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Intraspecific variation in host susceptibility to individual parasite species is
common, yet how these effects scale to mediate the structure of diverse para-
site communities in nature is less well understood. To address this
knowledge gap, we tested how host genetic identity affects parasite commu-
nities on restored reefs seeded with juvenile oysters from different sources—
a regional commercial hatchery or one of two wild progenitor lines. We
assessed prevalence and intensity of three micro- and two macroparasite
species for 4 years following restoration. Despite the spatial proximity of
restored reefs, oyster source identity strongly predicted parasite community
prevalence across all years, with sources varying in their relative suscepti-
bility to different parasites. Oyster seed source also predicted reef-level
parasite intensities across space and through time. Our results highlight
that host intraspecific variation can shape parasite community structure in
natural systems, and reinforce the importance of considering source identity
and diversity in restoration design.

1. Introduction

Parasites are ubiquitous and diverse in ecological communities [1,2], with the
capacity to alter population, community and ecosystem processes across
multiple scales [3-5]. Understanding the factors that shape host-parasite inter-
actions is thus critical, particularly in the face of increasing disease outbreaks
[6,7]. Host intraspecific variation is one such factor, influencing host—parasite
dynamics both within and across host populations [8,9]. For example, intraspe-
cific diversity within host populations is often negatively associated with
infection prevalence due to a variety of non-exclusive mechanisms, including
greater susceptibility of genetically homogeneous monocultures [10], a ‘dilution
effect’ of genetically diverse populations decreasing encounter rates (reviewed
in [11]) and limiting disease spread [12], as well as higher parasite transmission
among genetically related hosts [13]. Across populations, variation in host sus-
ceptibility is common [14] due to genetically based factors such as population
history of infection [15], ecotypic variation [16] and resistance trade-offs [17],
environmentally driven factors such as resource quantity/quality, nutrient
availability and disease pressure [18,19], or a combination of both [20]. Disen-
tangling genetic and environmental drivers of variation in host-parasite
interactions across populations can be challenging in non-model systems
given the necessary scale of manipulations, yet it is key to effective management
and conservation initiatives.

© 2023 The Author(s) Published by the Royal Society. All rights reserved.
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Variation in host susceptibility across populations can
arise from differences in traits that prevent infection or
limit parasite replication (i.e. resistance [21-23]) and/or in
traits that mitigate disease severity and effects on fitness
(i.e. tolerance [24-26]). These differences in host resistance
or tolerance can have distinct consequences for host—
parasite interactions [27], as well as critical implications for
management and conservation [28], especially when host
populations provide important ecosystem functions and ser-
vices [29]. Measuring multiple infection metrics, including
both prevalence (proportion of infected hosts) and intensity
(parasite concentration within infected hosts), can provide
insight into the mechanisms underlying host-parasite
dynamics (e.g. [30]). For example, with low mortality, high
population prevalence and intensity would suggest relatively
low resistance and relatively high tolerance, whereas low
population prevalence and intensity would suggest greater
resistance. By contrast, high mortality probably indicates
both low resistance and low tolerance of the host population.
In addition, co-infection of hosts by multiple micro- and
macroparasites is common [31,32], and mechanisms of host
resistance and tolerance can be parasite species- or strain-
specific [33]. Thus, examining variation in prevalence and
intensity across multiple parasites can provide critical
information on and necessary context for the overall
susceptibility of host populations to parasites.

Habitat restoration provides an opportunity to examine
factors that can affect host-parasite dynamics in a large-
scale, real-world context, as well as test their consequences
for short- and long-term restoration success. In particular,
parasites that infect habitat-providing species, which are
often the focus of restoration, may have a disproportionate
effect on restoration success and in turn ecosystem function
[34,35]. Because host intraspecific diversity is a key potential
driver of host—parasite interactions, manipulating genetic
variation of these target species could help inform metrics
of restoration success and improve predictions of long-term
community stability [36-39]. Consideration of genetic vari-
ation, including the identity or number of different sources
(e.g. populations, cultivars), is increasingly recognized as
important to restoration practice [40-44]. However, relatively
few published restoration efforts have manipulated genetic
variation at the design/implementation stage of restoration
[45], and even fewer consider the effects of host genetic vari-
ation on parasite dynamics (but see [19] for examples from
agricultural systems), despite the recognized threat that
diseases pose to habitat restoration success [46,47].

