33 1 0 O
1 0 0 0 0 0] 1 0 0 0 0 0]
[ o 0 0 0 0 x5
0 0 X, 0 0 0
0 0 X123 0 x; O
=l o x! 0 0 0 0]|G3hx,x)
0 x;'zp; xy'z3 x;' 00
;b0 0 0 0 0
0 0 0 0 0 1]
0 0 1 00 0
0 0 x;'x23 0 10
=|o 1 0 00 of
0 x;X'zy; x;'x;'z33 1 .0 0
1 0 0 0 0 0

Thus, the weight of z,; is —e; + e, and the weight of z5; is —e, — e,. We verify that for z,5, this
agrees with Proposition 4.18. Since v(b,,;_,) < n and v(b,;_3) > n+ 1, we have u; - e, = —¢;
and u; - e; = e,. One can verify that if we now take v to be the factorization associated to (a,) =
(2,3,6)and (b,) = (1,4, 5) (as in the second part of Example 4.5), the weight of z, is —e; + e, and
the weight of z,, is —e, — e,.

We end by noting that this multigrading is positive, so that the only elements in R; which have
degree 0 are the constants.

Corollary 4.20. Let v > v with v = wvqu,. The multigrading on Ry that assigns degree u, - ¢; +
u; - e; to coordinate function z;; is a positive multigrading.

Proof. The set of all vectors e; + e; generates a pointed cone, so the images of these vectors under
the action of a fixed u; do also. O

5 | TYPE C SUBWORD COMPLEXES AND VERTEX
DECOMPOSITION

5.1 | Subword complexes
In [29, 30], A. Knutson and E. Miller defined a family of simplicial complexes, called sub-

word complexes, for arbitrary Coxeter groups. Let Q = (a4, ...,a,) be a reduced word for v €
C,, as defined in Section 3.2. The subword complex S(Q,w) associated to Q and w € C,, is the
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simplicial complex on the vertex set [£] = {1, ...,#} whose maximal faces are the sets [£]\
{i, ..., i} such that the subword (a; ,...,a; ) of Q is a reduced word for w. If v Zp, w, then
S(Q, w) = @ is the simplicial complex with no faces. This must be distinguished from the complex
{@}, which is S(Q, v) whenever Q is a reduced word for v.

The next theorem is the key fact we use about subword complexes, describing their vertex
decomposition, first proved as [30, Theorem E] (for every Coxeter group).

Theorem 5.1. Letv,w € C,,, andletQ = (a4, ..., a,) be a reduced word for v. Assume that v 2g, w.
Ifv=1thenw =1, Q = (), and S(Q, w) = {#}. Otherwise £ > 0. Let Q' = (ay, ..., ay_;)andi = ay,.
Then,

S(Q,w) = cone, S(Q',w) U S(Q', w)).

5.2 | Labeling the vertices with variables

Recall that V; denotes the set of variables of Ry, that is, the set of variables that appear as entries
of Mg.

Lemma 5.2. Let ¢ be an ascent of v, v = wjoqu,, v, = (u)v(u,cp), and Vi \ Vg = {z;;}. Then,
k=j—i.

Proof. By Corollary 4.11, z;; is in positions (v(n + k + 1), n + k) of Mg. We also have that z;;
is in position (v(b,41-;), a;) and therefore a; = n +k, b,,,_; = n+ k + 1. Since the number of
columns to the right of column n + k is counted by both [{a;,;,...,a,}| + |{bn+1_j, ..,b,}| and

2n—(n+ k) = n — k, we have
n—k=Hayq, . an}l + {byy1_js bl =n—i+j.
We conclude that k = j —i. O

Proposition 5.3. Let Q be the word (j, — iy, ..., j, — iz), where z;
variables in V. The word Q is a reduced word for wv.

iy <tex  <lex Zi,j, are the

Proof. Let U = ujuqu,. We proceed by induction on #(wyv). The base case v = wy, is trivial. For
the inductive case, let Q" equal Q without the last letter, which we denote by a,. By construction
a, = j — i where z;; is the last variable in V5 under <. Let the lowest box of D(v) containing
z;; be in the (n + k)th column. Since z; j is the last variable in V7, there are no boxes of D(v)
weakly southeast of this box. This implies that ¢, is the last ascent of v and, by Corollary 4.11, that
V5 \ Vg = {z;;}, where k = j — i by Lemma 5.2. (As in the proof of Proposition 4.7, vc; denotes
the factorization (u,)v(u,c,), where u,vu, is the factorization denoted by v.) Therefore, Q'
is the word constructed from the variables in V. By the induction hypothesis, Q' is a reduced
word for wyvey. Because ¢, is an ascent of ve, , that is, Z((wyvcy, )s;—;) = £(wove,, ) + 1, we can
append a, = j — i to a reduced word for wyvc,, to obtain a reduced word for wyvc,, s;_; = wy.

It follows that Q is a reduced word for wyv. O
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213
211 223

212 222

FIGURE 2 Thesimplicial complex Ay, for v = 321654 and w = 635241.

212 222 223 %33 223 233 Z12 222 %23
211 211
= @]
213 213 213

UA for v = 321654 and w = 632 541.

0Cy,We,

FIGURE 3 Thesimplicial complex Ag,, = cone, A

UCo,W

Define ¢ : [£] — V5 to be the map that associates to k the kth smallest variable in V5 under
<lex+ Let

A ={F) 1 F € S(Q, wow)},

where Q is the reduced word for wyv defined in Proposition 5.3. This is a simplicial complex
isomorphic to S(Q, wyw) but relabeled, so its vertex set is V7.

Proposition 5.4 translates Theorem 5.1 to the notation Ag ,, and breaks it into the cases that will
appear in our proofs (which are also parallel to the cases in the statement of Theorem 6.8).

Proposition 5.4. Letv,w € C,, and U = u;uu,.

* Ifv g, W, then Ay, = 0.

* Ifv = wy, then w = w, (or we are in the previous case), and Ay, = {@}.

* Otherwise, let k be the last ascent of v, s0 vcy >p, U, and let ve, = uv(u,cy).
(1) Ifkis a descent of w, so wec, <g, W, then

A—

sw = coney, A

ocg,w>
where z;; is the largest variable with respect t0 <, on Rg.
(2) Ifk is an ascent of w, so wey, >g, W, then

Ajy = cone;, (A@,w) U Ager we, -

Example 5.5. For v = v = 321654 and w = 635241, we have that Q = (0,1,2,0,1,0) and

wow = ¢oc;. The last ascent of v is ¢y and this is a descent of w. In this case, Ag , = cone, Agg
and Agg; ,, is pictured in Figure 2.

Example 5.6. For v = v =321654 and w = 632541, we have that Q = (0,1,2,0,1,0) and

Wow = cyc1¢y- The last ascent of v is ¢, and this is an ascent of w. In this case, Ag, =

cone, (Agg w) U Agg we, as one can see in Figure 3.
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Let K3, be the Stanley-Reisner ideal of Ag . This is the ideal generated by the monomials that

are the nonfaces of Az, so

Kgp = <Hz L ZCV5Z ¢ Ag’w>.

zeZ

Translating Proposition 5.4 to be in terms of K3, gives the following.

Proposition 5.7. Letv,w € C, and U = wjvqu,.

* Ifv &g, w, then K5, = (1).

* Ifv = w,, then w = w, (or we are in the previous case), and K3, = (0).

