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Abstract

After proving that every Schubert variety in the full flag variety of a complex reductive
group G is a general Hessenberg variety, we show that not all such Schubert varieties
are adjoint Hessenberg varieties. In fact, in types A and C, we provide pattern avoidance
criteria implying that the proportion of Schubert varieties that are adjoint Hessenberg
varieties approaches zero as the rank of G increases. We show also that in type A,
some Schubert varieties are not isomorphic to any adjoint Hessenberg variety.

1 Introduction

Hessenberg varieties have been studied by applied mathematicians, combinatorialists,
geometers, representation theorists, and topologists. See [2] for a survey of some recent
developments. Our goal is to understand better the structure of these varieties, and in
particular what restrictions on such structure exist. To this end, we address herein a
question raised by Tymoczko:

Is every Schubert variety in a full flag variety a Hessenberg variety?

Schubert varieties comprise a well-studied collection of subvarieties of the flag variety
and naturally embody the interplay between combinatorics and geometry. For example,
their singularities can be characterized in terms of pattern avoidance (see, e.g., [3]).
Because the flag variety has an underlying combinatorial structure, one can ask how
other subvarieties fit into this framework. As we will discuss below, conditions known
to be satisfied by the most closely studied Hessenberg varieties are also satisfied by
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Schubert varieties. So, Tymoczko’s question is pertinent. There are several possible
interpretations of the question. Moreover, there are several ways to define a Hessenberg
variety, giving rise to progressively more general classes of varieties. The answer to
Tymoczko’s question depends on the chosen definition, as we shall see.

Let G be a connected, reductive complex algebraic group. Fix a Borel subgroup
B < G and a maximal torus 7 < B. Let g, b, and §j be, respectively, the Lie algebras
of G, B, and T. We write Ad for the adjoint representation of G on g.

Let N = Ng(T) be the normalizer of T in G and let W = N /T be the associated
Weyl group. The flag variety B := G/B is the union of Schubert cells C,,, over all
w € W. For each w, the Schubert variety X,, is the closure of Cy, in B.

Our first definition of a Hessenberg variety is as follows.

Definition 1.1 Given x € g andf a subspace H of g such that [b, H] C H, the adjoint
Hessenberg variety B(x, H) consists of those gB € BB such that Ad(g~")(x) € H.

Adjoint Hessenberg varieties were defined and studied by De Mari et al. in [10],
after being defined and studied for G = G L, (C) only by De Mari and Shayman in
[11]. In both [11] and [10], it is assumed that b € H and that x is a generic (regular
semisimple) element of g. We make neither assumption here, as otherwise the topology
of B(x, H) is restricted considerably. Indeed, it follows from the results in [10, 11]
thatif b € H and x is regular semisimple, then the Euler characteristic x (B(x, H)) is
equal to |W|. In particular, the only Schubert variety in 5 that is a Hessenberg variety
under these assumptions is B itself.

A larger class of varieties than that given in Definition 1.1 is defined in [15] by
Goresky, Kottwitz and MacPherson, who allow an arbitrary representation of G, rather
than restricting to the adjoint representation.

Definition 1.2 Letvy : G — GL(V)be a(finite-dimensional, rational) representation.
Given x € V and a B-invariant subspace H of V, the Hessenberg variety B(x, H)
consists of those gB € B such that (g~ )x € H.

We will always use the modifier “adjoint” when referring to the Hessenberg varieties
described in Definition 1.1 and sometimes use the modifier “general” when discussing
the Hessenberg varieties described in Definition 1.2. We will use repeatedly, and
without reference, the fact that if H is a subspace of g, then [b, H] € H if and only
if H is Ad(B)-invariant (see for example [19, Definition 8.1.22]). So, every adjoint
Hessenberg variety is a general Hessenberg variety. The subspace H appearing in
either definition is called a Hessenberg space.

With definitions in hand, we turn to possible interpretations of Tymoczko’s question,
and list three precise questions.

Question 1.3 (the equality problem). Is it true that for every G, B, and Schubert
variety Xy C B = G/B, there is a Hessenberg variety B(x, H) C B such that
Xy =Bx, H)?

Question 1.4 (the isomorphism problem). Is it true that for every G, B and Schubert
variety Xy, € B = G /B, there is a Hessenberg variety B(x, H) € B such that X, is
isomorphic with B(x, H)?
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Question 1.5 (the general isomorphism problem). Is it true that for every G, B
and Schubert variety X,, € G/B, there exist a complex reductive group G* with
Borel subgroup B* and a Hessenberg variety B*(x*, H*) C G*/B* such that X, is
isomorphic with B*(x*, H*)?

The answer to Question 1.3 (and therefore to Questions 1.4 and 1.5) is “Yes” for
general Hessenberg varieties, as our first main result shows. (Relevant terminology
will be discussed in Sects.2 and 3.)

Theorem 1.6 (See Theorem 3.6 below). Let A be a strictly dominant weight for G, with
associated highest weight representation v : G — GL(V (X)) and highest weight
vector vy. Given w € W, let w be a representative of w in N, and let H,,-1; be the

Demazure module generated by w~"'(v;). Then, X, = B(vy., Hy-13))-

Theorem 1.6 follows directly from a result of BernsStein, Gel’fand, and Gel’fand
in [6].

The situation is more interesting when we consider adjoint Hessenberg varieties. We
obtain negative results of various types. Before describing these, we discuss why the
consideration of Schubert varieties is appropriate in the study of adjoint Hessenberg
varieties.

We know of no restrictions on the structure of general Hessenberg varieties, and it
is reasonable to wonder what such restrictions might exist. In addition to Theorem 1.6,
one can point to Section 9 of [22], in which various interesting curves and surfaces are
shown to be general Hessenberg varieties, as evidence that such restrictions are not so
easy to come by. A certain class of general Hessenberg varieties is examined by Chen
et al. [9] in their study of Springer Theory for symmetric spaces.

Adjoint Hessenberg varieties are a different matter. Given x € g, we consider the
usual Jordan decomposition x = x5 + x, with x; semisimple and x,, nilpotent. If x,
is regular in a Levi subalgebra of g, then B(x, H) admits an affine paving for every
Hessenberg space H C g. This is proved under the assumption b € H by Tymoczko
in type A (see [28]) and by the second author for arbitrary G (see [23]), although the
assumption is not necessary for the relevant arguments in either paper. When H is
a nilpotent subspace, Fresse proved B(x, H) is paved by affines for all x when G is
a classical group in [14] and Xue has extended these results to groups of type G2,
Fy4, and Eg in [29]. So, in some sense, B(x, H) is paved by affines for “most” x, H,
and indeed for all x, H in type A. This restricts considerably the structure of adjoint
Hessenberg varieties. One can ask if there are any obvious additional restrictions. As
Schubert varieties admit affine pavings, Tymoczko’s question is a good starting point
in the search for such constraints.

We turn now to our results. First, if the root system @ for G has an irreducible
component not of type A or A, then there are some y € W such that the Schubert
variety X, C B is not equal to any adjoint Hessenberg variety in B.

Theorem 1.7 (See Theorem 3.7 below). If some nonabelian simple ideal of g is iso-
morphic with neither sl (C) nor s13(C), then there is some w € W such that no adjoint
Hessenberg variety in B is equal to X,. In particular, assume that the root system ®
for G is irreducible and not of type A1 or A;. Let 6 be the highest root in ® and let Wy
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be the stabilizer of 6 in W. Let wq be the longest element of W. If y is a nonidentity
element of Wy, then no adjoint Hessenberg variety in B is equal to X .

We observe in the case where & is irreducible, there is some function f such that
[W : Wp] = f(dimch) and lim,_, f(n) = oo. So, Theorem 1.7 applies to an
eventually negligible portion of the Schubert varieties in 5. When @ is of type A or
type C, we can do much better.

Theorem 1.8 (See Theorem 4.4 below). Assume G = GL,,(C) or G = SL,,(C) and
let B be the Borel subgroup of G consisting of upper triangular matrices. Fix w in the
Weyl group W = S, of G. If there exist x € g and a Hessenberg space H C g such
that B(x, H) = X, then w avoids the pattern [4231].

It follows from Theorem 1.8 and the Marcus—Tardos Theorem (see [21]) that the
number of Schubert varieties in SL,(C)/B that are (equal to) adjoint Hessenberg
varieties grows at most exponentially in n. So, in type A, the portion of Schubert
varieties that are equal to adjoint Hessenberg varieties is eventually negligible. A more
precise enumerative result appears in Section 4, along with a proof of the theorem.
Given Theorem 1.8, one might hope that the set of Type A Schubert varieties that are
(equal to) adjoint Hessenberg varieties is characterized by pattern avoidance. This is
not the case. We show in Section 4 that X[14235] is an adjoint Hessenberg variety in
SLs(C)/Bs5(C), but X[1423) is not an adjoint Hessenberg variety in SL4(C)/B4(C).

We also obtain a negative answer to the isomorphism question for adjoint Hessen-
berg varieties in type A, although our result applies to far fewer Schubert varieties
than Theorem 1.8.

Theorem 1.9 (See Theorem 5.1 below) Suppose n > 6. Assume that G = GL,(C) or
G = SL,(C) and B is the subgroup of G consisting of upper triangular matrices. Let
wo be the longest element of the Weyl group W = S,,, and fori € [n — 1], lets; € W
be the transposition (i,i + 1). If 3 < i < n — 3, then there do not exist x € g and
Hessenberg space H C g such that B(x, H) is isomorphic with Xy,

We prove in Section 5 that under the conditions given in Theorem 1.9, there is
no irreducible adjoint Hessenberg variety B(x, H) with the same Betti numbers as
Xs;wo- In fact, we show that unless (n,i) € {(8,3), (8,5)}, no such B(x, H) has
the same Euler characteristic as X, ,,. We use the following result, reminiscent of the
restriction y (B(x, H)) = |W| obtained by De Mari et al. in [10] under the assumption
that b € H and x is regular semisimple.

Proposition 1.10 (See Proposition 5.3 below). Let G and B be as in Theorem 1.9. If
the adjoint Hessenberg variety B(x, H) is irreducible and of codimension one in B,

then x (B(x, H)) is divisible by (n — 2)\.

We do not know the answer to the general isomorphism problem for adjoint Hes-
senberg varieties, and pose the following question. Observe that [653421] € Sg is the
“first” Schubert variety to which Theorem 1.9 applies.

Question 1.11 Is there an adjoint Hessenberg variety (in a flag variety for an arbitrary
reductive group) that is isomorphic to the Schubert variety X{e53421] in the flag variety

of type As?
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One might also consider Question 1.11 for the Schubert variety X[4231; in the flag
variety of type A3. It follows from either Theorem 1.7 or Theorem 1.8 that X[4231] is
not equal to any adjoint Hessenberg variety, and X(4231] is the “first” type A Schubert
variety to which these theorems apply. However, there is an adjoint Hessenberg variety
in SL4(C)/B with the same Betti numbers as X[4231] (see Example 5.2 below).

We have a type C version of Theorem 1.8. Consider the embedding ¢ : Sp2,(C) —
SL,,(C) whose image stabilizes the alternating form (., .) given by

li<j=2n+1-1,
(ei,ej)=y—1i>j=2n+1-i
0 otherwise.

Here e, ..., s, denotes the standard basis of C2*. One obtains from this the embed-
ding ¢* of the type C Weyl group into S», whose image consists of those permutations
w satisfying wo, 41— = 2n + 1 — w; for all 7.

Theorem 1.12 (See Theorem 6.10 below). Let G = Sp2,(C) and let B < G be
the Borel subgroup whose image under ¢ consists of upper triangular matrices. Fix
w € W. If there exist x € g = 5p,,(C) and a subspace H of g such that [b, H] € H
and B(x, H) = X, then ¢*(w) avoids the pattern [4231].

Our proof of Theorem 1.12 utilizes an interesting fact relating adjoint Hessenberg
varieties in types A and C. Let E be the linear transformation on C>* such that (v, w) =
v Ew forall v, w € C*, and define the automorphism o of G4 := SL,,(C) by

o(g)=E@"'EL

Then G¢ := ¢ (Sp2,(C)) is the group of o -fixed points in G 4. Moreover, if By is the
group of upper triangular matrices in G 4, then o fixes B4 setwise, and B¢ := (Ba)®
is the image under ¢ of the Borel subgroup of Sp»,(C) described in Theorem 1.12.
We observe that the action of o on G 4 induces an automorphism of the variety B4 :=
G 4/Ba. The map ¢’ from B¢ := G¢/Bc to By := G 4/ B4 sending gB¢ to ¢(g) B
is a well-defined embedding, and (B4)° = ¢'(Bc¢) (see for example [20, Proposition
6.1.1.1]).

Theorem 1.13 (See Theorem 6.3 below) If V¢ is an adjoint Hessenberg variety in the
type C flag variety Bc, then there is some adjoint Hessenberg variety V4 in the type
A flag variety By such that ' (Ve) = (V4)°.

The paper follows the outline presented above. Section?2 is devoted to background,
notation, and terminology. Our study of general Hessenberg varieties and a proof of
Theorem 1.6 can be found in Section 3, in which we prove also that the answer to
the equality question (Question 1.3) is “No” for adjoint Hessenberg varieties in all
Lie types. We then focus our attention on adjoint Hessenberg varieties in the type A
flag variety in Sections 4 and 5, proving Theorems 1.8 and 1.9. Finally, our study of
adjoint Hessenberg varieties in the type C flag variety is undertaken in Section 6, in
which we prove Theorems 1.12 and 1.13.
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2 Definitions, Notation, and Preliminary Results

We review here various known results about algebraic groups, Weyl groups, flag vari-
eties, and Hessenberg varieties. A reader familiar with basic facts about these objects
can skip this section and refer back when necessary. Facts stated without reference or
argument can be found in at least one of [4, 7, 12, 18].

