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Abstract
Recent efforts in Analysis of Boolean Functions aim to extend core results to new spaces, including
to the slice

([n]
k

)
, the hypergrid [K]n, and noncommutative spaces (matrix algebras). We present

here a new way to relate functions on the hypergrid (or products of cyclic groups) to their harmonic
extensions over the polytorus. We show the supremum of a function f over products of the cyclic
group {exp(2πik/K)}K

k=1 controls the supremum of f over the entire polytorus ({z ∈ C : |z| = 1}n),
with multiplicative constant C depending on K and deg(f) only. This Remez-type inequality appears
to be the first such estimate that is dimension-free (i.e., C does not depend on n).

This dimension-free Remez-type inequality removes the main technical barrier to giving O(log n)
sample complexity, polytime algorithms for learning low-degree polynomials on the hypergrid and
low-degree observables on level-K qudit systems. In particular, our dimension-free Remez inequality
implies new Bohnenblust–Hille-type estimates which are central to the learning algorithms and
appear unobtainable via standard techniques. Thus we extend to new spaces a recent line of work
[10, 13, 23] that gave similarly efficient methods for learning low-degree polynomials on the hypercube
and observables on qubits.

An additional product of these efforts is a new class of distributions over which arbitrary quantum
observables are well-approximated by their low-degree truncations – a phenomenon that greatly
extends the reach of low-degree learning in quantum science [13].
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1 Introduction

1.1 Motivation: quantum and classical low-degree learning
Recall that any function f : {−1, 1}n → R admits a unique Fourier expansion

f(x) =
∑

S⊆[n] f̂(S)
∏

i∈S xi where f̂(S) = Ex∼{−1,1}n [f(x) ·
∏

i∈S xi] .

We say f is of degree d (deg(f) ≤ d) if for all S with |S| > d, f̂(S) = 0.
Low-degree learning – which we shall take to mean learning an L2 approximation to

f with deg(f) ≤ d and |f | ≤ 1 from uniformly random samples – is a fundamental task
in computer science [19]. For a long time, the best polytime algorithm for low-degree
learning had a sample complexity exponentially separated in n from what was information
theoretically-required (poly(n) vs. O(log n)) [18, 15]. But in 2022 Eskenazis and Ivanisvili
closed the gap [10], achieving a sample complexity of O(log n) for the first time.

Key to their argument is an observation about approximating sparse vectors. Suppose
one holds a vector w ∈ Rn that is an ℓ∞ approximation to some unknown vector v ∈ Rn

(say, ∥v − w∥∞ ≤ ε). Then it could be that ∥v − w∥2 grows unboundedly with n. However,
if a constant ℓp bound on v for p < 2 is promised, it is possible to modify w in a simple way
to obtain a new approximation w̃ to v with ∥w̃ − v∥2 independent of n (and controlled by
ε). This is possible because the ℓp bound on v implies v is approximately sparse – and in
particular that many of its coordinates are small in comparison to ε. Using this observation
[10] shows that zeroing-out coordinates in w below a fixed threshold gives a suitable w̃.

In the context of low-degree learning, v is the vector of true low-degree Fourier coefficients
of f , while w is a vector of empirical Fourier coefficients collected through the familiar
technique of Fourier sampling [18, 19]. Modifying w 7→ w̃ as above we may form the
approximate function f̃ and with Plancherel’s theorem conclude ∥f − f̃∥2 = ∥v − w̃∥2 is
small.

Thus the Eskenazis–Ivanisvili argument reduces learning low-degree polynomials to finding
an ℓp, p < 2 bound on the Fourier coefficients of f . Inequalities of this kind are known
as Bohnenblust–Hille-type inequalities, and the state of the art for polynomials over the
hypercube was proved recently in [8]:

▶ Theorem 1 (Hypercube Bohnenblust–Hille [8]). For any d ≥ 1, there exists a constant
Cd > 0 such that for all n ≥ 1 and all f : {−1, 1}n → R with deg(f) ≤ d, we have

∥f̂∥ 2d
d+1

:=
( ∑

S⊆[n]

|f̂(S)|
2d

d+1

) d+1
2d ≤ Cd∥f∥∞ .

Moreover, there exists a universal constant c > 0 such that Cd ≤ c
√

d log d.

For our purposes the critical feature of Theorem 1 is the dimension-free-ness of the estimate.
Bohnenblust–Hille (BH) inequalities were originally proved for analytic polynomials over the
polytorus Tn = {z ∈ C : |z| = 1}n and have a long history in harmonic analysis [9].

One might ask if a similar approach to low-degree learning could work in the quantum
world. Quantum observables (Hermitian operators) on a system of n qubits admit a “Fourier-
like” decomposition

A =
∑

α∈{0,1,2,3}n

Â(α)σα where σα =
⊗n

i=1σαi
and Â(α) = 2−n tr[A · σα] .
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Here σ0 is the 2-by-2 identity matrix and σi, 1 ≤ i ≤ 3 are the Pauli matrices

σ1 =
[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
.

Defining |α| to be the number of nonzero entries in α, we say A is of degree d if for all α
with |α| > d we have Â(α) = 0. It was recently identified [20, 13, 23] that this analogy is
close-enough to the Boolean case that the Eskenazis–Ivanisvili approach goes through for
quantum observables as well, provided a BH-type inequality for Pauli decompositions exists,
which was also proved:

▶ Theorem 2 (Qubit Bohnenblust–Hille [13, 23]). Suppose that d ≥ 1. Then there exists a
constant Cd > 0 such that for all n ≥ 1 and all A on n qubits of degree d, we have

∥Â∥ 2d
d+1

:=
( ∑

α∈{0,1,2,3}n

|Â(α)|
2d

d+1

) d+1
2d ≤ Cd∥A∥op ,

where ∥A∥op denotes the operator norm.

An additional feature of low-degree learning specific to the quantum setting shown by [13]
is that when averaging over certain distributions of input states, low-degree truncations
are good approximations of arbitrary quantum observables – even ones corresponding to
exponential-time quantum computations. This means the low-degree learning algorithm
can perform well in predicting arbitrarily-complex quantum processes with respect to these
distributions, a phenomenon that stands in stark contrast to the classical case.

1.2 From Zn
2 to Zn

K and from qubits to qudits
It is natural to ask whether these algorithms rely on special properties of the hypercube
or qubit systems, or whether they extend to larger spaces. In this paper we provide an
affirmative answer, extending these classical and quantum learning results to (tensor-)product
spaces of arbitrary local size K ≥ 2.

Classically, this extension works as follows. We shall consider complex-valued functions
f : Zn

K → C, where ZK = {0, 1 . . . ,K − 1} is the cyclic group of order K. Then each f has a
unique Fourier expansion:

f(x) =
∑

α∈{0,1,...,K−1}n

f̂(α)
n∏

j=1
ωαjxj with ω := e

2πi
K ,

where |α| :=
∑

j αj . We say f is of degree d if f̂(α) = 0 for all α with |α| > d. Ultimately,
we obtain the following algorithm.

▶ Theorem 3 (Cyclic Low-degree Learning). Let f : Zn
K → D be of degree d. Then with

(logK)O(d2) log(n/δ)ε−d−1 independent random samples (x, f(x)), x ∼ U(Zn
K), we may with

confidence 1 − δ construct in polynomial time a function f̃ : Zn
K → C with ∥f − f̃∥2

2 ≤ ε.

(Compare with the naive Fourier sampling algorithm which would require poly(n) samples)
Here the L2 norm ∥ · ∥2 is defined with respect to the uniform probability measure on Ωn

K .
Our efforts in this direction are in the theme of generalizing Analysis of Boolean Functions
results to more-general product spaces, e.g., [4].