We examined how host intraspecific variation affects
parasite community structure on experimentally restored
oyster (Crassostrea virginica) reefs. Crassostrea virginica is a
target species for habitat restoration efforts throughout its
range along the Atlantic and Gulf coasts of the United
States because it provides numerous ecologically important
and socioeconomically valuable ecosystem functions and ser-
vices [48,49]. Oysters are susceptible to a variety of micro-
and macroparasites, and they are commonly co-infected by
multiple species in temperate and tropical systems [50-55],
which can influence restoration success in the short- and
long-term. In regions where oyster recruitment is limited
and/or settlement is unpredictable, restored reefs are often
‘seeded’ with hatchery-produced juvenile oysters [56,57], pro-
viding an opportunity to manipulate host intraspecific
identity and examine its effects on parasite community

assembly and structure. Here, we assessed prevalence,
intensity, and community structure of five micro- and macro-
parasites annually for four years post-restoration on replicate
reefs seeded with spat on shell from one of three oyster
sources. We hypothesized that the source identity of oysters
used to seed each reef would determine prevalence and
intensity of this multi-parasite community, with implications
for restoration success and practice.

Given significant declines in oyster abundances and reef habitat
extent and quality worldwide [58-61], oyster reef restoration has
increased globally [62,63]. Methods commonly include (i) sub-
strate addition/supplementation to facilitate natural oyster
settlement and reef accretion, and/or (ii) juvenile oyster (spat)
seeding, particularly in regions with limited larval supply. The
latter practice provides a valuable opportunity to explore the
effects of oyster genetic identity and diversity in the form of differ-
ent seed sources with unique population histories (e.g. commercial
hatchery lines versus wild progenitor cohorts; [64,65]). While
small-scale manipulations indicate that oyster seed source vari-
ation underlies differences in population characteristics and
performance [66-68], whether these effects scale up to the reef
level and impact community dynamics requires examination.

In Rhode Island (RI; the location of this study), seeding of
private oyster leases was prevalent from 1910 to the mid-1930s
using oysters sourced from Long Island Sound to Chesapeake
Bay due to limited and variable recruitment in the region, as
well as high demand for oysters [69]. In the late 1930s, RI
oyster populations plummeted as a result of increased sedimen-
tation, decades of overharvest, and the Great New England
Hurricane of 1938, and they now remain at 1% of their historical
abundances [60,69]. The few populations that have persisted for
the past 75+ years represent the ‘wild” extant oysters in the
region. Although oyster reef restoration efforts have been
ongoing over the past couple of decades in RI, low rates of natu-
ral recruitment have remained a barrier to restoration success
(e.g. [70,71]). Identifying viable source populations could be criti-
cal to overcoming this bottleneck and successfully restoring RI
oyster populations.