* Otherwise, let k be the last ascent of v, so vcy >y, v, and let ve, = uv(u,.cy). Let z;; be the largest
variable with respect to <., on R.
(1) Ifkisa descent of w, so wc;, <g, W, then

Kz = Koo Ro-
(2) Ifk isan ascent of w, so wey, >p, W, then
Kﬁ,w = <Zijm .me KU_Ck,w> + Kﬂ’wckRU.

Example 5.8. In this example, we verify (1) and (2) in the proposition above. First, let v and w be
as in Example 5.5. We compute that both ideals are generated by z;,2,,, Z112,3, 21,253, although
for K3 ., these generators are interpreted in the ring K[z,;, 21, 213, 255, Z23, 233, and for Ko, in
the ring K[zy;, 215, 213, 223, Z23]-

Now, let v and w be as in Example 5.6. Direct computation shows that

K50 = (211233, 212233, 222233, 211222 211223 212223 )
and Kgg = (211,212, 222), and Kgg e, = (2112225 211223, Z12%23)- Then, K, = z33Kog 0 +
K_

UCo,Wey*

6 | PROOF OF THEOREM 4.15

In this section, we prove Theorem 4.15. We explain the overall structure of the proof now, and
dedicate subsections to the details.

Given v,w € C,, with v > U in left-right weak order, a factorization v for v, and a diago-
nal term order < on Ry, let G5, . be the set of initial monomials of the generators we used to
define I ,,. We recall that these generators are the size r,(p, q) + 1 minors of the truncated matrix
Tpq(Mz), running over all (p, g) in E(w). Let J5, . be the ideal generated by G5, .. We will show
that

K-

sw EJow< SNy

v,w?
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the former containment being Proposition 6.7 below and the latter clear from the definition
of J; ,- In Proposition 6.9, we will prove that the K-polynomials K(R;/K5 ,,; t) and K(R; /I 3 t) =
K(Ry/ in_ I ,; t) are equal. The containments above then imply

K-

v,w

=J

Bw< =N T

o,w?
and the latter equality is the statement of Theorem 4.15. Note that this shows that J; , _ is
independent of the choice of diagonal term order <.

6.1 | The Stanley-Reisner ideal is contained in the initial ideal

This subsection proves the containment Ky, € J5, <, which is Proposition 6.7. The proof will
be by induction on the length #(w,v). A factorization v = u;vqu,, where £(v) = £(u;) + £(v) +
£(u,), can be extended to a factorization w, = u;vu,(wyv)~", and if the induction were unrolled,
it would descend to v from its base case v = wy, in right weak order by acting by simple reflections
at the right of this factorization. Thus, we can use right weak order to induct down from w,, to any
123-avoiding permutation where every permutation along the way is 123-avoiding.

Throughout this section, we let U be the factorization v = WU Uy and, for ¢, an ascent of v, we
let vy be the factorization v = wv(u,cy).

Every term of the Leibniz formula for a minor of My is zero or a signed monomial in the vari-
ables z;;. Our proofs in this section will rely on the fact that there are no cancelations among these
terms. This is essentially the fact known in spectral graph theory as the Harary-Sachs theorem
[20, 36].

Lemma 6.1. Every coefficient of any minor of My is a signed power of 2. If H;.:l(MU) pid; is nonzero,
then it is a monomial contained in the support of the {py, ..., P}, 141, --- » q,}) minor of My.

Proof. If a square submatrix N of M7 contains an entry 1, then by Proposition 4.6, expansion along
either its row or column shows that every nonzero term in det N involves that entry 1 and N has
the same determinant as a smaller submatrix, up to sign. So, we may assume that N contains no 1s.

Give the rows of N the names ¢4, ..., €, and its columns the names 6, ..., §,, in such a way that
whenever N contains a row and column that contribute the same weight to the action of T on X,
(see Proposition 4.18), then this row and column are ¢; and §; for some i. This ensures that, if a
variable is repeated in N, the two positions at which it appears are (¢;, §;) and (¢, ;) for some i
and j.

We have

+det(N) = Y sgn(w) [N €ucy”

ues, J

Suppose u,u’ € S, index terms of this sum which are both equal, up to sign, to a monomial m.
Because each nonzero entry of N is a variable, the multisets of variables entering the product for
u and that for ' must be equal. Thus, for every i, j € [r], if u(i) = j, then u’(i) = j or u’(j) =i
(and if u(i) = j and u(j) = i, then u/(i) = j and u/(j) = i). It follows that u’ is obtained from u by
inverting some of the cycles in its disjoint cycle decomposition. A cycle and its inverse have the

same sign, so sgn(u) is constant over all terms with [ iN. €8, = M The coefficient of m in det N
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is sgn(u) times the number of such terms. Because any set of disjoint cycles can be inverted inde-
pendently, this number is 2€, where k is the number of cycles C with [] jec Nejo ) = II
This is nonzero in K because char K # 2.

jec Neo;-

‘We now prove the main technical lemma of this section.

Lemma 6.2. Fixa diagonal term order < on Ry. Let ¢, be the last ascent of v and fix </, the restriction
of <, as our diagonal term order on Rz Suppose that m is the leading term (with respect to <') of the
minor of Mgz on row set A = {ey, ..., €.} and column set B = {5, ..., §,}, labeled so that the entries
giving the leading term are the (€}, 8;) entries, that is, m = H;=1(M@)e,5,' Let p,q be such that
A C[2n]\ [p—1] and B C [q], and assume that row € ofrp’q(M@) contains an entry 1 exactly
when j = s+ 1,...,r. Define

B' ={c;(8), e, c(8), U H(Eg 1), s U H(EN)N

(1) Theleading term m' (with respect to <) of the minor of M on row set A and column set B’ divides
m.

(2) If ¢y is a descent of w, m € Gy, o1, (P, q) € E(w), andr =r1,(p,q) + 1 thenm' € Gy, _.

(3) If ¢ is an ascent of w, m € Gyg 1, (p,q) € E(w), r = r(p,q) + 1, and Vi \ Vi = {z;},
then there exists m" € Gy, - with m"" | zl-jm’.

Proof. Let1 < & < 2n be a column index. By Proposition 4.6, in any minor of My using row v(6)
and column &, all nonvanishing terms use the (v(6), §) entry. Applied to the (A, B) minor of Mg,
we conclude that this minor equals, up to sign, the

({61’ sy es}’ {Ck(al)’ ey Ck(as)})

minor of Mg.

Let us first show that the ({ey, ..., €.}, {c (61), ..., ¢, (8,)}) minor of My equals, up to sign, the
({ey, -, €55 {81, .., 6,3) minor of Mz By Corollary 4.11, Mg is obtained from MzP(c; ) by setting
a single variable z;; to 0, which appears in columns n + k of Mg. Proposition 4.7 shows that none
of the other variables change names. Therefore, the claim is straightforward except in the case
where z;; shows up in the (€1 o s €3 11 (61)s - s € (85)}) minor of My. This occursifn+k +1 €
{01, ..., 65} Without loss of generality, let §; = n + k 4+ 1; we must then have vc, (8;) = v(6; — 1) €
{€1, .., € Lete, = v(8; — 1). Since 6; < g and p < ¢;, T, o(My) contains a 1 in row ¢;, namely, at
(&;, 6,). This contradicts the definition of s and we can thus conclude thatn + k + 1 & {5, ..., §,}.