It could be argued that the quantum case of generalized low0-degree learning is even
more important, both for the study of fundamental physics via quantum simulation (e.g.,
[17, 11]) and in the operation and validation of quantum computers. In both contexts,

ITCS 2024
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gains in efficiency are possible when the underlying hardware system is composed of higher-
dimensional subsystems, sometimes carrying an algorithm from theoretical fact to practical
reality in the NISQ era [11] – and this benefit may very well remain as quantum computing
advances. Such systems are called multilevel system, or qudit quantum computers [24]. While
the qubit case gives a conceptual sense of the possibilities for learning on qudit systems, it is
practically important to derive guarantees and algorithms that work directly in the native
dimension of the quantum system. In so doing we also establish new distributions under
which arbitrary quantum processes are well-approximated by low-degree ones (including new
distributions for qubit systems beyond those identified in [13]).

▶ Theorem 4 (Qudit Observable Learning, Informal). Let A be any (not necessarily low-degree)
bounded quantum observable on H⊗n

K ; i.e., on n-many K-level qudits. Then we may via
random sampling construct in polynomial time an approximate observable Ã such that for a
wide class of distributions µ on states ρ,

E
ρ∼µ

∣∣tr[Aρ] − tr[Ãρ]
∣∣2 ≤ ε .

The samples are of the form (ρ, tr[Aρ]) for ρ drawn from the uniform distribution over a
certain set of product states. Moreover, the number of samples s required to achieve the
guarantee with confidence 1 − δ is

s ≤ O
(

log( n
δ )C log2(1/ϵ)K3/2∥A≤t∥2t

op

)
.

The quantity ∥A≤t∥op is the operator norm of a degree-t truncation of A, for t roughly
log(1/ϵ).

There is little prior work on learning qudit observables, but earlier polytime algorithms for
learning qubits required at least O(n log(n)) samples to complete a comparable task [14].
Theorem 4 is proved by combining a low-degree learning algorithm for qudits with a qudit
extension of the low-degree approximation lemma of Huang, Chen and Preskill [13, Lemma 14].
The distributions µ admitting this construction are studied in Section 4.2.2.

1.3 Proof ideas: a new Remez-type inequality
The extensions described above essentially amount to proving new Bohnenblust–Hille type
inequalities in the associated spaces. Here we briefly describe how these are obtained and
introduce our Remez inequality.

There are multiple natural generalizations of the qubit BH inequality (Theorem 2), and
we pursue results for operator expansions in both the Heisenberg–Weyl and the Gell-Mann
bases (these choices are explained and defined in Section 3). We take inspiration from the
technique of [23] to reduce these noncommutative BH inequalities to BH inequalities over
classical, commutative spaces. In the case of the Gell-Mann basis, we are able to reduce to
the Hypercube BH, so we are done. However, in the very natural and useful Heisenberg–Weyl
basis (composed of clock & shift operators), the eigenvalues of the corresponding matrices
are the Kth roots of unity. Therefore it is natural to reduce to a BH inequality over products
of cyclic groups – the same inequality needed for classical cyclic low-degree learning.

So in this way an important version of the qudit BH inequality dovetails with the BH
inequality for cyclic groups and hypergrid learning. The cyclic group BH inequality appears
to be previously unstudied, despite it being the interpolating case between the hypercube
case (K = 2) and the original polytorus case (K = ∞). One quickly discovers why, however:
a proof by the “standard recipe” for BH inequalities (à la [8, 2, 7, 13]) will not work here.
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Let us sketch the difficulty. At a very coarse level, BH inequalities for degree-d polynomials
on some product space Xn are typically proved in these steps [9]:
1. Symmetrization: express f as the restriction of a certain symmetric d-linear form Lf to

the diagonal ∆ := {(z, . . . , z) : z ∈ Xn}; that is, f(z) = Lf (z, . . . , z).
2. BH for multi-linear forms: bound the ℓ2d/(d+1) norm of the coefficients of Lf (which are

directly related to the coefficients of f) by the supremum norm of Lf over (Xn)d. This
step is rather involved and includes several estimates, manipulations, and an application
of hypercontractivity and Khinchine’s inequality.

3. Polarization: estimate the supremum of |Lf | on its entire domain (Xn)d by the supremum
over ∆; that is,

∥Lf ∥(Xn)d ≲ ∥Lf ∥∆ = ∥f∥Xn ,

where ∥ · ∥E denotes the supremum norm over some space E.
When adapting this proof structure to cyclic groups of order 2 < K < ∞, the main point of
failure is in step three, polarization. In both the polytorus and hypercube cases, one uses
Markov–Bernstein-type inequalities to obtain the intermediate inequality

∥Lf ∥(Xn)d ≲ ·∥f∥conv(X)n ,

where conv(X) denotes the convex hull of X. The passage from conv(X) to X is then
immediate for the polytorus by the maximum modulus principle (∥f∥Dn = ∥f∥Tn) and for
the hypercube by multilinearity (∥f∥[−1,1]n = ∥f∥{−1,1}n). But there is no such easy fact
in the setting of the multiplicative cyclic group ΩK := {e2πik/K : k = 0, . . . ,K − 1} with
2 < K < ∞ because ΩK is not the entire boundary of conv(ΩK). Even for n = 1 and K = 3
one can construct example f ’s for which ∥f∥conv(ΩK )n > ∥f∥Ωn

K
.

Indeed, it was not at all clear that ∥f∥Ωn
K

should provide any reasonable control over
∥f∥conv(ΩK )n , let alone a bound with constant independent of dimension. As a resolution,
we here provide a new way to relate the supremum norm of a polynomial f over Ωn

K to its
supremum norm over Tn.

▶ Theorem 5. Fix K ≥ 2. Let f be an n-variate degree-d polynomial of individual degree at
most K − 1. Then

∥f∥Tn ≤ (O(logK))d∥f∥Ωn
K
.

This can be seen as a sort of maximum principle for Ωn
K because we may conclude

∥f∥conv(ΩK )n ≤ ∥f∥Dn = ∥f∥Tn ≲ ∥f∥Ωn
K
.

However, with Theorem 5 in hand there is no need to repeat any of the steps listed above.
The original Bohnenblust–Hille inequality for the polytorus [3] states

∥f̂∥ 2d
d+1

≤ C
√

d log d∥f∥Tn

for any degree-d analytic polynomial f . So we immediately obtain the cyclic group BH:

▶ Corollary 6 (Cyclic Group BH). Let f be an n-variate degree-d polynomial of individual
degree at most K − 1. Then

∥f̂∥ 2d
d+1

≤ (O(logK))d+
√

d log d∥f∥Ωn
K
. (1)

ITCS 2024
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Remez-type inequalities bound the supremum of a low-degree polynomial f over some
space X by the supremum of f over some subset Y ⊆ X. In this sense Theorem 5 is a
discrete Remez-type inequality for the polytorus; moreover it appears to be the first discrete
multidimensional Remez inequality with a dimension-free constant (c.f. [25] and references
therein).

We also remark that Theorem 5 may be improved in certain regimes (when d ≪ K, or
when K is a very composite integer), as well as readily extended to Lp → Lp comparisons
for general p and to spaces with less structure than Ωn

K . These extensions are to appear
elsewhere. We believe Theorem 5 could be of significant general interest, as so much is
already known about polynomials over Tn. Theorem 5 provides a bridge from discrete spaces
back into classical harmonic analysis.

1.4 Organization
Section 2 is a self-contained proof of the the dimension-free Remez Inequality. In section 3
we then obtain our qudit Bohnenblust–Hille inequalities. In Section 4 we use these results
and a slightly generalized Eskenazis–Ivanisvili to give the learning algorithms of Theorem 4
and Theorem 3. In Section 4 we also study the probability distributions of qudit states that
allow for accurate low-degree approximations of arbitrary quantum operators.