In May 2017, we created nine oyster reefs in Quonochontaug
Pond, Rhode Island, with three separate reefs each located
within three distinct regions (west, northeast, east; hereafter
referred to as blocks; figure 1). Each approximately 22 m* reef
(0.5-0.8 m height) was constructed from a base layer of steam-
shucked clam shell topped with clean, recycled oyster shell,
and then seeded with remote-set spat on shell (see [72] for a
detailed description of reef construction). Each block also
included an adjacent control plot with soft sediment (mud
and/or sand) that was unmodified (i.e. no shell or spat added),
and treatments and controls were randomly assigned within
blocks. A goal of this study was to compare the performance
of different oyster sources and the consequent structure of associ-
ated parasite communities, so one replicate reef per oyster source
was constructed in each of the three regions of Quonochontaug
Pond (figure 1). The oyster seed sources included one line from
a regional commercial hatchery, as well as two wild progenitor
lines spawned from broodstock collected from nearby existing
wild populations in Green Hill Pond, RI and Narrow River, RI.
All oyster lines were spawned at local hatcheries, set on oyster
shell at Roger Williams University Shellfish Hatchery in June
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Figure 1. Map of restored oyster reefs (represented by filled circles) in Quonochontaug Pond, RI, USA seeded with spat on shell from different sources (commercial
hatchery (HAT), green; Green Hill Pond (GHP), orange; Narrow River (NAR), blue; control (adjacent unmodified plot with soft sediment; no spat or shell added), open

circles) across blocks (B1, B2, B3) in spring 2017.

2016, and then stored in cages on an oyster lease in Quonochon-
taug Pond until reef construction in May 2017.

To confirm genetic differentiation of the oyster lines, we
sampled 48 oysters per seed source (n=144 total) prior to
deployment and genotyped them using 20 highly variable micro-
satellite loci (see electronic supplementary material, appendix S1
for detailed methods and analyses). We found significant genetic
differentiation among seed sources (electronic supplementary
material, appendix S1 and table S2), with spat produced from
wild progenitors (Green Hill Pond and Narrow River) being
more similar to each other than to spat from the commercial
hatchery (electronic supplementary material, appendix S1
and figure S1). Genetic diversity also varied among seed
sources, with spat from wild progenitors having higher genetic
diversity than spat from the commercial hatchery (electronic
supplementary material, appendix S1 and table S1).

(c) Reef monitoring and oyster collection

In the autumn of each year for 4 years post-restoration (2017-
2020), we monitored oyster density and size distribution by
non-destructively sampling six haphazard 0.25 m*> quadrats per
reef and recording the number of live and dead oysters, as well
as shell height of a subsample of up to 50 live and 30 dead
oysters (following methods of [73] and guidance of [74]). Coinci-
dent with each autumn monitoring event, we harvested
approximately 35 haphazardly selected live oysters from each
reef for analysis of parasite communities; samples were trans-
ported to the Northeastern University Marine Science Center
on ice and then stored at —80°C prior to processing.

(d) Parasite prevalence and intensity

Crassostrea virginica is commonly infected by a variety of micro-
and macroparasites simultaneously. We assessed the prevalence
(proportion of sampled oysters infected per oyster reef) and
intensity (parasite concentration per infected host) of five

common parasite species (microparasites: Perkinsus marinus,
Haplosporidium nelsoni and Haplosporidium costale; macropara-
sites: Cliona spp. and Polydora spp.). The protozoan parasite
P. marinus causes dermo disease, which has been associated
with decreased oyster growth, reproduction, and condition
[75], as well as mass oyster mortality events along the Atlantic
and Gulf coasts of the USA [76,77]. The microparasite H. nelsoni
is the causative agent of MSX disease; while MSX has devastated
some C. virginica populations along the Atlantic Coast, its effects
have been less extreme in some regions, due in part to develop-
ment of disease resistance [78-80]. The protistan parasite
H. costale, which is morphologically similar to H. nelsoni, causes
SSO disease in oyster populations along the Atlantic Coast
[81], though it is most often associated with mass mortalities
under high salinity (greater than 25 ppt) conditions in late
spring and early summer [82]. Boring sponges (Cliona spp.) are
macroparasites common along the Atlantic and Gulf coasts that
impact oyster growth and condition, compromise shell integrity
and decrease marketability, but are rarely associated with mass
mortality events [83-85]. Shell-boring polychaetes like mud
blister worms (Polydora spp.) are prevalent along the Atlantic
and Gulf coasts; similar to boring sponges, they often result
in decreased size and condition of oyster hosts, but do not
consistently cause mass mortalities [50,86,87].