As in the introduction, G is a reductive algebraic group with Borel subgroup B
and maximal torus 7 < B. The Lie algebras of G, B, T are denoted, respectively, by
g, b, h. The Weyl group of G is W := Ng(T)/T where Ng(T) is the normalizer in
G of T. We fix a representative w € Ng(T') for each Weyl group element w € W.

2.1 The Root System and the Bruhat Order

The Lie algebra g admits a Cartan decomposition,

s=bo P,

yed

Here ® C h* is the root system for g, and each root space g, is a 1-dimensional
subspace of g satisfying [k, x] = y(h)x whenever h € h and x € g,. We can
choose a set of simple roots A C @ such that each y € & is either a non-negative
linear combination of elements of A or a non-positive such combination. This gives a
decomposition ® = &+ L &~. We may (and do) choose A so that

b=ho P o,

yedt
There is a partial order on ® given by
B < y whenever y — B is a nonnegative linear combination of positive roots. (2.1)

Each finite, irreducible root system & contains a unique maximal element with respect
to this order called the highest root of ® and denoted herein by 6 € ™.

If g = s0,(C) and b the Cartan subalgebra of diagonal matrices, we write ® =
{ei —€; : 1 <i # j < n} with positive roots ot = (¢ — €j € ®:i < j}. Here
€; : h — C denotes projection to the i-th diagonal entry. We assume furthermore that
A ={¢; — €41 : 1 <i <n — 1}. The highest root of ® in this case is 6 = €] — ¢,,.

The restriction of the adjoint action of G on g to Ng(T) preserves the Cartan
decomposition and factors through 7'. Thus we get an action of W on h* that restricts
to an action on ®. For each @ € A, there is the simple reflection s, € W, which acts
on h* as the reflection through the hyperplane orthogonal to «. In the type A case if
o = €; —€;4+1 We write s, = s; for the corresponding simple transposition exchanging
iandi + 1in W = §,. The set S of simple reflections generates W, and the length
£(w) of w € W is the shortest length of a list of elements of S (called a reduced word)
whose product is w.
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The Bruhat order <g; is the partial order on W defined by v <p; w if some reduced
word for v is a subword of some reduced word for w. We write wq for the unique
maximal element of W in the Bruhat order.

2.2 The Flag Variety and Schubert Varieties

The group G acts on the flag variety B := G/B by translation. Each B-orbit in this
action contains exactly one coset wB (w € W), and so

B= || BwB/B.
weW

We write C, for Bu B/ B, called a Schubert cell. Each Schubert cell is 1somorph1c to
the affine space C*™). The closure of Cy, in G/B is the Schubert variety X, := C,,
We have that

X = || G

V=prw

2.3 Adjoint Hessenberg Varieties

Let H C g be a Hessenberg space, that is, a subspace such that [b, H] € H, and fix
x € g. Equivalently, H C g is B-invariant with respect to the Adjoint action (see for
example [19, Definition 8.1.22]). Given aroot y € ®, let r,, denote the projection of
g to the root space g,,. As dim¢ g, = 1 and the T-module § & @ﬂeq,\{y} gp has no
quotient isomorphic to g, , it follows from basic facts about direct sums that, for any
Hessenberg space H in g,

if m,(H) #0 then g, C H. 2.2)
We will use (2.2) and its consequences repeatedly below, frequently without reference.
As in the introduction, we define the adjoint Hessenberg variety corresponding to
x and Hessenberg space H by
B(x,H):={gBebB: g_1 -x € H}.

Here g - x := Ad(g)(x).

2.4 Type A: The Tableau Criterion, Pattern Avoidance, and Flags in C"

Now, we consider the case G = SL,(C) or G = GL,(C). We record here various
results that will be used below. In this case, W is isomorphic to the symmetric group
S,,. We write elements of S, in one-line notation,

w = [wiwy - wy]
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where w; = w(i) in the natural action of w on [n] := {1, 2, ..., n}.

Givenw € S, and 1 < j < k < n, we write /; (w) for the j’h smallest element
of {w; : 1 <i < k}. So, for example, if w = [52341] € Ss, then I 4(w) = 3, as
3 is the second smallest element of {5, 2, 3, 4}. The following characterization of the
Bruhat order can be found in [4].

Theorem 2.1 (Tableau Criterion). Letv, w € S,. Thenv <g, w ifand onlyif I; j (v) <
Ij(w) foralll < j <k <n.

Givenv € S, andw € S, withm < n, we say that w contains the pattern v if there
exist | <ij; <i» <...< iy <nsuchthat, forall j, k € [m], wi; < Wi if and only
if v; < vg. So, for example, [631524] € S contains the pattern [4231] € Sy, realized
by the subsequence 6352. We say w avoids v if w does not contain the pattern v. For
example, [631524] avoids [4321]. We write S, (v) for the set of all w € S, avoiding v.
Marcus and Tardos proved in [21] that (as conjectured independently by Stanley and
Wilf) for every fixed v, |S, (v)| grows exponentially with n. It follows immediately
that

lim M =0. 2.3)
n—oo |S,|

In this type A setting, we take B to be the Borel subgroup consisting of upper
triangular matrices in G. Write ey, es, ..., e, for the standard basis of C". We set
Fy :=Cle; : j € [k]}, and observe that B is the stabilizer in G of the flag

Foe=O0=FyCF C...CF,=C").
As G acts transitively on the set
Flag(n) ;= (Ve =0=VoC Vi C...CV, =C") :dimc V; =i}
of all full flags in C", we obtain a bijection B = G/B — Flag(n) defined by
gBr— gF, =0=gFyCcgFiC...C gF,=C". 2.4)
Let us assume (temporarily) that a Hessenberg space H contains the Borel algebra
b of upper triangular matrices in g. In this context, we define the Hessenberg vector
h = h(H) := (hy, ..., hy) by setting h; to be the largest integer i > j such that
the elementary matrix E;; is contained in H, if such i exists, and 4; = j otherwise.
We observe that the sequence £ is weakly increasing (as H is Ad(B)-invariant) and
satisfies & i=J forall j (as b € H). Moreover, the Hessenberg space H is determined
by, and uniquely determines, the Hessenberg vector 2 (H ). A direct computation shows
that under the restriction of the bijection from (2.4) to B(x, H) we have
B(x, H) =~ {V, € Flag(n) : xV; C V), foralli € [n] where h = h(H)}. (2.5)

We will make use this identification below whenever it is convenient to do so.
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We will also consider the image of a Schubert variety X,, = BwB/B under this
identification. To this end, for w € S, and p, g € [n], we set

rpq(w) =i € [p]:w; €[ql}].

Then, the correspondence between cosets and flags maps X,, to the set of all V,
satisfying

dimc(V, N Fy) = 1p g (w)
for all p, g € [n], see [13, §10.5].

2.5 Representations of Reductive Groups

Returning to the setting of an arbitrary reductive algebraic group G, let v : G —
GL(V) be a (rational, finite-dimensional) representation. Then the differential dyr :
g — gl(V)is aLie algebra homomorphism. Both ¥/ (7") and d (h) are diagonalizable
and thus there exist (finitely many) A € h* such that

o V=(p, V) with V, # 0, where
e dyr(h)(v) = A(h)v forallv € V) and h € B, and
e (1) acts as a scalar transformation on V) for allr € T and all A.

Each such A € h* is a weight and the subspace Vj, is called a weight space of V. We
write A for the set of all weights of all representations of G, which forms a lattice
in h*. The set of weights of the adjoint representation Ad : G — GL(g) is ® U {0},
hence ® C A.

If  is irreducible, then there is a unique 1-dimensional ¥ (B)-invariant subspace
of V, which is a weight space. The associated weight A is called the highest weight
of ¥, and we write V(1) for V. Any nonzero v, € V (1), is a highest weight vector
in V(&).

A weight A € A is dominant if A is the highest weight for some irreducible
representation. The action of W on h* induces an action of W on A. We observe that
dimc V) = dimc V() for every weight A for V and every w € W. A dominant
weight X is strictly dominant if the stabilizer of A in W is trivial. The partial order <
on ® defined above in (2.1) extends to a partial order on A. We write p < Aif A — p
is a nonnegative linear combination of positive roots.

We remark that every representation v/’ of g is of the form ' = d for some
representation ¥ of G, and that such a v’ is irreducible if and only if v is irreducible.
Thus, we may also use the terminology defined above when referring to representations
of the Lie algebra g. Finally, a representation ¥’ : g — gl(V) makes V a module
for the universal enveloping algebra U (g), and we make no distinction between such
representations and modules. Given dominant A € A, we refer to V(1) as a highest
weight module for G, or equivalently U (g).
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3 Highest Weight Hessenberg Varieties

In this section we study Questions 1.3, 1.4, and 1.5 for general Hessenberg varieties of
Definition 1.2. We prove Theorem 1.6 (see Theorem 3.6 below), establishing that the
answer to all three questions in this context is “Yes.” Then we show that the answer
to the equality problem, Question 1.3, for adjoint Hessenberg varieties is “No,” by
proving Theorem 1.7 (see Theorem 3.7 below).

Let v : G — GL(V (L)) be the irreducible representation of G with highest
weight A, and fix a highest weight vector v, € V (A),. Since C{v, } is a ¢ (B)-invariant
subspace of V (1), it follows that the Hessenberg variety B(v;,, H) is invariant under
left translation by B and therefore a union of Schubert varieties. We call the Hessenberg
variety B(vy, H) a highest weight Hessenberg variety.

Highest weight Hessenberg varieties defined using the adjoint representation have
been studied by Tymoczko and by Abe—Crooks in [1, 27]. Suppose g is simple and
consider the adjoint representation of G on g, which is irreducible. The highest weight
for the adjoint representation is the highest root 6 € ®. We fix nonzero Ey € gy, so
Ey is a highest weight vector for the adjoint representation of G. Abe and Crooks give
an explicit description of the highest weight Hessenberg variety B(Eg, H) as a union
of Schubert varieties in the type A case whenever b € H. The following result, due
to Tymoczko (see [27, Prop. 4.5]), describes a collection of Schubert varieties equal
to highest weight adjoint Hessenberg varieties.

Proposition 3.1 (Tymoczko). Suppose y € ® is a root in the same W -orbit as 6 and
let w be the maximal length element of W such that w='(0) = y. Let H, be the
B-submodule of g generated by E -1y, = Ey. Then, X, = B(Eg, Hy).

The B-module H, defined in Proposition 3.1 is known as a Demazure module.
Such modules are defined similarly for arbitrary irreducible representations of G, and
will be used below to prove Theorem 1.6.

3.1 Demazure Modules

Throughout this section, we let A denote a fixed dominant weight and V (1) the asso-
ciated highest weight module for G, or equivalently, for U (g). For each w € W, fix a
NONZETO VECLOT Vyy(3) in the (one-dimensional) weight space V (1) (). The Demazure
module H,,) is the U (b)-submodule of V(1) generated by v,(;). As remarked in
[19, Definition 8.1.22], H,,(;) is B-invariant and so is a Hessenberg space in V ().
Indeed, H,,(;,) is the B-submodule of V' (1) generated by vy, (;,).

Example 3.2 We record here some observations regarding these constructions in the
adjoint case that will be useful in Sects.4 and 6. Given a root y € & in the same
W -orbit as 0, the Demazure module H, C gis the B-submodule generated by a root
vector E,, € g, . Since each H,, is B-invariant, each is also T-invariant and it follows
that gg N H, # @ implies gg € H,,.

Motivated by this property, we define a second partial order on ® by

y < B whenever gg C H,,. (3.1
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We note that y < g implies y < B, where < is defined in (2.1), but not vice versa.
For example, say g = sl4(C) so @ is of type A3. Set

Hy :=sL(C)NCLE;; : i €{1,2}},

Then He,—, € Hpj, since conjugation by any upper triangular matrix b € B maps
the root vector £21 € ge,—¢, into Hp1. Since E34 ¢ Hoy, this shows € — €3 f €3 —€4.
On the other hand, € — €] < €3 — €4, since e — €] € P~ and €3 — €4 € O

The partial order < on ® defined in (3.1) is a special case of the partial order on
{w(L) : w e W} for A € A adominant weight defined and studied by Proctor in [24].
The following lemma summarizes [24, Proposition 3] in the adjoint case.

Lemma 3.3 (Proctor). Given y,y’ € ® we have y < y' if and only if there exist
positive roots Vi, ..., Vi, € &t and nonnegative integers ni, na, ..., ny such that
Y =y +myi +mvp + o+ gy and y +nyyy + -+ ngy;, € @ for all
1<m<k

3.2 Proof of Theorem 1.6

Let J denote the set of simple reflections stabilizing A, i.e., J = {sy : 54 (A) = A}. The
subgroup W generated by J is the stabilizer of A in W. Recall that the set of left cosets
of W; in W can be identified with the set of shortest left coset representatives, denoted
herein by W (see [4, Section 2.4]). The Bruhat order on W induces an order on W,
and we have T <p, w implies 7/ <g w’ where v/ and w” denote the shortest coset
representatives for t W; and w W, respectively (see [4, Proposition 2.5.1]). Note that
there is a bijection between W and the set {w(X) : w € W} given by t > (1) and
thus Hw(k) = ij(k)'

The next result is essentially Theorem 2.9 of the paper [6] of BernStein, Gel’fand
and Gel’fand. In [6] it is assumed that g is the Lie algebra of a simply connected
semisimple group, that Hy,(;,) is the module for the nilpotent radical of b generated by
Uy (), and that X is strictly dominant. As we explain below, the proof of [6, Theorem
2.9] given therein remains valid under the weaker assumptions stated in Theorem 3.4
below.