2 A dimension-free Remez inequality

Let T := {z ∈ C : |z| = 1} and denote by ∥f∥X the sup norm of any function f : X → C. In
this section we prove the key technical result of this work. We remark that two proofs of
Theorem 5 are actually known; a very different argument was given by three of the authors
in [22]. While the proof in [22] is interesting for its own reasons, the argument below gives a
better constant which is important for learning applications.

A natural approach to proving Theorem 5 is to consider a specific maximizer z ∈ Tn

of |f | and approximate it by a linear combination of evaluations of f at points in Ωn
K . We

might begin with this lemma for a single coordinate:

▶ Lemma 7. Suppose z ∈ T. Then there exists c := (c0, . . . , cK−1) such that for all
k = 0, 1, . . . ,K − 1,

zk =
K−1∑
j=0

cj(ωj)k.

Moreover, ∥c∥1 ≤ B log(K) for a universal constant B.

Proof. Let ω = exp(2πi/K). The discrete Fourier transform (DFT) of the array A =
(1, z, . . . , zK−1) yields K complex numbers c̃0, . . . , c̃K−1 so that

zk = Ak = 1
K

K−1∑
j=0

c̃jω
jk

for all k = 0, . . . ,K − 1. Using cj := 1
K c̃j we get

zk =
K−1∑
j=0

cjω
jk. (2)
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Recall the DFT coefficients are given by

c̃j =
K−1∑
k=0

Akω
−kj .

Since Ak = zk we have

c̃j =
K−1∑
k=0

zkω−kj = 1 − (z/ωj)K

1 − (z/ωj) .

By the triangle inequality,

|c̃j | ≤ min
(
K,

2
|ωj − z|

)
.

Using that the harmonic number HK =
∑K

k=1 1/k satisfies HK ≤ log(K)+1, it is elementary
to see that we have

K−1∑
j=0

|c̃j | ≤ BK logK

for B a sufficiently large constant. That is,

∥c∥1 =
K−1∑
j=0

|cj | = 1
K

K−1∑
j=0

|c̃j | ≤ B log(K) . ◀

In a single coordinate, Lemma 7 provides the desired inequality as follows. With z ∈ T a
maximizer of |f(z)| we have

∥f∥T = |f(z)| = |
d∑

k=0
akz

k| = |
d∑

k=0

K−1∑
j=0

akcj(ωj)k| = |
K−1∑
j=0

cjf(ωj)|

≤ ∥c∥1∥f∥ΩK
≤ C log(K)∥f∥ΩK

. (Hölder)

However, in higher dimensions, repeating this argument coordinatewise introduces an expo-
nential dependence on n. We circumvent this by taking a probabilistic view of the foregoing
display: the sum over j can be interpreted as an expectation over a (complex-valued) measure
on ΩK . When it is repeated in several dimensions, this is like taking an expectation over
n independent random variables. The key insight is that this independence is more than
we need: by correlating the random variables, we save on randomness (which reduces the
multiplicative constant) while retaining control of the error.

▶ Lemma 8. Let f be a degree-d n-variate polynomial and z ∈ Tn. Then there is a
univariate polynomial p = pf,z such that for any positive integer m there are (dependent)
random variables R,W taking values in Ω4 and Ωn

K respectively such that

f(z) = Dm E
R,W

[Rf(W )] + p(1/m) . (3)

Moreover, p has deg(p) < d and zero constant term, and D is a universal constant.

Lemma 8 is the crux of our argument and we are not aware of a similar statement in
the literature. Theorem 5 follows quickly, though it is interesting to note that instead of
clearing the error term by taking m → ∞ (which would indeed make p(1/m) → 0 but also
send Dm → ∞), we will end up using algebraic features of p (namely, low-degree-ness) to
remove it. But first, the lemma:

ITCS 2024
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Proof of Lemma 8. We will argue Lemma 8 for f(z) = zα, a monomial of degree at most d.
The claim extends to general degree-d f by linearity.

We begin by examining a single coordinate with the aim of rewriting Lemma 7 in a
probabilistic form. To that end, we first decouple the angle and magnitude information of
the cj ’s. Fix z ∈ T and let cj be as in Lemma 7. We may write a decomposition

cj = 1 · c(0)
j + i · c(1)

j + (91) · c(2)
j + (9i) · c(3)

j =
3∑

s=0
is · c(s)

j ,

with all c(s)
j ∈ R≥0 and c

(0)
j c

(2)
j = c

(1)
j c

(3)
j = 0. This can be done for all j so that, with

C := B logK from Lemma 7,

∥c(s)∥1 ≤ C (4)

is satisfied for each s ∈ {0, 1, 2, 3}, where c(s) = (c(s)
1 , . . . , c

(s)
n ). So we have for all k =

0, . . . ,K − 1,

zk =
K−1∑
j=0

3∑
s=0

is · c(s)
j · (ωj)k .

We now rewrite the sum in Lemma 7 in probabilistic form.
Put D = 4C + 1 and define r : [0, D] → C by

r(t) =


1 0 ≤ t ≤ C + 1,
i C + 1 < t ≤ 2C + 1,
−1 2C + 1 < t ≤ 3C + 1,
−i 3C + 1 < t ≤ 4C + 1 = D .

Also define a piecewise-constant function w : [0, D] → ΩK as follows. Consider any collection
of disjoint intervals I(s)

j , 0 ≤ j ≤ K − 1, 0 ≤ s ≤ 3 such that

I
(s)
j ⊂ [0, D], s ∈ {0, 1, 2, 3}, j ∈ {0, 1, . . . ,K − 1}

and for each s and j, I(s)
j ⊆ [sC + 1, (s+ 1)C + 1] and |I(s)

j | = c
(s)
j . Disjointness is possible

because for each s,

|[sC + 1, (s+ 1)C + 1]| = C ≥
∑K−1

j=0 c
(s)
j

by (4). Now assign w(I(s)
j ) = ωj and in the remaining region of [0, D] (that is, [0, D]\ ⊔s,j I

(s)
j )

let w take on each element of ΩK with in equal amount (w.r.t. the uniform measure).

▷ Claim 9. Let T be sampled uniformly from [0, D]. Then for all k = 0, 1, . . . ,K − 1,

zk = DE
T

[r(T )w(T )k] . (5)

Proof. Let us begin with k = 0, which simplifies to

DE
T

[r(T )] = 1 . (6)

This can be seen by direct computation:

E
T

[r(T )] = 1
D

(1 + 1 · C + i · C + (91) · C + (9i) · C) = 1
D
.



O. Klein, J. Slote, A. Volberg, and H. Zhang 69:9

For k ≥ 1, consider the joint distribution of (r(T ), w(T )k), whose product appears in (5).
Fix s ∈ {0, 1, 2, 3}, and condition on r(T ) = is. The conditional distribution of w(T ) has
two parts. One part, corresponding to ⊔jI

(s)
j , has w(T ) = ωj over I(s)

j with the probability
Pr[r(T ) = is ∧ w(T ) = ωj ] equal to c(s)

j /D, while the other has w(T ) uniformly distributed
in ΩK . The latter part contributes 0 to the expectation E[r(T )w(T )k], since

∑K−1
j=0 (ωj)k = 0

for k = 1, 2, . . . ,K − 1. The former part contributes

is ·
K−1∑
j=0

c
(s)
j

D
ωjk.