To assess macroparasite prevalence and intensity, we photo-
graphed the inside and outside of the top and/or bottom valves
of all oysters with holes characteristic of boring sponges and/or
blisters indicating the presence of mud blister worms, and then
quantified the proportion of affected shell area using Image]J
[53,88] (see electronic supplementary material, appendix S2 for
detailed methods). To assess microparasite prevalence and inten-
sity, DNA was extracted from up to 32 oysters per reef using the
Omega Bio-Tek E-Z 96 Tissue DNA Kit and then amplified using
both a polymerase chain reaction (PCR) assay modified from
Stokes & Burreson’s SSO protocol [81], and a quantitative poly-
merase chain reaction (qPCR) assay modified from De Faveri
et al’s dermo protocol [89] and Wilbur et al’s MSX protocol
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[80] (see electronic supplementary material, appendix S2 for
detailed methods). We have previously validated the P. marinus
qPCR assay with standard Ray’s fluid thioglycolate medium
(RFTM) histological assays to confirm presence/absence of hyp-
nospores and quantify infection intensity [53]. We did not
conduct equivalent histological assays for H. nelsoni or H. costale
due to the difficulty of distinguishing among them, as well as the
limited ability to detect early nucleated/spore forms at low to
moderate levels of infection [90-92].

(e) Statistical analysis

First, we used a permutational multivariate analysis of variance
(PERMANOVA) to test for differences in parasite community com-
position (i.e. reef-level prevalence and intensity of micro- and
macroparasites) across reefs seeded with different oyster sources,
among regions (i.e. blocks) within Quonochontaug Pond, and
through time. Specifically, we focused on the main effects of each
factor along with year x seed source and block x seed source inter-
actions to assess the independent and interactive effects of seed
source, time and reef location on parasite communities, and to
evaluate the temporal and spatial consistency of seed source effects
(see results of PERMANOVA examining the effects of year x block
in electronic supplementary material, appendix S3).

Second, we used non-metric multidimensional scaling
(nMDS) to visualize (i) significant effects of seed source, block
and year on oyster parasite community prevalence and intensity
based on PERMANOVA results, and (ii) temporal dynamics of
parasite communities in ordination space across the years follow-
ing reef restoration (2017-2020 for prevalence and 2018-2020 for
intensity). For prevalence, we included all micro- and macropar-
asite species (H. costale, H. nelsoni, P. marinus, Cliona spp. and
Polydora spp.) across years (2017-2020). For intensity, we
excluded the first year following restoration (2017) because
samples from four of the nine reefs had zero prevalence of at
least one parasite species, resulting in no intensity data for
those reef x parasite combinations and a loss of statistical
power. In subsequent years (2018-2020), we focused only on H.
costale, P. marinus, Cliona spp. and Polydora spp. for intensity ana-
lyses given zero to very low prevalence of H. nelsoni throughout
the study. We used percent cover (i.e. [(total infected area/total
shell area) x 100]) as our intensity metric for boring sponge and
mud blister worm infections. To account for differences in
mean and range among intensities of parasite species, we
fourth-root transformed dermo intensity data (concentration of
P. marinus per mg oyster tissue) prior to analysis [93].

Given that PERMANOVA identified significant effects of
seed source and time, but not of block, on parasite community
prevalence (see Results and electronic supplementary material,
appendix S3 and figure S2), we then focused on the independent
effects of (i) seed source and (ii) two host characteristics (oyster
density and oyster size) on parasite prevalence in each year of
the study to assess which of these best explained differences in
parasite prevalence among restored reefs. Because changes in
density and size following reef establishment (electronic sup-
plementary material, appendix S4 and figure S3) reflected
differences in oyster mortality and growth among reefs [94],
we examined whether these host characteristics contributed to
the significant effects of time in our analysis. Parasite community
data included five micro- and macroparasites in 2018 and 2019,
but only four micro- and macroparasites in 2017 and 2020
given zero prevalence of H. nelsoni (MSX) in the first and last
years of the study. For both the comparison across years and
the analysis of individual years, we used metaMDS and adonis
in the vegan package [95] in R version 3.5.3 to produce nMDS
plots and conduct PERMANOVA, respectively.

