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This note contains some estimates for tail spaces and some Bernstein–Markov 
inequalities for Banach space valued functions on Hamming cube. We use analytic 
paraproduct operator for tail spaces. For Bernstein–Markov inequalities the novelty 
is in getting rid of some irritating logarithms and in proving Bernstein–Markov 
inequalities for |∇f |X rather than for Δ1/2f for X-valued polynomials on Hamming 
cube. There is an interesting difference for giving the estimates for |∇f |X rather 
than for Δ1/2f as their comparison is equivalent to estimates of Riesz transforms 
on Hamming cube.
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1. Introduction

We are interested in tail spaces Td(X) of functions

f =
∑

|S|>d

f̂(S)εS

defined on the Hamming cube Ωn = {ε = (ε1, . . . , εn) ∈ {−1, 1}n}. Here f̂(S) are coefficients belonging to 
Banach space X.

Later we will also need the space of polynomials Pd(X):

f =
∑

|S|≤d

f̂(S)εS

defined on the Hamming cube Ωn. Here f̂(S) are coefficients belonging to Banach space X, which, in 
particular can be just R.
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The reader will notice that in this paper we are mostly interested in bounding the expressions of the 
type |∇f |X for polynomials of fixed degree on Hamming cube. It would be interesting to get from this the 
estimates of the expressions of the type Δ1/2f . For Banach space valued functions the comparison of |∇f |X
and Δ1/2f is mostly an open task.

For Banach space valued functions f : Ωn → X it is not quite clear who majorized whom if we deal with 
‖Δ1/2f‖Lp(X) and ‖|∇f |X‖p.

It would be of interest to decide for exactly what class of Banach spaces X

‖Δ1/2f‖Lp(X) ≤ Cp‖|∇f |X‖p .

We think that this is the class of spaces of finite co-type. In fact, this is one way to express the boundedness 
from below of Riesz transform of Hamming cube in spaces Lp(Ωn, X), 1 < p < ∞. For X = R this 
boundedness from below is always true for 1 < p < ∞, see the result of E. Ben Efraim and F. Lust-Piquard 
[1] proved by non-commutative technique.

On the other hand, the converse inequality, that is the boundedness of Riesz transform of Hamming cube 
from above,

‖|∇f |X‖p ≤ Cp‖Δ1/2f‖Lp(X)

does not have a reasonably wide class of Banach spaces for which it holds [7], [8]. For p ≥ 2 and X = R
this boundedness from above holds, but for 1 < p < 2 it fails even for X = R, see [1].

Moreover, it can fail even for p > 2 for a very nice UMD space X. Morally this means that it is more 
difficult to estimate from above |∇f |X than Δ1/2f .

We give Bernstein–Markov type inequalities for |∇f |X in Theorems 3.5, 3.7, 4.1. The proofs are based on 
the novel formula used in [11] to prove Enflo’s conjecture (one can familiarize with the conjecture in [18]).

In Theorem 2.6 we reprove a theorem of Mendel and Naor [17] concerning the estimate from below of 
‖Δf‖Lp(X) for f in the tail space Td(X) for K-convex Banach spaces X. Our proof is quite different from 
the one in [17]. The main idea is to use analytic paraproduct operators. A lot is known about these operators 
first introduced by Pommerenke, see e.g. [21], [2], [23], and the connection with the tail space estimates on 
Hamming cube seems to be new and worth to explore.

The first addendum (Section 6) is devoted to the proof of Lemma 2.8. The second addendum (Section 7) 
gives an explanation how to get rid of ε in Theorem 2.3 from [4]. This explanation combined with the proof 
of Theorem 2.3 in Eskenazis–Ivanisvili’s [4] gives an easier proof of Theorem 2.2, which is one of the main 
results of Mendel–Naor’s [17].

Acknowledgments. My deep gratitudes go to Alexander Borichev for very valuable discussions. I am grateful 
to Alexandros Eskenazis who found a mistake in the first version of Theorem 3.5.

I am also grateful to both referees for their careful reading. Their remarks helped me to considerably 
improve the exposition.