Let u = []_,(Mg),s, and note m/u = []|_, ,, (Mz),,s,- We now show the leading term m/’
of the minor in the previous paragraph must be u. This is because any term m'’ of this minor can
be extended to a term m” m/ of the (A, B) minor of M. Therefore, m = m"'m/u for some term
m'" of the smaller minor, that is, m” = u. The fact that monomial orders respect multiplication
implies that m’ = w. We conclude that m’ | m and (1) follows.

We now show (2). Suppose that c; is a descent of w and m € G ,w,<!- Since (p,q) € E(w), we
cannot have g = n + k and it follows that B’ C [q]. We therefore have that m' is the leading term
of a minor of Tp’q(Ma) of size r,,(p, @) + 1 and (2) follows.
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b q
b q a 0 (#0)
a ZHQ e ZOg :
(1) . . (i) o(b) 1 0
€s+1 ZiQ e Zij
€s+1 ZiQ Zzg

FIGURE 4 The entries of My in relevant rows and columns.

To show (3), first note that, if B’ C [q], then, as in (2), m’ is the leading term of a minor of size
ro(p,q) + 1lying inside 7,, ,(My), so we can take m" = m’, and m" | z;;m’.

IfB’ ¢ [q], then we musthave g = n + k. Since ¢, isan ascent of v, we have v, < vg,1,50q + 1is
not a left-to-right minimum of v. Hence, g + 1 is a right-to-left maximum of v by Lemma 4.2, and,
by Proposition 4.6, the only nonzero entry in column g + 1 of is a 1 in position (v(q + 1),q + 1).
This implies that v=!(qg +1) = ¢; for some j > s. Without loss of generality, suppose v(eg, ;) =
q+1.

LetB” = B’ \ {g + 1} U {q}. Note that #B” = r,(p,q) + 1sinceq & B’ asc,(¢) = q +1 > q. Let
8541 = 4,50 ¢ (8541) = g + 1. We have (Mg), ¢, s..,) = Zij-

We now construct a row set A" so that the (A", B”)-minor of 7, ,(My) has leading term m”
such that m" | z;;m’. Without loss of generality, assume p < vc,(5;) < €54 When j <t, and
p > ve(8;) or ve(S;) > €549 When t < j <'s. Now let A" = {vc(6,), ..., v (8y), €415 -, €4} We
show that the leading term of the (A’, B”)-minor of My is m” = [[5F 1 (M), ¢, (5,) and that
m'" | z;;m’.

First, we show by contradiction that (Mg),_ ., (s,,,) = Z;j must be part of the leading term.
Since ¢, is the last ascent, every entry in column ¢, (d,, ;) = q below row ¢, ; must be 0. Hence,
if the leading term of the (A’, B”)-minor of My does not contain z;;, then there must exist
some row a € A’ with a < €., and some column b € B” with b < g such that the (a,q) and
(€441, ) entries are in the leading term of the minor. Now note that (Mg),, = 0, as, otherwise,
by the diagonalness of the term order, this entry and z;; would give a larger term, as seen in
Figure 4(i). Since (My),, = 0 but (Mg)aq # 0 and (Mg)emb # 0, we must have that a < v(b) <
€441, as seen in Figure 4(ii). By our labeling, we must have b = ¢; (8 j) for some j <t, and
v(b) € A’. Now note that b must be a left-to-right minimum, so the only nonzero entry in row
v(b) is the 1 at (v(b), b). This contradicts our assumption that the (¢, , b) entry of My is in the
leading term.

Next, note that m = [],_, 1 (M), ¢, (s5,) must be the leading term of the ({e;,q,...,€},
{cx(8141), - €1 (8,)}) minor of My, because any other term 1’ can be extended to a term ' m’ /m
of the (A, B') minor of My by multiplying by m’ /i = H;Zl(MU)Ska((;/), butm’ > m'm’ /m by (1),
and the fact that monomial orders respect multiplication implies that i > rt’.

We have left-to-right minima at ¢;(8;), ..., ¢, (8;). Hence, by Proposition 4.6, every term in the
(A’,B") minor of My must use the (vc,(8,), ¢, (8,))th entries, which are all 1s. Therefore, the
leading term is z; ;7. By definition, m"" = z;;m. By construction, we have m"’ | z;;m’. O

Example 6.3. Let v = 326154 and w = 465213 in C;. Then, the last ascent of v is c;: that is, in
our one-line notation for v, position 4 = 3 + 1 is the rightmost position of a digit that is followed
by a larger digit. Since w has a descent at ¢;, we are in part (2) of Lemma 6.2. We have
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0 0O 0 1 0 O 0O 0 0O O 1 o

0 1 0 0 0 O 0O 0 1 0o 0 o

1 0O 0 O 0 O 1 0 0 O O O

Mg = » Mg = ’
zZ11 2z 0 z;3 01 z1 0z, 0 z;3 1
Zip Zyp 0 z,3 1 0 Z;; 0 zp 1 0 O
[Z13 Zz2;3 1 0 0 O] |z 1 0 0 0 O]
O
D(w) = S

So, the type C essential set of w is E(w) = {(5, )}. Thus, G5, = {213,215} = Gi;,, in this case, and
so, each element of G5 , is divisible by an element of G .

Example 6.4. Letv = ¢y € Cs and let w = 2937 654 821, where a = 10. Then, E(w) = {(8, 7)},
r,(8,7) = 2, the last ascent of v is ¢;, and this is a descent of w. We have

Z13 Zp3 Zzz Zy 0 z3s 0

Tg7(Mg) =214 Zo4 Z34 Zag O 245 1

—
o
(=)

215 235 Z35 Z4s
and

Z13 Zyy Zzz 0z 0 z3s
T (Mge) =|Z1a Zaa Zza 0 2z4g 10

Zis Zp5 Z33 1 0 0 O

Observe that the 3 X 3 minor of 7y ;(Mgz) coming from columns 3,5,7 is z35244235, so that this
term is in Gge , o (n0 matter what < is). This term is not in Gg ,, . In the proof of Lemma 6.2(1),
we take the minor from the last three columns of 7, ;(My), which constitute B’. This minor is z;s,
which divides z35244235.

Example 6.5. Let v =c coug = 64218753 € C, and w = 87436 521. Then, E(w) = {(5,4)},
r,(5,4) = 2, the last ascent of v is ¢, and this is an ascent of w. We have:

0 zyp 23 Zy

0 0 0
T54(Mp) =
Z13 223 Z33 Zxp

214 224 234 Zug
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and
0 2z, 2,3 O
0 0O O
Ts54(Mgg;) = .
Z13 23 23 O
Zig Zy Zag 1

Observe that the 3 X 3 minor of 75 4(Mgg) using columns 1, 3,and 4 and rows 5, 7, and 8 is z,323.
The leading term of the corresponding minor in My uses column 5, which is outside 75 4(M5). In
the proof of Lemma 6.2(3), we first replace column 5 with column 4, then row 7 with row 6. The
leading term of this minor of 75 ,(My) is 2,324, which divides z;32,3244.

Lemma 6.6. Let w € C, and c;, be an ascent of w. Let (p, q) € E(wcy,).

() Ifg#n+k+1landq#n+1—k,then(p,q) € E(w)andr,(p,q) = ry (P, Q)
() Ifgq=n+k+1lorq=n+1-kand(p,q—1) € D(wcy), then (p,q) € E(w)andr,(p,q) =
Fwe, (D> Q)-
(iii) If g=n+k+1 or g=n+1—k and (p,q—1) & D(wcy), then (p,q—1) € E(w) and
ro(p,g—1) = rwck(p’Q) - L

Proof. Note that we cannot have g = n + k or ¢ = n — k since ¢, is a descent of wc,. The first
statement then follows from Lemma 4.9.