Theorem 3.4 (Bernstein-Gel’fand-Gel’fand). Suppose A is a dominant weight for the
reductive Lie algebra g, with associated irreducible representation ' : g — gl(V (L))
and highest weight vector vy. Let T, w be distinct elements of W/ . Then t <g, w if
and only if Hy) C Hy)-

A key point in the proof of [6, Theorem 2.9] is [6, Proposition 2.7], which says that
of < is a partial order on W satisfying

(a) ifwe W,s e §,and £(sw) = £(w) + 1 then w < sw; and

(b) if t < wand s € S then either sT < w or sT < sw;
then <=<g,. Using the same ideas used to prove [6, Proposition 2.7], one can
prove that if < is a preorder on W satisfying (a), (b), and
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(¢) ift! =w’/ thent <wandw < 7

then T < w if and only if 7/ <g, w’. The proof by Bernstein, Gel’fand, and Gel fand
of their Theorem 2.9 can then be followed directly to prove our Theorem 3.4: one
observes that [6, Lemma 2.10] holds in reductive groups and uses that lemma to show
that if Wj is the stabilizer in W of dominant weight A then the preorder < on W given
by 7 < w if and only if H-) € H,,) satisfies (a), (b) and (c). Note that we must
assume 77/ # w” for [6, Lemma 2.10] to apply (with 7 being replaced by w’ in their
notation), but this is captured in the assumptions of Theorem 3.4 and our claims hold
trivially in the case of equality.

With this terminology in place, we can now prove the following result, generalizing
Proposition 3.1 above.

Theorem 3.5 Suppose A is a dominant weight for G, with associated highest weight
representation  : G — GL(V())). Let i be a weight of V (A) such that u and X\
are in the same W-orbit and let w € W be the longest element satisfying w(\) = (.
Then X,-1 = B(vy, Hyyi )

Proof Our assumptions on w imply w = w” yo where w’ € W and yy is the longest
element of W;. We have T <g, w if and only if 7/ <g, w” in this case.

As C{v,} is ¥ (B)-invariant, so is the general highest weight Hessenberg variety
B(v;,, H ’(k))' Therefore, B(v;, ij(k)) is a union of Schubert cells. We see now that

w
By, Hyr () = U C,m1. (3.2)
TeW
Y@ )EH, ) ;)
Note that ¥ (7)(vy) € Hyys () ifandonlyif Hps () © H,,s(;). Combining (3.2) and the

fact that T <p, w if and only if 7! <g, w™! with Theorem 3.4 (applied to ' = dr),
we see that

By, Hyi ) = X1,
as desired. O
We are ready to prove Theorem 1.6, restated here for convenience.
Theorem 3.6 Let A be a strictly dominant weight for G, with associated highest weight
representation ¥ : G — GL(V (X)) and highest weight vector v). Then, X,, =

B(U}L, Hw—] ()L))

Proof Suppose A is a strictly dominant weight of G. Then, J = {e} and W/ = W.
Theorem 3.6 now follows immediately from Theorem 3.5 since the weights w()) for
w € W are pairwise distinct. O
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3.3 Schubert Varieties that are Not Adjoint Hessenberg Varieties

We prove herein that for “most” reductive G there are Schubert varieties in B that
are not adjoint Hessenberg varieties. The following is a restatement of Theorem 1.7
above.

Theorem 3.7 [f some nonabelian simple ideal of g is isomorphic with neither sl (C)
nor sl3(C), then there is some w € W such that no adjoint Hessenberg variety in BB
is equal to Xy. In particular, assume that the root system ® for G is irreducible and
not of type A1 or Aj. Let 0 be the highest root in © and let Wy be the stabilizer of 0
in W. Let wq be the longest element of W. If y is a nonidentity element of Wy, then
no adjoint Hessenberg variety in B is equal 10 X yy,.

We begin by recalling some well-known facts about the structure of reductive
groups. Given reductive G, let Z° be the connected component of the identity in
the center Z(G). Then G = Z°G’, with the commutator subgroup G’ < G being
semsimple. Moreover, 7% N G’ is finite. (See for example [26, Proposition 7.3.1,
Corollary 8.1.6].) As G’ is semisimple, there exist nonabelian simple algebraic groups
Li, ..., L such that G’ is the central product L o ... o Ly (see for example [26,
Theorem 8.1.5]). Set K := Z°NG’and G := G/K = G’/K x Z°/K . The projection
of G onto G induces a surjection of the corresponding Lie algebras. This surjection
of Lie algebras has trivial kernel since K is finite and thus its Lie algebra is trivial.
So, if g, g’ and 3 are the respective Lie algebras of G, G’ and Z°, theng = ; ® ¢'.
Each L; has finite center Z(L;) < Z(G"), and Z(G') = ]_[f-‘=1 Z(L;). Fori € [k],
let [; be the Lie algebra of L;. Considering the projection of G’ onto G'/Z(G’) =
Li/Z(L1) x ...x Li/Z(Ly), we see that g’ = @?:1 [;. The upshot of all this is that

k

e g=30D; i:

e if i, j € [k] withi # j, then Ad(L;) acts trivially on both 3 and [;;

e if, foreachi € [k, |; = h; & @ae@i l;.o is a Cartan decomposition of [;, then
h: =30 @L] h; is a Cartan subalgebra of g, and g = h @ @Ll Duco, liaisa
Cartan decomposition.

For each i, let 7; and B; be, respectively, a maximal torus and Borel subgroup of L;
with 7; < TN B; and B; < B. We may assume that the Cartan subalgebra fj; described
above is the Lie algebra of T;, that b; := bh; @ P wep+ lio 18 the Lie algebra of B;, and

that ® = Ule ®;. Set W; = N, (T;)/T;. Then W = ]_[f:1 W;. Let 6; be the highest
root in the (irreducible, crystallographic) root system ®;.

Lemma 3.8 Let T be anirreducible, crystallographic root system with associated Weyl
group X, and let o € T'. The stabilizer of o in X is trivial if and only if T is of type
Al or Aj.

Proof We observe that « € I" has trivial stabilizer in X if and only if the X-orbit X («)
has size | X|. If T" has rank three or more, then |X ()| < |I'| < |X] (see for example
[8, p. 43]). If I is of type B> or G», then |I'| = |X|, but since I" contains roots of two
different lengths, | X ()| < |I'|. Inspection shows that if I" is of type A; or A; then
every root in I has trivial stabilizer in X. O
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Lemma 3.9 Let A be a strictly dominant weight for G, with associated highest weight
representation W : G — GL(V(A)) and 0 # v € V()). Then there is some b € B
such that 1 (b)v projects nontrivially onto V ().

Proof By the Lie-Kolchin Theorem (see for example [17, Theorem 17.6]) there is
some 1-dimensional B-invariant subspace of the B-submodule of V(1) generated by
v. The only 1-dimensional B-invariant subspace of V(1) is the highest weight space
V(A);.. O

We are ready to prove Theorem 3.7; recall that w is a fixed representative in NG (T")
for the Weyl group element w € W.

Proof of Theorem 3.7 We pick j € [k] such that ®; is neither of type A nor of type
Aj. Applying Lemma 3.8 with (T, X, o) = (P, W}, 6;), we see that ; has nontrivial
stabilizerin W;. So, fix 1 # y € W; with y(6;) = 6;. Let wo,; be the longest element
of W;. Note that £(ywo, j) < £(wo, ;) so in particular, wo_; Zgr ywo, ;-

Assume for contradiction that there exist x € g and a Hessenberg space H C g
such that Xy, ; = B(x, H). Write

k
x =xo+2x,-,
i=1

with xg € 3and x; € [; foralli € [k]. As B = ¢B € wao_j, we see that x € H.
If x; = O then w - x = x for all w € W;. In particular, wo, ;B € B(x, H), which is
impossible since wy, ; ﬁgr Yywp, ;. So, we assume now that x; # 0.

By Lemma 3.9, there is some b € B; such that 0 # b~ x projects nontrivially onto
90, As Xy, ; is B-invariant and contains ywo, ; B, we see that (byino, )~ -x € H.
Now

(b3, )™ x = by - (71 (BT 2).

As gp; is Bj-invariant, we see that b~ x projects nontrivially onto gy i-Asy € (Wj)g;,
also y~! - (b~! - x) projects nontrivially onto 9o, Finally, g } = wp,; maps 6; to
—0; and it follows that (bywo, j)_l - x projects nontrivially onto g_g,.

As H projects nontrivially onto the 1-dimensional root space g—g;, we see that
g9-9;, € H . Since g, generates the Bj-module [;, we musthave [; € H.Inparticular,
x;j € H,hence x —x; € H. As Ad(L ) fixes x — x, it follows that for all w € W,

.1

w ~x=x—xj+u')_1

-xJ'GH.

In particular, w ; -x € H, leading again to the impossibility wo,j B € Xyuy ;- O

Example 3.10 Consider the Adjoint representation of SL, (C) on g = s[,,(C). In this
case 0 = €] — €, and the stabilizer of 6 is the subgroup Wy = (s2, ..., s,—2). Thus,
Wy # {e} whenever n > 4 (that is, whenever the rank of sl,(C) is at least 3). By
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Theorem 3.7, every element of the right coset Wy wy, except for wq, has the property
that the corresponding Schubert variety cannot be realized as a Hessenberg variety.
Note that the reflection

S9 = Sp—1---825182 - Sp—1 = (1, n)
is the minimal length coset representative for Wowy. Thus,

Wowo \ {wo} = Wase \ {wo} = {ysg : y € Wy, ¥y # yo}

where yo denotes the longest element of Wy. This shows X, is not equal to any
adjoint Hessenberg variety B(x, H) forall y € Wy \ {yo}.

Note the set Wysy \ {wo} from Example 3.10 consists of all w € S, such that
wp =n, w, = 1, and there exist k, £ € {2,...,n — 1} such that k < £ and w; < wy.
In particular, all such w contain the pattern [4231]. The results of Section 4 extend
Theorem 3.7 to a general statement about pattern avoidance in the type A case.

To conclude, we note that our proof of Theorem 3.7 can be adjusted easily to obtain
the following converse to Theorem 3.6.

Proposition 3.11 Let A be a dominant but not strictly dominant weight for G, with
associated highest weight representation ¥ : G — GL(V(X)). Then there exists
w € W such that no pair (x € V(L), H C V(A)) with H a Hessenberg space satisfies
B(x, H) = Xy.

4 The Equality Question for Type A Adjoint Hessenberg Varieties
and Pattern Avoidance

Assume that G = SL, (C) throughout. In this section we prove Theorem 1.8, which
says that if w € §,, contains the pattern [4231], then there is no adjoint Hessenberg
variety in B equal to X,,. We will see in Example 4.7 that there is no pattern avoidance
criterion characterizing the set of type A Schubert varieties that are adjoint Hessenberg
varieties. Theorem 1.8 remains true if we take G = GL,(C), as can be shown with
minor modifications, omitted herein, to our proofs.

As mentioned earlier, Theorem 1.8 is much more powerful than Theorem 1.7 when
only type A is considered. Indeed, Theorem 1.7 implies that the number of w € S,
such that X, is not equal to an adjoint Hessenberg variety grows at least quadratically
with n, while Theorem 1.8 says that the number of such w is at least n! — ¢”* for some
constant c.

We begin by recording two basic facts that we will use repeatedly. Each matrix
x € s1,(C) can be written as a linear combination of elementary matrices {E;; :
@i, j) € [n] x [n]}. We define ¢;; : 5[,(C) — C to be the coordinate function
returning the coefficient of E;; in such a combination. Throughout this section, we
write g - x for Ad(g)(x) whenever g € SL,,(C) and x € s[,,(C).
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Lemma4.1 Let x € sl,(C) with ¢;j(x) # O for some (i, j) € [n] x [n] such that
i # j. If (k,2) € [n] X [n]withk <iand ¢ > j then there exists b € B such that
cke(b-x) #0.

Proof First suppose that (k, ¢) = (j, i). This implies j < i and so by := I +a Ej; is
an element of B for all ¢ € C. A direct computation shows that ¢;; (by - x) = ¢;; (x) +
ale;(x) —¢jj(x)) — azc,-j (x). Thus, there exists & € C such that ¢;; (by - x) # 0.
We now consider (k, £) # (j,i), i.e., the case thati # £ or k # j. Wheni # ¢
the lemma follows from the existence of b1, b» € B such that ¢;;(b; - x) # 0 and
cie(ba-(b1-x)) # 0. Symmetrically, when j # k the lemma follows from the existence
of by, by € B such that ¢;; (b1 - x) # 0 and ¢x¢ (b - (b1 - x)) # 0. Therefore, to settle
the case (k, £) # (Jj, i), it suffices to assume that i = k or j = ¢.

