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A B S T R A C T   

Medical interventions have significantly progressed in developing minimally invasive techniques like percuta
neous procedures. These procedures include biopsy and internal radiation therapy, where a needle or needle-like 
medical device is inserted through the skin to access a target inside the body. Ensuring accurate needle insertion 
and minimizing tissue-damage or cracks are critical in these procedures. This research aims to examine the 
coated needle effect on the force required to insert the needle (i.e., insertion force) and on tissue-damage during 
needle insertion into the bovine kidney. Reducing the needle insertion force, which is influenced by needle 
surface friction, generally results in a reduction in tissue-damage. Surgical needles were coated with a composite 
material, combining Polytetrafluoroethylene, Polydopamine, and Activated Carbon. Force measurement during 
needle insertion and a histological study to determine tissue-damage were conducted to evaluate the effective
ness of the coating. The insertion force was reduced by 49 % in the case of the coated needles. Furthermore, a 
histological analysis comparing tissue-damage resulting from coated and uncoated needles revealed an average 
39 % reduction in tissue-damage with the use of coated needles. The results of this study demonstrate the po
tential of coated needles to enhance needle insertion and safety during percutaneous procedures.   

1. Introduction 

Certain surgical procedures, such as biopsies, internal radiation 
therapy, and thermal ablation necessitate the utilization of surgical 
needles [1–3]. During these procedures, medical professionals insert the 
needle or needle-like structure through the outside skin and guide it to a 
specific internal tissue location or target. A force required to insert the 
needle can be considered as an insertion force. The insertion force is 
determined by the friction between the needle and the tissue during 
insertion, which can cause tissue-damage. A number of research findings 
propose that lowering the force required for needle insertion minimizes 
tissue-damage and potentially improves the precision of the insertion 
[4–8]. Various strategies, including adjusting the needle insertion speed 
[9,10], modifying the needle design [4-6,10-13], applying coatings to 
the needle surface [14–18], and employing different insertion tech
niques [19], have been previously employed to reduce the insertion 
force. Among these, applying a coating to the needle surface serves the 
dual purpose of enhancing its surface properties and preserving its 
original design and geometry, which are essential for numerous surgical 
interventions. 

The main goal of the needle coating is to lower the needle surface 
friction, which decreases the insertion force during needle insertion 

inside the tissue. Polydopamine (PDA) was chosen for its exceptional 
adhesion properties to both organic and inorganic surfaces, as well as its 
biocompatibility and biodegradability [18]. Polytetrafluoroethylene 
(PTFE), on the other hand, was selected due to its low coefficient of 
friction, antimicrobial properties, hydrophobic nature, biocompati
bility, and resistance to chemicals and drugs [18]. PTFE is known for its 
non-stick property, which can compromise the durability of the coating. 
To overcome this limitation, PDA was incorporated into the composite 
to enhance its overall durability. In addition, activated carbon (AC) was 
included as a filler in the composite coating. Its primary function is 
reinforcing PTFE surface cracks and irregularities, ensuring a smoother 
and more even coating [18]. Activated Carbon (AC) stands out due to its 
nontoxic properties, remarkable biocompatibility, and hemocompati
bility, marking it as a versatile material. Its versatility becomes apparent 
in its wide array of applications across various industries, including 
cosmetics and the medical field [20]. Its benefits encompass not only 
dental care [21], skin care [22], and oral medications [23] but also 
extend to blood perfusion, a technique utilizing an activated 
carbon-coated column to filter blood from toxins [24]. In addition, the 
biodegradability of activated carbon (AC) is fundamentally non-viable 
due to its inert carbonaceous composition and the absence of mecha
nisms for enzymatic or microbial decomposition [25]. 
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Histological analysis serves as a valuable tool for understanding 
tissue structure and detecting any abnormalities [5,6,26]. Sahlabadi [5] 
developed a honeybee-inspired needle and found that their needle hel
ped in reducing tissue-damage by 31 %. Similarly, Gidde [6] used a 
mosquito-inspired needle and observed a reduction in tissue-damage by 
27 %. Both studies employed histological analysis to investigate 
tissue-damage. This paper exclusively concentrates on studying the area 
of tissue-damage or cracks resulting from coated needle insertion 
because tissue-damage is directly related to mechanical trauma, in
flammatory response, and hemorrhage [13,27-32]. To conduct a histo
logical study on tissue-damage caused by needle insertion, various 
sequential steps are followed, including sample collection, fixation, 
processing, staining, and microscopic examination [5,6,26,32]. In this 
research, bovine kidney tissues were used to study the tissue-damage 
caused by both coated and uncoated needles. 

