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Abstract
After proving that every Schubert variety in the full flag variety of a complex reductive
group G is a general Hessenberg variety, we show that not all such Schubert varieties
are adjointHessenberg varieties. In fact, in typesAandC,weprovide pattern avoidance
criteria implying that the proportion of Schubert varieties that are adjoint Hessenberg
varieties approaches zero as the rank of G increases. We show also that in type A,
some Schubert varieties are not isomorphic to any adjoint Hessenberg variety.

1 Introduction

Hessenberg varieties have been studied by applied mathematicians, combinatorialists,
geometers, representation theorists, and topologists. See [2] for a survey of some recent
developments. Our goal is to understand better the structure of these varieties, and in
particular what restrictions on such structure exist. To this end, we address herein a
question raised by Tymoczko:

Is every Schubert variety in a full flag variety a Hessenberg variety?

Schubert varieties comprise a well-studied collection of subvarieties of the flag variety
andnaturally embody the interplay between combinatorics andgeometry. For example,
their singularities can be characterized in terms of pattern avoidance (see, e.g., [3]).
Because the flag variety has an underlying combinatorial structure, one can ask how
other subvarieties fit into this framework. As we will discuss below, conditions known
to be satisfied by the most closely studied Hessenberg varieties are also satisfied by
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Schubert varieties. So, Tymoczko’s question is pertinent. There are several possible
interpretations of the question.Moreover, there are severalways to define aHessenberg
variety, giving rise to progressively more general classes of varieties. The answer to
Tymoczko’s question depends on the chosen definition, as we shall see.

Let G be a connected, reductive complex algebraic group. Fix a Borel subgroup
B ≤ G and a maximal torus T ≤ B. Let g, b, and h be, respectively, the Lie algebras
of G, B, and T . We write Ad for the adjoint representation of G on g.

Let N = NG(T ) be the normalizer of T in G and let W = N/T be the associated
Weyl group. The flag variety B := G/B is the union of Schubert cells Cw, over all
w ∈ W . For each w, the Schubert variety Xw is the closure of Cw in B.

Our first definition of a Hessenberg variety is as follows.

Definition 1.1 Given x ∈ g andf a subspace H of g such that [b, H ] ⊆ H , the adjoint
Hessenberg variety B(x, H) consists of those gB ∈ B such that Ad(g−1)(x) ∈ H .

Adjoint Hessenberg varieties were defined and studied by De Mari et al. in [10],
after being defined and studied for G = GLn(C) only by De Mari and Shayman in
[11]. In both [11] and [10], it is assumed that b ⊆ H and that x is a generic (regular
semisimple) element of g.Wemake neither assumption here, as otherwise the topology
of B(x, H) is restricted considerably. Indeed, it follows from the results in [10, 11]
that if b ⊆ H and x is regular semisimple, then the Euler characteristic χ(B(x, H)) is
equal to |W |. In particular, the only Schubert variety in B that is a Hessenberg variety
under these assumptions is B itself.

A larger class of varieties than that given in Definition 1.1 is defined in [15] by
Goresky, Kottwitz andMacPherson, who allow an arbitrary representation ofG, rather
than restricting to the adjoint representation.

Definition 1.2 Letψ : G → GL(V ) be a (finite-dimensional, rational) representation.
Given x ∈ V and a B-invariant subspace H of V , the Hessenberg variety B(x, H)

consists of those gB ∈ B such that ψ(g−1)x ∈ H .

Wewill always use themodifier “adjoint”when referring to theHessenberg varieties
described in Definition 1.1 and sometimes use the modifier “general” when discussing
the Hessenberg varieties described in Definition 1.2. We will use repeatedly, and
without reference, the fact that if H is a subspace of g, then [b, H ] ⊆ H if and only
if H is Ad(B)-invariant (see for example [19, Definition 8.1.22]). So, every adjoint
Hessenberg variety is a general Hessenberg variety. The subspace H appearing in
either definition is called a Hessenberg space.

With definitions in hand,we turn to possible interpretations ofTymoczko’s question,
and list three precise questions.

Question 1.3 (the equality problem). Is it true that for every G, B, and Schubert
variety Xw ⊆ B = G/B, there is a Hessenberg variety B(x, H) ⊆ B such that
Xw = B(x, H)?

Question 1.4 (the isomorphism problem). Is it true that for every G, B and Schubert
variety Xw ⊆ B = G/B, there is a Hessenberg variety B(x, H) ⊆ B such that Xw is
isomorphic with B(x, H)?
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Question 1.5 (the general isomorphism problem). Is it true that for every G, B
and Schubert variety Xw ⊆ G/B, there exist a complex reductive group G∗ with
Borel subgroup B∗ and a Hessenberg variety B∗(x∗, H∗) ⊆ G∗/B∗ such that Xw is
isomorphic with B∗(x∗, H∗)?

The answer to Question 1.3 (and therefore to Questions 1.4 and 1.5) is “Yes” for
general Hessenberg varieties, as our first main result shows. (Relevant terminology
will be discussed in Sects. 2 and 3.)

Theorem 1.6 (See Theorem 3.6 below). Let λ be a strictly dominant weight for G, with
associated highest weight representation ψ : G → GL(V (λ)) and highest weight
vector vλ. Given w ∈ W, let ẇ be a representative of w in N, and let Hw−1(λ) be the
Demazure module generated by ẇ−1(vλ). Then, Xw = B(vλ, Hw−1(λ)).

Theorem 1.6 follows directly from a result of Bernšteı̆n, Gel’fand, and Gel’fand
in [6].

The situation ismore interestingwhenwe consider adjointHessenberg varieties.We
obtain negative results of various types. Before describing these, we discuss why the
consideration of Schubert varieties is appropriate in the study of adjoint Hessenberg
varieties.

We know of no restrictions on the structure of general Hessenberg varieties, and it
is reasonable to wonder what such restrictions might exist. In addition to Theorem 1.6,
one can point to Section 9 of [22], in which various interesting curves and surfaces are
shown to be general Hessenberg varieties, as evidence that such restrictions are not so
easy to come by. A certain class of general Hessenberg varieties is examined by Chen
et al. [9] in their study of Springer Theory for symmetric spaces.

Adjoint Hessenberg varieties are a different matter. Given x ∈ g, we consider the
usual Jordan decomposition x = xs + xn with xs semisimple and xn nilpotent. If xn
is regular in a Levi subalgebra of g, then B(x, H) admits an affine paving for every
Hessenberg space H ⊆ g. This is proved under the assumption b ⊆ H by Tymoczko
in type A (see [28]) and by the second author for arbitrary G (see [23]), although the
assumption is not necessary for the relevant arguments in either paper. When H is
a nilpotent subspace, Fresse proved B(x, H) is paved by affines for all x when G is
a classical group in [14] and Xue has extended these results to groups of type G2,
F4, and E6 in [29]. So, in some sense, B(x, H) is paved by affines for “most” x, H ,
and indeed for all x, H in type A. This restricts considerably the structure of adjoint
Hessenberg varieties. One can ask if there are any obvious additional restrictions. As
Schubert varieties admit affine pavings, Tymoczko’s question is a good starting point
in the search for such constraints.

We turn now to our results. First, if the root system $ for G has an irreducible
component not of type A1 or A2, then there are some y ∈ W such that the Schubert
variety Xy ⊆ B is not equal to any adjoint Hessenberg variety in B.

Theorem 1.7 (See Theorem 3.7 below). If some nonabelian simple ideal of g is iso-
morphic with neither sl2(C) nor sl3(C), then there is somew ∈ W such that no adjoint
Hessenberg variety in B is equal to Xw. In particular, assume that the root system $

for G is irreducible and not of type A1 or A2. Let θ be the highest root in$ and let Wθ
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be the stabilizer of θ in W. Let w0 be the longest element of W . If y is a nonidentity
element of Wθ , then no adjoint Hessenberg variety in B is equal to Xyw0 .

We observe in the case where $ is irreducible, there is some function f such that
[W : Wθ ] ≥ f (dimC h) and limn→∞ f (n) = ∞. So, Theorem 1.7 applies to an
eventually negligible portion of the Schubert varieties in B. When $ is of type A or
type C, we can do much better.

Theorem 1.8 (See Theorem 4.4 below). Assume G = GLn(C) or G = SLn(C) and
let B be the Borel subgroup of G consisting of upper triangular matrices. Fixw in the
Weyl group W = Sn of G. If there exist x ∈ g and a Hessenberg space H ⊆ g such
that B(x, H) = Xw, then w avoids the pattern [4231].

It follows from Theorem 1.8 and the Marcus–Tardos Theorem (see [21]) that the
number of Schubert varieties in SLn(C)/B that are (equal to) adjoint Hessenberg
varieties grows at most exponentially in n. So, in type A, the portion of Schubert
varieties that are equal to adjoint Hessenberg varieties is eventually negligible. Amore
precise enumerative result appears in Section 4, along with a proof of the theorem.
Given Theorem 1.8, one might hope that the set of Type A Schubert varieties that are
(equal to) adjoint Hessenberg varieties is characterized by pattern avoidance. This is
not the case. We show in Section 4 that X[14235] is an adjoint Hessenberg variety in
SL5(C)/B5(C), but X[1423] is not an adjoint Hessenberg variety in SL4(C)/B4(C).

We also obtain a negative answer to the isomorphism question for adjoint Hessen-
berg varieties in type A, although our result applies to far fewer Schubert varieties
than Theorem 1.8.

Theorem 1.9 (See Theorem 5.1 below) Suppose n ≥ 6. Assume that G = GLn(C) or
G = SLn(C) and B is the subgroup of G consisting of upper triangular matrices. Let
w0 be the longest element of the Weyl group W = Sn, and for i ∈ [n − 1], let si ∈ W
be the transposition (i, i + 1). If 3 ≤ i ≤ n − 3, then there do not exist x ∈ g and
Hessenberg space H ⊆ g such that B(x, H) is isomorphic with Xsiw0 .

We prove in Section 5 that under the conditions given in Theorem 1.9, there is
no irreducible adjoint Hessenberg variety B(x, H) with the same Betti numbers as
Xsiw0 . In fact, we show that unless (n, i) ∈ {(8, 3), (8, 5)}, no such B(x, H) has
the same Euler characteristic as Xsiw0 . We use the following result, reminiscent of the
restriction χ(B(x, H)) = |W | obtained by DeMari et al. in [10] under the assumption
that b ⊆ H and x is regular semisimple.

Proposition 1.10 (See Proposition 5.3 below). Let G and B be as in Theorem 1.9. If
the adjoint Hessenberg variety B(x, H) is irreducible and of codimension one in B,
then χ(B(x, H)) is divisible by (n − 2)!.

We do not know the answer to the general isomorphism problem for adjoint Hes-
senberg varieties, and pose the following question. Observe that [653421] ∈ S6 is the
“first” Schubert variety to which Theorem 1.9 applies.

Question 1.11 Is there an adjoint Hessenberg variety (in a flag variety for an arbitrary
reductive group) that is isomorphic to the Schubert variety X[653421] in the flag variety
of type A5?
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One might also consider Question 1.11 for the Schubert variety X[4231] in the flag
variety of type A3. It follows from either Theorem 1.7 or Theorem 1.8 that X[4231] is
not equal to any adjoint Hessenberg variety, and X[4231] is the “first” type A Schubert
variety to which these theorems apply. However, there is an adjoint Hessenberg variety
in SL4(C)/B with the same Betti numbers as X[4231] (see Example 5.2 below).

We have a type C version of Theorem 1.8. Consider the embedding φ : Sp2n(C) →
SL2n(C) whose image stabilizes the alternating form ⟨., .⟩ given by

⟨ei , e j ⟩ =

⎧
⎨

⎩

1 i < j = 2n + 1 − i,
−1 i > j = 2n + 1 − i
0 otherwise.

Here e1, . . . , e2n denotes the standard basis of C2n . One obtains from this the embed-
ding φ∗ of the type CWeyl group into S2n whose image consists of those permutations
w satisfying w2n+1−i = 2n + 1 − wi for all i .

Theorem 1.12 (See Theorem 6.10 below). Let G = Sp2n(C) and let B ≤ G be
the Borel subgroup whose image under φ consists of upper triangular matrices. Fix
w ∈ W. If there exist x ∈ g = sp2n(C) and a subspace H of g such that [b, H ] ⊆ H
and B(x, H) = Xw, then φ∗(w) avoids the pattern [4231].

Our proof of Theorem 1.12 utilizes an interesting fact relating adjoint Hessenberg
varieties in typesA andC. Let E be the linear transformation onC2n such that ⟨v,w⟩ =
vtrEw for all v,w ∈ C2n , and define the automorphism σ of GA := SL2n(C) by

σ (g) = E(gtr)−1E−1.

Then GC := φ(Sp2n(C)) is the group of σ -fixed points in GA. Moreover, if BA is the
group of upper triangular matrices in GA, then σ fixes BA setwise, and BC := (BA)

σ

is the image under φ of the Borel subgroup of Sp2n(C) described in Theorem 1.12.
We observe that the action of σ on GA induces an automorphism of the variety BA :=
GA/BA. The map φ′ from BC := GC/BC to BA := GA/BA sending gBC to φ(g)BA
is a well-defined embedding, and (BA)

σ = φ′(BC ) (see for example [20, Proposition
6.1.1.1]).

Theorem 1.13 (See Theorem 6.3 below) If VC is an adjoint Hessenberg variety in the
type C flag variety BC , then there is some adjoint Hessenberg variety VA in the type
A flag variety BA such that φ′(VC ) = (VA)

σ .

The paper follows the outline presented above. Section2 is devoted to background,
notation, and terminology. Our study of general Hessenberg varieties and a proof of
Theorem 1.6 can be found in Section 3, in which we prove also that the answer to
the equality question (Question 1.3) is “No” for adjoint Hessenberg varieties in all
Lie types. We then focus our attention on adjoint Hessenberg varieties in the type A
flag variety in Sections 4 and 5, proving Theorems 1.8 and 1.9. Finally, our study of
adjoint Hessenberg varieties in the type C flag variety is undertaken in Section 6, in
which we prove Theorems 1.12 and 1.13.
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2 Definitions, Notation, and Preliminary Results

We review here various known results about algebraic groups, Weyl groups, flag vari-
eties, and Hessenberg varieties. A reader familiar with basic facts about these objects
can skip this section and refer back when necessary. Facts stated without reference or
argument can be found in at least one of [4, 7, 12, 18].

As in the introduction, G is a reductive algebraic group with Borel subgroup B
and maximal torus T ≤ B. The Lie algebras of G, B, T are denoted, respectively, by
g, b, h. The Weyl group of G is W := NG(T )/T where NG(T ) is the normalizer in
G of T . We fix a representative ẇ ∈ NG(T ) for each Weyl group element w ∈ W .

2.1 The Root System and the Bruhat Order

The Lie algebra g admits a Cartan decomposition,

g = h ⊕
⊕

γ∈$

gγ .

Here $ ⊆ h∗ is the root system for g, and each root space gγ is a 1-dimensional
subspace of g satisfying [h, x] = γ (h)x whenever h ∈ h and x ∈ gγ . We can
choose a set of simple roots ) ⊆ $ such that each γ ∈ $ is either a non-negative
linear combination of elements of ) or a non-positive such combination. This gives a
decomposition $ = $+ ⊔ $−. We may (and do) choose ) so that

b = h ⊕
⊕

γ∈$+
gγ .

There is a partial order on $ given by

β ≼ γ whenever γ − β is a nonnegative linear combination of positive roots. (2.1)

Each finite, irreducible root system$ contains a unique maximal element with respect
to this order called the highest root of $ and denoted herein by θ ∈ $+.