When i = k and j = ¢ the statement of the lemma is immediate so let us assume
that this is not the case. If i = k then for each o € C, by := I + aEj; is an element
of B and a direct computation shows that ¢;¢(by - X) = €;¢(x) — a¢;;(x). Thus, there
exists @ € C such that ¢j¢(by - x) # 0. Similarly, If £ = j then by := I + aEy; is
an element of B and ¢ (by - x) = ¢j(x) + ac;;(x), which implies that there exists
a € C such that ¢ (by - x) # 0. O

Note that Lemma 4.1 gives us an explicit description of the partial order < on &
defined in Section 3.1. Indeed, we have g, ¢ ;= C{E;;} and the lemma tells us that
there exists b € B such that ¢x¢(b - E;j) # 050 ge,—¢, is contained in the Demazure
module He, ;. In summary,

€ —€j<e—€k<iand £>j.

Note that this description of < can also be obtained from Lemma 3.3.

Lemma4.2 Say H C sl,(C) is a Hessenberg space and E;j € H withi # j. If
k,t € [n]withk # £ and both k <i and £ > j hold, then Eyy € H. In other words,
ifgg C H theng, C H forally € ® such that B < y.

Proof By Lemma 4.1 there exists b € B such that ¢x¢(b - E;j) # 0. Since H is
B-invariant, we have b - E;; € H implying g¢,—, € H and Ey¢ € H. O

Theorem 1.8 will follow directly from the next result.

Lemma4.3 Assumew € S, and1 <i < j <k <l <nwithw; <w; < wg < w;.
Define Tt € S, by

wmm¢ {J?k}s
T = Wxg m=j,
w; m=k.

Let x € g = 51,(C) and let H C s1,,(C) be a Hessenberg space. If the Schubert cell
C,,-1 is contained in the adjoint Hessenberg variety B(x, H), then t ' B € B(x, H).
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Proof Given w, x, and H as in the statement, we assume C,,—1 € B(x, H), and write
¢pq for ¢pq (x) whenever p, g € [n] with p # g. Set

x’ ::Zcpquq, and s:=x-—x"€eh.
P#q
Then x = x’ + 5. We will show that both 7 - x" and 7 - s lie in H, thus proving the
lemma.
We know that w - x € H, since w™ !B e C,-1 € B(x, H). In particular, Ep; € H
whenever p # g and ¢ (W - x) # 0. As ¢,y (W - x') = €, (W - x) Whenever p # ¢,

it follows that w - x’ € H. Therefore, w -s = w-x —w -x' € H.
We see now that to show 7 - s € H, it suffices to show

w-s—1-5 € H. 4.1)

For p € [n — 1], we write h), for E,, — E, 11 p+1 € . There exist ¢, € C such that
n—1
s = ch’hl"
p=1

We observe that w - Epyy = Eyy,w, for all m € [n], and similar for 7. A direct
computation shows that, whether or not k = j + 1, we obtain

wes—T-s=(cj—1 —¢j—ck—1+ i) Ewuy — Ewjuw;)-
If (cj—1 — ¢j — cx—1 + cx) = 0, then (4.1) holds. So, we assume from now on that
Ccj—1—cCj —Cp—1 +cx #0. “4.2)
In order to show that (4.1) holds, we must show that
Evpuy — Ewjw; € H. 4.3)
We claim that there is some b € B with ¢ (b - x) # 0. Given this claim, as i < j
and £ > k, Lemma 4.1 implies that there exists &' € B such that ¢;;(b'b - x) # 0. It

follows that
cwiwg(u')b/b -x) #0. 4.4)

Since (wb'b)~'B € C,-1 € B(x, H), we see that wb'b-x € H.It follows from (4.4)
that £y, € H. Using Lemma 4.2, we see that Ewkwj € H. Finally, as Ew,—wk eb
and H is a Hessenberg space, we get

Ewkwk - ijwj = _[Ew_,-wk’ Ewkwj] € H.
Thus (4.3) and (4.1) hold.
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We aim now to prove the claim that there exists b € B with ¢ (b - x) # 0. By
Lemma 4.1, such b exists if there are p,q such thatallof p # ¢q, j < p,q <k,
and ¢,,; # 0 hold. We may therefore assume no such p, g exist. In that case (see for
example [8, p.61]) ¢ (b -x’) =0forall b € B. Now we choose

b:=I1+Ej€B.
From direct calculation (or by [8, p.61]), we see that
b-s=s+(cj_1 —c¢j—ck—1 + ) Ejk.
It follows now from (4.2) that
cix(b-x)=cjr(b-x")+cjx(b-s)#0

as desired. This completes our proof that 7 - s € H.
It remains to show that 7 -x" € H.Equivalently, we must show that, forall p, g € [n]

with p # g,
if ¢py # Othen Er ¢, € H. 4.5)

Since w™'B € B(x, H), we know that Ey,w, € H whenever p # g and ¢, # 0.
Therefore, (4.5) holds whenever {p, g} N {j, k} = @. For all remaining pairs (p, q),
we will choose appropriate pairs (d, e) and (s, ¢) of indices such that

(wg, wy) = (tp, 74), d < p, e>¢q, ws < wy, and w; > w,.

Assertion (4.5) follows in each case from an argument of the following form:

“Since ¢4 # 0, it follows from Lemma 4.1 that there is some b € B such that
cqe(b-x) # 0. Therefore, ¢y, (WD - x) # 0. As (wb)~'B € C,-1 € B(x, H),
we see that Ey,,, € H. By Lemma 4.2, £y, € H.”

An exhaustive list of pairs (p, ¢) and corresponding pairs (d, e) and (s, ) is given
in the table below.

! (p.q) [d,e)](s.0)]
(j, k) @, 0 |k, j)
(j,1) @, j) |k, i)

(.q).q &{i,k} |G, q) |k, q)

() (k, ) | (£, k)

(p. j), p ¢k, t}|(p, k)| (p, k)
(k, j) (U, 0|, k)
k,q).,9 %] 1UG.9|U,q)
(£, k) @, 0, j)

(p. k), p ¢ i, (p,O|(p,J)

We conclude that (4.5) holds and our proof is complete. O
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We can now prove Theorem 1.8, restated here for the reader’s convenience.

Theorem 4.4 Let w € S,,. If some adjoint Hessenberg variety B(x, H) € SL,(C)/B
is equal to the Schubert variety X, then w avoids the pattern [4231].

Proof It is well-known and straightforward to show that, given permutations o and
w, w contains the pattern o if and only if w™! contains o ~!. Since [4231] is its own
inverse, the theorem will follow once we show that if B(x, H) = X -1, then w avoids
the pattern [4231].

If B(x, H) = X,,-1 then C,,-1 € B(x, H). If w contains the pattern [4231] then
t~1B € B(x, H), with t as in Lemma 4.3. We observe that £(7) > £(w), since T is
obtained from w by exchanging the positions of two letters that appear in ascending
order in w. It follows that T £g; w and t~! £g, w™!. This forces B(x, H) # X,,-1.

O

As mentioned in the introduction, the Marcus—Tardos Theorem guarantees that the
number |S;,(4231)| of permutations in §,, avoiding [4231] is bounded above by some
exponential function of n. In particular,

. 18,(4231)]
lim ———— =

n— 00 | Sy

So, for large n, Schubert varieties in SL,(C)/B that are also Hessenberg varieties
in SL,(C)/B are extremely rare. To our knowledge, the best exponential bounds for
|S,(4231)| known currently are (for all large enough n)

10.271" < |S,(4231)] < 13.5",

due to Bevan, Brignall, Elvey Price and Pantone in [5]. It is worth remarking that we
do not know if there is any constant ¢ > 1 such that the number of Schubert varieties
in SL,(C)/B that are (equal to) Hessenberg varieties in SL, (C)/B is at least ¢".
We can use similar reasoning as that used in the proof of Lemma 4.3 to argue that
certain Schubert varieties in SL4(C)/B are not equal to any Hessenberg variety in
SL4(C)/B. These arguments do not extend as easily to pattern avoidance results, but
we include one example here for the sake of clarity. Example 4.6 below completely
characterizes which Schubert varieties are equal to Hessenberg varieties in SL4(C)/B.

Lemma4.5 Assume n = 4. If w € {[4123], [2341]} then no adjoint Hessenberg
variety is equal to X,,-1.

Proof First, we consider w = [4123]. Note that permutations o = [2314] and t =
[1342] are the Bruhat-minimal elements of S4 such that 0 £ w and 7 £ w. We
argue that given x € sl4(C) and Hessenberg space H C sl4(C) such that B(x, H) C
SL4(C)/B is a B-invariant Hessenberg variety with X,,-1 € B(x, H), then either
6~ 'B € B(x, H) or t~'B € B(x, H). This proves X,-1 € B(x, H) and thus X, -1
is not equal to a Hessenberg variety.
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To begin, write

X = Z CpqEpq

(p.q)€l4]1x([4]

where ¢, = ¢4 (x) forall p, g.

We define an integer go € [5] as follows. If {g € [4] : ¢); # O for some p #
q} = @ (i.e. if x is a diagonal matrix) then we set g9 = 5. Otherwise, set gg :=
min{g € [4] : ¢pq # 0 for some p # q}.

Suppose first that go = 1 or go = 2. By Lemma 4.1, there exists » € B such
that ¢j2(b - x) # 0 and thus ¢q1(w - b - x) # 0. Since X,,-1 € B(x, H), we know
b='w'B € B(x, H) and therefore E4; € H. It follows that H = sl4(C). So,
B(x, H) = SL4(C)/B contains both 6 !B € B(x, H) and ' B € B(x, H) in this
case.

We assume now that gyp > 3. This implies, in particular, that

] =¢31 =c¢4 =c¢pp=c3 =c42 =0,

hence
x=cnEn+cenkn+ Z CpgEpy. (4.6)
(p.q)€l41x{3,4}

If ¢11 # ¢z then there exists b € B such thatej2(b - x) # 0. (This is easily verified by
direct calculation.) Since B(x, H) is B-invariant, we see that B(x, H) = B(b - x, H).
Thus, if ¢;; # ¢x» we can argue B(x, H) = SL4(C)/B as above. So, we assume
c11 = ¢ for the remainder of the proof.

If g0 = 3, then ¢3 # 0 for some p € {1, 2, 4}. By Lemma 4.1, there exists b € B
such that ¢13(b - x) # 0 and therefore ¢4 (- b - x) # 0. Since b~ 'w~'B € B(x, H),
we get E4p € H. Thus,

sh(CONCIE,y :peldl,qge{2,3,4)}C H.
Since we are working under the assumptions of (4.6) above and ¢1; = ¢, we have
t-x—xe€slh(CYNC{Ep) : pe[4l,q €{2,3,4}} € H
and since x € H (because eB € X,-1 C B(x, H)), we get T - x € H in this case.

Now assume go > 4. So, ¢y, = O forall ¢ € {1,2,3} and p # g. Thus (4.6)
becomes:

x=cnEnt+enEn+eEn+ Y cpubp 4.7
pel4]

As above, a direct computation shows that if ¢;; 7# ¢33 then there exists b € B such
that ¢j3(b - x) # 0. The arguments of the previous paragraph then imply ¢ ~'B €
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B - x, H) = B(x, H). We therefore assume that ¢;; = ¢33 for the remainder of the
proof.

If go = 4 then ¢p4 # 0 for some p € {1, 2, 3}. By Lemma 4.1 there exists b € B
such that cj4(b - x) # 0 and therefore c43(w - b - x) # 0. This implies E43 € H and
thus

sly(C)NC{Ep, : pel4l.g € (3.4} CH.

The assumptions (4.7) and ¢j; = ¢33 now imply 6 - x —x € H and thus 6 !B €
B(x, H) in this case.
Finally, if g9 = 5 then we must have

x=cEj +ci1Exn + e B3z + cqqEgg.

If ¢11 # ca4 then there exists b € B such that ¢j4(b - x) # 0 and the argument of
the previous paragraph implies 6 ' B € B(b - x, H) = B(x, H). We may therefore
assume ¢] = c44. Since x € sl4(C), this is possible if and only if x = 0, which in
turn implies B(x, H) = Bandso6~'B, ¢ !B € B(x, H).

The proof for w = [2341] follows from similar reasoning using o = [3124] and
T = [1423]. Exchanging the roles of rows and columns in the proof above yields the
desired result. For brevity, we omit the details here. O

Example 4.6 Let n = 4. In this case, X1 is an adjoint Hessenberg variety if and
only if

w ¢ {[4231], [2341], [4123], [1342], [3124]}.

Indeed, the first three elements of the set above are exactly the patterns from Theo-
rem 4.4 and Lemma 4.5. The proof that X, -1 is not equal to an adjoint Hessenberg
variety when w = [1342] or w = [3124] is similar to that of Lemma 4.5. Finally,
the remaining 19 permutations can each be realized as an adjoint Hessenberg vari-
ety. Indeed, 12 of these permutations have the property that X, -1 can be realized as
highest weight adjoint Hessenberg varieties by Proposition 3.1. Of the remaining 12
permutations that are not maximal length coset representatives for S4/(s2), five appear
above and the remaining 7 can be realized as Hessenberg varieties using the data from
Table 1. In this table we denote H as a matrix with starred entries; this means that

H = sl4(C) N C{E;; : entry (i, j) contains a  }.

Given Theorem 1.8, it is natural to ask whether the property that X, is an adjoint
Hessenberg variety is characterized by pattern avoidance. This is not the case, as the
next example shows.