2. Materials and methods 

In this study, two types of needles, stainless steel needles without any 
coating and with coating of the PDA-PTFE-AC, were analyzed. The 
needles with a 1.27 mm diameter and a trocar tip were used throughout 
the experiments. The coating procedure involves first coating the nee
dles with PDA by immersing them in a PDA solution for the entire day. 
Afterward, the needles are coated with PTFE-AC using the dip coating 
method and then cured (sintered) at 373ºC. A custom test setup was 
utilized for the measurement of insertion force (Fig. 1). The setup 
comprised several components, including a linear motor actuator (Vel
mex, Inc., NY, USA), a force sensor (Nano17® ATI Industrial Automa
tion, Apex, NC, USA, resolution: 1/160 N, maximum range: 17 N), a 
needle holder connected to the force sensor, and a tissue holder. Addi
tionally, the test setup incorporated a data acquisition system (DAQ) to 
read the force sensor data and transfer it to the computer. The procedure 
involved the needle being inserted at a velocity of 5 mm per second, to a 
maximum depth of 3.5 cm. The force sensor began measuring the data as 
soon as the needle pierced the tissue. The force measurement was pro
grammed using LabVIEW software utilizing the DAQ system. The 
insertion depth of 3.5 cm was controlled by the linear actuator motor 
controller via COSMOS software (Velmex, Inc., NY, USA), where the 
insertion velocity (5 mm/s) and distance to travel (3.5 cm) were speci
fied. Five insertions in the central part of the kidney lobe were per
formed, with each set consisting of three uncoated needles and three 
coated needles. The central part of the kidney lobe is a reasonable 
insertion location to minimize the effect of tissue heterogeneity since the 
variation in tissue stiffness within each layer is minimal. The coating 
method and experimental setup utilized in this study are in alignment 
with the procedures outlined in our prior publication [18]. 

Subsequently, a histological study was carried out to examine the 
tissue-damage induced by inserting both coated and uncoated needles. 

The histological process can be expressed in the subsequent flow chart, 
as shown in Fig. 2. Three samples, each containing an insertion hole, 
were extracted from the kidney. Subsequently, each sample was 
dissected to dimensions of 2 × 2 × 1 cm3 and then individually housed in 
cassettes (Fig. 2a). The dissection of the bovine kidney is performed with 
the scalpel. The dissected tissue samples with the cassette were placed in 
a plastic container with 10 % formalin for the fixation process (Fig. 2b). 
This process prevents decay and retains tissue structural integrity, 
ensuring it can be examined without significant degradation. The tissue 
samples were soaked in the formalin solution for 48 h before being 
transferred to 70 % isopropyl alcohol to remove any remaining water. 
After dehydration and clearing, the tissue samples were embedded in 
paraffin wax for proper infiltration (Fig. 2c). Next, a microtome was 
employed to section the tissue samples, cutting thin sections of 5 µm 
(Fig. 2d). These 5 µm sections were then affixed to glass slides and 
readied for the subsequent staining process. 

The histological staining procedure followed standard protocols, 
utilizing the steps outlined in research papers published by Sahlabadi 
[5] and Gidde [6]. To achieve the desired Hematoxylin and Eosin stain, 
ethanol solutions of varying concentrations were prepared and poured 
into Tissue-Tek station dishes. The slides were sequentially dehydrated 
in pure xylene and a 50 % xylene - 50 % ethanol mixed solution for five 
minutes each. They were then stained with 1 % hematoxylin and 1 % 
eosin Y, followed by double rinsing with deionized water. The proced
ures were replicated in reverse for rehydration, immersing slides in 
alcohol concentrations from 100 % to 70 %. The staining procedure 
concluded with a final five-minute immersion in pure xylene. After 
staining, slides were left to air dry for ten minutes before 100 µL of 
Permount was applied. Then, coverslips were placed, and excess Per
mount and air bubbles were removed with manual hand pressure. Slides 
were then left to air dry for a day prior to microscopic examination. 
Stained slides samples are shown in Fig. 2e. An Olympus GX-71 inverted 
microscope with an attached Olympus U-TVO.5XC color camera was 
utilized to visualize and capture stained slide images at a magnification 
range of 5X [5,6,32] (Fig. 2f). Next, the tissue-damage area analysis for 
both coated and uncoated needles was performed using the ImageJ 
software. To make the selection of the tissue-damage area easier, images 
were converted to 8-bit grayscale, and the software was calibrated using 
a reference line of 250 µm. Then, using the WAND tool, the irregular 
damage area was measured. Here, the WAND tool assists in selecting the 
area by tracing the light-colored region in the microscopic images. After 
selecting the light-colored region, the imageJ software MEASURE tool 
was used to calculate the area. 

3. Results and discussion 

The force-depth curves in Fig. 3 exhibit a nonlinear hyperplastic 
behavior typical of kidney soft tissue, but due to the heterogeneous 

Fig. 1. Experimental setup for measuring needle insertion force.  
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Fig. 2. Histological procedure flow chart: (a) Tissue Dissection and placement in Modified cassette, (b) Tissue fixation -10 % formalin immersion, (c) Tissue Paraffin 
embedding, (d) Tissue thing slicing with microtomy, (e) H&E tissue staining, (f) Microscopy imaging. 

Fig. 3. Average needle insertion force of 15 experiments using uncoated needle and 15 experiments using coated needle in the bovine kidney tissue. The range of 
uncoated needle standard deviation (SD) is 0.0021N<SD<0.4043 N and the range of coated needle standard deviation is 0.0105N<SD<0.3829 N. 