2. Tail spaces estimates and dependence on K-convexity and d

We first cite the problem. In [17], Mendel and Naor asked if for every K-convex Banach space X and 
p ∈ (1, ∞) there exists a finite positive c(p, X) such that for every n and d < n, every function f : Ωn → X

in the Td(X) satisfies the estimate

‖Δf‖Lp(X) ≥ c(p, X)d‖f‖Lp(X) .
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Moreover, they formulated the tail smoothing conjecture: for every K-convex Banach space X and p ∈ (1, ∞)
there exists a finite positive c(p, X), C(p, X) such that for every n and d < n, every function f : Ωn → X

in the Td(X) satisfies the estimate

‖Ptf‖Lp(X) ≤ c(p, X)e−C(p,X)d t‖f‖Lp(X) ,

where Pt = e−tΔ is the heat semi-group on Hamming cube. The estimate for ‖Δf‖Lp(X) would follow just 
by integrating from 0 to ∞. In Theorem 5.1 of [17] they proved that there exists A(p, X) ≥ 1 such that

‖Ptf‖Lp(X) ≤ c(p, X)e−C(p,X)d min(t,tA(p,X))‖f‖Lp(X) .

Before continuing let us cite a crucial result of Pisier [19].

Theorem 2.1 (Pisier). Let X be a K-convex space. Then for any p ∈ (1, ∞) there exists angle απ ∈ (0, π)
such that operators e−zΔ are well defined and uniformly bounded in Aα := {z ∈ C : | arg z| ≤ απ

2 }.

In what concerns Mendel–Naor question, they proved in [17] the following result.

Theorem 2.2 (Mendel–Naor).

‖Ptf‖Lp(X) ≤ c(p, X)e−C(p,X)d min(t,t
1
α )‖f‖Lp(X) ,

‖Δf‖Lp(X) ≥ c(p, X)dα‖f‖Lp(X) .

In [4] the following weaker results were proved:

Theorem 2.3 (Eskenazis–Ivanisvili). Let X be a K-convex Banach space and let its angle be provided by 
Theorem 2.1. Then for every ε > 0 we have

‖Ptf‖Lp(X) ≤ c(p, X, ε)e−C(p,X,ε)d min(t,t
1
α

+ε)‖f‖Lp(X) ,

‖Δf‖Lp(X) ≥ c(p, X, ε)dα−ε‖f‖Lp(X) ∀ε > 0.

The proof of the latter theorem was easier than that of Theorem 2.2, but there was a price to pay by the 
extra ε (the constants involved depend badly on ε).

Remark 2.4. In Theorem 2.6 we will prove differently the second inequality of Theorem 2.2. In what concerns 
the first inequality of Theorem 2.2 we explain in the Section 7 how one can adapt the simpler reasoning of 
[4,5] to get rid of ε as well.

Theorem 2.5 (Eskenazis–Ivanisvili). Let f ∈ Pd+m(X) ∩ Td(X). Let X be a K-convex Banach space. Then

‖Δf‖Lp(X) ≥ c(p, X) d

m
‖f‖Lp(X) .

Moreover,

‖Δ1/2f‖Lp(X) ≥ c(p, X)
( d )1/2

‖f‖Lp(X) .

m
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It is well known that the second inequality above implies the first one, just because of [14]:

‖Δβf ||Lp(X) ≤ 4‖Δf ||βLp(X) · ‖f‖1−β
Lp(X) .

Now we will prove the result that falls a bit short of the conjecture, but at least it gets rid of 1/m in the 
Theorem 2.5 above and gets rid of ε in Theorem 2.3.

Theorem 2.6. Let X be a K-convex space, p ∈ (1, ∞), and α from Pisier theorem be in (0, 1]. Then

‖Δf‖Lp(X) ≥ c(p, X)dα‖f‖Lp(X) .

Remark 2.7. This theorem is not new, see [17] Theorem 5.1. But the proof is different and it uses the 
so-called analytic paraproduct operators, about which a lot is known.

Proof. Given f on Ωn from the tail space Td(X) let us introduce a new function F of one more variable:

F (w, ε) :=
∑

|S|>d

w|S|f̂(S)εS ,

and let us recognize that it is a bounded Lp(X)-valued function of w in 2-gone Gα := {w : w = e−z, z ∈ Aα}. 
This is just reformulation of Pisier’s theorem. Moreover it is not only bounded but also holomorphic in Gα,

F ∈ H∞(Gα; Lp(X)) .