Example 4.7 Let n = 5 and w = [13425] € S5. A direct computation shows when

H =sl5(C) NC{E12, E13, E14, E15, Ezs, E35}
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Table 1 Answer to the equality question for all Schubert varieties X, 1 where w € Sy is such that

L(wsy) > L(w)

w € Sy4 such that Xw_1 = B(x, H) X H
L(wsy) > £(w) in SL4(C)/B?
[0 % % =]
000 %
[1234] yes Ep + Ep4 0000
10000 ]
[0 % % % |
00 * %
[1243] yes E1p + Epg 0000
10000
[1342] no _ _
[0 0 % x|
00 %
[2134] yes Ei3+Ex 000 I
10000 |
[0 0 % x|
00 * *
[2143] yes E;3+ Eoy 0000
10000]
[2341] no - }
[3124] 10 . .
[0 % % « ]
0 % * *
[3142] yes E13+ Epg 0 % x %
10000 ]
EXEa
* ok %k
[3241] yes E13+ Ep4 . %
10000
[4123] no - _
EEER
[4132] yes E13+ Eny 8 : : :
_0 * ok
[4231] no - _

we get that B(E 12 + Eas, H) = X,,-1. Therefore, although w must avoid the pattern
[1342] when n = 4 in order to be realized as an adjoint Hessenberg variety, this is not

the case when n = 5.

As we have seen in Section 3 every highest weight Hessenberg variety is B-
invariant. The question of whether or not an arbitrary adjoint Hessenberg variety
is B-invariant is much more nuanced than in the highest weight case. Indeed, Exam-
ples 4.6 and 4.7 exhibit B-invariant adjoint Hessenberg varieties that are not highest

weight Hessenberg varieties. This motivates the following open question.
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Question 4.8 Givenanadjoint Hessenberg variety B(x, H) suchthatx ¢ C{Ey}, what
conditions on x and Hessenberg space H guarantee that B(x, H) is B-invariant? In
the case that B(x, H) is B-invariant, what conditions guarantee it is irreducible?

5 The Isomorphism Question for Type A Adjoint Hessenberg Varieties

Our goal is to prove the following result, which is a restatement of Theorem 1.9 above.

Theorem 5.1 Suppose n > 6. Assume that G = GL,(C) or G = SL,(C) and B is
the Borel subgroup of G consisting of upper triangular matrices. Let wq be the longest
element of the Weyl group W = S,,, and fori € [n—1], lets; € W be the transposition
(i,i4+1). If3 <i <n—3, then there do not exist x € g and subspace H C g such
that [b, H] € H and B(x, H) is isomorphic with X, .

Assume that we have fixed n > 4. As each Schubert variety X, is irreducible
of codimension one in the flag variety B, our plan is to study closely the structure
of adjoint Hessenberg varieties of codimension one in B. In particular, we study the
Euler characteristic of irreducible adjoint Hessenberg varieties of codimension one.
We will see that in all but two cases, if 3 < i < n — 3, no such variety has the same
Euler characteristic as X, ,,,. The remaining two cases will be handled by examining
Betti numbers.

A few remarks are in order. First, Proposition 3.1 tells us that for all n < 3, every
Schubert variety is equal to an adjoint Hessenberg variety and that for all n, X,
and X, ., are adjoint Hessenberg varieties. Second, Theorem 5.1 does not resolve
the isomorphism question for the Schubert varieties Xy,,, and X;,_,,, whenever
n > 4. In fact, the existence Hessenberg varieties in 3 with the same Betti numbers
as Xy,u, and X, ,y, renders the methods used to prove Theorem 5.1 useless. Recall
that 6 = 1 — &, is the highest root in ®. We define the Hessenberg space

H=0)=h& P oo

acd\{—6)}

As is standard, we define the Poincaré polynomial of a space X as

Poin(X, q) := Zdim(c H (X; (C)qi.

i>0

Example 5.2 We observe first for use here and later that for 1 < i < n — 1, Xy,
and Xj, .., are isomorphic. Indeed, it follows from [25, Theorem 1.3] that for any
Y € Sn, Xugywy = Xy, and direct calculation shows that wq(s; wo)wo = s,—; wo. Let
n > 4 and suppose v = spwgp or v = §,_2wy. For either choice for v one can use the
Tableau Criterion of Theorem 2.1 to describe efficiently those y € S, that do not live
below v in the Bruhat order and then calculate

Poin(X,, /) = [n = 21! (Inlyln = 11, —¢* = =™ ™). 5.
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(Here [n]y =14+g+---+ g" ! and [n],! = ]_['}zl[j]q.) Using either [28, Theorem
1.1] or [23, Theorem 5.4 and Corollary 5.5] along with (5.1), one can verify that if
x = Ei,_1 + Ey, orx = E{3 + E», then Poin(X,, ¢) = Poin(B(x, H(—0)), q).
We outline such a verification when x = Ej> + E»,. In the language of [28], A, =
(3,1,...,1). Given a filling T of the (English) Young diagram of shape A, with the
numbers 1 to n (without repetitions), let wr € S, be the permutation obtained from
reading the entries in 7T first from bottom to top in the first column and then from left
to right in the first row. Define sets

Yy :i={weS,: (w2, wy—1) =@, 1) or (wy—1, w,) = (n, 1)}
and
Zyp:={we S \Yy:1e{wy_1,wy}}.

According to [28, Theorem 1.1], B(x, H (—6)) admits an affine paving with cells
indexed by those T such that wr € S, \ Y,. Moreover, if wr € S, \ Y, then the
dimension of the cell indexed by T is £(wr) if wr ¢ Z,. This dimensionis £(wr) — 1
if wy € Z,,. We conclude that

Poin(B(r, H(=0), y) = Y. ¢'™ + 1-4q T g,

weS\(YaUZ,) 7 ez,

Our claim now follows from direct calculations, using the identity > ", _p<m gt =

q(mgl)q. A similar argument works when x = E1,_1 + E2,.

We do not know if either of X,,, and X, ,u, 1S isomorphic to either of the
Hessenberg varieties appearing in Example 5.2.

We now commence our study of codimension one adjoint Hessenberg varieties. Our
main goal is to prove Proposition 1.10, restated below for the reader’s convenience.

Proposition5.3 If x € g and H C g is a Hessenberg space such that B(x, H) is
irreducible and has codimension one in B, then the Euler characteristic x (B(x, H))
is divisible by (n — 2)\.

Proposition 5.3 will be combined with Lemma 5.4 below to reduce the proof of
Theorem 5.1 to the examination of two special cases.

Lemma5.4 Let S = {s1,...,Su—1} be the set of simple reflections in S,. Fori €
[n — 1], let W (i) be the subgroup of S, generated by S \ {s;}. Then

X Xswp) =n! — W@ =n! —il(n —i).
Proof 1t follows directly from the definitions that W(i) = S; x S,—; so |[W(@)| =

i!(n — i)!. The bijection on S, sending w to wwy is an anti-automorphism of the
Bruhat order (see for example [4, Proposition 2.3.4]). It follows that the number of
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Schubert cells C,, not contained in X, is equal to the number of u € S, such that
S; ﬁ u, which is the number of elements of W (7). O

The remainder of this section consists of the proof of Proposition 5.3 followed by
the proof of Theorem 5.1. The key step is the next result, which we will prove after
stating a preliminary lemma.

Lemma 5.5 Assume that x € g and that H C g is a Hessenberg space. If B(x, H) has

dimensiondim B — 1 = (g) — 1, then at least one of

e H=H(-0),or
e X has an eigenspace of dimension n — 1

must hold.

In order to prove Lemma 5.5, we define two more “large” Hessenberg spaces. Set
B1:=¢€,-1 —¢€1 and B := ¢, — 3. Fori € {1, 2} we define the Hessenberg space

HB)=be O o

ac®\{-0.6}

Assume temporarily that G = GL,(C),x € gand H C gis a Hessenberg space. The
mapt : SL,(C)/(BNSL,(C)) — Bsending g(BNSL,(C)) to g B isanisomorphism.
Note that factors through the identification of eachof G /B and SL,,(C) /(BNS L, (C))
with the variety of full flags in C”. Thus, if x € s[,(C) then B(x, H) = «(B(x, H N
50, (C))), while if x ¢ sl,,(C) and H C sl,,(C) then B(x, H) = &. Therefore, the next
assumption is harmless.

Assumption 5.6 If G = GL,(C)and H C gis a Hessenberg space, then H SZ 50, (C).

We continue now under our original assumption that G = GL,(C)orG = SL,(C).
Given Assumption 5.6, the next lemma holds for Hessenberg spaces in either g =
50, (C) or g = gl,(C).

Lemma 5.7 Let H C g be a Hessenberg space satisfying Assumption 5.6.

1. Ifdimcg/H = 1then H = H(E).
2. Ifdimc g/H = 2 then H = H(ﬁ)forsomei e {1, 2}.
3. Ifdimc g/H > 2 then H C H(B;) for some i € {1,2}.

Proof 1If g, € H, then H contains the Demazure module in g generated by the root
vector E) so gg € H forall 8 > y by (3.1). Now if m_o(H) # Otheng g C H
and, as E,1 € g—p generates the Demazure module g N s(,(C), we have H = g.
Therefore every proper Hessenberg subspace of g is contained in H(—6) and (1)
follows. Moreover, if dimc g/H = 2then H C H(—6). Forall y € ® \ {—6}, we
have y > By ory > Bo. Thus E,_11 € g, and E,» € gg, together generate the
B-module H(—60)Nsl,(C), and assertion (2) follows. The poset of Hessenberg spaces
in g satisfying Assumption 5.6, ordered by inclusion, is graded by dimension. Now
(3) follows from (2). O
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For x € gand ¢ € C, set
mult. (x) := dimc ker(x — cI).

Lemma 5.5 follows directly from Lemma 5.7 and the next result. Indeed, if
H # H (—6) then by Lemma 5.7 we have H < H (E) for some i €
{1,2}. Since dim B(x, H) < dim B(x, H(B;)), Proposition 5.8 below implies that
maxcc(multe(x)) > n — 1 whenever dim B(x, H) = (5) — 1. As B(x, H) = @ or
B(x, H) = B whenever x is scalar, Lemma 5.5 follows.

Proposition 5.8 Fori € {1,2} and x € g, B(x, H(Ei)) has dimension at most

max ((D -2 (" g 1) - Teaté((mUHC(x))) '

Proof We claim first that it suffices to consider the case i = 1.Letog € GL,(C) be the

involution mapping e; to e,+1—; for all i € [n]. Define an automorphismr : G — G
by

r(g) = oo(g~ )" op.

We observe thatif b € B then (b~ )™ is lower triangular, and thus r(b) € B. Therefore
the map 7 : B — B sending gB to r(g)B is a well defined automorphism of 5. A
direct calculation shows that

F(B(x, H(B2)) = B(oox" a9, H(B1)).

Since x and opx" oy are conjugate, we see that the dimensions of B(x, H (E)) and
B(x, H(By)) are equal. Our claim follows.

Noting that 7(H (B8,))=(n—2,n, ..., n), we considerthemap 7 : B(x, H(B,)) —
P~ given by

JT(V.) = V1.

As 7 is the restriction to B(x, H (El)) of the projection of the product of Grassman-
nians ]_[’,:;11 G(k, n) onto its first factor, 7 is a regular map. Let C be an irreducible
component of B(x, H(El)) and let Y € 7 (C). According to [16, Corollary 11.13],

dimC < dim7(C) + dim 7~ (Y). (5.2)

The fiber n’l(Y) consists of all flags V, such that Vi = Y and Y + xY C V,_».
If Y is not x-invariant, then Y + xY is two-dimensional. In this case, we define
the (surjective) map ¢ from 77 1(Y) to the Grassmannian of (n — 4)-dimensional
subspaces of C"/(Y + xY) (a projective variety) sending V, to V,,_2/(Y + xY).
For every such subspace Z' = Z/(Y + xY), ¢~'(Z’) is isomorphic to the product
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Flag,_3 x P!, Indeed, {’1(2’) consists of all V, such that Vi = Y and V,,_, = Z.
Choosing V3, ..., V,,_3 is equivalent to choosing a flag in V,_,/V}, and choosing
V,—1 is equivalent to choosing a 1-dimensional subspace of C"/V,,_. It follows from
[16, Theorem 11.14] that 7~ (Y) is irreducible. We may apply [16, Theorem 11.12]
and well-known facts about Grassmannians and flag varieties to get

dimz~'(Y) = dimG(n — 4, n — 2) + dim(Flag,,_5 x P!)
B o3 (5.3)
=2m—-4+ (") + L

Combining (5.2) and (5.3), we get

dimen—1+2(n—4)+<n23>+1= (;)—2,
and the claim of the Proposition follows in this case.

We are left with the case where every Y € 7 (C) is x-invariant. We consider the map
from C to C sending V, to the eigenvalue of x on Vj. As C is irreducible and therefore
connected, and the set of eigenvalues of x is discrete, there exists some eigenvalue ¢
of x such thatevery Y € 7 (C) is spanned by an element of ker(x — c1). It follows that

dim 7(C) < mult.(x) — 1. (5.4)

For any Y € 7 (C), 7~ 1(Y) consists of all flags V, such that V| = Y. It follows that
771 (Y) is isomorphic with Flag,_;. Combining (5.2) and (5.4), we get

1
dimC < (” ) >+ mult, (x) — 1.

This concludes the proof. O

With Lemma 5.5 in hand, we analyze the two cases arising from its conclusion
starting with the case in which x has an eigenspace of dimension n — 1. Recall from
Example 5.2 that Xy, ,, and X§,_,y, are isomorphic.