Given that it is difficult to differentiate between infected
oyster tissue versus environmental parasite DNA for H. nelsoni
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Figure 2. Non-metric multidimensional scaling (nMDS) plot depicting preva-
lence of microparasites P. marinus (dermo), H. costale (SSO) and H. nelsoni
(MSX), and macroparasites Cliona spp. (boring sponge) and Polydora spp.
(mud blister worm), through time (lightest to darkest shades corresponding
to 2017, 2018, 2019 and 2020, respectively) on oyster reefs restored with
different seed sources (commercial hatchery (HAT), green; Green Hill Pond
(GHP), orange; Narrow River (NAR), blue); ellipses include 95% confidence
intervals depicting year x seed source effects. Individual datapoints represent
year—block combinations (e.g. orange 17-1 is block 1 GHP-seeded reef in
2017) and arrows depict trends in mean parasite community prevalence
through time.

or H. costale, we conducted a second set of statistical analyses
excluding these parasites to examine the consistency of our
results (see electronic supplementary material, appendix S6 for
details). In short, the main predictor(s) of parasite community
prevalence and intensity were consistent with and without
H. nelsoni and H. costale. Thus, we present the results including
all micro- and macroparasite species in the main text for
completeness, and we report the results using only three parasite
species in electronic supplementary material, appendix S6
for comparison.

3. Results

(a) Parasite community prevalence

The prevalence of micro- and macroparasite communities
(including all five parasites) on restored oyster reefs over the
time course of the experiment depended interactively on seed
source and year (PERMANOVA: year x seed source, p =0.008;
figure 2). When we examined years separately, there was a sig-
nificant effect of oyster seed source on parasite community
prevalence in each year (PERMANOVA: seed source: 2017,
p=0.016; 2018, p=0.009; 2019, p=0.001;, 2020, p=0.028;
figure 3). In the first two years after the restoration, neither
oyster density (PERMANOVA: 2017, p=0.772; 2018, p =0.276)
nor oyster size (PERMANOVA: 2017, p=0.280; 2018, p=
0.644) were correlated with parasite community structure.
However, oyster density was strongly correlated with parasite
prevalence in 2019 and 2020 (PERMANOVA: 2019, p=0.004;
2020, p=0.027): reefs with higher oyster densities had greater
boring sponge prevalence, intermediate mud blister and SSO
prevalence, and lower dermo and MSX prevalence (figure 3c,
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Figure 3. Non-metric multidimensional scaling (nMDS) plots depicting prevalence of microparasites P. marinus (dermo), H. costale (SS0) and H. nelsoni (MSX), and
macroparasites Cliona spp. (boring sponge) and Polydora spp. (mud blister worm), on oyster reefs restored with different seed sources (commercial hatchery (HAT),
green; Green Hill Pond (GHP), orange; Narrow River (NAR), blue) in (a) 2017, (b) 2018, (c) 2019, and (d) 2020; ellipses include 95% confidence intervals depicting
seed source effects and vectors represent explanatory variables (p < 0.05; oyster density and oyster length) correlated to the axes. Individual datapoints denote seed
source—year—block combinations (e.g. in (a), blue 17-1 represents block 1 NAR-seeded reef in 2017). In 2019 (c), HAT-seeded reefs in blocks 2 and 3 overlap/occupy

approximately the same position in multivariate space.

d). In 2019, oyster size was also a strong correlate of parasite
community structure (PERMANOVA: p=0.012): reefs with
larger oysters had higher mud blister worm prevalence,
whereas reefs with smaller oysters had higher SSO, dermo
and boring sponge prevalence (figure 3c).