Summing this display over s ∈ {0, 1, 2, 3} and rearranging, we get that

E[r(T )w(T )k] =
K−1∑
j=0

cj

D
(ωj)k = 1

D
zk,

completing proof of (5). ◁

We return to the multivariate setting. Fix z := (z1, . . . , zn) ∈ Tn and define the functions
w1, . . . , wn corresponding to the above construction applied to each coordinate z1, . . . , zn.
If each coordinate were to receive a fresh copy of T this would lead to an identity with
exponential constant:

zα = Dn E
Tℓ

iid∼ T,
1≤ℓ≤n

[ ∏n
ℓ=1 r(Tℓ)wℓ(Tℓ)αℓ

]
.

Instead, we consider only m independent copies of T : T1, . . . , Tm
iid∼ U [0, D]. The decision

of which coordinates are integrated with respect to which Tℓ is also made randomly, via a
uniformly random function P : [n] → [m]. We finally arrive at the definitions of R and W :

R :=
m∏

ℓ=1
Rℓ with Rℓ := r(Tℓ), 1 ≤ ℓ ≤ m

W :=
(
w1

(
TP (1)

)
, w2

(
TP (2)

)
, . . . , wn

(
TP (n)

))
=: (W1, . . . ,Wn) .

When P is injective on supp(α), we easily achieve the smaller constant.

▷ Claim 10. Consider m ≥ | supp(α)|. Then

E
R,W

[R · W α | P is injective on supp(α)] = D−mzα .

Proof. It suffices to prove this for an arbitrary projection P̃ that is injective on supp(α).
Consider the partition of [n] given by P̃−1([m]) and write Sℓ = P̃−1(ℓ) for ℓ ∈ [m]. By
independence, the expectation splits over these Sℓ’s:

E
R,W

[R · W α | P = P̃ ] =
∏m

ℓ=1 E
[
Rℓ

∏
k∈Sℓ

Wαk

k

]
(7)

Because P̃ is injective on supp(α), every Sℓ contains one or zero elements of supp(α). By
Claim 9, in the latter case we have

E
[
Rℓ

∏
k∈Sℓ

Wαk

k

]
= E[Rℓ] = 1

D
,
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and in the former case we have

E
[
Rℓ

∏
k∈Sℓ

Wαk

k

]
= E[RℓW

αj

j ] = 1
D
z

αj

j ,

for the specific j for which {j} = Sℓ ∩ supp(α). Substituting these observations into (7)
completes the argument. ◁

When P is not injective, we still have some control. Let S = {Sj} be a partition of
supp(α). We say P induces S if

{P−1(j) ∩ supp(α) : j ∈ [m]} = S .

▷ Claim 11. For each partition S of supp(α) there is a number E(S) such that for all
m ≥ |S|,

E
R,W

[R · W α | P induces S] = D−mE(S).

Proof. Condition again on a specific P̃ that induces S. There are two types of ℓ ∈ [m]: those
that W α depends on (that is, P̃ (supp(α))), and those that only R depends on. Call these
sets L = P̃ (supp(α)) and Lc respectively. Then by independence of the Tℓ’s,

E
R,W

[R · W α | P = P̃ ] = E
R,W

[
(∏

ℓ∈Lc Rℓ

) (∏
ℓ∈L Rℓ

)
· W α | P = P̃ ]

= D−m+|S| E
R,W

[
(∏

ℓ∈L Rℓ

)
· W α | P = P̃ ]︸ ︷︷ ︸

∗

.

We observe that the expectation (∗) does not depend on the specific P̃ inducing S, nor on
m. Thus we may define E(S) by setting D−|S|E(S) equal to (∗). ◁

To summarize claims 10 and 11 , we have that for all partitions S of supp(α) there is a
number E(S) such that for all m ≥ |S|,

E[R · W α|P induces S] = D−mE(S).

And using S∗ to denote the singleton partition
{

{j}
}

j∈supp(α), we additionally have E(S∗) =
zα.

Now we consider the unconditional expectation E[R · W α] with P ∼ U([m][n]). Simple
combinatorics give that for all partitions S and all m ≥ 1, with s = |S|,

Pr[P induces S] = m(m− 1) · · · (m− s+ 1)
m| supp(α)| =:

{
1 + qs

( 1
m

)
if s = | supp(α)|

qs

( 1
m

)
if s < | supp(α)| ,

for polynomials qs with zero constant term and deg(qs) < d.
Of course P can only induce S for |S| ≤ m, so by the law of total probability,

E
R,W

[R · W α] =
∑

S,|S|≤min(m,| supp(α)|)

E[R · W α | P induces S ] Pr[P induces S] .

Consider first the case m ≥ | supp(α)|. We obtain

E
R,W

[R · W α] =
∑

S
E[R · W α | P induces S ] Pr[P induces S]

= D−mE(S∗)
(

1 + q| supp(α)|
( 1

m

))
+

∑
S,|S|<| supp(α)|

D−mE(S) · q|S|
( 1

m

)
= D−m

[
zα +

∑
S
E(S) · q|S|

( 1
m

)]
. (8)
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Now when m < | supp(α)|, we combine the fact that Pr[P induces S] = 0 for |S| > m with
the definition of qs to see

E
R,W

[R · W α] = 0 +
∑

S,|S|≤m

E[R · W α | P induces S ] Pr[P induces S]

=
∑

S,|S|>m

D−mE(S) Pr[P induces S] +
∑

S,|S|≤m

D−mE(S) Pr[P induces S]

= D−mE(S∗)
(

1 + q| supp(α)|
( 1

m

))
+

∑
| supp(α)|>|S|>m

D−mE(S) · q|S|
( 1

m

)
+

∑
m≥|S|

D−mE(S) · q|S|
( 1

m

)
= D−m

[
zα +

∑
S
E(S) · q|S|

( 1
m

)]
. (9)

Noting that (9) and (8) are identical, we rearrange to find

zα = Dm E[R · W α] −
∑

S
E(S) · q|S|

( 1
m

)
,

and the second part is in total a polynomial in 1
m with no constant term and degree < d. ◀

Finally, the error term p
( 1

m

)
is removed by considering several values of m.

Proof of Theorem 5. Suppose there were some coefficients am ∈ C with
∑d

m=1 am = 1, so
that for any polynomial p of degree < d and p(0) = 0 we would have∑d

m=1 amp( 1
m ) = 0.

We could then sum (3) for m = 1, . . . , d, weighted by am, and get

f(z) =
d∑

m=1
amf(z) =

d∑
m=1

amD
m E[Rmf(Wm)]+

d∑
m=1

amp
( 1

m

)
=

d∑
m=1

amD
m E[Rmf(Wm)],

where Rm,Wm are those R,W from (3) marked with explicit dependence on m.
Well, these coefficients am can be arranged, since the monomial vectors (1/mt)m=1,...,d

for t = 0, . . . , d − 1 are linearly independent (Vandermonde). Since always |Rm| ≤ 1, we
deduce

|f(z)| ≤
d∑

m=1
|amD

m| · ∥f∥Ωn
K

≤ maxd
m=1 |am|

1 − 1/D ·Dd∥f∥Ωn
K
.