Lemma 5.9 Assume that x € g has an eigenspace of dimensionn — 1 and H C gisa
Hessenberg space. If B(x, H) is irreducible of codimension one in B, then B(x, H)
is isomorphic with Xy, and X, | w,-

Proof We observe that if x has an eigenspace of dimension n — 1, then x is either
semisimple or conjugate to ¢/ + E1, for some scalar c. We consider first the case
where x is semisimple. We may assume without loss of generality that there exist
distinct constants ¢, d such that xe; = ce; fori € [n — 1], and xe,, = de,. If H = g,
then B(x, H) = B. So, we assume that H # g. By Lemma 5.7(1), H € H(—6) and
so B(x, H) € B(x, H(—0)). We will show that B(x, H(—0)) has two irreducible
components, one of which is X, 4, with the other isomorphic to Xy, ,. The claim
of the lemma in this case then follows immediately.
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Since h(H(=6)) = (n—1,n, ..., n), wesee that B(x, H(—6)) consists of all flags
V, such that x V| C V,_1. In particular, if V| is x-invariant, then V, € B(x, H(—6)).
Define

Ci:=We: Vi CCle:ien—11}}.

As Cle; :i € [n — 1]} = ker(x — cI), we see that C; € B(x, H(—6)). By the flag
description of Schubert varieties and the fact thats,_jwo =[n — 1lnn —2---21], it
follows that

Cl = Xs,,_|w0~
Now set
Cor:={Ve:e, € Vy_1}.

We will show that B(x, H(—6)) = C; UC,, and that, with oy the involution mapping e;
to e,41—; as above, Co = 0 (X, v, ), thereby completing our examination of the case
where x is semisimple. Let V, € Cy. If V| is x-invariant, then V, € B(x, H(—0)). If
V] is not x-invariant, then V| = C{e,, + y} for some nonzero y € Cle; : i € [n — 1]}.
Now xV; = C{de, + cy}.If c =0thend # 0Oand xV; = Cle,} C Vy—1. If c # 0
then

1
Vi+xVp :C{en+y7en +y_z(den+cy)} =Cle, +y, en},

the second equality holding since d # c. Now xV| C Vi +xV; C V,_1. In either
case, Ve € B(x, H(=0)) so C» € B(x, H(=9)).

Conversely, say V, € B(x, H(—0))\C.If V| = C{e,}, thene, € V,_;.Otherwise,
Vi = C{e,+y} forsome nonzero y € C{e; : i € [n—1]}. Arguing as in the paragraph
just above, we see that e, € V| + xV) and therefore ¢, € V,,_;. We conclude that
V. € C; and B(x, H(—0)) = C; U C, as claimed.

Now sjwg = [nn — 1---312]. By the flag description of Schubert varieties,
Xsywy ={Ve 1 €1 € Vy_1}. Now

00(Xsywy) =00({Ve i e1 € V1)) ={Fe:ey € F_1} =0Co,

the second equality following from oge; = e;,.

It remains to examine the case where x is conjugate to ¢/ + E1, for some ¢ € C
(and H C g is an arbitrary Hessenberg space). We claim that in this case, either
B(x, H) = @ or B(x, H) >~ B(E1,, H). Without loss of generality, we may assume
x =cl+Ey,. If B(x, H) # @ then there is some g € G such that g~'-x € H. Write
g = biby with by, by € Bandw € S,. We see that v~ 'b; ' -x € by - H = H. Now

e 1.—1 «—17—1
Wb cx=cl+w b 'E]n:CI—i-dEwl—lwn—l
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for some d € C*. In particular, we see thatre . _,(H) # 0,hence E -1, -1 € H.
wy Wy 1 n

l~x=cl+g‘1-E1nlies

It follows that ¢/ € H. For arbitrary g € G, the matrix g~
in H if and only if g_1 - E1, € H. The claim follows.
Now B(Ey,, H) is a highest weight Hessenberg variety for the adjoint representa-
tion and is therefore a union of Schubert cells. In particular, if 5(x, H) is irreducible
and of codimension one, then B(x, H) >~ X, for some i € [n — 1]. We observe
thatif 1 <i < n — 1 then s;wp maps 1 ton and n to 1 and so lies in the same coset of
the stabilizer of & = ¢; — &, as wg. On the other hand, neither s; wg nor s,,_jwq lies
in the coset and so both are longest representatives of the coset containing them. The
lemma follows from Proposition 3.1 and Theorem 3.7 (and Lemma 5.4). O

We record the novel geometric results from the proof of Lemma 5.9 below.

Corollary 5.10 Let x be a semisimple matrix such that there exists distinct constants
¢, d with xe; = ce; fori € [n — 1] and xe, = dey. The adjoint Hessenberg variety
B(x, H(—=0)) is a union of two irreducible components, one equal to the Schubert
variety X, ,w, and the other isomorphic to the Schubert variety X, .

The following lemma, when combined with Lemmas 5.4, 5.5 and 5.9, will complete
the proof of Proposition 5.3.

Lemma 5.11 For every x € g, the Euler characteristic x (B(x, H(=0))) is divisible
by (n —2)\.

Proof We assume without loss of generality that x = x; + x,, with x; diagonal and x,,
an upper triangular, nilpotent matrix satisfying the assumptions of [23, Corollary 4.9].
LetC(x, H(—6)) be the set of all w € W such that the Schubert cell C,, has nonempty
intersection with B(x, H(—0)). By [23, Theorem 5.4] and its proof, the affine spaces
B(x, H(—0)) N C,, with w € C(x, H) determine an affine paving of B(x, H(—0)).
So,

x(B(x, H(=0))) = dimc H*(B(x, H(=0))) = [C(x, H(=0)).

Now by [23, Proposition 3.7], w € C(x, H(=0)) if and only if Ad(wH(x,) €
H(—6). We now write

Xp = chkEj,k

Jj<k
for some cj; € C. It follows that C(x, H (—0)) fails to contain exactly those w €
W such that w(—6) = ¢; — & for pairs j < k satisfying cjx # 0. In particular,
W\ C(x, H(—0)) is a union of cosets of the stabilizer of —0 in W. As this stabilizer

is isomorphic with S,,_», the lemma follows. O

We are now ready to prove Theorem 5.1.
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Proof of Theorem 5.1 Observe that X, is irreducible. So, if there is some adjoint
Hessenberg variety B(x, H) € B isomorphic with X, then i!(n — i)! is divisible
by (n —2)! by Proposition 5.3 and Lemma 5.4. However, ifn > 9and3 <i <n —3,
then 0 < il(n —i)! < (n — 2)!. Moreover, inspection shows that if 6 < n < 8 and
3 <i <n-—3,then (n —2)! does not divide i!(n — i)! unless (n, i) € {(8, 3), (8, 5)}.

We assume now thatn = 8andi € {3, 5}. Inthis case, we have x (X, ,) = 8!—3!5
If B(x, H) is irreducible of codimension one in B, then we have by Lemmas 5.5
and 5.9 that H = H(=0). Let x = x; + x,, be the decomposition of x as in the proof
Lemma 5.11. Arguing as in that proof, we get that

x (B(x, H(=0))) = |C(x, H(=0))] = 8! — 6! |{(j < k) : cjx # O}].

It follows immediately that if x (B(x, H (—0))) = 8! —3!5!, then x,, = E jk for some
1 < j < k < n. Finally, one can use the formulas given in [23, Corollary 5.5] to
check that there is no Hessenberg variety B(x; 4+ Ejx, H (—0)) in the flag variety
B = SLg(C)/B with Betti numbers equal to those of the Schubert varieties Xy, and
X5, - For the sake of brevity, we omit these computations. a

6 Type C Adjoint Hessenberg Varieties

Recall from the introduction that the type C flag variety can be identified as the fixed-
point set of a type A flag variety under a certain automorphism o . Similarly, the Type
A and Type C Schubert varieties are closely connected as each type C Schubert variety
is the variety of o-fixed points of a type A Schubert variety (see [20, Chapter 6]). The
first main result of this section is that the same is true of type C Hessenberg varieties.
Namely Theorem 6.3 below says that every type C adjoint Hessenberg variety is the
variety of o-fixed points of a type A Hessenberg variety and implies Theorem 1.13.
With this groundwork in place, we establish the type C pattern avoidance result stated
in Theorem 1.12 (see Theorem 6.10 below). We remark that many of our proofs in
this section would be considerably easier and shorter were we to assume that every
Hessenberg space H contains the Borel subalgebra b. However, to prove the results
in complete generality, we do not make this assumption below.

We begin by fixing the notation needed to define the automorphism o. Let E be the
2n x 2n block matrix

0 J
£= %)

where J is the n x n matrix with 1’s on the anti-diagonal, and 0’s elsewhere. We
follow [20, Chapter 6] and identify Sp», (C) with the fixed point set of the involution
0 : SLy,(C) — SL1,(C) defined by o(A) = E(AY)~!E~!. Explicitly, consider the
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embedding ¢ : Sp2,(C) — SL;,(C) whose image stabilizes the alternating form
(—, —) defined by

(eire;) = lifj=2n+1—iand1 <i <n,
€€ =0 otherwise.

(Here ey, . .., ey is the standard basis of C2".) Then G¢ := ¢ (Sp2,(C)) is the group
of o-fixed points in S Ly, (C). Throughout this section we identify Spo, (C) with G¢.

The maximal torus 7 in SL7,(C) consisting of diagonal matrices and fixed Borel
subgroup B in SL;,(C) consisting of upper triangular matrices are stable under o,
and T? (respectively, B¢ := B?) is a maximal torus (respectively, Borel subgroup)
in G¢. Fori € [2n], set

i"=2n+1-—i.
Let W be the Weyl group of Spy, (C). The embedding ¢ induces an embedding ¢* :
W — S, with image W¢ := ¢*(W) consisting of those w € Sy, satisfying w(i)’ =
w(i") for all i € [2n]. We call such w signed permutations.
We will write o for the differential do which is the involution of the Lie algebra
given by
0 151, (C) = 515, (C), o (x) = Ex"E.

We identify sp,, (C) with g¢ := s, (C)?. We observe that h? is the Lie algebra of
T°, and

h? = {diag(dy, ..., do) € slpy (C) : di = —dy'}. 6.1)
The involution o also induces an involution of h* defined by
o: b = b* o) =—¢.
We describe now a surjective map from the type A root system @ 4 to the type C root

system ®¢ known as the folding map. Set €; := €; — ¢€;» and note that, by definition,
€; = —¢€;. The folding map is now defined to be

r_ .
p: Py — Do, @lg —€j) = E(ei —€)). (6.2)
Let Hc € gc be a type C Hessenberg space. Our first goal is to construct a
type A Hessenberg space H whose o-fixed points are the elements of Hc. Define

Sy :={y € Pc : gy C Hc} and set

by = {éi—EjGCDAZ(p(G,'—Ej)G(DHC}ECDA. (6.3)

% Birkhauser



L. Escobar et al.

With H N b to be described below, we define H C sl,,(C) to be the subspace such
that

H=Hnhe O CE;). (6.4)
6,‘—6_,‘6(1311
Giveni, j € [2n], we set
hij == [Eij, Ejil = Eii — Ej;,

and define
HNh:=C{h,hij:he HcNh? and i, j € [2n] suchthat €;—€;,€; — ¢ € Py}.
The example below shows that the intersection of the type A Hessenberg space defined
in (6.4) with the Cartan subalgebra depends on the roots ®¢ in a nuanced way.

Example 6.1 Suppose n = 2, and hence ® 4 is a root system of type Az and ®¢ a root
system of type Cp. Write «; for the simple root €; — €;+1 € ® 4. The simple roots in

Q¢ are B = ¢ (1) = ¢p(a3) and B = ¢p(a2). Now ()4 = {1, B2, B1+ B2, 2f1 +
B2}. In the embedding of sp,(C) in sl4(C) described above, the positive root spaces

(8¢)g1s (8C)pas (8C)1+8,> and (gc)2p,+p, are spanned respectively by Ejn — E34,
E»3, E13 + E»4, and E14. The corresponding negative root spaces are spanned by the
transposes of the given matrices. Also, the Cartan subalgebra h” of g¢ is spanned by
hg, = E11 — Exp + E33 — Eqq and hg, = Ey — Ez3.

Say Hc is the ad(bc)-module generated by (gc)—g,, that is, Hc is the Demazure
module in g¢ generated by E_g, . Using direct calculation (or [8, p. 61]), we see that

He = Clhg} @ (ac) -5 ® B (ac)s-
pe(®c)+

It follows that

Oy ={—a1, —a3} U (Pa)+

and

H=Clh12,h34} ® g ®go; ® @ Jo-

ae(®a)y

In particular, H N § contains Hc N h7 strictly.
On the other hand, if H¢ is the Demazure module generated by (gc)—g, then

He =Clhg,} @ (90)-p @ D (a0)s,
Be(@c)+

Sy ={—a} U (Pa)s,
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and

H=Clh3}® @c)-a® P oo

ac(®a)+

Thus this case, H Nh = Hc N H7.

Remark 6.2 If ® . contains all negative simple roots of ®¢, then Hc N Hh7 = h7 is
the Cartan subalgebra of sp,, (C) and in this case, H N h = b also.

We observe that the action of o on SL,,(C) induces an automorphism of the type
A flag variety B4 := SL,(C)/B, which will also be denoted by o. The map ¢’
from B¢e := G¢/Bc to B4 sending gB¢ to gB is a well-defined embedding, and
(Ba)? = ¢'(Bc) (see, for example, [20, Proposition 6.1.1.1]).

We can now state the main theorem of this section.

Theorem 6.3 Given a type C Hessenberg space Hc C gc, let H be the subspace of
sl (C) defined as in (6.4) above.