If g = sln(C) and h the Cartan subalgebra of diagonal matrices, we write $ =
{ϵi − ϵ j : 1 ≤ i ̸= j ≤ n} with positive roots $+ = {ϵi − ϵ j ∈ $ : i < j}. Here
ϵi : h → C denotes projection to the i-th diagonal entry. We assume furthermore that
) = {ϵi − ϵi+1 : 1 ≤ i ≤ n − 1}. The highest root of $ in this case is θ = ϵ1 − ϵn .

The restriction of the adjoint action of G on g to NG(T ) preserves the Cartan
decomposition and factors through T . Thus we get an action of W on h∗ that restricts
to an action on $. For each α ∈ ), there is the simple reflection sα ∈ W , which acts
on h∗ as the reflection through the hyperplane orthogonal to α. In the type A case if
α = ϵi −ϵi+1 we write sα = si for the corresponding simple transposition exchanging
i and i + 1 in W = Sn . The set S of simple reflections generates W , and the length
ℓ(w) ofw ∈ W is the shortest length of a list of elements of S (called a reduced word)
whose product is w.
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TheBruhat order≤Br is the partial order onW defined by v ≤Br w if some reduced
word for v is a subword of some reduced word for w. We write w0 for the unique
maximal element of W in the Bruhat order.

2.2 The FlagVariety and Schubert Varieties

The group G acts on the flag variety B := G/B by translation. Each B-orbit in this
action contains exactly one coset ẇB (w ∈ W ), and so

B =
⊔

w∈W
BẇB/B.

WewriteCw for BẇB/B, called a Schubert cell. Each Schubert cell is isomorphic to
the affine spaceCℓ(w). The closure ofCw in G/B is the Schubert variety Xw := Cw.
We have that

Xw =
⊔

v≤Brw

Cv.

2.3 Adjoint HessenbergVarieties

Let H ⊆ g be a Hessenberg space, that is, a subspace such that [b, H ] ⊆ H , and fix
x ∈ g. Equivalently, H ⊆ g is B-invariant with respect to the Adjoint action (see for
example [19, Definition 8.1.22]). Given a root γ ∈ $, let πγ denote the projection of
g to the root space gγ . As dimC gγ = 1 and the T -module h ⊕ ⊕

β∈$\{γ } gβ has no
quotient isomorphic to gγ , it follows from basic facts about direct sums that, for any
Hessenberg space H in g,

if πγ (H) ̸= 0 then gγ ⊆ H . (2.2)

Wewill use (2.2) and its consequences repeatedly below, frequently without reference.
As in the introduction, we define the adjoint Hessenberg variety corresponding to

x and Hessenberg space H by

B(x, H) := {gB ∈ B : g−1 · x ∈ H}.

Here g · x := Ad(g)(x).

2.4 Type A: The Tableau Criterion, Pattern Avoidance, and Flags inCn

Now, we consider the case G = SLn(C) or G = GLn(C). We record here various
results that will be used below. In this case, W is isomorphic to the symmetric group
Sn . We write elements of Sn in one-line notation,

w = [w1w2 · · ·wn]
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where wi = w(i) in the natural action of w on [n] := {1, 2, . . . , n}.
Given w ∈ Sn and 1 ≤ j ≤ k ≤ n, we write I j,k(w) for the j th smallest element

of {wi : 1 ≤ i ≤ k}. So, for example, if w = [52341] ∈ S5, then I2,4(w) = 3, as
3 is the second smallest element of {5, 2, 3, 4}. The following characterization of the
Bruhat order can be found in [4].

Theorem 2.1 (Tableau Criterion). Let v,w ∈ Sn. Then v ≤Br w if and only if I j,k(v) ≤
I j,k(w) for all 1 ≤ j ≤ k ≤ n.

Given v ∈ Sm andw ∈ Sn withm ≤ n, we say thatw contains the pattern v if there
exist 1 ≤ i1 < i2 < . . . < im ≤ n such that, for all j, k ∈ [m], wi j < wik if and only
if v j < vk . So, for example, [631524] ∈ S6 contains the pattern [4231] ∈ S4, realized
by the subsequence 6352. We say w avoids v if w does not contain the pattern v. For
example, [631524] avoids [4321]. We write Sn(v) for the set of allw ∈ Sn avoiding v.
Marcus and Tardos proved in [21] that (as conjectured independently by Stanley and
Wilf) for every fixed v, |Sn(v)| grows exponentially with n. It follows immediately
that

lim
n→∞

|Sn(v)|
|Sn|

= 0. (2.3)

In this type A setting, we take B to be the Borel subgroup consisting of upper
triangular matrices in G. Write e1, e2, . . . , en for the standard basis of Cn . We set
Fk := C{e j : j ∈ [k]}, and observe that B is the stabilizer in G of the flag

F• := (0 = F0 ⊂ F1 ⊂ . . . ⊂ Fn = Cn).

As G acts transitively on the set

Flag(n) := {V• = (0 = V0 ⊂ V1 ⊂ . . . ⊂ Vn = Cn) : dimC Vi = i}

of all full flags in Cn , we obtain a bijection B = G/B → Flag(n) defined by

gB 1→ gF• := (0 = gF0 ⊂ gF1 ⊂ . . . ⊂ gFn = Cn). (2.4)

Let us assume (temporarily) that a Hessenberg space H contains the Borel algebra
b of upper triangular matrices in g. In this context, we define the Hessenberg vector
h = h(H) := (h1, . . . , hn) by setting h j to be the largest integer i > j such that
the elementary matrix Ei j is contained in H , if such i exists, and h j = j otherwise.
We observe that the sequence h is weakly increasing (as H is Ad(B)-invariant) and
satisfies h j ≥ j for all j (as b ⊆ H ). Moreover, the Hessenberg space H is determined
by, and uniquely determines, theHessenberg vector h(H). A direct computation shows
that under the restriction of the bijection from (2.4) to B(x, H) we have

B(x, H) ≃ {V• ∈ Flag(n) : xVi ⊆ Vhi for all i ∈ [n] where h = h(H)}. (2.5)

We will make use this identification below whenever it is convenient to do so.
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We will also consider the image of a Schubert variety Xw = BẇB/B under this
identification. To this end, for w ∈ Sn and p, q ∈ [n], we set

rp,q(w) := |{i ∈ [p] : wi ∈ [q]}| .

Then, the correspondence between cosets and flags maps Xw to the set of all V•
satisfying

dimC(Vp ∩ Fq) ≥ rp,q(w)

for all p, q ∈ [n], see [13, §10.5].

2.5 Representations of Reductive Groups

Returning to the setting of an arbitrary reductive algebraic group G, let ψ : G →
GL(V ) be a (rational, finite-dimensional) representation. Then the differential dψ :
g → gl(V ) is a Lie algebra homomorphism. Bothψ(T ) and dψ(h) are diagonalizable
and thus there exist (finitely many) λ ∈ h∗ such that

• V = ⊕
λ Vλ with Vλ ̸= 0, where

• dψ(h)(v) = λ(h)v for all v ∈ Vλ and h ∈ h, and
• ψ(t) acts as a scalar transformation on Vλ for all t ∈ T and all λ.

Each such λ ∈ h∗ is a weight and the subspace Vλ is called a weight space of V . We
write / for the set of all weights of all representations of G, which forms a lattice
in h∗. The set of weights of the adjoint representation Ad : G → GL(g) is $ ⊔ {0},
hence $ ⊆ /.

If ψ is irreducible, then there is a unique 1-dimensional ψ(B)-invariant subspace
of V , which is a weight space. The associated weight λ is called the highest weight
of ψ , and we write V (λ) for V . Any nonzero vλ ∈ V (λ)λ is a highest weight vector
in V (λ).

A weight λ ∈ / is dominant if λ is the highest weight for some irreducible
representation. The action of W on h∗ induces an action of W on /. We observe that
dimC Vλ = dimC Vw(λ) for every weight λ for V and every w ∈ W . A dominant
weight λ is strictly dominant if the stabilizer of λ in W is trivial. The partial order ≼
on $ defined above in (2.1) extends to a partial order on /. We write ρ ≼ λ if λ − ρ

is a nonnegative linear combination of positive roots.
We remark that every representation ψ ′ of g is of the form ψ ′ = dψ for some

representation ψ of G, and that such a ψ ′ is irreducible if and only if ψ is irreducible.
Thus,wemay also use the terminology defined abovewhen referring to representations
of the Lie algebra g. Finally, a representation ψ ′ : g → gl(V ) makes V a module
for the universal enveloping algebra U (g), and we make no distinction between such
representations and modules. Given dominant λ ∈ /, we refer to V (λ) as a highest
weight module for G, or equivalently U (g).
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3 Highest Weight Hessenberg Varieties

In this section we study Questions 1.3, 1.4, and 1.5 for general Hessenberg varieties of
Definition 1.2. We prove Theorem 1.6 (see Theorem 3.6 below), establishing that the
answer to all three questions in this context is “Yes.” Then we show that the answer
to the equality problem, Question 1.3, for adjoint Hessenberg varieties is “No,” by
proving Theorem 1.7 (see Theorem 3.7 below).

Let ψ : G → GL(V (λ)) be the irreducible representation of G with highest
weight λ, and fix a highest weight vector vλ ∈ V (λ)λ. SinceC{vλ} is aψ(B)-invariant
subspace of V (λ), it follows that the Hessenberg variety B(vλ, H) is invariant under
left translation by B and therefore a union of Schubert varieties.We call theHessenberg
variety B(vλ, H) a highest weight Hessenberg variety.

Highest weight Hessenberg varieties defined using the adjoint representation have
been studied by Tymoczko and by Abe–Crooks in [1, 27]. Suppose g is simple and
consider the adjoint representation ofG on g, which is irreducible. The highest weight
for the adjoint representation is the highest root θ ∈ $. We fix nonzero Eθ ∈ gθ , so
Eθ is a highest weight vector for the adjoint representation of G. Abe and Crooks give
an explicit description of the highest weight Hessenberg variety B(Eθ , H) as a union
of Schubert varieties in the type A case whenever b ⊆ H . The following result, due
to Tymoczko (see [27, Prop. 4.5]), describes a collection of Schubert varieties equal
to highest weight adjoint Hessenberg varieties.

Proposition 3.1 (Tymoczko). Suppose γ ∈ $ is a root in the same W-orbit as θ and
let w be the maximal length element of W such that w−1(θ) = γ . Let Hγ be the
B-submodule of g generated by Ew−1(θ) = Eγ . Then, Xw = B(Eθ , Hγ ).

The B-module Hγ defined in Proposition 3.1 is known as a Demazure module.
Such modules are defined similarly for arbitrary irreducible representations of G, and
will be used below to prove Theorem 1.6.

3.1 Demazure Modules

Throughout this section, we let λ denote a fixed dominant weight and V (λ) the asso-
ciated highest weight module for G, or equivalently, for U (g). For each w ∈ W , fix a
nonzero vector vw(λ) in the (one-dimensional) weight space V (λ)w(λ). TheDemazure
module Hw(λ) is the U (b)-submodule of V (λ) generated by vw(λ). As remarked in
[19, Definition 8.1.22], Hw(λ) is B-invariant and so is a Hessenberg space in V (λ).
Indeed, Hw(λ) is the B-submodule of V (λ) generated by vw(λ).

Example 3.2 We record here some observations regarding these constructions in the
adjoint case that will be useful in Sects. 4 and 6. Given a root γ ∈ $ in the same
W -orbit as θ , the Demazure module Hγ ⊆ g is the B-submodule generated by a root
vector Eγ ∈ gγ . Since each Hγ is B-invariant, each is also T -invariant and it follows
that gβ ∩ Hγ ̸= ∅ implies gβ ⊆ Hγ .

Motivated by this property, we define a second partial order on $ by

γ ≤ β whenever gβ ⊆ Hγ . (3.1)
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We note that γ ≤ β implies γ ≼ β, where ≼ is defined in (2.1), but not vice versa.
For example, say g = sl4(C) so $ is of type A3. Set

H21 := sl4(C) ∩ C{Ei j : i ∈ {1, 2}},

Then Hϵ2−ϵ1 ⊆ H21, since conjugation by any upper triangular matrix b ∈ B maps
the root vector E21 ∈ gϵ2−ϵ1 into H21. Since E34 /∈ H21, this shows ϵ2 − ϵ1 " ϵ3 − ϵ4.
On the other hand, ϵ2 − ϵ1 ≼ ϵ3 − ϵ4, since ϵ2 − ϵ1 ∈ $− and ϵ3 − ϵ4 ∈ $+.

The partial order ≤ on $ defined in (3.1) is a special case of the partial order on
{w(λ) : w ∈ W } for λ ∈ / a dominant weight defined and studied by Proctor in [24].
The following lemma summarizes [24, Proposition 3] in the adjoint case.

Lemma 3.3 (Proctor). Given γ , γ ′ ∈ $ we have γ ≤ γ ′ if and only if there exist
positive roots γi1 , . . . , γik ∈ $+ and nonnegative integers n1, n2, . . . , nk such that
γ ′ = γ + n1γi1 + n2γi2 + · · · + nkγik and γ + n1γi1 + · · · + nmγim ∈ $ for all
1 ≤ m ≤ k.

3.2 Proof of Theorem 1.6

Let J denote the set of simple reflections stabilizing λ, i.e., J = {sα : sα(λ) = λ}. The
subgroupWJ generated by J is the stabilizer of λ inW . Recall that the set of left cosets
ofWJ inW can be identified with the set of shortest left coset representatives, denoted
herein by W J (see [4, Section 2.4]). The Bruhat order on W induces an order on W J ,
and we have τ ≤Br w implies τ J ≤Br w

J where τ J and w J denote the shortest coset
representatives for τWJ and wWJ , respectively (see [4, Proposition 2.5.1]). Note that
there is a bijection between W J and the set {w(λ) : w ∈ W } given by τ 1→ τ (λ) and
thus Hw(λ) = HwJ (λ).

The next result is essentially Theorem 2.9 of the paper [6] of Bernšteı̆n, Gel’fand
and Gel’fand. In [6] it is assumed that g is the Lie algebra of a simply connected
semisimple group, that Hw(λ) is the module for the nilpotent radical of b generated by
vw(λ), and that λ is strictly dominant. As we explain below, the proof of [6, Theorem
2.9] given therein remains valid under the weaker assumptions stated in Theorem 3.4
below.

Theorem 3.4 (Bernšteı̆n-Gel’fand-Gel’fand). Suppose λ is a dominant weight for the
reductive Lie algebra g, with associated irreducible representationψ ′ : g → gl(V (λ))

and highest weight vector vλ. Let τ, w be distinct elements of W J . Then τ <Br w if
and only if Hτ (λ) ⊂ Hw(λ).

A key point in the proof of [6, Theorem 2.9] is [6, Proposition 2.7], which says that
of ≼ is a partial order on W satisfying

(a) if w ∈ W , s ∈ S, and ℓ(sw) = ℓ(w)+ 1 then w ≼ sw; and
(b) if τ ≼ w and s ∈ S then either sτ ≼ w or sτ ≼ sw;

then ≼=≤Br. Using the same ideas used to prove [6, Proposition 2.7], one can
prove that if ≼ is a preorder on W satisfying (a), (b), and
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(c) if τ J = w J then τ ≼ w and w ≼ τ

then τ ≼ w if and only if τ J ≤Br w
J . The proof by Bernšteı̆n, Gel’fand, and Gel’fand

of their Theorem 2.9 can then be followed directly to prove our Theorem 3.4: one
observes that [6, Lemma 2.10] holds in reductive groups and uses that lemma to show
that ifWJ is the stabilizer inW of dominant weight λ then the preorder ≼ onW given
by τ ≼ w if and only if Hτ (λ) ⊆ Hw(λ) satisfies (a), (b) and (c). Note that we must
assume τ J ̸= w J for [6, Lemma 2.10] to apply (with τ being replaced by w′ in their
notation), but this is captured in the assumptions of Theorem 3.4 and our claims hold
trivially in the case of equality.