An explicit formula for the am’s is given by

am = (−1)d−m md

m!(d−m)! ,

and it is evident that maxd
m=1 |am| ≤ exp(O(d)), and specifically maxd

m=1 |am| ≤ exp(1.28d).
Without loss of generality, we may assume D ≥ 11 thus 1/(1−1/D) ≤ 1.1, so we conclude

|f(z)| ≤ (4D)d∥f∥Ωn
K

= (4B log(K) + 4)d∥f∥Ωn
K
. ◀
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3 Qudit Bohnenblust–Hille inequalities

Let

f(z) =
∑

α

cαz
α =

∑
α

cαz
α1
1 · · · zαn

n ,

where α = (α1, . . . , αn) are vectors of non-negative integers, all cα are nonzero, and the total
degree of polynomial f is d = maxα(α1 + · · · + αn). Here z can be all complex vectors in
Tn = {ζ ∈ C : |ζ| = 1}n or all sequences of ±1 in Boolean cube {−1, 1}n. Bohnenblust–Hille
type of inequalities are the following( ∑

α

|cα|
2d

d+1

) d+1
2d ≤ C(d) sup

z
|f(z)| . (10)

The supremum is taken either over the torus Tn or, more recently, the Boolean cube {−1, 1}n.
In both cases this inequality is proven with constant C(d) that is independent of the dimension
n and sub-exponential in the degree d. More precisely, denote by BH≤d

T and BH≤d
{±1} the

best constants in the Bohnenblust–Hille inequalities (10) for degree-d polynomials on Tn and
{−1, 1}n, respectively. Then both BH≤d

T and BH≤d
{±1} are bounded from above by ec

√
d log d

for some universal c > 0 [2, 8].
One of the key features of this inequality (10) is the dimension-freeness of C(d). This,

together with its sub-exponential growth phenomenon in d, plays an important role in
resolving some open problems in functional analysis and harmonic analysis [7, 2, 6]. The
optimal dependence of BH≤d

T and BH≤d
{±1} on the degree d remains open.

The qubit BH inequality, Theorem 2, has received two very different proofs. In [13]
Huang, Chen and Preskill pursue a direct proof and notably develop a physically-motivated
“algorithmic” procedure to prove the key step in BH-type arguments known as polarization.
They achieve the dimension-free constant Cd ≤ O(dd). Another proof approach appears in
[23], which works by reducing the qubit BH inequality to the hypercube BH inequality. Let
BH≤d

M2
denote the optimal constant in Theorem 2 (where M2 designates the 2-by-2 complex

matrix algebra). Then [23] showed BH≤d
M2

≤ 3dBH≤d
{±1} ≤ CO(d).

Pauli matrices are very special objects, being Hermitian, unitary, and anticommuting,
and it was unclear whether the reduction approach in [23] could be extended to the qudit
setting, where higher-dimensional generalizations of Pauli matrices are not so well-behaved.
In fact we succeed in extending the reduction argument to two bases for the complex matrix
algebra MK(C) (tensors of which form the appropriate space for qudit systems) known as the
(generalized) Gell-Mann basis and the Heisenberg–Weyl basis with the view to reduce to scalar
BH inequalities. They are orthonormal with respect to the normalized trace inner product
1
K tr[A†B], and are respectively Hermitian and unitary generalizations of the 2-dimensional
Pauli basis. Our proofs of these extensions reveal some pleasing features of the geometry of
the eigenvalues of GM and HW matrices.

▶ Definition 12 (Gell-Mann Basis). Let K ≥ 2 and put Ejk = |ej⟩⟨ek| , 1 ≤ j, k ≤ K. The
generalized Gell-Mann Matrices are a basis of MK(C) and are comprised of the identity
matrix I along with the following generalizations of the Pauli matrices:

symmetric: Ajk =
√

K
2

(
Ejk + Ekj

)
for 1 ≤ j < k ≤ K

antisymmetric: Bjk =
√

K
2

(
− iEjk + iEkj

)
for 1 ≤ j < k ≤ K

diagonal: Cm = Γm (
∑m

k=1 Ekk −mEm+1,m+1) for 1 ≤ m ≤ K − 1,
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where Γm :=
√

K
m2+m . We denote

GM(K) := {I,Ajk,Bjk,Cm}1≤j<k≤K,1≤m≤K−1 .

An observable A has expansion in the GM basis as

A =
∑

α∈Λn
K

Â(α)Mα =
∑

α∈Λn
K

Â(α)
⊗n

j=1Mαj

for some index set ΛK (so {Mα}α∈ΛK
= GM(K)). Letting |α| = |{j : Mαj ≠ I}|, we say A

is of degree d if Â(α) = 0 for all α with |α| > d.
We find the Gell-Mann BH inequality enjoys a reduction to the hypercube BH inequality

on {−1, 1}n(K2−1) and obtain the following.

▶ Theorem 13 (Qudit Bohnenblust–Hille, Gell-Mann Basis). Fix any K ≥ 2 and d ≥ 1. There
exists C(d,K) > 0 such that for all n ≥ 1 and GM observable A ∈ MK(C)⊗n of degree d, we
have

∥Â∥ 2d
d+1

≤ C(d,K)∥A∥op. (11)

Moreover, we have C(d,K) ≤
( 3

2 (K2 −K)
)dBH≤d

{±1}.

In particular, for K = 2 we recover the main result of [23] exactly.

▶ Definition 14 (Heisenberg–Weyl Basis). Fix K ≥ 2 and let ω = exp(2πi/K). Define the
K-dimensional clock and shift matrices respectively via

X |j⟩ = |j + 1⟩ , Z |j⟩ = ωj |j⟩ , for all j ∈ ZK .

Note that XK = ZK = I. See more in [1]. Then the Heisenberg–Weyl basis for MK(C) is

HW(K) := {XℓZm}ℓ,m∈{0,1,...,K−1} .

Any observable A ∈ MK(C)⊗n has a unique Fourier expansion with respect to HW(K) as
well:

A =
∑

ℓ⃗,m⃗∈Zn
K

Â(ℓ⃗, m⃗)Xℓ1Zm1 ⊗ · · · ⊗XℓnZmn , (12)

where Â(ℓ⃗, m⃗) ∈ C is the Fourier coefficient at (ℓ⃗, m⃗). We say that A is of degree-d if
Â(ℓ⃗, m⃗) = 0 whenever

|(ℓ⃗, m⃗)| :=
n∑

j=1
(ℓj +mj) > d.

Here, 0 ≤ ℓj ,mj ≤ K − 1.
Unlike in the GM expansion, HW Fourier coefficients may be complex-valued. In fact,

because the spectra of Heisenberg–Weyl matrices are the roots of unity, it is natural to
pursue a reduction to a scalar BH inequality over ZK – precisely the inequality needed for
classical learning on functions on Zn

K . This reduction works when K is prime.
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Table 1 Best known constants in Bohnenblust–Hille inequalities for (tensor-)product spaces at
the time of this writing. Each BH inequality in the right half is proved via a reduction to the scalar
BH inequality directly to its left. The results are accurate for all K ≥ 3, and each appearance of C

and C′ is a different constant > 1. For the bounds proved in this work, no prior bounds were known.

BH Const. Best known bound Source BH Const. Best known bound Source

BH≤d
{±1} C

√
d log d [8]

BH≤d
M2

3dBH≤d
{±1} ≤ Cd [23]

BH≤d
GM(K)

(
3
2 (K2 − K)

)dBH≤d
{±1} ≤ KCd Thm. 13

BH≤d
ZK

(C log K)d+
√

d log d Cor. 6 BH≤d
HW(K) (K + 1)d · BH≤d

ZK
≤ (CK log K)C′d * Thm. 15

BH≤d
T C

√
d log d [2] ∗ : For K prime.

▶ Theorem 15 (Qudit Bohnenblust–Hille, Heisenberg–Weyl Basis). Fix a prime number K ≥ 2
and suppose d ≥ 1. Consider an observable A ∈ MK(C)⊗n of degree d. Then we have

∥Â∥ 2d
d+1

≤ C(d,K)∥A∥op, (13)

with C(d,K) ≤ (K + 1)dBH≤d
ZK

.

A summary of the Bohnenblust–Hille inequalities proved in this paper is provided in
Table 1, where we denote the best constants in Eqs. (1), (11), and (13) respectively by
BH≤d

ZK
, BH≤d

GM(K), and BH≤d
HW(K).