The largest shifts in parasite communities occurred from
2017 to 2018, with changes in parasite community prevalence
being more pronounced for reefs seeded with spat from a
commercial hatchery than for reefs seeded with spat from
wild progenitors (figure 2). From 2018 to 2019, parasite com-
munity structure among reefs with the same seed source
shifted relatively little (figure 2). By 2020, parasite commu-
nities had started to converge across reefs (figure 2)—
probably as a result of overall greater parasite prevalence
(figure 4)—though as noted above, there were still significant
differences among reefs seeded with oyster spat from
different sources.

(b) Parasite community intensity

From 2018 to 2020, average micro- and macroparasite intensi-
ties on restored reefs also differed consistently by seed source,
with no independent or interactive effects of year (PERMA-
NOVA: seed source, p=0.002; year, p=0.186; year x seed
source, p=0.747; figure 5). Reefs seeded with spat from a
commercial hatchery had generally higher P. marinus concen-
trations (dermo) than those seeded with spat from wild
progenitors. By contrast, reefs seeded with spat from wild
Narrow River and Green Hill Pond broodstock had generally
higher H. costale concentrations (SSO disease) or boring
sponge percent cover, respectively (figure 5). Mud blister

worm intensities were more variable among sources and
across years.

(c) Spatial (block) effects

Across all years, the effects of seed source on parasite
community prevalence were consistent across the three
spatial blocks (PERMANOVA, seed source: p =0.002, block:
p=0.577, Dblock x seed source: p=0.969; electronic sup-
plementary material, appendix S4 and figure S4). Similarly,
the effects of seed source on parasite community intensity
from 2018 to 2020 were consistent across space, with signifi-
cant effects of seed source, only marginal effects of block,
and no interactive effects of block x seed source on reef-
level intensities (PERMANOVA, seed source: p=0.002,
block: p=0.071, block x seed source: p = 0.456).

4. Discussion

In our experimental restoration, oyster genetic identity had
strong and persistent effects on parasite community preva-
lence and intensity (figures 2 and 5). Notably, these effects of
oyster seed source were not transient, but detectable within
the first six months of the study and persistent for four
years following reef restoration, with host characteristics—
specifically density and size—also emerging as significant
correlates of prevalence in later years of the study (figure 3).
Further, the effects of oyster seed source on parasite commu-
nity prevalence and intensity did not vary spatially across
the three distinct regions of the Quonochontaug Pond

09522207 ‘06T § 205 Y 20id  qdsi/jeuinol/bio buiysigndAranosiefos H
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Figure 4. Prevalence of microparasites (a) P. marinus (dermo), (b) H. costale (SS0) and (e) H. nelsoni (MSX), and macroparasites (c) Cliona spp. and (d) Polydora
spp., on oyster reefs restored with different seed sources (commercial hatchery (HAT), green; Green Hill Pond (GHP), orange; Narrow River (NAR), purple) across
blocks (1, 2 and 3 represented by light to dark shades and squares, circles and triangles, respectively) in Quonochontaug Pond, Rhode Island for the years following

the restoration (2017-2020). Note the different y-axis in panel () (0-0.25).

restoration. Finally, the results were consistent when looking at
a three-species subset of the larger five-species community (see
electronic supplementary material, appendix S6 for details).
These findings complement studies on a variety of plant and
animal species in aquatic and terrestrial systems that have
demonstrated effects of host genetic variation on individual
parasite dynamics (e.g. [8,9,96]), as well as those that have
detected associations between host genetic variation and para-
site species diversity and community assembly in natural
settings [97,98] where co-infection is ubiquitous [31]. Impor-
tantly, our study also highlights that host genetic identity
drives differences in susceptibility to a diverse suite of
micro- and macroparasites—a key finding that informs restor-
ation and management practices and would have been missed
by focusing on a single parasite or genetic line.