Notice that the same works for −Gα, as the flip w → −w can be absorbed by the flip ε → −ε. Let us 
consider a domain Oα := Gα ∪ −Gα. It is easy to see that its boundary is smooth at all points except −1
and 1, where Oα forms angle πα by two real analytic curves (actually its boundary is real analytic except 
for ±1, where real analytic curves form an angle απ). Operator

∑
|S|

f̂(S)εS →
∑
|S|

w|S|f̂(S)εS

is uniformly bounded from Lp(X) to itself by Theorem 2.1.
Notice that wF ′

w =
∑

S w|S||S|f̂(S)εS and Δf =
∑

S |S|f̂(S)εS . So wF ′(w) is obtained by applying 
Pisier’s Fourier multiplier operator to Δf . Therefore we have

‖F ′
w(w)‖H∞(Oα,Lp(X)) ≤ C‖wF ′

w(w)‖H∞(Oα,Lp(X)) ≤ M‖Δf‖Lp(X) . (2.1)

The first inequality is a trivial maximal principle for holomorphic functions, the second one is again the 
same Pisier’s theorem.

By the next step we want the estimate of the following type (for F ′(w) built by f ∈ Td(X))

‖F (w)‖H∞(Oα,Lp(X)) ≤ εd‖F ′
w(w)‖H∞(Oα,Lp(X)) (2.2)

with a small εd for large d.
Let ϕ be the conformal map from the unit disc D onto Oα, ϕ(0) = 0. Then (2.2) is equivalent to

‖F ◦ ϕ‖H∞(D,Lp(X)) ≤ εd‖F ′ ◦ ϕ‖H∞(D,Lp(X)) (2.3)
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Obviously, for z ∈ D

F ◦ ϕ(z) =
z∫

0

F ′ ◦ ϕ(ζ) · ϕ′(ζ)dζ .

Denote g(ζ) := F ′ ◦ ϕ(ζ) and introduce the operator (sometimes called analytic paraproduct with symbol ϕ)

Tϕg :=
z∫

0

g(ζ) · ϕ′(ζ)dζ .

Seems like it was Pommerenke who studied this operator first. Then it was widely researched, see e.g. [21], 
[2], [23] and the references therein. We need to understand the estimate of this operator on the space of 
(vector-valued) functions with the property that all their Taylor coefficients at 0 vanish till the order d − 1. 
In other words we need to understand the norm of the operator Tψ, where ψ =

∫ ζ

0 ζd−1ϕ′(ζ) dζ. �
Let us write the Taylor expansion of conformal map ϕ:

ϕ(z) = cα
1 z + cα

2 z2 + . . . .

Then it is possible to prove

Lemma 2.8.

|ϕ′(z)| 
 1
|1 − z2|1−α

. (2.4)

And |cα
n| 
 n−1−α.

See Section 6 for the proof.
We can write

Tϕg =
z∫

0

g(ζ) · ϕ′(ζ)dζ = cα
1

z∫
0

gdζ + 2cα
2

z∫
0

g · ζdζ + · · · +

mcα
m

z∫
0

g · ζm−1dζ + . . . .

Function g(ζ) · ζm−1 in our case is from Tk, k ≥ d, and its H∞(D) norm is exactly the H∞(D) norm of 
g itself.

So we need to understand how to estimate the norm of integration operator on Td+m, m ≥ 0, for all m
in H∞(D) norm (vector-valued, but this will not ne important).

Lemma 2.9. Let k be positive integer. There exists an L1(T) function s with L1(T) norm at most C0
k such 

that ŝ(k + j), j ≥ 0, is 1
k+j .

Suppose this Lemma is proved. The integration operator maps ζk+j into ζk+j+1

k+j+1 . The convolution operator 
s(ζ) � · maps ζk+j into ζk+j

k+j . Thus the integration operator is multiplication by ζ composed with convolution 
with s. But multiplication on ζ does not change the norm on tail spaces of H∞(D) (regardless of whether it 
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is vector valued or scalar valued). Hence, if Lemma 2.9 is proved then we can estimate g ∈ H∞(D; Lp(X)), 
g(0) = 0, g′(0) = 0, . . . , g(d−1)(0) = 0:

‖Tg‖H∞(D;Lp(X)) ≤ C0‖g‖H∞(D;Lp(X))

∞∑
m=1

m|cα
m| 1

d + m − 1 .