Suppose g=n+k+1 or g=n+1—k and (p,q — 1) € D(wcy). Since (p,q) € EA(wcy),
wei(q) < p < we(q + 1). Since (p,q — 1) € D(wey), wei(q — 1) < p. Hence, w(q) = wey(q —
1) < p<w(g+1)=wcy(q+1), and (p,q) € EA(w). Also, r,(p,q) = rwck(p,q). Since (p,q) €
E(wcy,), p > n + 1. Furthermore, ifg = n + k + 1and (p,2n — q) = (p,n — k — 1) € E4(w), then
(p,n —k — 1) € E4(wc,). Applying the second condition of Definition 3.10 to (p, q) € E(wcy),
we have thatr,. (p,n—k—1) >ry, (p,n+k+1)—k—1.8incer,(p,n—k—1)=r,. (p,n -
k —1), we also have r,(p,2n — q) > r,(p,q) + n — q. Hence, (p, q) € E(w).

Now supposeq=n+k+1lorqgq=n+1—kand (p,q—1) & D(wcy). Then, w(q) = we,(q —
1) > p. Hence, w(g — 1) < p < w(q), and (p,q — 1) € EA(w). Also, r,,(p,q — 1) = rwck(p,q) -1
Ifg=n+k+1and (p,2n—(q—1)) =(p,n —k) € EA(w), then w(n + 1 —k) > p, so we,(n —
k) > p. We first wish to show that (p,n — 1 — k) € E4(wcy). Since (p,n + k + 1) € E(wcy,), we
have wei(n+ k +2) > p > n. Using the symmetry of type C permutations, as noted in (1),
weg(n —1—k) < n < p. This implies (p,n — 1 — k) € D(wcy) and (p,n — k) ¢ D(wcy). To con-
clude that (p,n — 1 — k) € E4(wc), we must show that (p — 1,n — 1 — k) & D(wcy,). Note that
(p—1,n—1—-k) ¢ D(wc,)ifandonlyif (p — 1,n — 1 — k) ¢ D(w). We are assuming that (p,n —
k) € EA(w). Therefore, w(j) # p — 1 for j > n — k, and thus, we can only have (p —1,n —1 —
k) € D(w) if w(n — k) = p — 1. However, since w(q) > p > nand w(n — k) = w(2n+ 1 —q), (1)
implies that w(n — k) < n < p — 1. It follows that (p,n — 1 — k) € E4(wcy).

Applying the second condition of Definition 3.10 to (p, q) € E(wc), we have that T e, (p,n—
1-k)> rwck(p,n+k+ 1)—k—1. Since r, (p,n—k)=ry (p,n—k—-1)= rwck(p,n—k— 1)
and r (p,n+k)= rwck(p,n +k+1)—1, we see that r (p,n—k)>r,(p,n+k)—k, and
(p.q—1) € E(w). O

Proposition 6.7. Letv > v and w € C,,. Then, K, C J;,, - for any diagonal term order <.
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Proof. We induct on #(w,v). In the base case, v = w,, these are both ideals of the polynomial ring
RwO = K in zero variables, namely, the zero ideal if w = w, and the unit ideal otherwise.

If v # wy, then it may occur that v £ w so that K3, is the unit ideal. In this case, r,(p,q) >
r,(p,q) for some (p,q) € E(w). Hence, there will be at least r,(p, q) + 1 entries equal to 1 in
Tp,q(Mg). Taking a size r,(p,q) + 1 minor of 7, ,(Mg) that contains a 1 in each column, we see
that the minor evaluates to 1 (every entry above and to the right of a 1 being 0). Thus, 1 € J;,,
as desired.

Henceforth, we assume v < w. Let ¢, be the last ascent of v, let {z;;} = V5 \ Vi, and let </
be the restriction of < to R;z—. We consider two cases according to whether c; is an ascent or a
descent of w. If a descent, Proposmon 5.7 says

K50 = Ko wRs:
By induction, K3z, € Joe Uck w.<»since <’ is a diagonal term order by Proposition 4.13. So, it suffices
to show that J5z- ,, /Ry € J5,, <; but this is part (2) of Lemma 6.2.
If ¢, is an ascent of w, then Proposition 5.7 says

UC,w =

K5 =(zijm : m € Kgg ) + Kig we, Ro- (7

UC,WCe

Let m be a monomial generator of K5 - We split into two cases again according to whether 71 €
UCy, wck

If M € Ky e, » then by induction, /1 € Jgg ., < - Hence, there exists m € Gy, < dividing
M. Since ¢, is an ascent of w, it is a descent of wcy, and therefore, by Lemma 6.2, there exists
m' e Gt,we, < dividing m and hence 7. Since m' e G5 we, <> it is the leading term of some minor
of Tp’q(MU), of size rwck(p, q) + 1, for some (p, q) € E(wc;). Call this minor D. We now apply
Lemma 6.6, breaking the argument into its three cases.

If g#n+k+1, then (p,q) € E(w) and r,(p,q) = rwck(p,q), so D € I, m' € Gs.w.<» and
therefore, m € J;, . Similarly,ifg = n £ k + 1 and (p,q — 1) € D(wcy), then m € J;, .. Lastly,
ifg=n+k+1and(p,q—1) ¢ D(wcy), the lemma implies that (p,q — 1) € E(w) and r,(p,q —
1) = Twe, (p,q) — 1. If column q is not used in D, then D is a minor of ‘L'p’q_l(MU) of size r,(p,q —
1) + 2. By Laplace expansion, m/, being the leading term of D, is divisible by the leading term
m'’ of some minor of size r,(p,q — 1) + 1. Hence, m” € G5, _ and 7l € J;, _. Otherwise, if col-
umn q is used in D, let (a, q) be the position in column g appearing in the leading term. Then
m'' :=m'[(Mg), , is the leading term of the minor of size r,,, (p,q) — 1 obtained by omitting
row a and column g. Therefore, m"” € G5, . and i € J5, .

Ifinstead M & Ko, we then/z;; € Ky, and by induction 1 /z;; € Jg - Letm € G,
be a generator dividing 7 /z;; j» arising from a minor of 7, q(Mvck) Part (1) of Lemma 6.2 (which
does not literally apply because ¢ is not a descent of w) produces a minor D of My of size rw( D.q) +
1 with a leading term m’ that divides m, and part (3) produces m"’ € G; , _ dividing z; m Hence,
we have m" | z;;m' | z;;m | M, and i € Jg, . O

6.2 | Equality of K-polynomials

We wish to show that, with respect to the weighting of the variables on Ry introduced in Sec-
tion 4.3, the K-polynomial of the R;-module R;/I , is equal to the K-polynomial of R;/K5 ,,,. We
do this by showing that the K-polynomial of R;/K3 ,, satisfies the recursion of the next theorem,
due to B. Kostant and S. Kumar [31, Proposition 2.4]. Kumar showed that the local K-classes of X,
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and hence, the K-polynomials of R;;/I; ,,,, follow this recursion. The version below is due to Knut-
son (see [27, Theorem 1]) and has been translated to our specific setting. See also [43, Theorem
6.12] for the type A analog of the statement below.

Throughout this subsection, we assume that K = C as the recursion on K-polynomials that
we reference is only proved in that setting. In the next subsection, we show that, despite this
assumption, Theorem 4.15 holds over arbitrary K of characteristic zero.

Theorem 6.8. Letv,w € C,,.

* Ifv £ w, then

K(R5/I5 1) = 0.