Host genetic variation may be particularly important to
consider in predictions of parasite community dynamics for

systems dominated by one or a few species, either naturally
(e.g. coastal and estuarine systems with foundation species,
such as seagrass meadows, salt marshes and oyster reefs)
or as a result of human activities (e.g. agricultural fields,
aquaculture farms, early stages of restoration projects with
focal species) [8,9,19,28]. Differences in host genetic identity,
like those observed among oyster seed sources in this study
(electronic supplementary material, appendix S1), can result
in intraspecific variation in resistance and/or tolerance
traits [27], as well as in behavioural defense mechanisms
against parasites [99]. For example, selectively bred oyster
families modified their feeding behaviour to differing degrees
in the presence of P. marinus, and these behavioural changes
correlated with varying levels of susceptibility (e.g. the most
susceptible family reduced its feeding rate the least and thus
had greater risk of encountering parasites [100]). While this
defense strategy may be effective against microparasites,
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Figure 5. Non-metric multidimensional scaling (nMDS) plot depicting reef-
level intensities of microparasites P. marinus (dermo) and H. costale (SS0),
and macroparasites Cliona spp. (boring sponge) and Polydora spp. (mud blis-
ter worm), from 2018 to 2020 on oyster reefs restored with different seed
sources (commercial hatchery (HAT), green; Green Hill Pond (GHP), orange;
Narrow River (NAR), blue); ellipses include 95% confidence intervals depicting
seed source effects. Individual datapoints represent year-block combinations
(e.g. green 20-3 represents block 3 hatchery-seeded reef in 2020).

changes in feeding behaviour will not reduce exposure
to macroparasites like boring sponges and mud blister
worms, and may limit oyster capacity for tolerance mechan-
isms such as shell repair, which require increased energy
expenditure [84,85,101]. For example, co-infection by the
microparasite H. nelsoni and the macroparasite Polydora spp.
can amplify the negative effects of each individual parasite,
with parasite intensities of co-infected oysters associated
with decreases in oyster condition index [50]. These differ-
ences in optimal host behavioural strategies for avoidance
of micro- versus macroparasites further illustrate why it is
unlikely that a single oyster source will be universally resist-
ant to or tolerant of all parasites [102]. In addition, host
genetic identity and parasite co-infection status can impact
transmission rates, with certain hosts having greater
among-host (alloinfection) transmission [103], further reinfor-
cing initial differences in parasite prevalence and potentially
contributing to the persistent differences among reefs with
different seed sources in our experiment (figure 3).

Host intraspecific variation in parasite susceptibility can
also reflect differences in past selection regimes, particularly
when hosts are sourced from populations with distinct para-
site communities that may have generated divergent selective
pressures favouring different traits. In our study, the wild
progenitors came from populations with distinct macropara-
site communities: the Green Hill Pond population had greater
boring sponge prevalence, whereas the Narrow River popu-
lation had greater mud blister worm prevalence (electronic
supplementary material, figure S6 and appendix S5 for
details). While parasite prevalence and susceptibility are
often higher for relatively naive than previously exposed
host populations [104,105], we found the opposite pattern
for macroparasites on restored reefs, with Green Hill Pond
sourced reefs having high boring sponge prevalence and
Narrow River sourced reefs having high mud blister worm
prevalence (figure 4). This pattern may reflect evolved

differences in host tolerance that alleviate the fitness conse-

quences of infection, as opposed to evolved differences in
host resistance that prevent infection [106,107]. Higher
boring sponge intensities on Green Hill Pond sourced reefs,
particularly in the last 2 years of the study, corroborate this
idea (figure 5).