Fig. 4. Microscopic images of damaged tissue areas in the kidney for both uncoated (bare) and coated needles. Superimposed images are included for reference and 
do not originate from the same insertion location. 
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nature of bovine kidney tissue. The presented insertion force data is the 
mean taken from five needle insertion tests performed for each type of 
needle. The insertion force involving coated needles demonstrated a 
significant decrease in force compared to uncoated needles. For all ex
periments, a needle was inserted from the top of the kidney lobe to 
ensure uniform conditions for each type of needle insertion comparison. 
The location of needle insertion was determined by the needle insertion 
hole, and the area of bovine kidney tissue in that vicinity was immedi
ately sectioned to identify any tissue damage/cracks and facilitate the 
histological procedure. Upon analysis of the insertion force data from 
this study, the force exerted by uncoated needles is greater than that of 
the PDA-PTFE-AC coated needles. The uncoated needles demonstrated a 
mean maximum insertion force of 3.54±0.052 N, whereas the coated 
needles exhibited a lower mean maximum insertion force of 1.82 
±0.023 N. A two-tailed t-test was conducted, resulting in p-values of 
0.0010 for insertion forces. The p-values have demonstrated statistical 
significance by rejecting the null hypothesis, confirming a significant 
difference in the insertion forces between the coated and uncoated 
needles. Coating the needles with PDA-PTFE-AC helped in reducing the 
average maximum insertion force by 49 %. 

Next, bovine kidney tissue samples were analyzed using H&E 
staining and observed through an Olympus GX-71 microscope at 5X 
magnification. In order to ensure accurate measurements, the micro
scope was calibrated using a micrometer calibration slide. Fig. 4 pre
sents a series of microscopic images depicting bovine kidney tissue 
samples. The images showcase the tissue-damage areas, which are 
highlighted by distinct light-colored regions. The superimposed images 
are a comparison between the uncoated and coated needle tissue- 
damage areas. Visually, the superimposed images show that the 
coated needle has less tissue-damage areas than the uncoated needle. 
This is also evaluated by quantifying the damaged area numerically in 
the next paragraph. 

Table 1 shows the tissue-damaged area for each sample separately 
and a mean of it with the standard deviation. The mean tissue-damage 
caused by the uncoated needle was found to be 0.201 ± 0.063 mm2, 
while the coated needle resulted in 0.121 ± 0.067 mm2 in bovine kidney 
tissue. According to the results of the two-tailed t-test, the data strongly 
rejects the null hypothesis, as evidenced by the extremely low p-value of 
0.01. This significant p-value demonstrates a statistically significant 
difference in tissue-damage area between the uncoated and coated 
needles. 

The hypothesis proposing that a decrease in insertion force is asso
ciated with a reduction in tissue-damage has been substantiated and 
confirmed through this study. The histological process was immediately 
carried out after the needle extraction from the tissue to prevent tissue 
shrinkage. After removing the needle, the tissue tends to partially regain 
its original shape, making it difficult to locate the precise insertion path. 
Furthermore, it is important to consider that the formalin fixation pro
cess and the paraffin-embedded sample sectioning process can also in
fluence tissue-damage. Nevertheless, considering that each tissue 
sample was equally affected, it is feasible to compare the extent of the 
damaged areas. The PDA-PTFE-AC coated needle induced notably less 
tissue-damage during the needle insertion processes, amounting to an 
average of 39 % reduction in tissue-damage during the procedure. 

Sahlabadi [4,5] and Gidde [6] developed a bioinspired needle aimed 
at reducing the insertion force, a development that consequently helps 
to reduce tissue-damage - a finding they discovered through a histo
logical study. Many researchers who have employed various coatings on 
needles have not explored their potential impact on tissue-damage. 
Therefore, it was essential to investigate tissue-damage in relation to 
PDA-PTFE-AC coated needles, to explore the hypothesis that a reduction 
in insertion force also results in decreased tissue-damage. This novel 
research demonstrates that the PDA-PTFE-AC coated needle not only 
reduces the insertion force, but it also minimizes tissue-damage for the 
composite coated needles insertion in bovine kidneys due to the 
low-friction coating on the needle. 

4. Conclusions 

The findings of this study confirm that the composite-coated needle 
with PDA-PTFE-AC reduces insertion force and minimizes tissue- 
damage. In comparison to uncoated needles, this composite-coated 
needle can decrease the average insertion force by 49 %. Moreover, 
histological analysis further corroborates this conclusion, demonstrating 
a 39 % average reduction in tissue-damage with coated needles. This 
implies that reducing tissue-damage could reduce the risks associated 
with needle insertion. Nevertheless, additional research and testing are 
necessary to elevate this study to a clinical level, ensuring the durability 
and safety of the needle coating. 
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Table 1 
Tissue-damaged area of uncoated and coated needles in (mm2).   

Damaged Area (mm2) Mean damaged Area (mm2)  
Uncoated 
Needle 

Coated 
Needle 

Uncoated 
Needle 

Coated 
Needle 

Sample 1 0.288 0.217   
Sample 2 0.176 0.079 0.201 ± 0.063 0.121 ±

0.067 
Sample 3 0.139 0.069    
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