With this terminology in place, we can now prove the following result, generalizing
Proposition 3.1 above.

Theorem 3.5 Suppose λ is a dominant weight for G, with associated highest weight
representation ψ : G → GL(V (λ)). Let µ be a weight of V (λ) such that µ and λ

are in the same W-orbit and let w ∈ W be the longest element satisfying w(λ) = µ.
Then Xw−1 = B(vλ, HwJ (λ)).

Proof Our assumptions on w imply w = w J y0 where w J ∈ W J and y0 is the longest
element of WJ . We have τ ≤Br w if and only if τ J ≤Br w

J in this case.
As C{vλ} is ψ(B)-invariant, so is the general highest weight Hessenberg variety

B(vλ, HwJ (λ)). Therefore, B(vλ, HwJ (λ)) is a union of Schubert cells. We see now that

B(vλ, HwJ (λ)) =
⋃

τ∈W
ψ(τ̇ )(vλ)∈HwJ (λ)

Cτ−1 . (3.2)

Note thatψ(τ̇ )(vλ) ∈ HwJ (λ) if and only if Hτ J (λ) ⊆ HwJ (λ). Combining (3.2) and the
fact that τ ≤Br w if and only if τ−1 ≤Br w

−1 with Theorem 3.4 (applied toψ ′ = dψ),
we see that

B(vλ, HwJ (λ)) = Xw−1 ,

as desired. ⊓⊔

We are ready to prove Theorem 1.6, restated here for convenience.

Theorem 3.6 Let λ be a strictly dominant weight for G, with associated highest weight
representation ψ : G → GL(V (λ)) and highest weight vector vλ. Then, Xw =
B(vλ, Hw−1(λ)).

Proof Suppose λ is a strictly dominant weight of G. Then, J = {e} and W J = W .
Theorem 3.6 now follows immediately from Theorem 3.5 since the weights w(λ) for
w ∈ W are pairwise distinct. ⊓⊔
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3.3 Schubert Varieties that are Not Adjoint HessenbergVarieties

We prove herein that for “most” reductive G there are Schubert varieties in B that
are not adjoint Hessenberg varieties. The following is a restatement of Theorem 1.7
above.

Theorem 3.7 If some nonabelian simple ideal of g is isomorphic with neither sl2(C)
nor sl3(C), then there is some w ∈ W such that no adjoint Hessenberg variety in B
is equal to Xw. In particular, assume that the root system $ for G is irreducible and
not of type A1 or A2. Let θ be the highest root in $ and let Wθ be the stabilizer of θ

in W. Let w0 be the longest element of W . If y is a nonidentity element of Wθ , then
no adjoint Hessenberg variety in B is equal to Xyw0 .

We begin by recalling some well-known facts about the structure of reductive
groups. Given reductive G, let Z0 be the connected component of the identity in
the center Z(G). Then G = Z0G ′, with the commutator subgroup G ′ ≤ G being
semsimple. Moreover, Z0 ∩ G ′ is finite. (See for example [26, Proposition 7.3.1,
Corollary 8.1.6].) AsG ′ is semisimple, there exist nonabelian simple algebraic groups
L1, . . . , Lk such that G ′ is the central product L1 ◦ . . . ◦ Lk (see for example [26,
Theorem 8.1.5]). Set K := Z0∩G ′ andG := G/K ∼= G ′/K × Z0/K . The projection
of G onto G induces a surjection of the corresponding Lie algebras. This surjection
of Lie algebras has trivial kernel since K is finite and thus its Lie algebra is trivial.
So, if g, g′ and z are the respective Lie algebras of G, G ′ and Z0, then g = z ⊕ g′.
Each Li has finite center Z(Li ) ≤ Z(G ′), and Z(G ′) = ∏k

i=1 Z(Li ). For i ∈ [k],
let li be the Lie algebra of Li . Considering the projection of G ′ onto G ′/Z(G ′) ∼=
L1/Z(L1)× . . .× Lk/Z(Lk), we see that g′ = ⊕k

i=1 li . The upshot of all this is that

• g = z ⊕ ⊕k
i=1 li ;

• if i, j ∈ [k] with i ̸= j , then Ad(Li ) acts trivially on both z and l j ;
• if, for each i ∈ [k], li = hi ⊕ ⊕

α∈$i
li,α is a Cartan decomposition of li , then

h := z⊕ ⊕k
i=1 hi is a Cartan subalgebra of g, and g = h⊕ ⊕k

i=1
⊕

α∈$i
li,α is a

Cartan decomposition.

For each i , let Ti and Bi be, respectively, a maximal torus and Borel subgroup of Li
with Ti ≤ T ∩Bi and Bi ≤ B. Wemay assume that the Cartan subalgebra hi described
above is the Lie algebra of Ti , that bi := hi ⊕

⊕
α∈$+

i
li,α is the Lie algebra of Bi , and

that $ = ⋃k
i=1 $i . Set Wi = NLi (Ti )/Ti . Then W = ∏k

i=1 Wi . Let θi be the highest
root in the (irreducible, crystallographic) root system $i .

Lemma 3.8 Let2 be an irreducible, crystallographic root systemwith associatedWeyl
group X, and let α ∈ 2. The stabilizer of α in X is trivial if and only if 2 is of type
A1 or A2.

Proof We observe that α ∈ 2 has trivial stabilizer in X if and only if the X -orbit X(α)
has size |X |. If 2 has rank three or more, then |X(α)| ≤ |2| < |X | (see for example
[8, p. 43]). If 2 is of type B2 or G2, then |2| = |X |, but since 2 contains roots of two
different lengths, |X(α)| < |2|. Inspection shows that if 2 is of type A1 or A2 then
every root in 2 has trivial stabilizer in X . ⊓⊔
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Lemma 3.9 Let λ be a strictly dominant weight for G, with associated highest weight
representation ψ : G → GL(V (λ)) and 0 ̸= v ∈ V (λ). Then there is some b ∈ B
such that ψ(b)v projects nontrivially onto V (λ)λ.

Proof By the Lie-Kolchin Theorem (see for example [17, Theorem 17.6]) there is
some 1-dimensional B-invariant subspace of the B-submodule of V (λ) generated by
v. The only 1-dimensional B-invariant subspace of V (λ) is the highest weight space
V (λ)λ. ⊓⊔

We are ready to prove Theorem 3.7; recall that ẇ is a fixed representative in NG(T )
for the Weyl group element w ∈ W .

Proof of Theorem 3.7 We pick j ∈ [k] such that $ j is neither of type A1 nor of type
A2. Applying Lemma 3.8 with (2, X ,α) = ($ j ,Wj , θ j ), we see that θ j has nontrivial
stabilizer inWj . So, fix 1 ̸= y ∈ Wj with y(θ j ) = θ j . Letw0, j be the longest element
of Wj . Note that ℓ(yw0, j ) < ℓ(w0, j ) so in particular, w0, j "Br yw0, j .

Assume for contradiction that there exist x ∈ g and a Hessenberg space H ⊆ g
such that Xyw0, j = B(x, H). Write

x = x0 +
k∑

i=1

xi ,

with x0 ∈ z and xi ∈ li for all i ∈ [k]. As B = eB ∈ Xyw0, j , we see that x ∈ H .
If x j = 0 then ẇ · x = x for all w ∈ Wj . In particular, ẇ0, j B ∈ B(x, H), which is
impossible since w0, j "Br yw0, j . So, we assume now that x j ̸= 0.

By Lemma 3.9, there is some b ∈ Bj such that 0 ̸= b−1 ·x projects nontrivially onto
gθ j . As Xyw0, j is B-invariant and contains ẏẇ0, j B, we see that (bẏẇ0, j )

−1 · x ∈ H .
Now

(bẏẇ0, j )
−1 · x = ẇ−1

0, j · (ẏ−1 · (b−1 · x)).

As gθ j is Bj -invariant, we see that b−1 ·x projects nontrivially onto gθ j . As y ∈ (Wj )θ j ,
also ẏ−1 · (b−1 · x) projects nontrivially onto gθ j . Finally, w

−1
0, j = w0, j maps θ j to

−θ j and it follows that (bẏẇ0, j )
−1 · x projects nontrivially onto g−θ j .

As H projects nontrivially onto the 1-dimensional root space g−θ j , we see that
g−θ j ⊆ H . Since g−θ j generates the Bj -module l j , wemust have l j ⊆ H . In particular,
x j ∈ H , hence x − x j ∈ H . As Ad(L j ) fixes x − x j , it follows that for all w ∈ Wj ,

ẇ−1 · x = x − x j + ẇ−1 · x j ∈ H .

In particular, ẇ−1
0, j · x ∈ H , leading again to the impossibility ẇ0, j B ∈ Xyw0, j . ⊓⊔

Example 3.10 Consider the Adjoint representation of SLn(C) on g = sln(C). In this
case θ = ϵ1 − ϵn and the stabilizer of θ is the subgroup Wθ = ⟨s2, . . . , sn−2⟩. Thus,
Wθ ̸= {e} whenever n ≥ 4 (that is, whenever the rank of sln(C) is at least 3). By
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Theorem 3.7, every element of the right coset Wθw0, except for w0, has the property
that the corresponding Schubert variety cannot be realized as a Hessenberg variety.
Note that the reflection

sθ = sn−1 · · · s2s1s2 · · · sn−1 = (1, n)

is the minimal length coset representative for Wθw0. Thus,

Wθw0 \ {w0} = Wθ sθ \ {w0} = {ysθ : y ∈ Wθ , y ̸= y0}

where y0 denotes the longest element of Wθ . This shows Xysθ is not equal to any
adjoint Hessenberg variety B(x, H) for all y ∈ Wθ \ {y0}.

Note the set Wθ sθ \ {w0} from Example 3.10 consists of all w ∈ Sn such that
w1 = n, wn = 1, and there exist k, ℓ ∈ {2, . . . , n − 1} such that k < ℓ and wk < wℓ.
In particular, all such w contain the pattern [4231]. The results of Section 4 extend
Theorem 3.7 to a general statement about pattern avoidance in the type A case.

To conclude, we note that our proof of Theorem 3.7 can be adjusted easily to obtain
the following converse to Theorem 3.6.

Proposition 3.11 Let λ be a dominant but not strictly dominant weight for G, with
associated highest weight representation ψ : G → GL(V (λ)). Then there exists
w ∈ W such that no pair (x ∈ V (λ), H ⊆ V (λ)) with H a Hessenberg space satisfies
B(x, H) = Xw.

4 The Equality Question for Type A Adjoint Hessenberg Varieties
and Pattern Avoidance

Assume that G = SLn(C) throughout. In this section we prove Theorem 1.8, which
says that if w ∈ Sn contains the pattern [4231], then there is no adjoint Hessenberg
variety in B equal to Xw. We will see in Example 4.7 that there is no pattern avoidance
criterion characterizing the set of type A Schubert varieties that are adjoint Hessenberg
varieties. Theorem 1.8 remains true if we take G = GLn(C), as can be shown with
minor modifications, omitted herein, to our proofs.

As mentioned earlier, Theorem 1.8 is much more powerful than Theorem 1.7 when
only type A is considered. Indeed, Theorem 1.7 implies that the number of w ∈ Sn
such that Xw is not equal to an adjoint Hessenberg variety grows at least quadratically
with n, while Theorem 1.8 says that the number of such w is at least n!− cn for some
constant c.

We begin by recording two basic facts that we will use repeatedly. Each matrix
x ∈ sln(C) can be written as a linear combination of elementary matrices {Ei j :
(i, j) ∈ [n] × [n]}. We define ci j : sln(C) → C to be the coordinate function
returning the coefficient of Ei j in such a combination. Throughout this section, we
write g · x for Ad(g)(x) whenever g ∈ SLn(C) and x ∈ sln(C).
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Lemma 4.1 Let x ∈ sln(C) with ci j (x) ̸= 0 for some (i, j) ∈ [n] × [n] such that
i ̸= j . If (k, ℓ) ∈ [n] × [n] with k ≤ i and ℓ ≥ j then there exists b ∈ B such that
ckℓ(b · x) ̸= 0.

Proof First suppose that (k, ℓ) = ( j, i). This implies j < i and so bα := I + αE ji is
an element of B for all α ∈ C. A direct computation shows that c j i (bα · x) = c j i (x)+
α(ci i (x) − c j j (x)) − α2ci j (x). Thus, there exists α ∈ C such that c j i (bα · x) ̸= 0.
We now consider (k, ℓ) ̸= ( j, i), i.e., the case that i ̸= ℓ or k ̸= j . When i ̸= ℓ

the lemma follows from the existence of b1, b2 ∈ B such that ciℓ(b1 · x) ̸= 0 and
ckℓ(b2 ·(b1 ·x)) ̸= 0. Symmetrically, when j ̸= k the lemma follows from the existence
of b1, b2 ∈ B such that ck j (b1 · x) ̸= 0 and ckℓ(b2 · (b1 · x)) ̸= 0. Therefore, to settle
the case (k, ℓ) ̸= ( j, i), it suffices to assume that i = k or j = ℓ.

When i = k and j = ℓ the statement of the lemma is immediate so let us assume
that this is not the case. If i = k then for each α ∈ C, bα := I + αE jℓ is an element
of B and a direct computation shows that ciℓ(bα · x) = ciℓ(x) − αci j (x). Thus, there
exists α ∈ C such that ciℓ(bα · x) ̸= 0. Similarly, If ℓ = j then bα := I + αEki is
an element of B and ck j (bα · x) = ck j (x) + αci j (x), which implies that there exists
α ∈ C such that ck j (bα · x) ̸= 0. ⊓⊔

Note that Lemma 4.1 gives us an explicit description of the partial order ≤ on $

defined in Section 3.1. Indeed, we have gϵi−ϵ j = C{Ei j } and the lemma tells us that
there exists b ∈ B such that ckℓ(b · Ei j ) ̸= 0 so gϵk−ϵℓ is contained in the Demazure
module Hϵi−ϵ j . In summary,

ϵi − ϵ j ≤ ϵk − ϵℓ ⇔ k ≤ i and ℓ ≥ j .

Note that this description of ≤ can also be obtained from Lemma 3.3.

Lemma 4.2 Say H ⊆ sln(C) is a Hessenberg space and Ei j ∈ H with i ̸= j . If
k, ℓ ∈ [n] with k ̸= ℓ and both k ≤ i and ℓ ≥ j hold, then Ekℓ ∈ H. In other words,
if gβ ⊆ H then gγ ⊆ H for all γ ∈ $ such that β ≤ γ .

Proof By Lemma 4.1 there exists b ∈ B such that ckℓ(b · Ei j ) ̸= 0. Since H is
B-invariant, we have b · Ei j ∈ H implying gϵk−ϵℓ ⊆ H and Ekℓ ∈ H . ⊓⊔

Theorem 1.8 will follow directly from the next result.

Lemma 4.3 Assume w ∈ Sn and 1 ≤ i < j < k < ℓ ≤ n with wℓ < w j < wk < wi .
Define τ ∈ Sn by

τm :=

⎧
⎨

⎩

wm m /∈ { j, k},
wk m = j,
w j m = k.

Let x ∈ g = sln(C) and let H ⊆ sln(C) be a Hessenberg space. If the Schubert cell
Cw−1 is contained in the adjoint Hessenberg variety B(x, H), then τ̇−1B ∈ B(x, H).
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Proof Given w, x , and H as in the statement, we assume Cw−1 ⊆ B(x, H), and write
cpq for cpq(x) whenever p, q ∈ [n] with p ̸= q. Set

x ′ :=
∑

p ̸=q

cpq Epq , and s := x − x ′ ∈ h.