(1) The subspace H is a type A Hessenberg space such that H° = Hc.
(2) Let x € gc. The image under ¢’ of the type C Hessenberg variety B¢ (x, He) is
Ba(x, H)".

We prove first that in Theorem 6.3, (1) implies (2). The proof of Theorem 6.3(1) is
delayed until after Lemma 6.7.

Proof of Theorem 6.3(2) We wish to show that ¢’ (B¢ (x, Hc)) = Ba(x, H)? as vari-
eties. The set Ge(x, He) :=={g € G¢ : g_1 -x € Hc}is asubvariety of G¢ invariant
under the right action of B¢ on G ¢ whose image under the morphism u : G¢ — B is
Be(x, He). LetGa(x, H) :={g € SL»,(C) : g_1 -x € H}. Since G¢ = SL,,(C)?,
we have that G4 (x, H)° = Ga(x, H) N G¢ is a subvariety of G¢.

Let us show that G4 (x, H)° = G¢(x, Hc), as subvarieties of G¢. By (1) of Theo-
rem 6.3 we have

Ge(x,Ho)={geGc:g ' "xeH, g' x esh,(0)).

1
1

Given g € G, since x € gc, we have g~ !

follows that the constraints imposed by g~
Ge(x, He) = Ga(x, H)?. In particular,

-x € gc and thus g7 - x is o-stable. It
- x € slp,(C)? are redundant, so indeed
@' (Be(x, He)) = ¢’ (u(Ge(x, He))) = ¢'(n(Ga(x, H)?))

as subvarieties of 5. Finally, note that by definition of the maps,

@' (1(Galx, H)?)) = ¢ ({gBc € Bc:o(g) =g, g ' -x € H))
={gBeB:o(g) =g, g_l~er}
= Ba(x, H)°.

This concludes the proof. O
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Now we develop the tools needed to prove Theorem 6.3(1). Recall the partial order
< on the root system @ defined in Section 3.1 above, and the concrete description of
that order given in Lemma 3.3. Our next result tells us that the folding map interacts
nicely with o, is compatible with <, and is well-behaved with respect to the W¢-action.
A proof can be found in [20, Chapter 6.1].

Lemma6.4 Let ¢ : &4 — D¢ be the folding map defined as in (6.2). This map
satisfies each of the following conditions.

L p(@}) = oL
2. Giveny € ®¢, ¢~ 1(y) is precisely the o-orbit of any y' € ® 4 such that p(y') =

Y.
3. The map ¢ is compatible with the partial ordering < on ® 4 and ®¢, that is, given

Y1, ¥2 € ®a, we have y1 < ya implies ¢(y1) < ¢(y2).
4. @ is equivariant with respect to the canonical action of W¢e on ® 4 and ®c.

For use below, we recall that there is a simple description of the partial order < on
the root system & 4, given by

€ —€j<e—€k<iandl > j. (6.5)
Consider the surjective linear map
0180 (C) > gc, o(x) =x+0(x).

Note that ¢ is not a Lie algebra homomorphism. However, the next lemma tells us
that & maps the root spaces of sly, (C) onto those of sp,,, (C).

Lemma6.5 Leth € h?. Foralll <k, £ < 2nwithk # £, we have 6 (Ex¢) € Sg(er—ep)
and ¢(ex — €¢)(h) = (€ — €0)(h).

Proof Since Ej, is a root vector corresponding to the root €, — ¢, € ®4 we have
[h, Exe] = (€x — €¢)(h)Eye. As o is an involution of sly, (C) and o (h) = h we get

o([h, o (Ere)]) =[h, Ee] =(ek —€)(h) Ere = [h, 0 (Ere)]= (ex — €0)(h)o (Eke).
Thus,

[h, 0 (Exe)] = [h, Exe]l + [h, 0 (Ege)]
= (ex — €)(h)Ege + (e — €g)(h)o (Ege)
= (e — €¢)(h)o (Ege).

To conclude the argument, we have only to show that ¢ (e — €¢)(h) = (ex — €¢)(h).
Since h € h?, we have €, (h) = —ep(h) for all k € [2n] (see (6.1)). Thus,

1 1
p(ex —€)(h) = E(Ek —€g)(h) = E(Gk — e —€¢ +e€p)(h) = (e — €)(h)
as desired. O

) Birkhauser



Which Schubert Varieties are Hessenberg Varieties?

Before arguing that H is a type A Hessenberg space, we prove it is o -invariant.

Lemma 6.6 Let Hc C sp,, (C) be a type C Hessenberg space and H C slp,(C) be
the subspace defined as in (6.4) above. Then o (H) = H.

Proof Tt suffices to show that o (H) C H. To do this, we check that

1. o(E;j) € Hforalli, j suchthate; —€; € @p,ie, suchthat p(e; —€;) € Py,
2. o(hij) € Hforalli, jsuchthate; —€j,€; —¢; € Op, and
3. 0(h) € Hforallh € Hc NHh°.

Condition (3) follows immediately from the facts that # € h° and Hc N H° C H.
Note that o (E;;) € C{E i/}, so to prove (1) it suffices to show that € — ¢; € Py,
ie., that (e — €;/) € Pp,.. But since

1 1
(p(éj/ — Ei/) = E(Ej/ — Ei/) = E(El - E]) = (p(gi — 6]) (66)

we do indeed get p(€;r — €;) = p(€; —€;) € Dp..
Finally, we prove (2). Suppose i, j € [2n] such that +=(¢; —€;) € @y, and consider

o(hij) =0o(Eij — Ejj) = —Epy + Ejjr=hj.

By (6.6), we have (e — €;1) = @(€; — €j) € Py, s0 €y — €y € O and similarly
€;r — €y € g also. By the definition of H, this implies 4 ;;;; € H, as desired. O

Next, we argue that ® g is an upper order ideal with respect to the partial order <
on &4.

Lemma 6.7 Let Hc C gc be a type C Hessenberg space. The corresponding subset
®y C Dy defined as in (6.3) is an upper order ideal with respect to the partial order
< on ®y.

Proof Suppose i, j € [2n] such that ¢, — €¢; € Oy and let ¢, — ¢y € P4 with
€k —€p > € —€;j.ByLemma 6.4, p(e; —€7) > @(€; —€;). Since Hc is Bc-invariant,
® p is an upper order ideal with respect to the partial order < on ®¢ (see Section 3.1).
Thusas p(¢; —€;) € Py, wehave p(ep —¢€;) € Py, and so e —€; € Py as desired.

O

Proof of Theorem 6.3(1) We begin by arguing that [b, H] € H, which proves that H
is a type A Hessenberg space. Since b = h @ C{Ej, : 1 < k < £ < 2n}, we have only
to show that

(A) [h,x] € Hforall h € hand x € H, and that
B) [Exe,x]e Hforalll <k <{¢ <2nandx € H.

By the definition of H, we may write

x=h+ Y djhj+ Y, cijEj

1<i<j<n €—€;€dy
+(ei—€j)edy
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forc;j, d;j € Cand h’ € Hc NKO. Assertion (A) admits a straightforward proof: since
h' + Zi(e,‘fe_,')e(bﬂ dijhij € b, we have

[h, x] = Z cijlh, Eij] = Z cij(ei —€;)(WE;j € H

ei—GjE(DH 6,‘—6_1'6(131-[

by the definition of H.
We turn to assertion (B). Let k, £ € [2n] with k < £. We have

[Eke, x] = [Exe, h'1+ E dij[Exe, hij] + E ¢ijlEke, Eij]. (6.7)
I<i<j<n €—€;edy
:I:(e,-—ej)eth

To prove [Ex¢, x] € H, we argue that every Lie bracket appearing in each summand
on the right side of (6.7) is an element of H.
Case 1: Suppose i # j withe; —€; € ®y. Firstif {i, j} = {k, £}, we have

0 ifi=kandj=1¢
(e, Eijl = { —hy; ifi=Cand j = k.
Thus if [Eye, E;j] # 0, then j = k < £ = i. In this case our assumption that
€ —¢€; € Oy implies €; —¢; € Py since Py is an upper-order ideal by Lemma 6.7.
Now h;; = [E;j, Ej;] € H,by definition of H Nh. On the other hand, if {i, j} # {k, £}
and [Eye, E;j] # Othen [Ey, E;j] € gy, where y = (e —€¢) +(€; —¢€;). In particular,
wehave¢; —€; < y since ey — ¢y € d>jg. This implies y € &y by Lemma 6.7, hence
[Exe, Eijl €9y € H.

Case 2: Leti, j € [2n] such thati < jand ¢; — €, €; — ¢; € ®y. By definition
we must have ;; = E;; — Ej; € H N b. Furthermore, we know [Eyg, h;;] = (€ —
€x)(hij)Ere. Thus, we have only to show that ¢, —e; € ®y whenever (ep —e;) (h;j) #
0. Since

(e¢ — €x)(hij) = 8¢i — 8¢j — Ski + ;s

where §,5 is the Kronecker delta function, the condition (e; — €x)(h;;) # O implies
{i, j} N {k, £} # @. Now, we consider the various possibilities and show that k < j
and £ > i in each case. Recall thati < j and & < ¢ by assumption.

o Ifi=kthenk=1i < jand¥l > k =i.

e If i = ¢, then it follows immediately that k < £ =i < j. Therefore, k < j and
{>1.

e Ifi = k and i # ¢ then our assumptions imply that either j = k or j = £. In the
first case, we geti < j = k < £, hence k < j and £ > i. In the second case, we
getk <{¢=jand{ =j >i.

Sincek < jand{ > i,weseethate; —¢; < €, —¢€. The assumptionthate; —¢; € Oy
implies ¢, — €y € @y by Lemma 6.7, as desired.
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Case 3: Suppose i’/ € Hc N H. As above, we get [Exe, '] = (e — €x) (W) Exe
and thus [Ey, h'] € H will follow if we are able to show ¢, — ¢, € &y whenever
(e — €x)(h') # 0. By Lemma 6.5, we have

[0(Ere), h'l = —@(ex — €0)(h)G (Exe) = (€ — €x) (W) (Ege).

We observe that H¢ is a type C Hessenberg space, 6 (Erg) € b, and b’ € He.
It follows that [6(E¢), h] € Hc. Hence, the assumption (€ — €;)(h') # 0 implies
o (Exe) € Hc.However, since o (E¢) spans the root space corresponding to ¢ (€x —€y)
in gc, we have p(ex — €¢) € @y, and thus € — € € Oy as desired.

Having settled all cases, we conclude that H is a type A Hessenberg space. To
complete the proof, we establish now that H° = H¢. Since, by Lemma 6.6, H is
o-stable we know H° = o (H) and we will show 6 (H) = Hc. Since Hc € H by
definition, the inclusion Hc € o (H) is a consequence of 6 (Hc) = Hc.

We verify that 6 (H) € Hc. It is straightforward that 6(h) € Hc if h € Hc N
h?. Next, if ¢ — €; € Oy then ¢p(e; — €j) € Py, and Lemma 6.5 now implies
0 (E;j) € Hc.Last, consider 1 <i < j <2nsuchthate; —€j,¢; —¢; € ®y. Then
@(€; —€;), —p(€; — €;) € Py and by another application of Lemma 6.5, we get

G(Eij) e b?,6(Ej;) € Hc = [0(E;j),06(Eji)] € Hc.
Using the facts that o (Ej;) € C{E; 7} and i = j’ if and only if i’ = j, we obtain

0 ifj#i’

Eii,o(Ei)] =
[ ij O'( ]1)] hij 1f]=l/

Therefore we have

[0(Eij), 0 (Eji)] = [Eij, Ejil + [0 (Eij), Ejil + [Eij, o0 (Eji)] + [0(Ej), 0 (Eji)]
= [Ejj, Ejil + o ([Eij, Eji]D) + [Eij, 0 (Ej)] + o ([Eij, o (Eji)])
=0 ([Eij, Eji]) + o ([Eij, o (Ej;)]
= c 0 (hij)

with ¢ € {1, 2}. This implies ¢ (h;;) € Hc, and we conclude that 6 (H) € Hc. O

6.1 Type C Pattern Avoidance

Recall that W¢ denotes the subgroup in Sy, consisting of signed permutations. Thus
the notion of pattern avoidance as defined in Section 2.4 makes sense for elements
of Wc. The objective of this section is to prove Theorem 1.12 using Theorem 6.10
below, generalizing the pattern avoidance result of Theorem 4.4 to the type C setting.

We may write each matrix in g¢ in terms of the Chevalley basis of type C, fixed as
in [20, Section 6.1]. Given y € ®¢, we denote by E,, the corresponding root vector
and by ¢, : sp;,(C) — C the coordinate function returning the coefficient of E,, .
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Note that if ¢, — €; € ®4 such that ¢(¢; — €;) = y then C{E, } = C{c(E;;)} by
Lemma 6.5. In particular, for all y € g¢ we have

¢ #F0&¢j(y) #0 & ¢jrin(y) #0 (6.8)

where ¢;; : s1>,(C) — C denotes the coordinate function returning the coefficient of
E;j as in Section 4 above. We begin with the following statement, which is a Type C
analogue of Lemma 4.1.

Lemma 6.8 Let x € gc and suppose ¢, (x) # 0 for some y € ®c. Forall B € ®¢
such that B > 'y there exists b € B¢ such that cg(b - x) # 0.