* Ifv = wy, then w = wy (or we are in the previous case). Then,

K(R5/I;,58) = 1.

* Otherwise, let k be the last right ascent of v, so Us), > V.
(1) Ifkisadescent of w, so cs, < w, then

IC(RU/Iﬁ,w; t) = IC(vak/ UCl,W? ;).

(2) Ifkisan ascent of w, so cs, > w, then
K(R;/I5 5t IC(R@/I@,W; tH+0- titj)IC(R@/I@’wck;t) Q- tltJ)IC(RUCk /Ivck wit)s

where (i, j) is such that z;; is the smallest variable with respect to <ex on Ry.

Proof. This is [27, Theorem 1] in the type C setting, but we should explain two changes that arise
in translating the statement to our setting.

First, the original statement is about the pullback of the class [Ox ] € K (G /Bg) to
Kr(vB(/Bf), where vB/ /B, is the point in the stratification of G/B,. In commutative algebra
terms, this is

2 (D [Tor(Ox, . Opps /5:)] € Ky (0B /B).
i

A class in K(pt) can be identified with its formal character. On the other hand, since UB(J; /Bg is
the point in My with all coordinates set to 0, taking Tor with OUBg /BY is the same as taking the
K-polynomial.

Second, we need to match e¥® with tit;. As shown in the proof of Proposition 4.7, we have
n+i=vin+k+1l)andn+1—j=v(mn+k)sov(e)= —e; and v(e,,;) =e;. Since o = ¢ —
e, v(@)=e; +e j» SO eV(@ = tit;. (To be precise, there are two canceling sign differences from
the original statement, one from our definition of X, as Bg—orbit closures rather than Ba—orbit
closures, and the second from our use of wyv instead of v.) O
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Proposition 6.9. Givenv,w € C,,
IC(RU/Iﬁ,w;t) = ]C(Rg/Kg,w;t).

Proof. [35, Theorem 1.13] implies that given a simplicial complex A on the vertex set V' U {z} with
its vertex decomposition at z, say A = cone, A U Il where A C II are simplicial complexes on V'
(respectively, the link and deletion of z in A), we have

KRV U{z}l/Ix;t) = KRIV]/Ixst) + (1 — t98OVC(R[V] /I g5 t) — (1 — t98O)VC(R[V] /1, 1).

Applied to Proposition 5.4, this produces a recursive formula for K(R/Kg,;t),
which comes out identical to Theorem 6.8 with every appearance of I replaced
by K. Thus, IC(R/IE,w;t) and IC(R/KE,w;t) satisfy the same recursion, and so are the
same. O

6.3 | Proof of Theorem 4.15

Proof. We first assume K = C, and return to an arbitrary field of characteristic zero in the last
paragraph. Fix a diagonal term order <. By Proposition 6.7, K3, € Jg ,, <- By definition, J5 , - C
in_ I;; . Hence, we have surjections

R/K5,, » R/J54 < » R/in_ I,
Now Proposition 6.9 states that
KR5/I5 .45 t) = K(R5/Kg 3 ).
Since

IC(RU/IU,w; t) = IC(RU/ in< I= ;t),

v,w

the above containments are actually equalities, and

J-

Sw< =10 T

o,w?
as desired.

To complete the proof, we note that since the essential minors in I, are polynomials with
Z coefficients, the essential minors are a Grobner basis over any field K of characteristic zero.
Indeed, if f and g are essential minors, then the S-polynomial S(f, g) reduces to 0 under divi-
sion by the essential minors when working over Q; hence, it does over any field of characteristic
Zero. I

The above proof also gives the following corollary.
Corollary 6.10. Under any diagonal term order, the initial ideal of I; ,, is K5 .

By Lemma 6.1, all coefficients of essential minors are powers of 2.
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4 4
3 3
2 D 2
1\ 1\
1 4 3 2 1 4 3 2

FIGURE 5 The pipe dream on the left is reduced and contains the pipe dream on the right, which is not
reduced. These are both pipe dreams for 1432.

Conjecture 6.11. Theorem 4.15 holds over an arbitrary field K of characteristic not 2.

7 | K-POLYNOMIAL FORMULAS VIA PIPE DREAMS
7.1 | Type C pipe dreams on small patches

In this section, we recall the notion of pipe dreams associated to pairs of type A permutations v, w.
We then define a closely related notion of type C pipe dreams, specifically for pairs of permuta-
tions v, w € C,, with v > v. These are simply type A pipe dreams with symmetry imposed about
the diagonal.

We begin with pipe dream complexes for pairs of permutations in S,,. Pipe dreams were
invented by S. Fomin and A. Kirillov in [10] and further studied by N. Bergeron and S. Billey in [4].
Knutson and Miller [29, 30] endowed them with the structure of a simplicial complex, namely, a
subword complex. A (type A) pipe dream is a tiling of the entries in the southwest triangle of an

. . . \
m X m matrix with the tiles cross+, elbow N7, and half elbow " such that:

(1) the diagonal is tiled with ™, and
(2) the weak southwest triangle only uses + and \\.

A pipe dream p induces an arrangement of m pseudolines and p is reduced if no two pseudo-
lines cross twice. A pipe dream p is contained in another pipe dream p’ if the set of positions
of the elbows of p is contained in the set of positions of the elbows of p’: see Figure 5 for
an example.

Label the west ends of the pseudolines 1, ..., m bottom to top in the order of their incidence
with the west boundary, as in Figure 5. Also label the south ends of the pseudolines with 1, ..., m
by transporting the west labels along the pseudolines, except ignoring all crossings subsequent to
the first between each pair of pseudolines, that is, moving the labels as if such crosses were elbows
instead. Then, a pipe dream for w € S,, is a pipe dream whose labels along the south boundary
read w. See Figure 5 for two examples of pipe dreams for 1432.

Letv € S,, and consider the pictorial description for D(v) described in Section 3.2. Let us denote
by D, (v) the diagram obtained from D(v) after left-aligning. The (type A) pipe dream complex
PDZ?,w for v, w € S,, is the simplicial complex with vertices given by the boxes of D, (v), and one
facet for each reduced pipe dream p for w whose crosses are contained in D, (v), the set of vertices
in the facet being the set of positions of elbows in p. We will abuse notation and reuse the name
pE PD{?,w for the facet. In Figure 6, we give an example of D, (v), and in Figure 7 an example of

A
PD,.
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D(v) = D D 7 D (v) = :D p=
[] |
o0

FIGURE 6 The diagram D(v), left-aligned diagram D, (v), and corresponding reduced pipe dream p for

v = 426 153. The word Q 4(p) corresponding to p is (2,4,5,1,3,4,2) that is a reduced word for wv.

FIGURE 7 The above simplicial complex is the pipe dream complex PD;‘M for v = 426153 and w = 456 231.
The two shaded triangles are the maximal faces, and each is labeled with an appropriate reduced pipe dream.

The type A Demazure product d(Q) of a word Q = («y, ..., @) in the symbols 1,...,2n — 1 is an
element of S,,, defined recursively by

dQ) = d(Q’)Sak if f(d(Q’)Sak) > £(d(Q"))
d@Q)  ifA(d(Q)sy,) < £(d(Q")

where Q" = (ay, ..., a;_; ), with the base case that the Demazure product of the empty word is
the identity permutation. Compare [29, Definition 3.1]. The Demazure product models ignoring
crossings subsequent to the first, as in a pipe dream; in [43], the nilHecke algebra is used for the
same purpose.