Using Lemma 2.8 we conclude

‖Tg‖H∞(D;Lp(X)) ≤ C‖g‖H∞(D;Lp(X))

∞∑
m=1

1
mα

1
d + m − 1 ≤

Cα‖g‖H∞(D;Lp(X))d
−α .

Hence we proved that

‖F ◦ ϕ‖H∞(D;Lp(X)) ≤ Cα‖F ′
w ◦ ϕ‖H∞(D;Lp(X))d

−α . (2.5)

Then we get (2.2):

‖F‖H∞(Oα;Lp(X)) ≤ Cα‖F ′
w‖H∞(Oα;Lp(X))d

−α .

We can now combine this with (2.1) and obtain

‖F‖H∞(Oα;Lp(X)) ≤ Cα M‖ΔF‖Lp(X))d
−α .

But F (1) = f . Hence we get the proof of the theorem modulo Lemma 2.9:

‖f‖Lp(X)) ≤ Cα M‖ΔF‖Lp(X))d
−α, ∀f ∈ Td(X) .

Proof. The proof of Lemma 2.9. We assume that k is even, which is enough for the proof. We consider 
first S(x) =

∑∞
j=1

sin jx
j , it is bounded and has Fourier coefficients as we wish: 1/j, j �= 0. Now we wish to 

change its Fourier coefficients in the interval j ∈ [−k, k] and not change the Fourier coefficients outside this 
interval, and make the L1(−π, π) norm of modified function to be at most C0/k. Consider nodes xr := πr

k+1 , 
r = −k + 1, . . . , −3, −1, 1, 3, . . . , k − 1. The number of nodes is k. Construct the Lagrange trigonometric 
interpolation polynomial Lk(x),

Lk(x) =
∑

r

S(xr) Πm�=r(sin x − sin xm)
Πm�=r(sin xr − sin xm) .

Clearly Lk(x) has non-zero Fourier coefficients only on [−k + 1, k − 1]. It is easy to check that it is an odd 
function. Notice that the sign of S(x) − Lk(x) alternates, it is a positive function on [0, π

k+1 ), negative on 
( π

k+1 , 3π
k+1 ), et cetera.

Consider “triangular” cos, call it c(x), it is linear on [−π, 0], linear on [0, π] and c(0) = 1, c(±π) = −1. Its 
integral vanishes. So if we consider c((k + 1)x) its Fourier coefficients vanish on [−k, k]. Then c′((k + 1)x)
also has its Fourier coefficients vanishing on [−k, k], in particular, the scalar product in L2(−π, π)

〈Lk(x), c′((k + 1)x)〉 = 0 .

Therefore,
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〈S(x) − Lk(x), c′((k + 1)x)〉 = 〈S(x), c′((k + 1)x)〉 .

But c′((k + 1)x = ±1, moreover the pattern of signs repeats the pattern of signs of S(x) − Lk(x), namely 
it is a positive function on [0, π

k+1 ), negative on ( π
k+1 , 3π

k+1 ), et cetera. We conclude that

‖S(x) − Lk(x)‖1 = 〈S(x) − Lk(x), c′((k + 1)x)〉 = 〈S(x), c′((k + 1)x)〉 .

But obviously the right hand side here is at most C0/k again by noticing that the oscillation of S on intervals 
of order 
 1/k is c/k. Lemma 2.9 is proved and thus the tail theorem is proved as well. �
Remark 2.10. Lemma 2.9 should be very well known and widely used, but I am grateful to Rostislav Matveev 
[16] for this elegant proof of Lemma 2.9.

3. On Bernstein–Markov inequality and the dependence on X and p

By Lp(X) we always mean Lp(Ωn; X).
We first cite four theorems from [4].

Theorem 3.1 (Eskenazis–Ivanisvili). Let X be an arbitrary Banach space and p ∈ [1, ∞]. Then

‖Δf‖Lp(X) ≤ d2‖f‖Lp(X), ∀f ∈ Pd(X) .

Theorem 3.2 (Eskenazis–Ivanisvili). Let X be a Banach space and p ∈ [1, ∞]. Then if for all n

‖Δf‖Lp(X) ≤ (1 − η)d2‖f‖Lp(X), ∀f ∈ Pd(X),

then X is of finite co-type.