3.1 Qudit Bohnenblust–Hille in the Gell-Mann basis

In this section we prove Theorem 13 by reducing (11) to the hypercube Bohnenblust–Hille
inequality on {−1, 1}n(K2−1). (The K = 2 case was done in [23]).

The central part of the reduction is a coordinate-wise construction of density matrices
ρ(x) ∈ MK(C) parametrized by x ∈ {−1, 1}K2−1 =: HK . It will be convenient to partition
the coordinates of x as x = (x, y, z) ∈ {−1, 1}(K

2 ) × {−1, 1}(K
2 ) × {−1, 1}K−1 with indices

x = (xjk)1≤j<k≤K , y = (yjk)1≤j<k≤K , and z = (zm)1≤m≤K−1 .

▶ Lemma 16. For any (x, y, z) ∈ HK , there exists a positive semi-definite Hermitian matrix
ρ = ρ(x, y, z) with tr[ρ] = 3

(
K
2
)

such that for all 1 ≤ j < k ≤ K and 1 ≤ m ≤ K − 1,

tr[Ajkρ(x, y, z)] =
√

K
2 xjk, (14)

tr[Bjkρ(x, y, z)] =
√

K
2 yjk, (15)

tr[Cmρ(x, y, z)] =
√

K
2 zm. (16)

In comparison to the construction for Pauli matrices in [23], an added difficulty here that
anticommutativity does not always hold among the A’s, B’s, and C’s, which was the central
property to achieve the equivalent of Lemma 16 for the qubit case. However, with the right
construction, we still obtain the right cancellations; please see the full version [16] for a proof
of Lemma 16 and Theorem 13.
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3.2 Qudit Bohnenblust–Hille in the Heisenberg–Weyl basis
Here we give a proof of Theorem 15 by reduction to the Cyclic BH inequality. We collect
first a few facts about X and Z.

▶ Lemma 17. We have the following:
1. {XℓZm : ℓ,m ∈ ZK} form a basis of MK(C).
2. For all k, ℓ,m ∈ ZK :

(XℓZm)k = ω
1
2 k(k−1)ℓmXkℓZkm

and for all ℓ1, ℓ2,m1,m2 ∈ ZK :

Xℓ1Zm1Xℓ2Zm2 = ωℓ2m1−ℓ1m2Xℓ2Zm2Xℓ1Zm1 .

3. If K is prime, then for any (0, 0) ̸= (ℓ,m) ∈ ZK × ZK , the eigenvalues of XℓZm are
{1, ω, . . . , ωK−1}. This is not the case if K is not prime.

Proof. Considering each statement one-by-one:
1. Suppose that

∑
ℓ,m aℓ,mX

ℓZm = 0. For any j, k ∈ ZK , we have∑
ℓ,m

aℓ,m⟨XℓZmej , ej+k⟩ =
∑
m

ak,mω
jm = 0.

Since the Vandermonde matrix associated to (1, ω, . . . , ωK−1) is invertible, we have
ak,m = 0 for all k,m ∈ ZK .

2. It follows immediately from the identity ZX = ωXZ which can be verified directly: for
all j ∈ ZK

ZXej = Zej+1 = ωj+1ej+1 = ωj+1Xej = ωXZej .

3. Assume K to be prime and (ℓ,m) ̸= (0, 0). If ℓ = 0 and m ̸= 0, then the eigenvalues of
Zm are

{ωjm : j ∈ ZK} = {ωj : j ∈ ZK},

since K is prime. If ℓ ̸= 0, then we may relabel the standard basis {ej : j ∈ ZK} as
{ejℓ : j ∈ ZK}. Consider the non-zero vectors

ζk :=
∑

j∈ZK

ω
1
2 j(j−1)ℓm−jkejℓ, k ∈ ZK .

A direct computation shows: for all k ∈ ZK

XℓZmζk =
∑

j∈ZK

ω
1
2 j(j−1)ℓm−jk · ωjℓmXℓejℓ

=
∑

j∈ZK

ω
1
2 j(j+1)ℓm−jke(j+1)ℓ

=
∑

j∈ZK

ω
1
2 j(j−1)ℓm−jk+kejℓ

= ωkζk.

If K is not prime, say K = K1K2 with K1,K2 > 1, then XK1 has 1 as eigenvalue with
multiplicity K1 > 1. So we do need K to be prime. ◀

ITCS 2024



69:16 Low-Degree Learning via a Dimension-Free Remez Inequality

Let us record the following observation as a lemma.

▶ Lemma 18. Suppose that k ≥ 1, A,B are two unitary matrices such that Bk = I,
AB = λBA with λ ∈ C and λ ̸= 1. Suppose that ξ is a non-zero vector such that Bξ = µξ

(µ ̸= 0 since µk = 1). Then

⟨ξ, Aξ⟩ = 0.

Here ⟨·, ·⟩ denotes the inner product on Cn that is linear in the second argument.

Proof. By assumption

µ⟨ξ, Aξ⟩ = ⟨ξ, ABξ⟩ = λ⟨ξ,BAξ⟩.

Since B∗ = Bk−1, B∗ξ = Bk−1ξ = µk−1ξ = µξ. Thus

µ⟨ξ, Aξ⟩ = λ⟨ξ,BAξ⟩ = λ⟨B∗ξ, Aξ⟩ = λµ⟨ξ, Aξ⟩.

Hence, µ(λ− 1)⟨ξ, Aξ⟩ = 0. This gives ⟨ξ, Aξ⟩ = 0 as µ(λ− 1) ̸= 0. ◀

Now we are ready to prove Theorem 15:

Proof of Theorem 15. Fix a prime number K ≥ 2. Recall that ω = e
2πi
K . Consider the

generator set of ZK × ZK

ΣK := {(1, 0), (1, 1), . . . , (1,K − 1), (0, 1)}.

For any z ∈ ΩK and (ℓ,m) ∈ ΣK , we denote by eℓ,m
z the unit eigenvector of XℓZm

corresponding to the eigenvalue z. For any vector ω⃗ ∈ (ΩK)(K+1)n of the form

ω⃗ = (ω⃗ℓ,m)(ℓ,m)∈ΣK
, ω⃗ℓ,m = (ωℓ,m

1 , . . . , ωℓ,m
n ) ∈ (ΩK)(K+1)n, (17)

we consider the matrix

ρ(ω⃗) := ρ1(ω⃗) ⊗ · · · ⊗ ρn(ω⃗) where ρk(ω⃗) := 1
K + 1

∑
(ℓ,m)∈ΣK

|eℓ,m

ωℓ,m
k

⟩⟨eℓ,m

ωℓ,m
k

| .

Then each ρk(ω⃗) is a density matrix and so is ρ(ω⃗).
Suppose that (ℓ,m) ∈ ΣK and (ℓ′,m′) /∈ {(kℓ, km) : (ℓ,m) ∈ ΣK}, then by Lemma 17

Xℓ′
Zm′

XℓZm = ωℓm′−ℓ′mXℓZmXℓ′
Zm′

.

From our choice ωℓm′−ℓ′m ̸= 1. By Lemmas 17 and 18

tr[Xℓ′
Zm′

|eℓ,m
z ⟩⟨eℓ,m

z |] = ⟨Xℓ′
Zm′

eℓ,m
z , eℓ,m

z ⟩ = 0, z ∈ ΩK .

Suppose that (ℓ,m) ∈ ΣK and 1 ≤ k ≤ K − 1. Then by Lemma 17

tr[XkℓZkm |eℓ,m
z ⟩⟨eℓ,m

z |] = ω− 1
2 k(k−1)ℓm⟨(XℓZm)keℓ,m

z , eℓ,m
z ⟩

= ω− 1
2 k(k−1)ℓmzk, z ∈ ΩK .