Associate to a pipe dream p a word Q 4(p) in the symbols 1, ..., 2n — 1 as follows. To a cross tile
in position (i, j), we associate the symbol i — j. (This has the effect of making all instances of the
symbol k associated to cross tiles on the kth diagonal below the main diagonal.) Then, we obtain
the word Q4(p) by reading the symbols associated to cross tiles in the leftmost column from top
to bottom, then the next column from top to bottom, and so on. See Figure 6 for an example of
Q4(p). We remark that if p is a pipe dream for w € S,,,, then d(Q4(p)) = wyw, and that the pipe
dream with crosses exactly in D, (v) is a reduced pipe dream for v.

We now describe type C pipe dream complexes for permutations v > v and w. A type C pipe
dream is a (type A) pipe dream whose crosses lie within D, (v) = D(v) and which is symmetric
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45 6 45 6
3 -6 3 -6
2 3 2 3
1\ 5 1'\ 5
1 4 2 1 4 2

FIGURE 8 The diagram on the left is a type C pipe dream for 635 241; however, the diagram on the right is
not.

5 6 7 8
o A 5
| Co ) 3 3
C2o C1 Co 2 2
C3 | Co2 | C1 | Co 1 \_

4 6 7 1

FIGURE 9 On the left is the assignment of generators to the weak lower triangular part of D(v). On the
right is a reduced type C pipe dream p for v = 53 281 764. The word corresponding to p is ¢; ¢,¢;¢4¢;¢5Coc; thatisa
reduced expression for wyv.

about the diagonal of D(u). Since all the tiles outside of D(v) are elbows, we only draw the
tiles inside this region, which is an n X n square (Figure 8). We give the positions in this region
coordinates from (1,1) to (n, n), rather than using the coordinates (n + 1, 1) to (2n, n) they would
inherit from their inclusion in the diagrams for type A pipe dreams.

The type C Demazure product of a word Q in the symbols 0, ..., n — 1 is the type A Demazure
product of the word obtained from Q by replacing each 0 with n and each other symbol i with
the two consecutive entries n —i,n + i. This is an element of C,, There being no possibility of
confusion, we will also denote this by d(Q).

Just as in the type A case, we associate to a type C pipe dream p a word Q.(p) in the
symbols 0, ...,n — 1. We start by associating the symbol j —i to the positions (j,i) and (i, j)
in D(vp), these being the positions where the variable z;; appears in the southwest quarter
of M, . Next, given a type C pipe dream p, assign to each cross the symbol corresponding to
the position of the cross. Last, for each cross in the weak lower triangular part of D(v), read
the generators in the leftmost column from top to bottom, then the next column from top to
bottom, and so on. We define Q-(p) to be the resulting word. We say that p is a type C pipe
dream for w € C,, if d(Q.(p)) = wow. A type C pipe dream is reduced if the word Q-(p) is
reduced. We will prove in Section 7.3 that, just as for type A, if we transport labels 1,...,2n
from the north and west sides of the picture along the pseudolines, ignoring all crossings sub-
sequent to the first between each pair of pseudolines, the resulting labels on the south side
read w.

Letv € C,, with v > v. Note that there is at least one type C pipe dream for v. For example, a
factorization v of v gives a type C pipe dream, which we will call p(v), consisting of crosses in the
positions of z;; in the southwest quarter of M, g foreach z;; € V3.

Given a type C pipe dream p, we denote by p; the set of positions of its crosses in the weak
lower triangular part of D(v). Given a reduced pipe dream p for v and some w € C,, the type C
pipe dream complex PDg’w is the simplicial complex whose vertices are the boxes in p;, (Figure 10).
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FIGURE 10 The type C pipe dream complex PDgw for w = 58372615 and p the pipe dream in Figure 9 is
obtained from the simplicial complex above by coning the vertex corresponding to the elbow in position (4,2).

The vertices of PDS are thus a subset of the entries in the weak lower triangular part of D(vp).

5

The facets of PDSw correspond to the reduced type C pipe dreams o for w such that p C o; the
vertices in such a facet are the positions of the elbows of ¢ that lie in p; . If p = p(0), we abbreviate

PDC(_) to PDC . From the definition, we see that type C pipe dreams that contain a type C pipe

dream for a reduced type C word for w are in bijection with faces of Ay,
The following lemma follows from the definition of PD¢ o0

Lemma 7.1. The simplicial complex PDC is the image of Ay, under the isomorphism acting on

vertices as z;; + (j, ). In particular, the facet F of Ay, corresponds to the facet {(p,q) € p(v), :
Zqp € F} ofPDg e

7.2 | Multidegrees and K-polynomials
In analogy with the type A setting [43, Theorem 3.2], we have that the prime components of the

diagonal initial ideal of each I5; ,,, with v > v in left-right weak order, are indexed by type C pipe
dreams.

v,w’

Corollary 7.2. Forany diagonal term order <, the initial ideal in_ I ,,, has the prime decomposition

ln< ow — ﬂ <qu (P Q) EpL)

where p ranges over all reduced elements of PDEC o

Proof. By Corollary 6.10, we have in_ I;; , = K3 ,,,, the latter of which is the Stanley-Reisner ideal
of the (type C) subword complex Ag ,,,. Consequently,

in_G,= ) €UZ\F),

FeFacets(Ag ;)

where { : [£] —» V7 is as defined immediately after the proof of Proposition 5.3. The result now
follows by Lemma 7.1. Ol

Our next goal is to provide multidegree and K-polynomial formulas for our type C Kazhdan-
Lusztig varieties X3 ,, U > v in terms of type C pipe dreams. Our formulas are in the variables
ty,...,t, discussed in Section 4.3. We recall the action of C,, on this variable set described there:
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given u € C,,, the action is so that for i < n,

1 Lnt1—u(n+i) if u@i+n)<n,
uQ@t =

-1 . .
tu(nﬂ_)_n ifu@i+n)>2n+1.

We will also want an additive version of this action:

LDt = bntl—u+iy i ul@+n)<n,
l if ui+n)=n+1.

_tu(n+i)—n

Corollary 7.2 immediately implies a positive multidegree formula for our type C Kazhdan-
Lusztig varieties X ,,, U > vy in terms of type C pipe dreams. Note that this formula can also

be recovered from the K-polynomial formula given below in Proposition 7.4.

Proposition 7.3. The multidegree of R;/I; , is

CRs/ i)=Y [ (we-t)+we-t)),
P (j)isa
cross in py,

where p ranges over all reduced elements of PDBC w

As noted in the introduction, Ikeda, Mihalcea, and Naruse also give formulas for these mul-
tidegrees [21, Theorem 1.1, Definition 6.1]. To aid the reader in aligning conventions, we observe
that the multidegree of our I, is what is called in [21] the localization of &,, ,, at w,v, but our
work and theirs agree on the meaning of ¢;.

Remark. Our pipe dream formula specializes to a formula for multiplicities: since each v > v is
123-avoiding, each ideal I, is homogeneous with respect to the standard grading. Consequently,
the multiplicity multp,(X,,) of the Schubert variety X, at the point P(v)B/, /B, is equal to the
number of reduced type C pipe dreams in PDg o See [43, Fact 5.1] for the analog of this observation
in the type A setting. ’

‘We note that other combinatorial formulas for multiplicities in type C in special cases can be
found in the works [3, 14, 22] and [32]. For example, in the recent paper [3], Anderson, Ikeda, Jeon,
and Kawago provide a combinatorial formula for the multiplicity of a singularity of a covexillary
Schubert variety (in a classical-type flag variety) in terms of excited Young diagrams.