Theorem 3.3 (Eskenazis–Ivanisvili). Let X be a K-convex Banach space and p ∈ (1, ∞). Then

‖Δf‖Lp(X) ≤ C(p, X)d2−ε(p,X)‖f‖Lp(X), ∀f ∈ Pd(X),

Theorem 3.4 (Eskenazis–Ivanisvili). Let X = R and p ∈ (1, ∞). Then

‖Δf‖Lp ≤ C(p)d2− 2
π arcsin 2

√
p−1
p ‖f‖Lp , ∀f ∈ Pd(X) .

Now we will prove the following results.

Theorem 3.5. Let X = R, p ∈ [2, ∞). Then

‖∇f‖Lp ≤ C(p)d1− 1
π arcsin 2

√
p−1
p ‖f‖Lp , ∀f ∈ Pd(X) .

If p ∈ (1, 2) then

‖∇f‖Lp ≤ C(p)d
2
p −

2 arcsin 2
√

p−1
p

pπ ‖f‖Lp , ∀f ∈ Pd(X) .

Remark 3.6. It is almost Theorem 15 of [4], but we get rid of log d term in the estimate (30) of Theorem 15 
of [4].
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We recall the reader that if 1 < p < ∞ then ‖Δ1/2f‖Lp ≤ C(p)‖∇f‖Lp for scalar valued functions (the 
result of E. Ben Efraim and F. Lust-Piquard [1]). But the opposite inequality true only for 2 ≤ p < ∞, [1]. 
Morally this means that it is more difficult to estimate from above |∇f | than Δ1/2f (even for scalar valued 
f). Also clearly the power of d doubles up when we pass the estimate from ‖Δ1/2f‖Lp to the estimate of 
‖Δf‖Lp .

When we deal with the Pd(X) and X∗ has type 2, it also has finite co-type r ∈ [2, ∞) by König–Tzafriri 
theorem (see [9], Theorem 7.1.14). Then we have the following result.

Theorem 3.7. Let X∗ be of type 2 (and automatically of certain co-type r < ∞), and p ∈ (1, ∞), 1
p + 1

q = 1, 
then

‖|∇f |X‖Lp ≤ C(p)d2− 2
max(q,r) ‖f‖Lp(X), ∀f ∈ Pd(X),

where

|∇f |X =
( n∑

i=1
‖Dif‖2

X

)1/2
.

In Section 4 we will prove another version of this theorem. Theorem 4.1 below establishes the similar 
estimate but with a different power of d.

Proof. We recall the formula from [11]:

Dje−tΔf(ε) = e−t

(1 − e−2t)1/2 Eξ

(
δj(t)f(ε1 · ξ1(t), . . . , εn · ξn(t))

)
. (3.1)

Here

δj(t) := ξj(t) − e−t

(1 − e−2t)1/2 ,

where ξj(t) are independent random variables having values ±1 with probabilities 1±e−t

2 .
From (3.1) for every ε ∈ Ωn we can write

|∇e−tΔf(ε)| = e−t

(1 − e−2t)1/2 max
λ:‖λ‖�2

n
=1

∣∣∣Eξ

n∑
j=1

λjδj(t)f(ε · ξ(t))
∣∣∣ .

Hence,

|∇e−tΔf(ε)| ≤ e−t

(1 − e−2t)1/2 max
λ:‖λ‖�2

n
=1

Eξ

∣∣∣ n∑
j=1

λjδj(t)f(ε · ξ(t))
∣∣∣ ≤

e−t

(1 − e−2t)1/2 max
λ:‖λ‖�2

n
=1

(
Eξ

∣∣∣ n∑
j=1

λjδj(t)
∣∣∣q)1/q(

Eξ|f(ε · ξ)|p
)1/p

.

Raise it to the power p and integrate:

‖|∇e−tΔf(ε)|‖p
p ≤

( e−t

(1 − e−2t)1/2

)p

EεEξ|f(ε · ξ)|p · max
λ:‖λ‖�2 =1

(
Eξ

∣∣∣ n∑
λjδj(t)

∣∣∣q)p/q

=

n j=1
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EξEε|f(ε · ξ)|p ·
( e−t

(1 − e−2t)1/2

)p

· max
λ:‖λ‖�2

n
=1

(
Eξ

∣∣∣ n∑
j=1

λjδj(t)
∣∣∣q)p/q

=

( e−t

(1 − e−2t)1/2

)p

‖f‖p
p · max

λ:‖λ‖�2
n

=1

(
Eξ

∣∣∣ n∑
j=1

λjδj(t)
∣∣∣q)p/q

.