Then x = x ′ + s. We will show that both τ̇ · x ′ and τ̇ · s lie in H , thus proving the
lemma.

We know that ẇ · x ∈ H , since ẇ−1B ∈ Cw−1 ⊆ B(x, H). In particular, Epq ∈ H
whenever p ̸= q and cpq(ẇ · x) ̸= 0. As cpq(ẇ · x ′) = cpq(ẇ · x) whenever p ̸= q,
it follows that ẇ · x ′ ∈ H . Therefore, ẇ · s = ẇ · x − ẇ · x ′ ∈ H .

We see now that to show τ̇ · s ∈ H , it suffices to show

ẇ · s − τ̇ · s ∈ H . (4.1)

For p ∈ [n − 1], we write h p for Epp − Ep+1 p+1 ∈ h. There exist cp ∈ C such that

s =
n−1∑

p=1

cph p.

We observe that ẇ · Emm = Ewmwm for all m ∈ [n], and similar for τ̇ . A direct
computation shows that, whether or not k = j + 1, we obtain

ẇ · s − τ̇ · s = (c j−1 − c j − ck−1 + ck)(Ewkwk − Ew jw j ).

If (c j−1 − c j − ck−1 + ck) = 0, then (4.1) holds. So, we assume from now on that

c j−1 − c j − ck−1 + ck ̸= 0. (4.2)

In order to show that (4.1) holds, we must show that

Ewkwk − Ew jw j ∈ H . (4.3)

We claim that there is some b ∈ B with c jk(b · x) ̸= 0. Given this claim, as i < j
and ℓ > k, Lemma 4.1 implies that there exists b′ ∈ B such that ciℓ(b′b · x) ̸= 0. It
follows that

cwiwℓ(ẇb′b · x) ̸= 0. (4.4)

Since (ẇb′b)−1B ∈ Cw−1 ⊆ B(x, H), we see that ẇb′b · x ∈ H . It follows from (4.4)
that Ewiwℓ ∈ H . Using Lemma 4.2, we see that Ewkw j ∈ H . Finally, as Ew jwk ∈ b
and H is a Hessenberg space, we get

Ewkwk − Ew jw j = −[Ew jwk , Ewkw j ] ∈ H .

Thus (4.3) and (4.1) hold.
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We aim now to prove the claim that there exists b ∈ B with c jk(b · x) ̸= 0. By
Lemma 4.1, such b exists if there are p, q such that all of p ̸= q, j ≤ p, q ≤ k,
and cpq ̸= 0 hold. We may therefore assume no such p, q exist. In that case (see for
example [8, p.61]) c jk(b · x ′) = 0 for all b ∈ B. Now we choose

b := I + E jk ∈ B.

From direct calculation (or by [8, p.61]), we see that

b · s = s + (c j−1 − c j − ck−1 + ck)E jk .

It follows now from (4.2) that

c jk(b · x) = c jk(b · x ′)+ c jk(b · s) ̸= 0

as desired. This completes our proof that τ̇ · s ∈ H .
It remains to show that τ̇ ·x ′ ∈ H . Equivalently, wemust show that, for all p, q ∈ [n]

with p ̸= q,
if cpq ̸= 0 then Eτpτq ∈ H . (4.5)

Since ẇ−1B ∈ B(x, H), we know that Ewpwq ∈ H whenever p ̸= q and cpq ̸= 0.
Therefore, (4.5) holds whenever {p, q} ∩ { j, k} = ∅. For all remaining pairs (p, q),
we will choose appropriate pairs (d, e) and (s, t) of indices such that

(ws, wt ) = (τp, τq), d ≤ p, e ≥ q, ws ≤ wd , and wt ≥ we.

Assertion (4.5) follows in each case from an argument of the following form:

“Since cpq ̸= 0, it follows from Lemma 4.1 that there is some b ∈ B such that
cde(b · x) ̸= 0. Therefore, cwdwe (ẇb · x) ̸= 0. As (ẇb)−1B ∈ Cw−1 ⊆ B(x, H),
we see that Ewdwe ∈ H . By Lemma 4.2, Ewswt ∈ H .”

An exhaustive list of pairs (p, q) and corresponding pairs (d, e) and (s, t) is given
in the table below.

(p, q) (d, e) (s, t)

( j, k) (i, ℓ) (k, j)
( j, i) (i, j) (k, i)

( j, q), q /∈ {i, k} (i, q) (k, q)
(ℓ, j) (k, ℓ) (ℓ, k)

(p, j), p /∈ {k, ℓ} (p, k) (p, k)
(k, j) ( j, k) ( j, k)

(k, q), q ̸= j ( j, q) ( j, q)
(ℓ, k) (i, ℓ) (ℓ, j)

(p, k), p /∈ { j, ℓ} (p, ℓ) (p, j)

We conclude that (4.5) holds and our proof is complete. ⊓⊔
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We can now prove Theorem 1.8, restated here for the reader’s convenience.

Theorem 4.4 Let w ∈ Sn. If some adjoint Hessenberg variety B(x, H) ⊆ SLn(C)/B
is equal to the Schubert variety Xw, then w avoids the pattern [4231].

Proof It is well-known and straightforward to show that, given permutations σ and
w, w contains the pattern σ if and only if w−1 contains σ−1. Since [4231] is its own
inverse, the theorem will follow once we show that if B(x, H) = Xw−1 , thenw avoids
the pattern [4231].

If B(x, H) = Xw−1 then Cw−1 ⊆ B(x, H). If w contains the pattern [4231] then
τ̇−1B ∈ B(x, H), with τ as in Lemma 4.3. We observe that ℓ(τ ) > ℓ(w), since τ is
obtained from w by exchanging the positions of two letters that appear in ascending
order in w. It follows that τ "Br w and τ−1 "Br w

−1. This forces B(x, H) ̸= Xw−1 .
⊓⊔

As mentioned in the introduction, the Marcus–Tardos Theorem guarantees that the
number |Sn(4231)| of permutations in Sn avoiding [4231] is bounded above by some
exponential function of n. In particular,

lim
n→∞

|Sn(4231)|
|Sn|

= 0.

So, for large n, Schubert varieties in SLn(C)/B that are also Hessenberg varieties
in SLn(C)/B are extremely rare. To our knowledge, the best exponential bounds for
|Sn(4231)| known currently are (for all large enough n)

10.271n ≤ |Sn(4231)| ≤ 13.5n,

due to Bevan, Brignall, Elvey Price and Pantone in [5]. It is worth remarking that we
do not know if there is any constant c > 1 such that the number of Schubert varieties
in SLn(C)/B that are (equal to) Hessenberg varieties in SLn(C)/B is at least cn .

We can use similar reasoning as that used in the proof of Lemma 4.3 to argue that
certain Schubert varieties in SL4(C)/B are not equal to any Hessenberg variety in
SL4(C)/B. These arguments do not extend as easily to pattern avoidance results, but
we include one example here for the sake of clarity. Example 4.6 below completely
characterizes which Schubert varieties are equal toHessenberg varieties in SL4(C)/B.

Lemma 4.5 Assume n = 4. If w ∈ {[4123], [2341]} then no adjoint Hessenberg
variety is equal to Xw−1 .

Proof First, we consider w = [4123]. Note that permutations σ = [2314] and τ =
[1342] are the Bruhat-minimal elements of S4 such that σ " w and τ " w. We
argue that given x ∈ sl4(C) and Hessenberg space H ⊆ sl4(C) such that B(x, H) ⊆
SL4(C)/B is a B-invariant Hessenberg variety with Xw−1 ⊆ B(x, H), then either
σ̇−1B ∈ B(x, H) or τ̇−1B ∈ B(x, H). This proves Xw−1 # B(x, H) and thus Xw−1

is not equal to a Hessenberg variety.
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To begin, write

x =
∑

(p,q)∈[4]×[4]
cpq Epq

where cpq = cpq(x) for all p, q.
We define an integer q0 ∈ [5] as follows. If {q ∈ [4] : cpq ̸= 0 for some p ̸=

q} = ∅ (i.e. if x is a diagonal matrix) then we set q0 = 5. Otherwise, set q0 :=
min{q ∈ [4] : cpq ̸= 0 for some p ̸= q}.

Suppose first that q0 = 1 or q0 = 2. By Lemma 4.1, there exists b ∈ B such
that c12(b · x) ̸= 0 and thus c41(ẇ · b · x) ̸= 0. Since Xw−1 ⊆ B(x, H), we know
b−1ẇ−1B ∈ B(x, H) and therefore E41 ∈ H . It follows that H = sl4(C). So,
B(x, H) = SL4(C)/B contains both σ̇−1B ∈ B(x, H) and τ̇−1B ∈ B(x, H) in this
case.

We assume now that q0 ≥ 3. This implies, in particular, that

c21 = c31 = c41 = c12 = c32 = c42 = 0,

hence
x = c11E11 + c22E22 +

∑

(p,q)∈[4]×{3,4}
cpq Epq . (4.6)

If c11 ̸= c22 then there exists b ∈ B such that c12(b · x) ̸= 0. (This is easily verified by
direct calculation.) Since B(x, H) is B-invariant, we see that B(x, H) = B(b · x, H).
Thus, if c11 ̸= c22 we can argue B(x, H) = SL4(C)/B as above. So, we assume
c11 = c22 for the remainder of the proof.

If q0 = 3, then cp3 ̸= 0 for some p ∈ {1, 2, 4}. By Lemma 4.1, there exists b ∈ B
such that c13(b · x) ̸= 0 and therefore c42(ẇ · b · x) ̸= 0. Since b−1ẇ−1B ∈ B(x, H),
we get E42 ∈ H . Thus,

sl4(C) ∩ C{Epq : p ∈ [4], q ∈ {2, 3, 4}} ⊆ H .

Since we are working under the assumptions of (4.6) above and c11 = c22, we have

τ̇ · x − x ∈ sl4(C) ∩ C{Epq : p ∈ [4], q ∈ {2, 3, 4}} ⊆ H

and since x ∈ H (because eB ∈ Xw−1 ⊆ B(x, H)), we get τ̇ · x ∈ H in this case.
Now assume q0 ≥ 4. So, cpq = 0 for all q ∈ {1, 2, 3} and p ̸= q. Thus (4.6)

becomes:

x = c11E11 + c11E22 + c33E33 +
∑

p∈[4]
cp4Ep4 (4.7)

As above, a direct computation shows that if c11 ̸= c33 then there exists b ∈ B such
that c13(b · x) ̸= 0. The arguments of the previous paragraph then imply τ̇−1B ∈
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B(b · x, H) = B(x, H). We therefore assume that c11 = c33 for the remainder of the
proof.

If q0 = 4 then cp4 ̸= 0 for some p ∈ {1, 2, 3}. By Lemma 4.1 there exists b ∈ B
such that c14(b · x) ̸= 0 and therefore c43(ẇ · b · x) ̸= 0. This implies E43 ∈ H and
thus

sl4(C) ∩ C{Epq : p ∈ [4], q ∈ {3, 4}} ⊆ H .

The assumptions (4.7) and c11 = c33 now imply σ̇ · x − x ∈ H and thus σ̇−1B ∈
B(x, H) in this case.

Finally, if q0 = 5 then we must have

x = c11E11 + c11E22 + c11E33 + c44E44.

If c11 ̸= c44 then there exists b ∈ B such that c14(b · x) ̸= 0 and the argument of
the previous paragraph implies σ̇−1B ∈ B(b · x, H) = B(x, H). We may therefore
assume c11 = c44. Since x ∈ sl4(C), this is possible if and only if x = 0, which in
turn implies B(x, H) = B and so σ̇−1B, τ̇−1B ∈ B(x, H).

The proof for w = [2341] follows from similar reasoning using σ = [3124] and
τ = [1423]. Exchanging the roles of rows and columns in the proof above yields the
desired result. For brevity, we omit the details here. ⊓⊔
Example 4.6 Let n = 4. In this case, Xw−1 is an adjoint Hessenberg variety if and
only if

w /∈ {[4231], [2341], [4123], [1342], [3124]}.

Indeed, the first three elements of the set above are exactly the patterns from Theo-
rem 4.4 and Lemma 4.5. The proof that Xw−1 is not equal to an adjoint Hessenberg
variety when w = [1342] or w = [3124] is similar to that of Lemma 4.5. Finally,
the remaining 19 permutations can each be realized as an adjoint Hessenberg vari-
ety. Indeed, 12 of these permutations have the property that Xw−1 can be realized as
highest weight adjoint Hessenberg varieties by Proposition 3.1. Of the remaining 12
permutations that are not maximal length coset representatives for S4/⟨s2⟩, five appear
above and the remaining 7 can be realized as Hessenberg varieties using the data from
Table 1. In this table we denote H as a matrix with starred entries; this means that

H = sl4(C) ∩ C{Ei j : entry (i, j) contains a ∗ }.

Given Theorem 1.8, it is natural to ask whether the property that Xw is an adjoint
Hessenberg variety is characterized by pattern avoidance. This is not the case, as the
next example shows.

Example 4.7 Let n = 5 and w = [13425] ∈ S5. A direct computation shows when

H = sl5(C) ∩ C{E12, E13, E14, E15, E25, E35}
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Table 1 Answer to the equality question for all Schubert varieties Xw−1 where w ∈ S4 is such that
ℓ(ws2) > ℓ(w)

w ∈ S4 such that
ℓ(ws2) > ℓ(w)

Xw−1 = B(x, H)
in SL4(C)/B?

x H

[1234] yes E12 + E24

⎡

⎢⎢⎣

0 ∗ ∗ ∗
0 0 0 ∗
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦

[1243] yes E12 + E24

⎡

⎢⎢⎣

0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦

[1342] no − −

[2134] yes E13 + E34

⎡

⎢⎢⎣

0 0 ∗ ∗
0 0 ∗ ∗
0 0 0 ∗
0 0 0 0

⎤

⎥⎥⎦

[2143] yes E13 + E24

⎡

⎢⎢⎣

0 0 ∗ ∗
0 0 ∗ ∗
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦

[2341] no - -

[3124] no - -

[3142] yes E13 + E24

⎡

⎢⎢⎣

0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 0 0

⎤

⎥⎥⎦

[3241] yes E13 + E24

⎡

⎢⎢⎣

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 0 0

⎤

⎥⎥⎦

[4123] no - -

[4132] yes E13 + E24

⎡

⎢⎢⎣

0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

⎤

⎥⎥⎦

[4231] no - -

we get that B(E12 + E25, H) = Xw−1 . Therefore, although w must avoid the pattern
[1342] when n = 4 in order to be realized as an adjoint Hessenberg variety, this is not
the case when n = 5.

As we have seen in Section 3 every highest weight Hessenberg variety is B-
invariant. The question of whether or not an arbitrary adjoint Hessenberg variety
is B-invariant is much more nuanced than in the highest weight case. Indeed, Exam-
ples 4.6 and 4.7 exhibit B-invariant adjoint Hessenberg varieties that are not highest
weight Hessenberg varieties. This motivates the following open question.
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Question 4.8 GivenanadjointHessenberg varietyB(x, H) such that x /∈ C{Eθ }, what
conditions on x and Hessenberg space H guarantee that B(x, H) is B-invariant? In
the case that B(x, H) is B-invariant, what conditions guarantee it is irreducible?

5 The IsomorphismQuestion for Type A Adjoint Hessenberg Varieties

Our goal is to prove the following result, which is a restatement of Theorem 1.9 above.