Host genetic variation (including genetic identity) may
impact the success of microparasites more than macropara-
sites [8], with host density instead being a key predictor of
macroparasite dynamics [8,108]. In the latter years of our
study, micro- and macroparasites were largely separated
from each other along the first axis of the nMDS plots
(figure 3): host density was positively correlated with macro-
parasite prevalence and negatively correlated with
microparasite prevalence. This result may be due to density-
dependent transmission (a mechanism less explored for
macroparasites than microparasites; but see [109]), greater
mortality associated with microparasites, greater morbidity
associated with macroparasites or a combination of all of the
above [110]. In addition, evolution of host resistance may be
more common in response to microparasites than macropara-
sites given greater likelihood of the former to induce a
sustained immune response in the host [107,111], increasing
the probability of a relationship between host genetics and
microparasite dynamics. Resistance to MSX disease has devel-
oped among wild oyster populations along the Atlantic Coast
of the USA, including Delaware Bay [78] and Chesapeake Bay
[79], contributing to a decline in MSX prevalence. Evolution of
disease resistance may have also contributed to low prevalence
and intensity of H. nelsoni on reefs seeded with spat from wild
progenitors in our study, though MSX dynamics at sites in the
region have historically exhibited substantial annual variation
[67], probably limiting selection for resistance. How past selec-
tion regimes impact resistance versus tolerance strategies for
different genetic lines, and whether host responses differ
for micro- versus macroparasite species, are fruitful areas for
further study in this system.

Selective breeding practices are being employed across a
range of settings (e.g. agriculture, aquaculture) to maintain
or enhance productivity of key host species at risk of
encountering multiple pathogens, parasites and diseases
[112,113]. For example, commercial oyster lines have been
selectively bred for a wide range of traits, including disease
resistance [67,114-116], typically with an emphasis on host
resistance to a single parasite (but see oyster DEBY line
[117]) or optimal performance under specific environmental
conditions. This approach can be effective at local sites with
high endemicity of a specific parasite [118], but it can also
limit success of a single line when deployed across a range
of abiotic and biotic conditions with variable selection
pressures [67]. Further, the selective breeding process
may contribute to lower genetic diversity in commercial/
hatchery lines relative to wild populations (electronic sup-
plementary material, appendix S1 and table S1) [64]. To
our knowledge, the hatchery line used in this study was
not specifically selected for disease resistance. Reefs
seeded with this local, commercial source had high preva-
lence of the microparasite P. marinus (dermo) and
generally low prevalence of the macroparasite species, as
well as overall lower oyster densities than reefs seeded
with wild progenitor sources. Additional work is needed
comparing multiple commercial oyster lines with those pro-
duced from wild progenitors to determine if the differences
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we observed in micro- and macroparasite prevalence among
source types are consistent.

Our findings demonstrate strong and persistent effects of
host genetic identity on parasite community structure and
dynamics on restored oyster reefs. The key takeaways for restor-
ation practice are that source population matters, and there is
probably no single source population that is most resistant to
or tolerant of the diverse suite of parasite species commonly
encountered in natural systems. Thus, using multiple sources
when feasible may be an effective ‘hedging your bets” strategy
to ensure resilience to multiple parasites. This practice can also
increase genetic diversity and consequently enhance resilience
to abiotic and biotic stressors, capacity for adaptive responses,
provisioning of ecosystem services, and stability in both the
short term and the long term [40,41,43,119]. Alternatively, collect-
ing from large populations experiencing similar environments
[41,120,121] may provide comparable benefits of increasing neu-
tral and adaptive genetic variation, as well as phenotypic and
functional trait variation, without the risk of outbreeding
depression. Further, increasing seeding/planting frequency
[121,122] can minimize sampling effects resulting from single col-
lection events and/or propagation methods, and thereby further
diversify sources temporally and/or spatially to enhance restor-
ation success. Ultimately, co-design of restoration efforts in an
experimental framework, as illustrated here involving resource
management agencies, academic scientists, non-governmental
conservation organizations and hatcheries/growers, is needed
to inform the development of adaptive and feasible management
practices that enhance restoration success in a range of
environmental contexts.

Data are available from BCO-DMO (https:/ /doi.org/
10.26008/1912 /bco-dmo.883570.1) [123].
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