Our next goal is to give a formula for the K-polynomial of R;/I5,, in terms of type C pipe
dreams.

Proposition 7.4. Let p be the reduced pipe dream for v associated to the factorization v = u;vu,.
The K-polynomial of R;/ I, is

KEo/Ipi0 = 3, Dm0 T (1- 0w 040),
oePDE G,j)isa
o cross in oy,
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where cr(oy) is the number of crosses in oy, and the sum is over the nonboundary faces of PDg o

Note that all factorizations of v yield the same K-polynomial.

Proof. By [29, Theorem 4.1], the K-polynomial of the Stanley—Reisner ideal I of the subword
complex S(Q, wyw) is

K(R/It) = Z( 1)/ QI TT (1 _tdeg(z)>

i¢F

where the sum is over the faces F of S(Q, w) such that d(Q \ F) = wyw. This is the same index
set as in the proposition by [29, Theorem 3.7]. By Lemma 7.1, PDC is isomorphic to Ag ,, which,

in turn, is a relabeling of a subword complex S(Q, wyw), as in Sectlon 5.2. We obtain the expres-
sion in the proposition by translating the equation above into the language of type C pipe dream
complexes. Explicitly, for o the pipe dream in PDEC » associated to the face F in S(Q, wyw):

* o is a pipe dream for w if and only if d(Q \ F) = wyw,
* |Q\ F| =cr(oy), and
* by Proposition 4.18, if (i, j) is a cross in oy, then t4¢€&) = (u; © t w0 tj_l).

g

We can also give a formula without the signs of Proposition 7.4. As noted in the previous proof,
PDg’ 0 is isomorphic to the subword complex S(Q, wow), which is a shellable simplicial complex
[29, Theorem 2.5]. That is, there exists a shelling order F, ..., F,, of the facets of PDE w namely,
an order such that, for each i = 2, ..., m, the intersection of F; with [ j<i F j is pure of dimension
dim(PDUC, DL

Proposition 7.5. With notation as in Proposition 7.4, let F,, ..., F,, be a shelling order for PDBC o
Then, the K-polynomial of R; /I, is

3

KR/ =Y, [ (1-woghwmoerh) I (woeghHwoesh),
k=1 (i,j)isa (i,j)eAbs(Fy)
cross in (Fy)y,

where Abs(F),) is the set of elbows in (i, j) € F} such that F; \ (i, j) C F, for some ¢ < k.

The corresponding result in [29] is Theorem 4.4, which uses the language of subword complexes
and describes Abs(F) differently: see [29, Remark 4.5].

Proof. This follows from Proposition 7.4 by collecting, for each k =1, ..., m, the summands
indexed by faces o of the form o = (1, F, where k = max L, as described in the ungraded case
in [38, Proposition 2.3]. ]

In the case in which v >, v, we can always take a factorization v with u; = id, which simplifies
the appearance of the product in the formula in Proposition 7.4. A similar simplification can be
written down for Proposition 7.5.
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Corollary 7.6. Forv >p v the K-polynomial of R; /I, i

KR5/l;uit) = Y, (=ple=rtow) TT (1—ti_1tj_1>.

o€PDS (i,j)eoy,
The following example shows that this type C K-polynomial is not simply obtained from the
type A K-polynomial by substituting the weights as suggested by the embedding of maximal tori
from Sp,, (K) to GL,,,(K).

Example 7.7. Letv = v = 2143, w = 3412in C,. Notice that the only pipe dream for w in PDUc »

R

is

and therefore,
K(R;/I; ,;t) =1 — 175"

We now compare this to the type A K-polynomial using the embedding of tori above. To avoid
confusion, let us denote the variables of the K-polynomials of type A Kazhdan-Lusztig varieties by
e, e, ¢4, 17}, where t/* corresponds to the i-th entry of the torus T consisting of diagonal matrices
in GLZn([K) The pipe dream pictured above is also the only pipe dream for w in PDA By the
type A version of [29, Theorem 4.1], we have that the K-polynomial of the type A Kazhdan -Lusztig
variety associated to v, w is (1 — ¢5(¢£)™1)(1 — £(t{)™"). The embedding of the torus in Sp,(KK)
is given by the substitution

A _ A _ A _ -1 A _ -1
th=t, =1, =" =5

Therefore, K(R;/I5,,; t) is not the substitution of the type A K-polynomial.

7.3 | Combinatorics of type C pipe dreams

In this section, we discuss the combinatorics of type C pipe dreams. We begin by showing that we
can recognize type C pipe dreams for w by following pseudolines, mirroring type A pipe dreams.

Proposition 7.8. A type C pipe dream is a pipe dream for w if and only if when we transport labels
1,...,2n from the north and west sides of the picture along the pseudolines, ignoring all crossings
subsequent to the first between each pair of pseudolines, the resulting labels on the south side read w.

Proof. Let p be a type C pipe dream for w, meaning that its associated word Q.(p) = («;, ..., &ty)
is a word with type C Demazure product wyw. Let Q4 be the word obtained by replacing each a;,
with either one or two entries as follows:

o o {n ifa, =0, ®)

n—ag,n+oa ifa.#0.
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p q

FIGURE 11 Partway through applying commutation relations, in the proof of Proposition 7.8.

Note that if oy corresponds to a cross of p in position (p, q) of D(v), then a = p — g, and as a
type A pipe dream, p has crosses at positions (n + p, q) and (n + g, p).
If Q =(,-, Ojy gy s ks Q" =(ay,..., Ajy1, Qs i), and |ajy —a;l > 2, then
d(Q’) = d(Q"); this is known as the commutation relation for the Demazure product.

Our goal is to use commutation relations to transform Q“ into the word Q 4(p). Note then that
the “only if” part of the proposition will follow from the combinatorics of type A pipe dreams.

The first entry of Q 4(0) isn + ¢ — p = n — ay, which is also the first entry of Q“. Now consider
n — o and suppose thatfori = 1, ..., k — 1, we have used the commutation relation to move n — q;
in Q4 to the correct position in Q,(p). We wish to move n — o, = n + q — p to the position in
Q 4(p) associated to the cross in position (n + g, p). If ¢, = 0, this is already the case, so let us sup-
pose that a; # 0. We are allowed to use the commutation relation as long as we do not encounter
n+q—p+1orn+q— p— 1. In Figure 11, the blue boxes represent the positions of the crosses
that contributen + g — p + 1toQ4(p). Fori =1, ...,k — 1ann — q; corresponding to a cross in the
gray-shaded region has been moved to the correct position in Q 4(p). Note that all the blue boxes
outside the gray region correspond to entries in Q4 that appear after n + «, . Therefore, we can
use commutation relations to move n — a; to the left until it reaches the correct position in Q 4(p).
Continuing with this process, we transform Q4 into Q 4(p) using only commutation relations.

Now let p be a type C pipe dream such that following the pseudolines yields w. Let Q 4 (o) be the
word associated to p considered as a type A pipe dream. By undoing the process described above,
we can transform Q 4(p) into Q4 and lastly to Q(p) by undoing the substitution (8). We leave the
details to the reader. O

8 | BEYOND SMALL PATCHES

In [28], Knutson showed that the defining ideal of any Kazhdan-Lusztig variety has a Grobner
basis whose leading terms are squarefree, and, in [27], he determined that the resulting initial
ideal is the Stanley-Reisner ideal of the subword complex S(Q, wyw), where Q is a reduced word
for wyv. For small patches, our coordinates agree up to sign with the Bott-Samelson coordinates
in [28], and our monomial order <, agrees with the monomial order in [28]. Thus, Theorem 4.15
shows that the type C essential minors are a Grébner basis in Knutson’s setup. (Knutson does not
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provide a Grobner basis in [28].) In this short section, we show that things are more mysterious
beyond the case of small patches as the essential minors are not typically a Grobner basis.