Theorem 5.1 Suppose n ≥ 6. Assume that G = GLn(C) or G = SLn(C) and B is
the Borel subgroup of G consisting of upper triangular matrices. Letw0 be the longest
element of the Weyl group W = Sn, and for i ∈ [n−1], let si ∈ W be the transposition
(i, i + 1). If 3 ≤ i ≤ n − 3, then there do not exist x ∈ g and subspace H ⊆ g such
that [b, H ] ⊆ H and B(x, H) is isomorphic with Xsiw0 .

Assume that we have fixed n ≥ 4. As each Schubert variety Xsiw0 is irreducible
of codimension one in the flag variety B, our plan is to study closely the structure
of adjoint Hessenberg varieties of codimension one in B. In particular, we study the
Euler characteristic of irreducible adjoint Hessenberg varieties of codimension one.
We will see that in all but two cases, if 3 ≤ i ≤ n − 3, no such variety has the same
Euler characteristic as Xsiw0 . The remaining two cases will be handled by examining
Betti numbers.

A few remarks are in order. First, Proposition 3.1 tells us that for all n ≤ 3, every
Schubert variety is equal to an adjoint Hessenberg variety and that for all n, Xs1w0

and Xsn−1w0 are adjoint Hessenberg varieties. Second, Theorem 5.1 does not resolve
the isomorphism question for the Schubert varieties Xs2w0 and Xsn−2w0 whenever
n ≥ 4. In fact, the existence Hessenberg varieties in B with the same Betti numbers
as Xs2w0 and Xsn−2w0 renders the methods used to prove Theorem 5.1 useless. Recall
that θ = ε1 − εn is the highest root in $. We define the Hessenberg space

H(−θ) := h ⊕
⊕

α∈$\{−θ}
gα.

As is standard, we define the Poincaré polynomial of a space X as

Poin(X , q) :=
∑

i≥0

dimC Hi (X;C)qi .

Example 5.2 We observe first for use here and later that for 1 ≤ i ≤ n − 1, Xsiw0

and Xsn−iw0 are isomorphic. Indeed, it follows from [25, Theorem 1.3] that for any
y ∈ Sn , Xw0 yw0

∼= Xy , and direct calculation shows that w0(siw0)w0 = sn−iw0. Let
n ≥ 4 and suppose v = s2w0 or v = sn−2w0. For either choice for v one can use the
Tableau Criterion of Theorem 2.1 to describe efficiently those y ∈ Sn that do not live
below v in the Bruhat order and then calculate

Poin(Xv,
√
q) = [n − 2]q !

(
[n]q [n − 1]q − q2n−3 − q2n−4

)
. (5.1)
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(Here [n]q = 1+ q + · · · + qn−1 and [n]q ! =
∏n

j=1[ j]q .) Using either [28, Theorem
1.1] or [23, Theorem 5.4 and Corollary 5.5] along with (5.1), one can verify that if
x = E1 n−1 + E2 n or x = E1 2 + E2 n then Poin(Xv, q) = Poin(B(x, H(−θ)), q).
We outline such a verification when x = E1 2 + E2 n . In the language of [28], λx =
(3, 1, . . . , 1). Given a filling T of the (English) Young diagram of shape λx with the
numbers 1 to n (without repetitions), let wT ∈ Sn be the permutation obtained from
reading the entries in T first from bottom to top in the first column and then from left
to right in the first row. Define sets

Yn := {w ∈ Sn : (wn−2, wn−1) = (n, 1) or (wn−1, wn) = (n, 1)}

and

Zn := {w ∈ Sn \ Yn : 1 ∈ {wn−1, wn}}.

According to [28, Theorem 1.1], B(x, H(−θ)) admits an affine paving with cells
indexed by those T such that wT ∈ Sn \ Yn . Moreover, if wT ∈ Sn \ Yn then the
dimension of the cell indexed by T is ℓ(wT ) ifwT /∈ Zn . This dimension is ℓ(wT )−1
if wT ∈ Zn . We conclude that

Poin(B(x, H(−θ)),
√
q) =

∑

w∈Sn\(Yn∪Zn)

qℓ(w) + 1 − q
q

∑

w∈Zn

qℓ(w).

Our claim now follows from direct calculations, using the identity
∑

0≤a<b≤m qa+b =
q
(m+1

2

)
q . A similar argument works when x = E1 n−1 + E2 n .

We do not know if either of Xs2w0 and Xsn−2w0 is isomorphic to either of the
Hessenberg varieties appearing in Example 5.2.

We now commence our study of codimension one adjoint Hessenberg varieties. Our
main goal is to prove Proposition 1.10, restated below for the reader’s convenience.

Proposition 5.3 If x ∈ g and H ⊆ g is a Hessenberg space such that B(x, H) is
irreducible and has codimension one in B, then the Euler characteristic χ(B(x, H))

is divisible by (n − 2)!.

Proposition 5.3 will be combined with Lemma 5.4 below to reduce the proof of
Theorem 5.1 to the examination of two special cases.

Lemma 5.4 Let S = {s1, . . . , sn−1} be the set of simple reflections in Sn. For i ∈
[n − 1], let W (i) be the subgroup of Sn generated by S \ {si }. Then

χ(Xsiw0) = n! − |W (i)| = n! − i !(n − i)!.

Proof It follows directly from the definitions that W (i) ∼= Si × Sn−i so |W (i)| =
i !(n − i)!. The bijection on Sn sending w to ww0 is an anti-automorphism of the
Bruhat order (see for example [4, Proposition 2.3.4]). It follows that the number of
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Schubert cells Cu not contained in Xsiw0 is equal to the number of u ∈ Sn such that
si " u, which is the number of elements of W (i). ⊓⊔

The remainder of this section consists of the proof of Proposition 5.3 followed by
the proof of Theorem 5.1. The key step is the next result, which we will prove after
stating a preliminary lemma.

Lemma 5.5 Assume that x ∈ g and that H ⊆ g is a Hessenberg space. If B(x, H) has
dimension dimB − 1 =

(n
2

)
− 1, then at least one of

• H = H(−θ), or
• x has an eigenspace of dimension n − 1

must hold.

In order to prove Lemma 5.5, we define two more “large” Hessenberg spaces. Set
β1 := εn−1 − ε1 and β2 := εn − ε2. For i ∈ {1, 2} we define the Hessenberg space

H(β i ) := h ⊕
⊕

α∈$\{−θ,βi }
gα.

Assume temporarily that G = GLn(C), x ∈ g and H ⊆ g is a Hessenberg space. The
map ι : SLn(C)/(B∩SLn(C)) → B sending g(B∩SLn(C)) to gB is an isomorphism.
Note that ι factors through the identification of eachofG/B and SLn(C)/(B∩SLn(C))
with the variety of full flags in Cn . Thus, if x ∈ sln(C) then B(x, H) = ι(B(x, H ∩
sln(C))), while if x /∈ sln(C) and H ⊆ sln(C) then B(x, H) = ∅. Therefore, the next
assumption is harmless.

Assumption 5.6 IfG = GLn(C) and H ⊆ g is a Hessenberg space, then H $ sln(C).

We continue nowunder our original assumption thatG = GLn(C)orG = SLn(C).
Given Assumption 5.6, the next lemma holds for Hessenberg spaces in either g =
sln(C) or g = gln(C).

Lemma 5.7 Let H ⊆ g be a Hessenberg space satisfying Assumption 5.6.

1. If dimC g/H = 1 then H = H(−θ).
2. If dimC g/H = 2 then H = H(βi ) for some i ∈ {1, 2}.
3. If dimC g/H > 2 then H ⊂ H(βi ) for some i ∈ {1, 2}.

Proof If gγ ⊆ H , then H contains the Demazure module in g generated by the root
vector Eγ so gβ ⊆ H for all β ≥ γ by (3.1). Now if π−θ (H) ̸= 0 then g−θ ⊆ H
and, as En1 ∈ g−θ generates the Demazure module g ∩ sln(C), we have H = g.
Therefore every proper Hessenberg subspace of g is contained in H(−θ) and (1)
follows. Moreover, if dimC g/H = 2 then H ⊂ H(−θ). For all γ ∈ $ \ {−θ}, we
have γ ≥ β1 or γ ≥ β2. Thus En−1,1 ∈ gβ1 and En2 ∈ gβ2 together generate the
B-module H(−θ)∩sln(C), and assertion (2) follows. The poset of Hessenberg spaces
in g satisfying Assumption 5.6, ordered by inclusion, is graded by dimension. Now
(3) follows from (2). ⊓⊔
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For x ∈ g and c ∈ C, set

multc(x) := dimC ker(x − cI ).

Lemma 5.5 follows directly from Lemma 5.7 and the next result. Indeed, if
H ̸= H(−θ) then by Lemma 5.7 we have H ⊆ H(βi ) for some i ∈
{1, 2}. Since dimB(x, H) ≤ dimB(x, H(βi )), Proposition 5.8 below implies that
maxc∈C(multc(x)) ≥ n − 1 whenever dimB(x, H) =

(n
2

)
− 1. As B(x, H) = ∅ or

B(x, H) = B whenever x is scalar, Lemma 5.5 follows.

Proposition 5.8 For i ∈ {1, 2} and x ∈ g, B(x, H(β i )) has dimension at most

max
((

n
2

)
− 2,

(
n − 1
2

)
− 1+max

c∈C
(multc(x))

)
.

Proof We claim first that it suffices to consider the case i = 1. Let σ0 ∈ GLn(C) be the
involution mapping ei to en+1−i for all i ∈ [n]. Define an automorphism r : G → G
by

r(g) = σ0(g−1)trσ0.

We observe that if b ∈ B then (b−1)tr is lower triangular, and thus r(b) ∈ B. Therefore
the map r : B → B sending gB to r(g)B is a well defined automorphism of B. A
direct calculation shows that

r(B(x, H(β2)) = B(σ0x trσ0, H(β1)).

Since x and σ0x trσ0 are conjugate, we see that the dimensions of B(x, H(β1)) and
B(x, H(β2)) are equal. Our claim follows.

Noting that h(H(β1))=(n−2, n, . . . , n), we consider themapπ : B(x, H(β1)) →
Pn−1 given by

π(V•) = V1.

As π is the restriction to B(x, H(β1)) of the projection of the product of Grassman-
nians

∏n−1
k=1 G(k, n) onto its first factor, π is a regular map. Let C be an irreducible

component of B(x, H(β1)) and let Y ∈ π(C). According to [16, Corollary 11.13],

dim C ≤ dim π(C)+ dim π−1(Y ). (5.2)

The fiber π−1(Y ) consists of all flags V• such that V1 = Y and Y + xY ⊆ Vn−2.
If Y is not x-invariant, then Y + xY is two-dimensional. In this case, we define
the (surjective) map ζ from π−1(Y ) to the Grassmannian of (n − 4)-dimensional
subspaces of Cn/(Y + xY ) (a projective variety) sending V• to Vn−2/(Y + xY ).
For every such subspace Z ′ = Z/(Y + xY ), ζ−1(Z ′) is isomorphic to the product
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Flagn−3 × P1. Indeed, ζ−1(Z ′) consists of all V• such that V1 = Y and Vn−2 = Z .
Choosing V2, . . . , Vn−3 is equivalent to choosing a flag in Vn−2/V1, and choosing
Vn−1 is equivalent to choosing a 1-dimensional subspace ofCn/Vn−2. It follows from
[16, Theorem 11.14] that π−1(Y ) is irreducible. We may apply [16, Theorem 11.12]
and well-known facts about Grassmannians and flag varieties to get

dim π−1(Y ) = dimG(n − 4, n − 2)+ dim(Flagn−3 × P1)

= 2(n − 4)+
(n−3

2

)
+ 1.

(5.3)

Combining (5.2) and (5.3), we get

dim C ≤ n − 1+ 2(n − 4)+
(
n − 3
2

)
+ 1 =

(
n
2

)
− 2,

and the claim of the Proposition follows in this case.
We are left with the case where every Y ∈ π(C) is x-invariant. We consider the map

from C to C sending V• to the eigenvalue of x on V1. As C is irreducible and therefore
connected, and the set of eigenvalues of x is discrete, there exists some eigenvalue c
of x such that every Y ∈ π(C) is spanned by an element of ker(x − cI ). It follows that

dim π(C) ≤ multc(x) − 1. (5.4)

For any Y ∈ π(C), π−1(Y ) consists of all flags V• such that V1 = Y . It follows that
π−1(Y ) is isomorphic with Flagn−1. Combining (5.2) and (5.4), we get

dim C ≤
(
n − 1
2

)
+multc(x) − 1.

This concludes the proof. ⊓⊔

With Lemma 5.5 in hand, we analyze the two cases arising from its conclusion
starting with the case in which x has an eigenspace of dimension n − 1. Recall from
Example 5.2 that Xs1w0 and Xsn−1w0 are isomorphic.

Lemma 5.9 Assume that x ∈ g has an eigenspace of dimension n − 1 and H ⊆ g is a
Hessenberg space. If B(x, H) is irreducible of codimension one in B, then B(x, H)

is isomorphic with Xs1w0 and Xsn−1w0 .

Proof We observe that if x has an eigenspace of dimension n − 1, then x is either
semisimple or conjugate to cI + E1n for some scalar c. We consider first the case
where x is semisimple. We may assume without loss of generality that there exist
distinct constants c, d such that xei = cei for i ∈ [n − 1], and xen = den . If H = g,
then B(x, H) = B. So, we assume that H ̸= g. By Lemma 5.7(1), H ⊆ H(−θ) and
so B(x, H) ⊆ B(x, H(−θ)). We will show that B(x, H(−θ)) has two irreducible
components, one of which is Xsn−1w0 with the other isomorphic to Xs1w0 . The claim
of the lemma in this case then follows immediately.



L. Escobar et al.

Since h(H(−θ)) = (n−1, n, . . . , n), we see thatB(x, H(−θ)) consists of all flags
V• such that xV1 ⊂ Vn−1. In particular, if V1 is x-invariant, then V• ∈ B(x, H(−θ)).
Define

C1 := {V• : V1 ⊂ C{ei : i ∈ [n − 1]}}.

As C{ei : i ∈ [n − 1]} = ker(x − cI ), we see that C1 ⊆ B(x, H(−θ)). By the flag
description of Schubert varieties and the fact that sn−1w0 = [n − 1 n n − 2 · · · 2 1], it
follows that

C1 = Xsn−1w0 .

Now set

C2 := {V• : en ∈ Vn−1}.

Wewill show thatB(x, H(−θ)) = C1∪C2, and that, with σ0 the involutionmapping ei
to en+1−i as above, C2 = σ0(Xs1w0), thereby completing our examination of the case
where x is semisimple. Let V• ∈ C2. If V1 is x-invariant, then V• ∈ B(x, H(−θ)). If
V1 is not x-invariant, then V1 = C{en + y} for some nonzero y ∈ C{ei : i ∈ [n − 1]}.
Now xV1 = C{den + cy}. If c = 0 then d ̸= 0 and xV1 = C{en} ⊂ Vn−1. If c ̸= 0
then

V1 + xV1 = C
{
en + y, en + y − 1

c
(den + cy)

}
= C{en + y, en},

the second equality holding since d ̸= c. Now xV1 ⊂ V1 + xV1 ⊂ Vn−1. In either
case, V• ∈ B(x, H(−θ)) so C2 ⊆ B(x, H(−θ)).

Conversely, sayV• ∈ B(x, H(−θ))\C1. If V1 = C{en}, then en ∈ Vn−1. Otherwise,
V1 = C{en+ y} for some nonzero y ∈ C{ei : i ∈ [n−1]}. Arguing as in the paragraph
just above, we see that en ∈ V1 + xV1 and therefore en ∈ Vn−1. We conclude that
V• ∈ C2 and B(x, H(−θ)) = C1 ∪ C2 as claimed.