All combined, for all 1 ≤ k ≤ K − 1, (ℓ,m) ∈ ΣK and 1 ≤ i ≤ n we get

tr[XkℓZkmρi(ω⃗)] = 1
K + 1

∑
(ℓ′,m′)∈ΣK

⟨eℓ′,m′

ωℓ′,m′
i

, XkℓZkmeℓ′,m′

ωℓ′,m′
i

⟩

= 1
K + 1 ⟨eℓ,m

ωℓ,m
i

, XkℓZkmeℓ,m

ωℓ,m
i

⟩

= 1
K + 1ω

− 1
2 k(k−1)ℓm(ωℓ,m

i )k.
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Recall that any degree-d polynomial in MK(C)⊗n is a linear combination of monomials

A(k⃗, ℓ⃗, m⃗; i⃗) := · · · ⊗Xk1ℓ1Zk1m1 ⊗ · · · ⊗XkκℓκZkκmκ ⊗ · · ·

where
k⃗ = (k1, . . . , kκ) ∈ {1, . . . ,K − 1}κ with 0 ≤

∑κ
j=1 kj ≤ d;

ℓ⃗ = (ℓ1, . . . , ℓκ), m⃗ = (m1, . . . ,mκ) with each (ℓj ,mj) ∈ ΣK ;
i⃗ = (i1, . . . , iκ) with 1 ≤ i1 < · · · < iκ ≤ n;
XkjℓjZkjmj appears in the ij-th place, 1 ≤ j ≤ κ, and all the other n − κ elements in
the tensor product are the identity matrices I.

So for any ω⃗ ∈ (ΩK)(K+1)n of the form (17) we have from the above discussion that

tr[A(k⃗, ℓ⃗, m⃗; i⃗)ρ(ω⃗)] =
κ∏

j=1
tr[XkjℓjZkjmjρij

(ω⃗)]

= ω
− 1

2

∑κ

j=1
kj(kj−1)ℓjmj

(K + 1)κ
(ωℓ1,m1

i1
)k1 · · · (ωℓκ,mκ

iκ
)kκ .

So ω⃗ 7→ tr[A(k⃗, ℓ⃗, m⃗; i⃗)ρ(ω⃗)] is a polynomial on (ΩK)(K+1)n of degree at most
∑κ

j=1 kj ≤ d.
Now for general polynomial A ∈ MK(C)⊗n of degree-d:

A =
∑

k⃗,ℓ⃗,m⃗,⃗i

c(k⃗, ℓ⃗, m⃗; i⃗)A(k⃗, ℓ⃗, m⃗; i⃗)

where the sum runs over the above (k⃗, ℓ⃗, m⃗; i⃗). This is the Fourier expansion of A and each
c(k⃗, ℓ⃗, m⃗; i⃗) ∈ C is the Fourier coefficient. So

∥Â∥p =

 ∑
k⃗,ℓ⃗,m⃗,⃗i

|c(k⃗, ℓ⃗, m⃗; i⃗)|p
1/p

.

To each A we assign the function fA on (ΩK)(K+1)n given by

fA(ω⃗) = tr[Aρ(ω⃗)]

=
∑

k⃗,ℓ⃗,m⃗,⃗i

ω
− 1

2

∑κ

j=1
kj(kj−1)ℓjmjc(k⃗, ℓ⃗, m⃗; i⃗)

(K + 1)κ
(ωℓ1,m1

i1
)k1 · · · (ωℓκ,mκ

iκ
)kκ .

Note that this is the Fourier expansion of fA since the monomials (ωℓ1,m1
i1

)k1 · · · (ωℓκ,mκ

iκ
)kκ

differ for different (k⃗, ℓ⃗, m⃗, i⃗). Therefore,

∥f̂A∥p =

 ∑
k⃗,ℓ⃗,m⃗,⃗i

∣∣∣∣∣c(k⃗, ℓ⃗, m⃗; i⃗)
(K + 1)κ

∣∣∣∣∣
p
1/p

≥ 1
(K + 1)d

 ∑
k⃗,ℓ⃗,m⃗,⃗i

|c(k⃗, ℓ⃗, m⃗; i⃗)|p
1/p

= 1
(K + 1)d

∥Â∥p.
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Using the Bohnenblust–Hille inequalities for cyclic groups (Corollary 6), we have

∥f̂A∥ 2d
d+1

≤ C(d)∥fA∥Ω(K+1)n

K

for some C(d) > 0. All combined, we obtain for prime K

∥Â∥ 2d
d+1

≤ (K + 1)d∥f̂A∥ 2d
d+1

≤ (K + 1)dC(d)∥fA∥(ΩK )(K+1)n ≤ (K + 1)dC(d)∥A∥op . ◀

4 Applications to learning

We now apply our new BH inequalities to obtain learning results for functions on Zn
K and

operators on qudits. In the latter case, as for qubits [13], this result may be extended to
quantum observables of arbitrary complexity.

Fourier sampling is approached differently in the cyclic and qudit contexts, so we isolate
the Eskenazis–Ivanisvili approximation principle from the Boolean function learning aspects
of [10]. We’ll also need it for vectors in C rather than R as it appeared originally but the
proof is essentially identical.

▶ Theorem 19 (Generic Eskenazis–Ivanisvili). Let d ∈ K and η,B > 0. Suppose v, w ∈ Cn

with ∥v − w∥∞ ≤ η and ∥v∥ 2d
d+1

≤ B. Then for w̃ defined as w̃j = wj1[|wj |≥η(1+
√

d+1)] we
have the bound

∥w̃ − v∥2
2 ≤ (e5η2dB2d)

1
d+1 .

See the full version [16] of this paper for a proof. In the context of low-degree learning, v is
the true vector of Fourier coefficients, and w is the vector of empirical coefficients obtained
through Fourier sampling.

4.1 Cyclic group learning
▶ Theorem 20. Let f : Zn

K → D be a degree-d function. Then with
(logK)O(d2) log(n/δ)ε−d−1 independent random samples (x, f(x)), x ∼ U(Zn

K), we may
with confidence 1 − δ learn a function f̃ : Zn

K → C with ∥f − f̃∥2
2 ≤ ε.

With Theorem 19 established, one may mimic the proof approach of Eskenazis and Ivanisvili
in the setting of functions on products of cyclic groups. Please see the full paper [16] for the
proof.

4.2 Qudit learning
We first pursue a learning algorithm that finds a (normalized) L2 approximation to a low-
degree operator A. Then we’ll see how this extends to an algorithm finding an approximation
Ã with good mean-squared error over certain distributions of states for target operators A
of any degree.

We make a couple assumptions for clarity and brevity. First, we assume the unknown
observable A has operator norm ∥A∥op ≤ 1. We will also assume that for a mixed state ρ
the quantity tr[Aρ] can be directly computed. Of course this is not true in practice; in the
lab one must take many copies of ρ, collect observations m1, . . . ,ms and form the estimate
1
s

∑
j mj ≈ tr[Aρ]. The analysis required to relax these assumptions from the following

results are routine so we omit them.
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4.2.1 Low-degree Qudit learning
▶ Theorem 21 (Low-degree Qudit Learning). Let A be a degree-d observable on n qudits with
∥A∥op ≤ 1. Then there is a collection S of product states such that with a number

O
((
K∥A∥op

)C·d2

d2ε−d−1 log
(

n
δ

) )
of samples of the form (ρ, tr[Aρ]), ρ ∼ U(S), we may with confidence 1−δ learn an observable
Ã with ∥A − Ã∥2

2 ≤ ε.

Here ∥A∥2 denotes the normalized L2 norm induced by the inner product ⟨A,B⟩ :=
K−ntr[A†B]. Also, we choose to include explicit mention of ∥A∥op here as it will be
useful later. For applications it is natural to assume ∥A∥op is bounded independent of n.