Example 8.1. Let v = 231 645 as in Example 3.7. Observe that Q = (0,1,0,2,1,0, 2) is a reduced
word for wyv. Let

[1 0 0 0 o o [1 0 o o o o] (¢, -1 0 0 0 0]
010 0 00 0 b =1 0 00 1 0 00 0 0
w 00 aq -1 00 o o1 0 0 00| o [0 010 0 0
ct , Cf , C ,
001 0 00 00 0 b 10 0 0 01 0 0
000 0 10 00 0 -1 0 0 0 0 00 ¢ 1
000 0 01 00 0 0 01 0 0 00 -1 0

so that in Bott-Samelson coordinates, the opposite cell associated to v is identified with the space
of matrices

0 0 1 0 0 O

-1 0 0 0 O

(1) (1) o(2) (1) () 3) (+(2) ¢ -1 0 0 00
crerereyeey ey = ,

Woly "&q "6 by 767 75, cay—b, —a; ¢, 0 1 0

¢cby—a, -b; b, 0 ¢, 1

| coeqy—=by —c¢; a3 =1 0 O]

where each a;, b;, ¢; can take arbitrary values in K. Let w = 462 513. Then, now treating a;, b;, ¢;
as indeterminates, we see that the type C essential set (see Definition 3.10) is {(5, 1), (5, 3)}, and
so, the type C essential minors are:

. ¢;by—ay, —by b,
E =4, —by,, by —a,, 2x2minorsof .
Ce—by —¢ a;

Using the lexicographic monomial order ¢, > a; > b, > ¢; > a, > b; > a,, which is compatible
with the vertex decomposition of the subword complex S(Q, w,w) described in Section 5.1, we see
that

* the initial ideal of the Kazhdan-Lusztig ideal (£) is the Stanley-Reisner ideal of S(Q, wyw) as
expected, yet
» & is not a Grobner basis.

Nevertheless, the set of type A essential minors is a Grobner basis. There also exists a Grébner
basis consisting of type C essential minors that differ from the conventions introduced in Section 5,
namely, the minors given by choosing the essential boxes {(5, 1), (3, 3)}.

In the next example, we see that unlike in the previous example, the type A essential minors
need not be a Grobner basis either.

Example 8.2. Consider v = 213465 so that Q =(0,1,0,2,1,0,2,1) is a reduced word for w,v.
Let Cg) , Cil), Cg) as in the previous example. Then, the opposite Schubert cell associated to v is
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identified with the space of matrices

0 1 0 0 0 O
-1 0 0 0 0 O
| c,e; —by, —bse;4+a; ¢ —b; -1 0

where a;, b;, ¢; € K. Let w = 632 541. There is a unique (type A or type C) essential box {(4, 3)}. If
we treat a;, b;, ¢; as indeterminates, the essential minors are then the 2 X 2 minors of the south-
west 3 X 3 submatrix of (9). For the lexicographic monomial order with b; > ¢, > a3 > b, > ¢; >
a, > b; > a;, we see that the ideal generated by the essential minors has initial ideal equal to the
Stanley-Reisner ideal of S(Q, wyw), yet the set of essential minors is not a Grobner basis.

Consequently, it is still an open problem to find combinatorially defined Grébner basis for
type C Kazhdan-Lusztig ideals N, ,, when v # v in left-right weak order.

In type B, our methods fail because the analog of [33, Proposition 6.1.1.2] does not hold
scheme-theoretically. In some cases, imposing the determinantal equations on the patches yields
nonreduced schemes. If we apply our methods to type B small patches, we see that we end up tak-
ing the determinants of some skew-symmetric matrices, and the obvious solution to this problem
is to take the pfaffians of those skew-symmetric matrices instead. We expect that results similar
to ours can be proven with this modification in that case.

Beyond small patches in type B, some unpublished preliminary work of the fourth author and
Alexander Yong suggests that the appropriate equations would still form a Grobner basis under
a diagonal term order, but we need to impose rank conditions on some submatrices that are non-
trivially similar to a skew-symmetric one. Note that all formulas for the pfaffian require knowing
the basis with respect to which a matrix is skew-symmetric, and we were not able to systematically
determine the change of basis that turned these “secretly skew-symmetric” matrices into actually
skew-symmetric matrices. The following example illustrates some of the difficulties.

Example 8.3. In this example, we work with the type B Weyl group. We embed B, into the sym-
metric group Sy via by = 548584, by = $384, b, = 5,87, and b; = 5;55. Consider v = 132456 879 € S,
and observe that Q = (0,1,2,3,0,1,2,3,0,1,2,0,1, 2, 3) is a reduced word for w,v. Let

100 0 0 0000 100 0 0 0 00 0
010 0 0 0000 010 00 0 000
001 0 0 0000 00b -1 0 0 000
000 -2 ¢ 1000 oo 1 0 0 0 000
BP=lo 0 0 @ -100 00| B”’=lo0o o0 0o 1 0 00 of
000 1 0 0000 000 0 0 b 100
000 0 0 0100 000 0 0 -1000
000 0 0 0010 000 0 0 0 010
000 0 ©0 0001 000 0 0 0 001
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10 0000 0 00 d -1 00000 0 0
0 ¢ -1 000 0 00 1 0 00000 0 0
01 0 000 0 00 0 0 10000 0 0
oo o 100 0 00 o o 0o1000 0 o0
BY=[o 0o 0 o010 0 oo B’=|o o 00100 0 of
00 0 001 0 00 0 0 00010 0 0
00 0 000 ¢ 10 0 0 00001 0 0
00 0 000 -100 0 0 00000 d 1
00 0 000 0 01 0 0 00000 —10

Then, using these Bott-Samelson coordinates, the opposite cell associated to v is identified with
the space of matrices My, = w,B\ B B"B"B» BBV B» B BV BV BV BB,

Let w = 381654927 € S,. The type B essential set for w (which can be calculated in a similar
way to the type C essential set; see also [2]) consists of three boxes in locations (7, 6), (7, 8), and
(9,6). Taking the associated essential minors of My, where a;, b;, ¢;, d; appearing in M, are con-
sidered as indeterminates, we obtain an ideal generated by 107 minors. Using Macaulay?2 [18], we
see that this ideal can be presented as:

I = <d1, Cz, b4, b3, a4, C3C4 - d2d4, 01C4 - b1d4, a3C4 - a2d4, blc3 - Cldz, a2C3 - a3d2,
asb; —a,cy, ayasd, +2byd,, a§d4 + 2b,cy, a%dz + 2b,c;, aya:d, +2b,d,, ayasc; +2byey,

agc1 +2b;b,, ayazb, + 2b§, azag +2a3b,, a§a3 +2a,b,).

This ideal is not radical, and hence, does not scheme-theoretically define a Kazhdan-Lusztig vari-
ety. So, in particular, the type B analog of Proposition 4.12 is false. We note that radical of the ideal
I above is:

(dy, €35 by, by, ay, €364 — dydy, €104 — bydy, a3¢y — aydy, bic; — ¢1dy, ayc3 — azd,, azby — aycy,

a,a; +2b,).
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