Now s1w0 = [n n − 1 · · · 3 1 2]. By the flag description of Schubert varieties,
Xs1w0 = {V• : e1 ∈ Vn−1}. Now

σ0(Xs1w0) = σ0({V• : e1 ∈ Vn−1}) = {F• : en ∈ Fn−1} = C2,

the second equality following from σ0e1 = en .
It remains to examine the case where x is conjugate to cI + E1n for some c ∈ C

(and H ⊆ g is an arbitrary Hessenberg space). We claim that in this case, either
B(x, H) = ∅ or B(x, H) ≃ B(E1n, H). Without loss of generality, we may assume
x = cI + E1n . If B(x, H) ̸= ∅ then there is some g ∈ G such that g−1 · x ∈ H . Write
g = b1ẇb2 with b1, b2 ∈ B and w ∈ Sn . We see that ẇ−1b−1

1 · x ∈ b2 · H = H . Now

ẇ−1b−1
1 · x = cI + ẇ−1b−1

1 · E1n = cI + dEw−1
1 w−1

n
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for some d ∈ C∗. In particular, we see that πε
w−1
1

−ε
w−1
n
(H) ̸= 0, hence Ew−1

1 w−1
n

∈ H .

It follows that cI ∈ H . For arbitrary g ∈ G, the matrix g−1 · x = cI + g−1 · E1n lies
in H if and only if g−1 · E1n ∈ H . The claim follows.

Now B(E1n, H) is a highest weight Hessenberg variety for the adjoint representa-
tion and is therefore a union of Schubert cells. In particular, if B(x, H) is irreducible
and of codimension one, then B(x, H) ≃ Xsiw0 for some i ∈ [n − 1]. We observe
that if 1 < i < n − 1 then siw0 maps 1 to n and n to 1 and so lies in the same coset of
the stabilizer of θ = ε1 − εn as w0. On the other hand, neither s1w0 nor sn−1w0 lies
in the coset and so both are longest representatives of the coset containing them. The
lemma follows from Proposition 3.1 and Theorem 3.7 (and Lemma 5.4). ⊓⊔

We record the novel geometric results from the proof of Lemma 5.9 below.

Corollary 5.10 Let x be a semisimple matrix such that there exists distinct constants
c, d with xei = cei for i ∈ [n − 1] and xen = den. The adjoint Hessenberg variety
B(x, H(−θ)) is a union of two irreducible components, one equal to the Schubert
variety Xsn−1w0 and the other isomorphic to the Schubert variety Xs1w0 .

The following lemma, when combinedwith Lemmas 5.4, 5.5 and 5.9, will complete
the proof of Proposition 5.3.

Lemma 5.11 For every x ∈ g, the Euler characteristic χ(B(x, H(−θ))) is divisible
by (n − 2)!.

Proof We assume without loss of generality that x = xs + xn with xs diagonal and xn
an upper triangular, nilpotent matrix satisfying the assumptions of [23, Corollary 4.9].
Let C(x, H(−θ)) be the set of allw ∈ W such that the Schubert cellCw has nonempty
intersection with B(x, H(−θ)). By [23, Theorem 5.4] and its proof, the affine spaces
B(x, H(−θ)) ∩ Cw with w ∈ C(x, H) determine an affine paving of B(x, H(−θ)).
So,

χ(B(x, H(−θ))) = dimC H∗(B(x, H(−θ))) = |C(x, H(−θ))|.

Now by [23, Proposition 3.7], w ∈ C(x, H(−θ)) if and only if Ad(ẇ−1)(xn) ∈
H(−θ). We now write

xn =
∑

j<k

c jk E j,k

for some c jk ∈ C. It follows that C(x, H(−θ)) fails to contain exactly those w ∈
W such that w(−θ) = ε j − εk for pairs j < k satisfying c jk ̸= 0. In particular,
W \ C(x, H(−θ)) is a union of cosets of the stabilizer of −θ in W . As this stabilizer
is isomorphic with Sn−2, the lemma follows. ⊓⊔

We are now ready to prove Theorem 5.1.
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Proof of Theorem 5.1 Observe that Xsiw0 is irreducible. So, if there is some adjoint
Hessenberg variety B(x, H) ⊆ B isomorphic with Xsiw0 , then i !(n − i)! is divisible
by (n − 2)! by Proposition 5.3 and Lemma 5.4. However, if n ≥ 9 and 3 ≤ i ≤ n − 3,
then 0 < i !(n − i)! < (n − 2)!. Moreover, inspection shows that if 6 ≤ n ≤ 8 and
3 ≤ i ≤ n − 3, then (n − 2)! does not divide i !(n − i)! unless (n, i) ∈ {(8, 3), (8, 5)}.

Weassumenow thatn = 8 and i ∈ {3, 5}. In this case,wehaveχ(Xsiw0) = 8!−3!5!.
If B(x, H) is irreducible of codimension one in B, then we have by Lemmas 5.5
and 5.9 that H = H(−θ). Let x = xs + xn be the decomposition of x as in the proof
Lemma 5.11. Arguing as in that proof, we get that

χ(B(x, H(−θ))) = |C(x, H(−θ))| = 8! − 6! |{( j < k) : c jk ̸= 0}|.

It follows immediately that if χ(B(x, H(−θ))) = 8! − 3!5!, then xn = E jk for some
1 ≤ j < k ≤ n. Finally, one can use the formulas given in [23, Corollary 5.5] to
check that there is no Hessenberg variety B(xs + E jk, H(−θ)) in the flag variety
B = SL8(C)/B with Betti numbers equal to those of the Schubert varieties Xs3w0 and
Xs5w0 . For the sake of brevity, we omit these computations. ⊓⊔

6 Type C Adjoint Hessenberg Varieties

Recall from the introduction that the type C flag variety can be identified as the fixed-
point set of a type A flag variety under a certain automorphism σ . Similarly, the Type
A and Type C Schubert varieties are closely connected as each type C Schubert variety
is the variety of σ -fixed points of a type A Schubert variety (see [20, Chapter 6]). The
first main result of this section is that the same is true of type C Hessenberg varieties.
Namely Theorem 6.3 below says that every type C adjoint Hessenberg variety is the
variety of σ -fixed points of a type A Hessenberg variety and implies Theorem 1.13.
With this groundwork in place, we establish the type C pattern avoidance result stated
in Theorem 1.12 (see Theorem 6.10 below). We remark that many of our proofs in
this section would be considerably easier and shorter were we to assume that every
Hessenberg space H contains the Borel subalgebra b. However, to prove the results
in complete generality, we do not make this assumption below.

We begin by fixing the notation needed to define the automorphism σ . Let E be the
2n × 2n block matrix

E =
[

0 J
−J 0

]

where J is the n × n matrix with 1’s on the anti-diagonal, and 0’s elsewhere. We
follow [20, Chapter 6] and identify Sp2n(C) with the fixed point set of the involution
σ : SL2n(C) → SL2n(C) defined by σ (A) = E(Atr)−1E−1. Explicitly, consider the



Which Schubert Varieties are Hessenberg Varieties?

embedding φ : Sp2n(C) ↪→ SL2n(C) whose image stabilizes the alternating form
⟨−,−⟩ defined by

⟨ei , e j ⟩ =
{
1 if j = 2n + 1 − i and 1 ≤ i ≤ n,
0 otherwise.

(Here e1, . . . , e2n is the standard basis of C2n .) Then GC := φ(Sp2n(C)) is the group
of σ -fixed points in SL2n(C). Throughout this section we identify Sp2n(C) with GC .

The maximal torus T in SL2n(C) consisting of diagonal matrices and fixed Borel
subgroup B in SL2n(C) consisting of upper triangular matrices are stable under σ ,
and T σ (respectively, BC := Bσ ) is a maximal torus (respectively, Borel subgroup)
in GC . For i ∈ [2n], set

i ′ = 2n + 1 − i .

Let W be the Weyl group of Sp2n(C). The embedding φ induces an embedding φ∗ :
W → S2n with image WC := φ∗(W ) consisting of those w ∈ S2n satisfying w(i)′ =
w(i ′) for all i ∈ [2n]. We call such w signed permutations.

We will write σ for the differential dσ which is the involution of the Lie algebra
given by

σ : sl2n(C) → sl2n(C), σ (x) = Ex trE .

We identify sp2n(C) with gC := sl2n(C)σ . We observe that hσ is the Lie algebra of
T σ , and

hσ = {diag(d1, . . . , d2n) ∈ sl2n(C) : di = −di ′}. (6.1)

The involution σ also induces an involution of h∗ defined by

σ : h∗ → h∗, σ (ϵi ) = −ϵi ′ .

We describe now a surjective map from the type A root system $A to the type C root
system $C known as the folding map. Set ϵ̄i := ϵi − ϵi ′ and note that, by definition,
ϵ̄i = −ϵ̄i ′ . The folding map is now defined to be

ϕ : $A → $C , ϕ(ϵi − ϵ j ) =
1
2
(ϵ̄i − ϵ̄ j ). (6.2)

Let HC ⊆ gC be a type C Hessenberg space. Our first goal is to construct a
type A Hessenberg space H whose σ -fixed points are the elements of HC . Define
$HC := {γ ∈ $C : gγ ⊆ HC } and set

$H := {ϵi − ϵ j ∈ $A : ϕ(ϵi − ϵ j ) ∈ $HC } ⊆ $A. (6.3)
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With H ∩ h to be described below, we define H ⊆ sl2n(C) to be the subspace such
that

H = (H ∩ h) ⊕
⊕

ϵi−ϵ j∈$H

C{Ei j }. (6.4)

Given i, j ∈ [2n], we set

hi j := [Ei j , E ji ] = Eii − E j j ,

and define

H ∩ h :=C{h, hi j : h ∈ HC ∩ hσ and i, j ∈ [2n] such that ϵi −ϵ j , ϵ j − ϵi ∈ $H }.

The example below shows that the intersection of the type AHessenberg space defined
in (6.4) with the Cartan subalgebra depends on the roots $C in a nuanced way.

Example 6.1 Suppose n = 2, and hence $A is a root system of type A3 and $C a root
system of type C2. Write αi for the simple root ϵi − ϵi+1 ∈ $A. The simple roots in
$C are β1 = φ(α1) = φ(α3) and β2 = φ(α2). Now ($C )+ = {β1,β2,β1+β2, 2β1+
β2}. In the embedding of sp4(C) in sl4(C) described above, the positive root spaces
(gC )β1 , (gC )β2 , (gC )β1+β2 , and (gC )2β1+β2 are spanned respectively by E12 − E34,
E23, E13 + E24, and E14. The corresponding negative root spaces are spanned by the
transposes of the given matrices. Also, the Cartan subalgebra hσ of gC is spanned by
hβ1 = E11 − E22 + E33 − E44 and hβ2 = E22 − E33.

Say HC is the ad(bC )-module generated by (gC )−β1 , that is, HC is the Demazure
module in gC generated by E−β1 . Using direct calculation (or [8, p. 61]), we see that

HC = C{hβ1} ⊕ (gC )−β1 ⊕
⊕

β∈($C )+

(gC )β .

It follows that

$H = {−α1,−α3} ∪ ($A)+

and

H = C{h12, h34} ⊕ g−α1 ⊕ g−α3 ⊕
⊕

α∈($A)+

gα.

In particular, H ∩ h contains HC ∩ hσ strictly.
On the other hand, if HC is the Demazure module generated by (gC )−β2 then

HC = C{hβ2} ⊕ (gC )−β2 ⊕
⊕

β∈($C )+

(gC )β ,

$H = {−α2} ∪ ($A)+,
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and

H = C{h23} ⊕ (gC )−α2 ⊕
⊕

α∈($A)+

gα.

Thus this case, H ∩ h = HC ∩ hσ .

Remark 6.2 If $HC contains all negative simple roots of $C , then HC ∩ hσ = hσ is
the Cartan subalgebra of sp2n(C) and in this case, H ∩ h = h also.

We observe that the action of σ on SL2n(C) induces an automorphism of the type
A flag variety BA := SL2n(C)/B, which will also be denoted by σ . The map φ′

from BC := GC/BC to BA sending gBC to gB is a well-defined embedding, and
(BA)

σ = φ′(BC ) (see, for example, [20, Proposition 6.1.1.1]).
We can now state the main theorem of this section.

Theorem 6.3 Given a type C Hessenberg space HC ⊆ gC , let H be the subspace of
sl2n(C) defined as in (6.4) above.

(1) The subspace H is a type A Hessenberg space such that Hσ = HC.
(2) Let x ∈ gC . The image under φ′ of the type C Hessenberg variety BC (x, HC ) is

BA(x, H)σ .

We prove first that in Theorem 6.3, (1) implies (2). The proof of Theorem 6.3(1) is
delayed until after Lemma 6.7.

Proof of Theorem 6.3(2) We wish to show that φ′(BC (x, HC )) = BA(x, H)σ as vari-
eties. The set GC (x, HC ) := {g ∈ GC : g−1 · x ∈ HC } is a subvariety of GC invariant
under the right action of BC onGC whose image under themorphismµ : GC → BC is
BC (x, HC ). Let GA(x, H) := {g ∈ SL2n(C) : g−1 · x ∈ H}. Since GC = SL2n(C)σ ,
we have that GA(x, H)σ = GA(x, H) ∩ GC is a subvariety of GC .

Let us show that GA(x, H)σ = GC (x, HC ), as subvarieties of GC . By (1) of Theo-
rem 6.3 we have

GC (x, HC ) = {g ∈ GC : g−1 · x ∈ H , g−1 · x ∈ sl2n(C)σ }.

Given g ∈ GC , since x ∈ gC , we have g−1 · x ∈ gC and thus g−1 · x is σ -stable. It
follows that the constraints imposed by g−1 · x ∈ sl2n(C)σ are redundant, so indeed
GC (x, HC ) = GA(x, H)σ . In particular,

φ′(BC (x, HC )) = φ′(µ(GC (x, HC ))) = φ′(µ(GA(x, H)σ ))

as subvarieties of B. Finally, note that by definition of the maps,

φ′(µ(GA(x, H)σ )) = φ′({gBC ∈ BC : σ (g) = g, g−1 · x ∈ H})
= {gB ∈ B : σ (g) = g, g−1 · x ∈ H}
= BA(x, H)σ .

This concludes the proof. ⊓⊔
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Now we develop the tools needed to prove Theorem 6.3(1). Recall the partial order
≤ on the root system $ defined in Section 3.1 above, and the concrete description of
that order given in Lemma 3.3. Our next result tells us that the folding map interacts
nicelywithσ , is compatiblewith≤, and iswell-behavedwith respect to theWC -action.
A proof can be found in [20, Chapter 6.1].

Lemma 6.4 Let ϕ : $A → $C be the folding map defined as in (6.2). This map
satisfies each of the following conditions.

1. ϕ($+
A) = $+

C .
2. Given γ ∈ $C , ϕ−1(γ ) is precisely the σ -orbit of any γ ′ ∈ $A such that ϕ(γ ′) =

γ .
3. The map ϕ is compatible with the partial ordering ≤ on$A and$C , that is, given

γ1, γ2 ∈ $A, we have γ1 ≤ γ2 implies ϕ(γ1) ≤ ϕ(γ2).
4. ϕ is equivariant with respect to the canonical action of WC on $A and $C .

For use below, we recall that there is a simple description of the partial order ≤ on
the root system $A, given by

ϵi − ϵ j ≤ ϵk − ϵℓ ⇔ k ≤ i and ℓ ≥ j . (6.5)

Consider the surjective linear map

σ̄ : sl2n(C) → gC , σ̄ (x) = x + σ (x).

Note that σ̄ is not a Lie algebra homomorphism. However, the next lemma tells us
that σ̄ maps the root spaces of sl2n(C) onto those of sp2n(C).