We elect to use the Gell-Mann basis to perform out qudit learning algorithm because, as
we will see in the next section, it extends more easily to learning arbitrary qudit observables.
With the Gell-Mann basis BH inequality established, very little further work is required to
prove 21; see the full version [16] for details.

4.2.2 Learning arbitrary qudit observables
As observed by Huang, Chen, and Preskill in [13], there are certain distributions µ of
input states ρ for which a low-degree truncation Ã of any observable A gives a suitable
approximation as measured by Eρ∼µ |tr[Ãρ] − tr[Aρ]|2. This observation extends easily to
qudits, which in turn ends up generalizing the phenomenon in the context of qubits as well.

▶ Definition 22. For a 1-qudit unitary U let Uj := I⊗j−1 ⊗U⊗I⊗n−j . Then for a probability
distribution µ on n-qudit densities and j ∈ [n] let Stabj(µ) be the set of unitaries U ∈ U(K)
such that for all n-qudit densities ρ,

µ(ρ) = µ(UjρU
†
j ) .

▶ Remark 23. For a set S of states, define Stabj(S) = {U ∈ U(K) : UjSU
†
j ⊆ S}. Then it

can be seen easily that Stabj(µ) is equal to the intersection of the stabilizers of the level sets
of µ. That is, Stabj(µ) =

⋂
0≤r≤1 Stabj

(
µ−1(r)

)
.

Recall the definition of a unitary t-design.

▶ Definition 24. Consider Pt,t(U), a polynomial of degree at most t in the matrix elements
of unitary U ∈ U(K) and of degree at most t in the matrix elements of U†. Then a finite
subset S of the unitary group U(K) is a unitary t-design if for all such Pt,t,

1
|S|

∑
U∈S

Pt,t(U) = E
U∼Haar(U(K))

[Pt,t(U)] .

We are ready to name the distributions for which low-degree truncation is possible without
losing much accuracy.

▶ Definition 25. Call a distribution µ on n-qudit densities locally 2-design invariant (L2DI)
if for all j ∈ [n], Stabj(µ) contains a unitary 2-design.

Of course, the n-fold tensor product of Haar-random qudits is an L2DI distribution, but
there are many other possible distributions and in general they can be highly entangled.
When K = 2 and the 2-design leaving µ locally invariant is the single-qubit Clifford group,
such distributions are termed locally flat in [13]. For any prime K the Clifford group
on HK is a 2-design [12]. Importantly, however, any distribution just on classical inputs
|x⟩ , x ∈ {0, 1, . . . ,K − 1}n is not L2DI, as a consequence of the following general observation:
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▶ Proposition 26. Suppose µ is an L2DI distribution over pure product states ρ =⊗n
j=1 |ψj⟩⟨ψj |. For j ∈ [n] define Sj = {ρ{j} : ρ ∈ supp(µ)}. Then |Sj | ≥ K2.

Proof. By the L2DI property we have a 2-design X ⊆ SU(K) under which µ is locally
invariant. Let ρ be a pure state in Sj and note that P := {UρU † : U ∈ X} ⊆ Sj . On the
other hand, P forms a complex-projective 2-design [5]. And any complex-projective 2-design
in K dimensions must have cardinality at least K2 [21, Theorem 4]. ◀

The truncation theorem for qudits goes through much the same way as it does for locally
flat qubit distributions in [13]. A proof is included in the full version of this paper [16].

▶ Theorem 27. Let A be an operator on H⊗n
K and µ a probability distribution on densities.

Then if µ is L2DI we have

E
ρ∼µ

tr[Aρ]2 ≤
∑

α

(
K

K2−1
)|α|Â(α)2 .

The reader will notice a marked similarity to the Fourier-basis expression of noise stability
Ex∼δy f(x)f(y) = ⟨f,Tδf⟩ =

∑
S⊆[n] δ

|S|f̂(S)2 for Boolean functions (e.g., [19]).

▶ Definition 28. Let A be an operator with Gell-Mann decomposition A =
∑

α ÂαMα. Then
for d ∈ [n] define its degree d truncation to be A≤d =

∑
α,|α|≤d ÂαMα.

▶ Remark 29. The choice of the GM decomposition here is essentially without loss of generality:
consider any basis B for MK(C) containing the identity and define A≤d

B analogously to
Definition 28, keeping the definition of degree analogous to that for the GM basis too. Then
we have A≤d

B = A≤d, as can be seen easily by expanding one basis in the other.

▶ Corollary 30. Eρ∼µ |tr[Aρ] − tr[A≤dρ]|2 ≤
(

K
K2−1

)d

∥A∥2
2.

Proof. We apply Theorem 27 to obtain

E
ρ∼µ

|tr[Aρ] − tr[A≤dρ]|2 = E
ρ∼µ

tr[(A − A≤d)ρ]2

≤
∑

α,|α|>d

(
K

K2−1

)|α|
Â(α)2 ≤

(
K

K2−1

)d

∥A∥2
2 . ◀

▶ Theorem 31. Let A be any observable on H⊗n
K , of any degree, with ∥A∥op ≤ 1. Fix an

error threshold ϵ > 0 and a failure probability δ > 0 and put t = logK2−1(4/ϵ). Then there is
a set S of product states such that with a number

s = O
(
K3/2 log

(
n
δ

)
ec·log2( 1

ε )∥A≤t∥2t
op

)
of samples (ρ, tr[Aρ]), ρ ∼ U(S), an approximate operator Ã may be formed in time poly(n)
with confidence 1 − δ such that

E
ρ∼µ

|tr[Ãρ] − tr[Aρ]|2 ≤ ε

for any L2DI distribution µ.
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Proof. Choose the truncation degree d = logK2−1(4/ε). Then the triangle inequality and
Corollary 30 give

E
ρ∼µ

|tr[Ã≤dρ] − tr[Aρ]|2 ≤ 2 E
ρ∼µ

|tr[A≤dρ] − tr[Aρ]|2 + 2 E
ρ∼µ

|tr[Ã≤dρ] − tr[A≤dρ]|2

≤ 2
(

1
K2−1

)d

+ 2∥Ã≤d − A≤d∥2
2

≤ ε/2 + 2∥Ã≤d − A≤d∥2
2 .

So we need to choose a number of samples such that with confidence 1 − δ, the low-degree
qudit learning algorithm (Theorem 21) yields a A≤d such that ∥Ã≤d − A≤d∥2

2 ≤ ε/4. This
requires no more than

CK3/2 log
(

2en
δ

)
eC′ log2(4/ε)∥A≤t∥2t

op

samples, where t = logK2−1(4/ϵ) and C,C ′ are constants > 1. ◀

This learning theorem may be of interest even in the context of qubits. In particular, for
a small divisor k of n, a system of n qubits may be interpreted as n/k-many 2k-level qudits,
and there may be interesting distributions over states in this system which are only L2DI
when viewed as “virtual qudits” in this way.

5 Conclusions

Our efforts to extend recent low-degree learning results to new spaces have led to discoveries
in approximation theory, namely a dimension-free Remez-type inequality on the polytorus
(Theorem 5). It would be nice to find more applications of this inequality.

In the quantum setting, obtaining qudit BH inequalities required understanding the
relationships among eigenspaces of basis elements in the Gell-Mann and Heisenberg–Weyl
bases. This is mostly complete, though it remains open what can be said for the HW
basis when K is composite. And regarding the constants in the quantum BH inequalities,
it is interesting to consider whether the exponential dependence of BH≤d

M2
,BH≤d

GM(K), and
BH≤d

HW(K) on d is necessary. (Recall that in the BH inequalities for the polytorus and
hypercube, the best known constant is subexponential in d).
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