Proof Let /', 8’ € ®4 be such that ¢(y’) = y and ¢(B’) = B. By definition,
y' eflei —€j, ey —ep}and B € {ex — €, €y — €} for some i, j, k, £ € [2n] such
that i # j and k # £. Since B¢ € B, by definition of the partial order <, we may
assume without loss of generality that y’ = ¢; — €; and B’ = ¢, — ¢; with g/ > y/,
ie,k <iandf > j.By (6.8), our assumption that ¢, (x) # 0 implies ¢;;(x) # 0 and
to complete the proof of the lemma, it suffices to verify that there exists b € B¢ such
that cx¢ (b - x) # 0. Throughout the rest of the proof, @ will be a parameter that can
take any complex value we choose.

If (k,€) = (j,i)then j <iandsoby =1+ akj +ac(Ej;) € Bc. We have
b;l =1- OlEj,‘ — OlO’(Ej,‘) and O'(Ej,’) = :l:Ei/j/. Note that if O’(Ej,‘) = _Ei’j”
then we must have either i, j < nori, j > n so §;;; = 0 in that case. Thus for all
P, q € [2n] we have

1 ifp=j

1 ifg =i

Ciplby) = { —a(l+36;;) ifg = j

and c¢g; (b;l) = {
Using the fact that the (k, £)-entry of the product of three 2n x 2n matrices X, Y, and Z is

Zi”zl Z;”Zl XipYpg Zge, We obtain
ke (ba - x) = ¢jj(by - x) = €ji(x) +a(l +8;;)(¢jj(x) —¢jj(x)) — o?(1+ 38;j7)¢ij(x).

Since (1 + 36;;/)¢;j(x) # 0, there exists & € C such that ¢j; (by - x) # 0.

If i # ¢ the lemma will follow from the existence of b1, by € B¢ such that
ci¢(b1-x) # Oand cge (b2 - (b1-x)) # 0. Symmetrically, if j # k the lemma will follow
from the existence of by, by € B¢ such that ¢, (b1 - x) # 0 and ¢cx¢ (b2 - (b1 - x)) # 0.
Therefore, to settle the case (k, £) # (j, i) it suffices to consideri = k or j = £.
Since both follow from similar arguments, we only write the proof assuming k = i.
Moreover, we assume £ # j since the case (i, j) = (k, £) is trivial.

If¢ = j'thenb = I +aEj € Bc. Since ¢j¢(b-x) = ¢;¢(x) —ac;j(x) is anonzero
polynomial in C[«], we can choose « such that ¢;¢(b-x) # 0.If £ #£ j' define b € B¢
by

b e I+aEj +aEpy, |[{j,€}N[n]]=1
" T4 eEj—aEpy. .00l £ 1]
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SO

b_l _ 1 —OlEjg —OlEg/.v, I, eiNnl =1
I_anZ +OlEg/-/’ |{]7£}ﬂ[l’l]|§él

Using the formula for the (k, £)-entry of the product of three n x n matrices once
more, we obtain,

ciolb - x) = Cie(x) — a€ij(x) + adipejg(x) — a?Sipey(x), {j, )N [nll =1
(b x) = .

Cio(x) — acij(x) — adipejp(x) +a?8ipc;j(x), |{j, ¢} N[n]| #1.
If i # ¢’ then it is immediate that we can choose « such that ¢;¢(b - x) # 0. Finally,
let’s suppose thati = ¢’ and note that |{j, £}N[n]| = 1ifand only if |{j, i}N[n]| # 1.
Since x € gc it follows that the coefficient of « in ¢;¢ (b - x) is —2¢;;(x) # 0. Since
¢i¢(b - x) is anonzero polynomial in C[«] we can choose « such that ¢;¢(b-x) # 0.0

Proposition 6.9 Assume that x € gc and that Bc(x, Hc) € G¢/Bc is a type C
Hessenberg variety. Let w € W¢ with BcwBc¢ € Be(x, He). If H C sly,(C) is the
type A Hessenberg space defined using Hc as in (6.4) above, then the type A Schubert
cell BwB is contained in B (x, H).

Proof We write

x=h+ Z d,E,
vedc

where d, € C, E, is a nonzero root vector in g, < gc, and h € bhc. We set
X1 = Zye@c dyE,.So, x = h + x1. Note that ¢, (x) = d,, forall y € ®c.

To prove BwB C Ba(x, H), it suffices to show that uw B € B4 (x, H) for all u in
the unipotent radical U of B. In particular, we must show

=11 -] .1 -1
(uw)™ -x=w u  -h+w u  -x3€H. (6.9)

Since U is unipotent, the exponential map exp : u — U isadiffeomorphism. Therefore
we may write u = exp(y) for some y = qu Cpg(MEpg € 1.

Now we compute ! - x; and u~! - h. By properties of the adjoint representation,
we obtain

u™' - x; = Ad(exp(—y))(x1) = exp(ad_y)(x1)

o0 o
1 1
=x] + E — adTy(xl) =x; + E E %d,, ad’fy(Ey).
m=1 " m=1lyedc

Given y € @ such that d, # 0, we write e (y) = (e — €j,€jr — €} for some
i,j €[2n] withi # j. By Lemma 6.5, we know that E,, € C{E;;, E} and thus for
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all m > 1, we have

ad” (E,) € C{Ex¢ :k <i, L>j ork<j, =i}
OClhwe:j<k<t<iori <k<t<j'.

(As above, hyy = [Exre, Eox] = Exx — Ege.) In particular, we see that

e @ D ClEwik=itzj}OCl:j<k<t<i).
dy#0 €i—€;jedy
p(ei—€j)=y
(6.10)
Next, we have that

—1 . 1 m
u— -h = Ad(exp(—y))(h) = exp(ad_,)(h) = h + Z ] ad_y(h)

m=1

i 1
=h+y > — € (N)(€p =€) (1) ad” T (E ).
m=1 p<q

Applying similar reasoning as above and using the fact that p < ¢, we have

u ' h—he QB Cl{Ew : k < p, £ > q). (6.11)

+
ep—€q€dD

(fp _eq)(h)#o

Note that ™! - 4 € Hc € H by assumption. Thus equations (6.9), (6.10) and (6.11)
imply that to prove the proposition, it suffices to show

B & (cfenksiezjloc|n ., jisk<esil)cn
dy#0 € —€;jedy
pei—€j)=y
(6.12)
and
D C{Ewk_lwe_l k<p > q} CH. (6.13)
€p—€g€dy

(51)_€q)(h)7+—0

First we establish (6.12). If d,, # 0, Lemma 6.8 implies that for each 8 € ®¢ with
B > y there exists b € B¢ such that,

0 # cp(b - x) = ¢ym1 (0 'b - x).
Our assumption that BcwB¢c C Be(x, He) now implies qu(ﬂ) € Hc¢ and thus
w_l(ﬁ) € @y, forall B > y. Note that by Lemma 6.4, for all ¢, — ¢, € &, with

€k —€¢ > €; —€j we have p(€; — €p) > y. This implies w_l((p(ek —¢€¢)) € Py, and,
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since ¢ is Wc-equivariant, we have ¢(e wy! T€ w-1) € @ Using the description of
4
< for &4 from (6.5) we have now proved:

dopei—e;) 0 = €14 — €y-1(p) € Py forall k <i and €= j
= Ew—lw—l € H forall k <i and ¢ > j.
ke

It follows that

dg(e;—ep) #0andi > j = Ewk—]w[—l, waw;l € H forallk,£suchthat j <k <{ <i
= hwk—lw—l € H forall k,£suchthat j <k <{ <1,
4

where the last implication follows from the fact that [b, H] € H. This concludes the
proof of (6.12).

Next we prove (6.13). Fix €, —€; € ® 4 such that (¢), —€,)(h) # 0. First, we note
that if ¢(e, — €;) > y for some y € ®¢ such that d,, # 0, then

clE, - kspezglcH

by (6.12). Thus it suffices to consider the case in which ¢(e, — €;) ;_‘ y for every
y € ®c such that d, # 0. This last assumption implies E,, is not a summand of
u~l. x| for any u € U, ie., cpq(u_1 -x1) = O forall u € U. Consider u,, :=
I, + 0 (Epy) € Bc. Applying Lemma 6.5 and using properties of the adjoint action
we have

o0
_ _ . _
Uyg h=h—1[5(Epg), hl+ § i adl; g () = h+ (€p — €) (T (Epq).
i=2
This implies

g X = g hb g 31 =t (€p = €)(NF (Epg) + 1wy - x1.
Since 6 (Epq) € Gp(e,—e,) and €pq (u;‘; -x1) = 0, it follows that c¢(6p_6q)(u;q1 X)) =
(ep —€4)(h) # 0. Since u,, € Bc, the assumption BcwBc S Bc(x, Hc) implies

u';‘lbu;ql -x € Hc for all b € B¢. Furthermore, Lemma 6.8 implies that for each

B > @(ep — €4) there exists b € B¢ such that
0 5 eg(bu,y - X) = €105 (b~ 'buy - x)

and thus we have w™! (B) € Dy forall B > ¢(€), — €;). In particular, arguing as in
the proof of (6.12), we have

Ewk_1wl_1 € H forall k < pand ¢ > gq.
This establishes (6.13) and completes the proof. O
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We conclude this section with the proof of Theorem 1.12.

Theorem 6.10 Let G = Sp,(C) and let B < G be the Borel subgroup whose image
under ¢ consists of upper triangular matrices. Fix w € W. If there exist x € g =
5P,,(C) and a Hessenberg space He C g such that Be(x, He) = Xg,l, then ¢*(w)
avoids the pattern [4231].

We remark that since [4231] is its own inverse, this theorem implies that if
Be(x, He) = Xg, then ¢*(w) avoids the pattern [4231]. So Theorem 6.10 implies
Theorem 1.12.

Proof Suppose w € W contains the pattern [4231]. Seeking a contradiction, suppose
there exists x € gc and a type C Hessenberg space Hc < gc such that X 5_] =
Bc (x, He). By Proposition 6.9, B~ B € B4 (x, H) where H C sl5,(C) is the type
A Hessenberg space defined using Hc¢ as in (6.4) above. To obtain a contradiction,
we show that there exists v € W such that v £g, w and v~IB € B4(x, H). Given
this statement, we would then have by Theorem 6.3 that v~ 'B € (B(x, H))° =
B (x, He) contradicting our assumption that X g,l = Bec(x, He).

Since w contains the pattern [4231] there exist i, j, k,£ suchthat 1 <i < j <
k<€ <2nand wy < w; < wy < w;. Consider T = (w;, wr)w where (w;, wi)
is the transposition exchanging w; and wy, so T € Sy, is as defined in the statement
of Lemma 4.3. By Lemma 4.3, t~'B € Ba(x, H), thatis, © - x € H. If Jj' = k then
7 € Wc and taking v = t accomplishes the desired goal. We may therefore assume
J' # k for the remainder of the proof.

We have that 1 < ¢/ < k' < j' < i’ < 2nand wy < wpy < wjr < wy.
Letv = (wjr, wp)T = (wjr, wp)(wj, wp)w, where (wj/, wy/) is the transposition
exchanging w;» and wy . Note that v ﬁBr w since £(v) > £(w) and v € W¢. In order
to argue that v - x € H, we write x = s + x’ where

s = Z cp(Epp — Ept1,p+1)  and x' = Z Cpg (X)Epq
pel2n—1] (p.q)€l2n]x([2n]
P#q

and show 0 -5, v -x" € H. Note that w - s, w - x € H by assumption. From the proof
of Lemma 4.3 we have that 7 - s € H and

wes—17-5=(cj—1 —¢j = ck—1 + ) (Ewpuy — Ewjuw;) € H.
Since o (H) C H, we see that

U(w S —T- 5) = (ijl —Cj — Ck—1 + Ck)(_Ewk/wk/ + ij/w_,-/)

= (Ck,—l —Cr — Cj/—l +Cj’)(ij/wj/ - Ewk/wk/) € Hv

where the last equality follows from the fact that s € hc (see (6.1)). A direct compu-
tation shows that

wes —v-s = (cj—1 —¢j — k=1 + ) (Ewpuy — Ewjuw);)

) Birkhauser



Which Schubert Varieties are Hessenberg Varieties?

+(Ck,—1 — Cr — Cj/—l + Cj’)(EWj/lUj/ - Ewk/wk/)s

which lies in H, and therefore w - s € H implies v - s € H.

Next we show that v - x” € H by proving that Ey,v, € H whenever ¢, (x) # 0.
Let p # g be such that ¢, (x) # 0. Let t" = (wj/, wy)w, and note that we have
t’ - x € H by Lemma 4.3. In fact, by the proof of Lemma 4.3 applied to both t and
7’ we have
=E

{p.g}nN{j K}=0=E cH

VpVq TpTly

and
{p.g}N{j,k} =29 = Evpvq = ET,’;R; e H.

To complete the proof, suppose that {p, g} N {j’, k'} # @ and {p, g} N {j, k} # @.If
pe{j,k'Yandg € {j,k}then ¢’ < pand g < £. By Lemma 4.1 there exists b € B
such that 0 # ¢g¢(b - X) = €y, w, (Wb - x). Since b~ B € C,,-1 C B(x, H), we
must have Ey,uw, € H.Now by 4.2,since v, < wy andv, > wg, we have Evpvq € H,
as desired. Next, we consider the case inwhich p € {j, k}andg € {j’, k’}. Sincei < p
andg < i’,by Lemma4.1 there exists b € B such that0 # ¢;;/(b-x) = Cuwy/ (wb-x).
Since b~ ~'B € C,-1 C B(x, H), then Ey,y, € H.Now by Lemma 4.2, by
vp < w; and v, > w;s, we have Evpvq € H, as desired. This concludes the proof. O
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