Lemma 6.5 Let h ∈ hσ . For all 1 ≤ k, ℓ ≤ 2n with k ̸= ℓ, we have σ̄ (Ekℓ) ∈ gϕ(ϵk−ϵℓ)

and ϕ(ϵk − ϵℓ)(h) = (ϵk − ϵℓ)(h).

Proof Since Ekℓ is a root vector corresponding to the root ϵk − ϵℓ ∈ $A we have
[h, Ekℓ] = (ϵk − ϵℓ)(h)Ekℓ. As σ is an involution of sl2n(C) and σ (h) = h we get

σ ([h, σ (Ekℓ)]) =[h, Ekℓ] =(ϵk −ϵℓ)(h)Ekℓ ⇒ [h, σ (Ekℓ)]= (ϵk − ϵℓ)(h)σ (Ekℓ).

Thus,

[h, σ̄ (Ekℓ)] = [h, Ekℓ] + [h, σ (Ekℓ)]
= (ϵk − ϵℓ)(h)Ekℓ + (ϵk − ϵℓ)(h)σ (Ekℓ)

= (ϵk − ϵℓ)(h)σ̄ (Ekℓ).

To conclude the argument, we have only to show that ϕ(ϵk − ϵℓ)(h) = (ϵk − ϵℓ)(h).
Since h ∈ hσ , we have ϵk(h) = −ϵk′(h) for all k ∈ [2n] (see (6.1)). Thus,

ϕ(ϵk − ϵℓ)(h) =
1
2
(ϵ̄k − ϵ̄ℓ)(h) =

1
2
(ϵk − ϵk′ − ϵℓ + ϵℓ′)(h) = (ϵk − ϵℓ)(h)

as desired. ⊓⊔
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Before arguing that H is a type A Hessenberg space, we prove it is σ -invariant.

Lemma 6.6 Let HC ⊆ sp2n(C) be a type C Hessenberg space and H ⊆ sl2n(C) be
the subspace defined as in (6.4) above. Then σ (H) = H.

Proof It suffices to show that σ (H) ⊆ H . To do this, we check that

1. σ (Ei j ) ∈ H for all i, j such that ϵi − ϵ j ∈ $H , i.e., such that ϕ(ϵi − ϵ j ) ∈ $HC ,
2. σ (hi j ) ∈ H for all i, j such that ϵi − ϵ j , ϵ j − ϵi ∈ $H , and
3. σ (h) ∈ H for all h ∈ HC ∩ hσ .

Condition (3) follows immediately from the facts that h ∈ hσ and HC ∩ hσ ⊆ H .
Note that σ (Ei j ) ∈ C{E j ′i ′}, so to prove (1) it suffices to show that ϵ j ′ − ϵi ′ ∈ $H ,
i.e., that ϕ(ϵ j ′ − ϵi ′) ∈ $HC . But since

ϕ(ϵ j ′ − ϵi ′) =
1
2
(ϵ̄ j ′ − ϵ̄i ′) =

1
2
(ϵ̄i − ϵ̄ j ) = ϕ(ϵi − ϵ j ) (6.6)

we do indeed get ϕ(ϵ j ′ − ϵi ′) = ϕ(ϵi − ϵ j ) ∈ $HC .
Finally, we prove (2). Suppose i, j ∈ [2n] such that±(ϵi −ϵ j ) ∈ $H , and consider

σ (hi j ) = σ (Eii − E j j ) = −Ei ′i ′ + E j ′ j ′ = h j ′i ′ .

By (6.6), we have ϕ(ϵ j ′ − ϵi ′) = ϕ(ϵi − ϵ j ) ∈ $HC so ϵ j ′ − ϵi ′ ∈ $H and similarly
ϵi ′ − ϵ j ′ ∈ $H also. By the definition of H , this implies h j ′i ′ ∈ H , as desired. ⊓⊔

Next, we argue that $H is an upper order ideal with respect to the partial order ≤
on $A.

Lemma 6.7 Let HC ⊆ gC be a type C Hessenberg space. The corresponding subset
$H ⊂ $A defined as in (6.3) is an upper order ideal with respect to the partial order
≤ on $A.

Proof Suppose i, j ∈ [2n] such that ϵi − ϵ j ∈ $H and let ϵk − ϵℓ ∈ $A with
ϵk − ϵℓ ≥ ϵi − ϵ j . By Lemma 6.4, ϕ(ϵk − ϵℓ) ≥ ϕ(ϵi − ϵ j ). Since HC is BC -invariant,
$HC is an upper order ideal with respect to the partial order≤ on$C (see Section 3.1).
Thus as ϕ(ϵi −ϵ j ) ∈ $HC , we have ϕ(ϵk −ϵℓ) ∈ $HC and so ϵk −ϵℓ ∈ $H as desired.

⊓⊔
Proof of Theorem 6.3(1) We begin by arguing that [b, H ] ⊆ H , which proves that H
is a type A Hessenberg space. Since b = h⊕C{Ekℓ : 1 ≤ k < ℓ ≤ 2n}, we have only
to show that

(A) [h, x] ∈ H for all h ∈ h and x ∈ H , and that
(B) [Ekℓ, x] ∈ H for all 1 ≤ k < ℓ ≤ 2n and x ∈ H .

By the definition of H , we may write

x = h′ +
∑

1≤i< j≤n
±(ϵi−ϵ j )∈$H

di j hi j +
∑

ϵi−ϵ j∈$H

ci j Ei j
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for ci j , di j ∈ C and h′ ∈ HC ∩hσ . Assertion (A) admits a straightforward proof: since
h′ + ∑

±(ϵi−ϵ j )∈$H
di j hi j ∈ h, we have

[h, x] =
∑

ϵi−ϵ j∈$H

ci j [h, Ei j ] =
∑

ϵi−ϵ j∈$H

ci j (ϵi − ϵ j )(h)Ei j ∈ H

by the definition of H .
We turn to assertion (B). Let k, ℓ ∈ [2n] with k < ℓ. We have

[Ekℓ, x] = [Ekℓ, h′] +
∑

1≤i< j≤n
±(ϵi−ϵ j )∈$H

di j [Ekℓ, hi j ] +
∑

ϵi−ϵ j∈$H

ci j [Ekℓ, Ei j ]. (6.7)

To prove [Ekℓ, x] ∈ H , we argue that every Lie bracket appearing in each summand
on the right side of (6.7) is an element of H .

Case 1: Suppose i ̸= j with ϵi − ϵ j ∈ $H . First if {i, j} = {k, ℓ}, we have

[Ekℓ, Ei j ] =
{

0 if i = k and j = ℓ

−hi j if i = ℓ and j = k.

Thus if [Ekℓ, Ei j ] ̸= 0, then j = k < ℓ = i . In this case our assumption that
ϵi − ϵ j ∈ $H implies ϵ j − ϵi ∈ $H since $H is an upper-order ideal by Lemma 6.7.
Now hi j = [Ei j , E ji ] ∈ H , by definition of H∩h. On the other hand, if {i, j} ̸= {k, ℓ}
and [Ekℓ, Ei j ] ̸= 0 then [Ekℓ, Ei j ] ∈ gγ where γ = (ϵk−ϵℓ)+(ϵi −ϵ j ). In particular,
we have ϵi − ϵ j ≤ γ since ϵk − ϵℓ ∈ $+

A . This implies γ ∈ $H by Lemma 6.7, hence
[Ekℓ, Ei j ] ∈ gγ ⊆ H .

Case 2: Let i, j ∈ [2n] such that i < j and ϵi − ϵ j , ϵ j − ϵi ∈ $H . By definition
we must have hi j = Eii − E j j ∈ H ∩ h. Furthermore, we know [Ekℓ, hi j ] = (ϵℓ −
ϵk)(hi j )Ekℓ. Thus, we have only to show that ϵk−ϵℓ ∈ $H whenever (ϵℓ−ϵk)(hi j ) ̸=
0. Since

(ϵℓ − ϵk)(hi j ) = δℓi − δℓ j − δki + δk j ,

where δab is the Kronecker delta function, the condition (ϵℓ − ϵk)(hi j ) ̸= 0 implies
{i, j} ∩ {k, ℓ} ̸= ∅. Now, we consider the various possibilities and show that k ≤ j
and ℓ ≥ i in each case. Recall that i < j and k < ℓ by assumption.

• If i = k then k = i < j and ℓ > k = i .
• If i = ℓ, then it follows immediately that k < ℓ = i < j . Therefore, k < j and

ℓ ≥ i .
• If i ̸= k and i ̸= ℓ then our assumptions imply that either j = k or j = ℓ. In the
first case, we get i < j = k < ℓ, hence k ≤ j and ℓ > i . In the second case, we
get k < ℓ = j and ℓ = j > i .

Since k ≤ j and ℓ ≥ i , we see that ϵ j −ϵi ≤ ϵk−ϵℓ. The assumption that ϵ j −ϵi ∈ $H
implies ϵk − ϵℓ ∈ $H by Lemma 6.7, as desired.
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Case 3: Suppose h′ ∈ HC ∩ hσ . As above, we get [Ekℓ, h′] = (ϵℓ − ϵk)(h′)Ekℓ
and thus [Ekℓ, h′] ∈ H will follow if we are able to show ϵk − ϵℓ ∈ $H whenever
(ϵℓ − ϵk)(h′) ̸= 0. By Lemma 6.5, we have

[σ̄ (Ekℓ), h′] = −ϕ(ϵk − ϵℓ)(h′)σ̄ (Ekℓ) = (ϵℓ − ϵk)(h′)σ̄ (Ekℓ).

We observe that HC is a type C Hessenberg space, σ̄ (Ekℓ) ∈ bσ , and h′ ∈ HC .
It follows that [σ̄ (Ekℓ), h] ∈ HC . Hence, the assumption (ϵℓ − ϵk)(h′) ̸= 0 implies
σ̄ (Ekℓ) ∈ HC . However, since σ̄ (Ekℓ) spans the root space corresponding toϕ(ϵk−ϵℓ)

in gC , we have ϕ(ϵk − ϵℓ) ∈ $HC and thus ϵk − ϵℓ ∈ $H as desired.
Having settled all cases, we conclude that H is a type A Hessenberg space. To

complete the proof, we establish now that Hσ = HC . Since, by Lemma 6.6, H is
σ -stable we know Hσ = σ̄ (H) and we will show σ̄ (H) = HC . Since HC ⊆ H by
definition, the inclusion HC ⊆ σ̄ (H) is a consequence of σ̄ (HC ) = HC .

We verify that σ̄ (H) ⊆ HC . It is straightforward that σ̄ (h) ∈ HC if h ∈ HC ∩
hσ . Next, if ϵi − ϵ j ∈ $H then ϕ(ϵi − ϵ j ) ∈ $HC and Lemma 6.5 now implies
σ̄ (Ei j ) ∈ HC . Last, consider 1 ≤ i < j ≤ 2n such that ϵi − ϵ j , ϵ j − ϵi ∈ $H . Then
ϕ(ϵi − ϵ j ),−ϕ(ϵi − ϵ j ) ∈ $HC and by another application of Lemma 6.5, we get

σ̄ (Ei j ) ∈ bσ , σ̄ (E ji ) ∈ HC ⇒ [σ̄ (Ei j ), σ̄ (E ji )] ∈ HC .

Using the facts that σ (E ji ) ∈ C{Ei ′ j ′} and i = j ′ if and only if i ′ = j , we obtain

[Ei j , σ (E ji )] =
{
0 if j ̸= i ′

hi j if j = i ′.

Therefore we have

[σ̄ (Ei j ), σ̄ (E ji )] = [Ei j , E ji ] + [σ (Ei j ), E ji ] + [Ei j , σ (E ji )] + [σ (Ei j ), σ (E ji )]
= [Ei j , E ji ] + σ ([Ei j , E ji ])+ [Ei j , σ (E ji )] + σ ([Ei j , σ (E ji )])
= σ̄ ([Ei j , E ji ])+ σ̄ ([Ei j , σ (E ji )])
= c σ̄ (hi j )

with c ∈ {1, 2}. This implies σ̄ (hi j ) ∈ HC , and we conclude that σ̄ (H) ⊆ HC . ⊓⊔

6.1 Type C Pattern Avoidance

Recall that WC denotes the subgroup in S2n consisting of signed permutations. Thus
the notion of pattern avoidance as defined in Section 2.4 makes sense for elements
of WC . The objective of this section is to prove Theorem 1.12 using Theorem 6.10
below, generalizing the pattern avoidance result of Theorem 4.4 to the type C setting.

We may write each matrix in gC in terms of the Chevalley basis of type C, fixed as
in [20, Section 6.1]. Given γ ∈ $C , we denote by Eγ the corresponding root vector
and by cγ : sp2n(C) → C the coordinate function returning the coefficient of Eγ .
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Note that if ϵi − ϵ j ∈ $A such that ϕ(ϵi − ϵ j ) = γ then C{Eγ } = C{σ̄ (Ei j )} by
Lemma 6.5. In particular, for all y ∈ gC we have

cγ (y) ̸= 0 ⇔ ci j (y) ̸= 0 ⇔ c j ′i ′(y) ̸= 0 (6.8)

where ci j : sl2n(C) → C denotes the coordinate function returning the coefficient of
Ei j as in Section 4 above. We begin with the following statement, which is a Type C
analogue of Lemma 4.1.

Lemma 6.8 Let x ∈ gC and suppose cγ (x) ̸= 0 for some γ ∈ $C . For all β ∈ $C
such that β ≥ γ there exists b ∈ BC such that cβ(b · x) ̸= 0.

Proof Let γ ′,β ′ ∈ $A be such that ϕ(γ ′) = γ and ϕ(β ′) = β. By definition,
γ ′ ∈ {ϵi − ϵ j , ϵ j ′ − ϵi ′} and β ′ ∈ {ϵk − ϵℓ, ϵℓ′ − ϵk′} for some i, j, k, ℓ ∈ [2n] such
that i ̸= j and k ̸= ℓ. Since BC ⊆ B, by definition of the partial order ≤, we may
assume without loss of generality that γ ′ = ϵi − ϵ j and β ′ = ϵk − ϵℓ with β ′ ≥ γ ′,
i.e., k ≤ i and ℓ ≥ j . By (6.8), our assumption that cγ (x) ̸= 0 implies ci j (x) ̸= 0 and
to complete the proof of the lemma, it suffices to verify that there exists b ∈ BC such
that ckℓ(b · x) ̸= 0. Throughout the rest of the proof, α will be a parameter that can
take any complex value we choose.

If (k, ℓ) = ( j, i) then j < i and so bα = I + αE ji + ασ (E ji ) ∈ BC . We have
b−1
α = I − αE ji − ασ (E ji ) and σ (E ji ) = ±Ei ′ j ′ . Note that if σ (E ji ) = −Ei ′ j ′ ,
then we must have either i, j ≤ n or i, j > n so δi j ′ = 0 in that case. Thus for all
p, q ∈ [2n] we have

c j p(bα) =
{
1 if p = j
α(1+ δi j ′) if p = i

and cqi (b−1
α ) =

{
1 if q = i
−α(1+ δi j ′) if q = j

Using the fact that the (k, ℓ)-entry of the product of three 2n×2nmatrices X ,Y , and Z is

∑2n
p=1

∑2n
q=1 XkpYpq Zqℓ, we obtain

ckℓ(bα · x) = c j i (bα · x) = c j i (x)+ α(1+ δi j ′ )(ci i (x) − c j j (x)) − α2(1+ 3δi j ′)ci j (x).

Since (1+ 3δi j ′)ci j (x) ̸= 0, there exists α ∈ C such that c j i (bα · x) ̸= 0.
If i ̸= ℓ the lemma will follow from the existence of b1, b2 ∈ BC such that

ciℓ(b1 ·x) ̸= 0 and ckℓ(b2 ·(b1 ·x)) ̸= 0. Symmetrically, if j ̸= k the lemmawill follow
from the existence of b1, b2 ∈ BC such that ck j (b1 · x) ̸= 0 and ckℓ(b2 · (b1 · x)) ̸= 0.
Therefore, to settle the case (k, ℓ) ̸= ( j, i) it suffices to consider i = k or j = ℓ.
Since both follow from similar arguments, we only write the proof assuming k = i .
Moreover, we assume ℓ ̸= j since the case (i, j) = (k, ℓ) is trivial.

If ℓ = j ′ then b = I +αE jℓ ∈ BC . Since ciℓ(b · x) = ciℓ(x)−αci j (x) is a nonzero
polynomial inC[α], we can choose α such that ciℓ(b · x) ̸= 0. If ℓ ̸= j ′ define b ∈ BC
by

b :=
{
I + αE jℓ + αEℓ′ j ′, |{ j, ℓ} ∩ [n]| = 1
I + αE jℓ − αEℓ′ j ′, |{ j, ℓ} ∩ [n]| ̸= 1

,
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so

b−1 =
{
I − αE jℓ − αEℓ′ j ′, |{ j, ℓ} ∩ [n]| = 1
I − αE jℓ + αEℓ′ j ′, |{ j, ℓ} ∩ [n]| ̸= 1

.

Using the formula for the (k, ℓ)-entry of the product of three n × n matrices once
more, we obtain,

ciℓ(b · x) =
{
ciℓ(x) − αci j (x)+ αδiℓ′c j ′ℓ(x) − α2δiℓ′c j ′ j (x), |{ j, ℓ} ∩ [n]| = 1
ciℓ(x) − αci j (x) − αδiℓ′c j ′ℓ(x)+ α2δiℓ′c j ′ j (x), |{ j, ℓ} ∩ [n]| ̸= 1.

If i ̸= ℓ′ then it is immediate that we can choose α such that ciℓ(b · x) ̸= 0. Finally,
let’s suppose that i = ℓ′ and note that |{ j, ℓ}∩ [n]| = 1 if and only if |{ j, i}∩ [n]| ̸= 1.
Since x ∈ gC it follows that the coefficient of α in ciℓ(b · x) is −2ci j (x) ̸= 0. Since
ciℓ(b · x) is a nonzero polynomial in C[α] we can choose α such that ciℓ(b · x) ̸= 0. ⊓⊔

Proposition 6.9 Assume that x ∈ gC and that BC (x, HC ) ⊆ GC/BC is a type C
Hessenberg variety. Let w ∈ WC with BC ẇBC ⊆ BC (x, HC ). If H ⊆ sl2n(C) is the
type A Hessenberg space defined using HC as in (6.4) above, then the type A Schubert
cell BẇB is contained in BA(x, H).

Proof We write

x = h +
∑

γ∈$C

dγ Eγ

where dγ ∈ C, Eγ is a nonzero root vector in gγ ⊆ gC , and h ∈ hC . We set
x1 :=

∑
γ∈$C

dγ Eγ . So, x = h + x1. Note that cγ (x) = dγ for all γ ∈ $C .
To prove BẇB ⊆ BA(x, H), it suffices to show that uẇB ∈ BA(x, H) for all u in

the unipotent radical U of B. In particular, we must show

(uẇ)−1 · x = ẇ−1u−1 · h + ẇ−1u−1 · x1 ∈ H . (6.9)

SinceU is unipotent, the exponentialmapexp : u → U is a diffeomorphism.Therefore
we may write u = exp(y) for some y = ∑

p<q cpq(y)Epq ∈ u.
Now we compute u−1 · x1 and u−1 · h. By properties of the adjoint representation,

we obtain

u−1 · x1 = Ad(exp(−y))(x1) = exp(ad−y)(x1)

= x1 +
∞∑

m=1

1
m! ad

m
−y(x1) = x1 +

∞∑

m=1

∑

γ∈$C

1
m!dγ adm−y(Eγ ).

Given γ ∈ $C such that dγ ̸= 0, we write ϕ−1(γ ) = {ϵi − ϵ j , ϵ j ′ − ϵi ′} for some
i, j ∈ [2n] with i ̸= j . By Lemma 6.5, we know that Eγ ∈ C{Ei j , E j ′i ′} and thus for
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all m ≥ 1, we have

adm−y(Eγ ) ∈ C{Ekℓ : k ≤ i, ℓ ≥ j or k ≤ j ′, ℓ ≥ i ′}
⊕C{hkℓ : j ≤ k < ℓ ≤ i or i ′ ≤ k < ℓ ≤ j ′}.

(As above, hkℓ = [Ekℓ, Eℓk] = Ekk − Eℓℓ.) In particular, we see that

u−1 · x1 ∈
⊕

dγ ̸=0

⊕

ϵi−ϵ j∈$A
ϕ(ϵi−ϵ j )=γ

(C{Ekℓ : k ≤ i, ℓ ≥ j} ⊕ C{hkℓ : j ≤ k < ℓ ≤ i}) .

(6.10)
Next, we have that

u−1 · h = Ad(exp(−y))(h) = exp(ad−y)(h) = h +
∞∑

m=1

1
m! ad

m
−y(h)

= h +
∞∑

m=1

∑

p<q

1
m!cpq(y)(ϵp − ϵq)(h) adm−1

−y (Epq).

Applying similar reasoning as above and using the fact that p < q, we have

u−1 · h − h ∈
⊕

ϵp−ϵq∈$+
A

(ϵp−ϵq )(h) ̸=0

C{Ekℓ : k ≤ p, ℓ ≥ q}. (6.11)

Note that ẇ−1 · h ∈ HC ⊆ H by assumption. Thus equations (6.9), (6.10) and (6.11)
imply that to prove the proposition, it suffices to show

⊕

dγ ̸=0

⊕

ϵi−ϵ j∈$A
ϕ(ϵi−ϵ j )=γ

(
C

{
Ew−1

k w−1
ℓ

: k ≤ i, ℓ ≥ j
}

⊕ C
{
hw−1

k w−1
ℓ

: j ≤ k < ℓ ≤ i
})

⊆ H

(6.12)
and ⊕

ϵp−ϵq∈$A
(ϵp−ϵq )(h) ̸=0

C
{
Ew−1

k w−1
ℓ

: k ≤ p, ℓ ≥ q
}

⊆ H . (6.13)

First we establish (6.12). If dγ ̸= 0, Lemma 6.8 implies that for each β ∈ $C with
β ≥ γ there exists b ∈ BC such that,

0 ̸= cβ(b · x) = cw−1(β)(ẇ
−1b · x).

Our assumption that BC ẇBC ⊆ BC (x, HC ) now implies Ew−1(β) ∈ HC and thus
w−1(β) ∈ $HC for all β ≥ γ . Note that by Lemma 6.4, for all ϵk − ϵℓ ∈ $A with
ϵk − ϵℓ ≥ ϵi − ϵ j we have ϕ(ϵk − ϵℓ) ≥ γ . This impliesw−1(ϕ(ϵk − ϵℓ)) ∈ $HC and,
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since ϕ is WC -equivariant, we have ϕ(ϵw−1
k

− ϵw−1
ℓ
) ∈ $HC . Using the description of

≤ for $A from (6.5) we have now proved:

dϕ(ϵi−ϵ j ) ̸= 0 ⇒ ϵw−1(k) − ϵw−1(ℓ) ∈ $H for all k ≤ i and ℓ ≥ j

⇒ Ew−1
k w−1

ℓ
∈ H for all k ≤ i and ℓ ≥ j .

It follows that

dϕ(ϵi−ϵ j ) ̸= 0 and i > j ⇒ Ew−1
k w−1

ℓ
, Ew−1

ℓ w−1
k

∈ H for all k, ℓ such that j ≤ k < ℓ ≤ i

⇒ hw−1
k w−1

ℓ
∈ H for all k, ℓ such that j ≤ k < ℓ ≤ i,

where the last implication follows from the fact that [b, H ] ⊆ H . This concludes the
proof of (6.12).

Next we prove (6.13). Fix ϵp − ϵq ∈ $A such that (ϵp − ϵq)(h) ̸= 0. First, we note
that if ϕ(ϵp − ϵq) ≥ γ for some γ ∈ $C such that dγ ̸= 0, then

C
{
Ew−1

k w−1
ℓ

: k ≤ p, ℓ ≥ q
}

⊆ H

by (6.12). Thus it suffices to consider the case in which ϕ(ϵp − ϵq) % γ for every
γ ∈ $C such that dγ ̸= 0. This last assumption implies Epq is not a summand of
u−1 · x1 for any u ∈ U , i.e., cpq(u−1 · x1) = 0 for all u ∈ U . Consider u pq :=
In + σ̄ (Epq) ∈ BC . Applying Lemma 6.5 and using properties of the adjoint action
we have

u−1
pq · h = h − [σ̄ (Epq), h] +

∞∑

i=2

1
i ! ad

i
−σ̄ (Epq )

(h) = h + (ϵp − ϵq)(h)σ̄ (Epq).

This implies

u−1
pq · x = u−1

pq · h + u−1
pq · x1 = h + (ϵp − ϵq)(h)σ̄ (Epq)+ u−1

pq · x1.

Since σ̄ (Epq) ∈ gϕ(ϵp−ϵq ) and cpq(u
−1
pq · x1) = 0, it follows that cϕ(ϵp−ϵq )(u

−1
pq · x) =

(ϵp − ϵq)(h) ̸= 0. Since u pq ∈ BC , the assumption BC ẇBC ⊆ BC (x, HC ) implies
ẇ−1bu−1

pq · x ∈ HC for all b ∈ BC . Furthermore, Lemma 6.8 implies that for each
β ≥ ϕ(ϵp − ϵq) there exists b ∈ BC such that

0 ̸= cβ(bu−1
pq · x) = cw−1(β)(ẇ

−1bu−1
pq · x)

and thus we have w−1(β) ∈ $HC for all β ≥ ϕ(ϵp − ϵq). In particular, arguing as in
the proof of (6.12), we have

Ew−1
k w−1

ℓ
∈ H for all k ≤ p and ℓ ≥ q.

This establishes (6.13) and completes the proof. ⊓⊔
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We conclude this section with the proof of Theorem 1.12.

Theorem 6.10 Let G = Sp2n(C) and let B ≤ G be the Borel subgroup whose image
under φ consists of upper triangular matrices. Fix w ∈ W. If there exist x ∈ g =
sp2n(C) and a Hessenberg space HC ⊆ g such that BC (x, HC ) = XC

w−1 , then φ∗(w)

avoids the pattern [4231].
We remark that since [4231] is its own inverse, this theorem implies that if

BC (x, HC ) = XC
w , then φ∗(w) avoids the pattern [4231]. So Theorem 6.10 implies

Theorem 1.12.

Proof Supposew ∈ WC contains the pattern [4231]. Seeking a contradiction, suppose
there exists x ∈ gC and a type C Hessenberg space HC ⊆ gC such that XC

w−1 =
BC (x, HC ). By Proposition 6.9, Bẇ−1B ⊆ BA(x, H)where H ⊆ sl2n(C) is the type
A Hessenberg space defined using HC as in (6.4) above. To obtain a contradiction,
we show that there exists v ∈ WC such that v "Br w and v̇−1B ∈ BA(x, H). Given
this statement, we would then have by Theorem 6.3 that v̇−1B ∈ (BA(x, H))σ =
BC (x, HC ) contradicting our assumption that XC

w−1 = BC (x, HC ).
Since w contains the pattern [4231] there exist i, j, k, ℓ such that 1 ≤ i < j <

k < ℓ ≤ 2n and wℓ < w j < wk < wi . Consider τ = (w j , wk)w where (w j , wk)

is the transposition exchanging w j and wk , so τ ∈ S2n is as defined in the statement
of Lemma 4.3. By Lemma 4.3, τ̇−1B ∈ BA(x, H), that is, τ̇ · x ∈ H . If j ′ = k then
τ ∈ WC and taking v = τ accomplishes the desired goal. We may therefore assume
j ′ ̸= k for the remainder of the proof.
We have that 1 ≤ ℓ′ < k′ < j ′ < i ′ ≤ 2n and wi ′ < wk′ < w j ′ < wℓ′ .

Let v = (w j ′, wk′)τ = (w j ′, wk′)(w j , wk)w, where (w j ′, wk′) is the transposition
exchanging w j ′ and wk′ . Note that v "Br w since ℓ(v) > ℓ(w) and v ∈ WC . In order
to argue that v̇ · x ∈ H , we write x = s + x ′ where

s =
∑

p∈[2n−1]
cp(Epp − Ep+1,p+1) and x ′ =

∑

(p,q)∈[2n]×[2n]
p ̸=q

cpq(x)Epq

and show v̇ · s, v̇ · x ′ ∈ H . Note that ẇ · s, ẇ · x ∈ H by assumption. From the proof
of Lemma 4.3 we have that τ̇ · s ∈ H and

ẇ · s − τ̇ · s = (c j−1 − c j − ck−1 + ck)(Ewkwk − Ew jw j ) ∈ H .

Since σ (H) ⊆ H , we see that

σ (ẇ · s − τ̇ · s) = (c j−1 − c j − ck−1 + ck)(−Ewk′wk′ + Ew j ′w j ′ )

= (ck′−1 − ck′ − c j ′−1 + c j ′)(Ew j ′w j ′ − Ewk′wk′ ) ∈ H ,

where the last equality follows from the fact that s ∈ hC (see (6.1)). A direct compu-
tation shows that

ẇ · s − v̇ · s = (c j−1 − c j − ck−1 + ck)(Ewkwk − Ew jw j )
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+(ck′−1 − ck′ − c j ′−1 + c j ′)(Ew j ′w j ′ − Ewk′wk′ ),

which lies in H , and therefore ẇ · s ∈ H implies v̇ · s ∈ H .
Next we show that v̇ · x ′ ∈ H by proving that Evpvq ∈ H whenever cpq(x) ̸= 0.

Let p ̸= q be such that cpq(x) ̸= 0. Let τ ′ = (w j ′, wk′)w, and note that we have
τ̇ ′ · x ∈ H by Lemma 4.3. In fact, by the proof of Lemma 4.3 applied to both τ and
τ ′ we have

{p, q} ∩ { j ′, k′} = ∅ ⇒ Evpvq = Eτpτq ∈ H

and

{p, q} ∩ { j, k} = ∅ ⇒ Evpvq = Eτ ′
pτ

′
q

∈ H .

To complete the proof, suppose that {p, q}∩ { j ′, k′} ̸= ∅ and {p, q}∩ { j, k} ̸= ∅. If
p ∈ { j ′, k′} and q ∈ { j, k} then ℓ′ < p and q < ℓ. By Lemma 4.1 there exists b ∈ B
such that 0 ̸= cℓ′ℓ(b · x) = cwℓ′wℓ(ẇb · x). Since b−1ẇ−1B ∈ Cw−1 ⊂ B(x, H), we
must have Ewℓ′wℓ ∈ H . Nowby 4.2, since vp ≤ wℓ′ and vq ≥ wℓ, we have Evpvq ∈ H ,
as desired.Next, we consider the case inwhich p ∈ { j, k} and q ∈ { j ′, k′}. Since i < p
and q < i ′, by Lemma 4.1 there exists b ∈ B such that 0 ̸= ci i ′(b ·x) = cwiwi ′ (ẇb ·x).
Since b−1ẇ−1B ∈ Cw−1 ⊂ B(x, H), then Ewiwi ′ ∈ H . Now by Lemma 4.2, by
vp ≤ wi and vq ≥ wi ′ , we have Evpvq ∈ H , as desired. This concludes the proof. ⊓⊔
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