Consider the case 1 < q ≤ 2. Then we just use

(
Eξ

∣∣∣ n∑
j=1

λjδj(t)
∣∣∣q)p/q

≤
(

Eξ

∣∣∣ n∑
j=1

λjδj(t)
∣∣∣2)p/2

= 1,

because {δj(t)}n
j=1 is an orthonormal system and ‖λ‖�2

n
= 1.

We will use this later:

1 < q ≤ 2 ⇒ ‖|∇e−tΔf(ε)|‖p
p ≤ e−t

(1 − e−2t)1/2 ‖f‖p
p (3.2)

Now let us consider the case q > 2. In this case we need to estimate 
(

Eξ

∣∣∣ ∑n
j=1 λjδj(t)

∣∣∣q)1/q

differently. 
First of all we can replace δj(t) by

δ̃j(t) :=
ξj(t) − ξ′

j(t)
(1 − e−2t)1/2

with ξ′
j(t) be an independent copy of ξj(t). This is just by Jensen inequality and Eξ′

j(t) = e−t. Random 
variables are symmetric and we use the following result.

The following contraction principle is a classical result of Maurey and Pisier (see, e.g., [20, Proposition 
3.2]). We spell out a version with explicit constants. �
Theorem 3.8. Let (X, ‖ · ‖) be a Banach space of cotype r < ∞, let δ̃1, . . . , ̃δn be i.i.d. symmetric random 
variables, and let ε be uniformly distributed on {−1, 1}n. Then for any n ≥ 1, λ1, . . . , λn ∈ X, and 1 ≤ q <

∞, we have

(
E

∥∥∥∥∥
n∑

j=1
λj δ̃j

∥∥∥∥∥
q)1/q

≤ Lr,q

∞∫
0

P{|δ̃(t)1| > s}
1

max(q,r) ds

(
E

∥∥∥∥∥
n∑

j=1
λjεj

∥∥∥∥∥
q)1/q

with Lr,q = L Cq(X) max(1, (r/q)1/2), where L is a universal constant.

In the current situation X = R, so r = 2 and max(q, 2) = q. Notice also that

∞∫
0

P{|ξj(t) − ξ′
j(t)| > s}1/qds = 21−1/r(1 − e−2t)1/q.

Therefore,

(
Eξ

∣∣∣ n∑
j=1

λjδj(t)
∣∣∣q)1/q

≤ C(1 − e−2t)1/q−1/2
(

Eξ

∣∣∣ n∑
j=1

λjεj

∣∣∣q)1/q

≤

C(q)
−2t 1/2−1/q
(1 − e )
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by Khintchine inequality and by ‖λ‖�2
n

= 1.
We will use this later: if q > 2 then

‖|∇e−tΔf(ε)|‖p ≤ C(q)e−t

(1 − e−2t)1−1/q
‖f‖p = C(q)e−t

(1 − e−2t)1/p
‖f‖p . (3.3)

Now let us use (3.2) for p ≥ 2 and (3.3) for 1 < p < 2 to finish the proof. We can consider x = e−t and 
write those inequalities as the estimate of p-th norm of

Ff (x, ε) :=
∑

S

x|S|f̂(S)εS , where f =
∑

S

f̂(S)εS , 0 ≤ x ≤ 1 .

We get

‖|∇F (x, ·)|‖p ≤ |x|
(1 − x2)1/2 ‖f‖p, ∀x ∈ [−1, 1], p ≥ 2 (3.4)

and

‖|∇F (x, ·)|‖p ≤ |x|
(1 − x2)1/p

‖f‖p, ∀x ∈ [−1, 1], 1 < p < 2 . (3.5)

We initially have this estimates only for 0 ≤ x ≤ 1 but flipping x → −x is absorbed by flipping ε → −ε. By 
other methods these estimates were obtained also in [4], see (229) and (203) there.

Now we consider an auxiliary domain of the type considered in [4]. Let us fix β ∈ (1, 2) to be chosen 
later. Fix r > 1. Consider lens domain Ω(r) = {z : |z − i

√
r2 − 1| ≤ r, |z + i

√
r2 − 1| ≤ r}. Consider

Ω(r, β) :=
(

1 − 1
dβ

)
Ω(r) .

Let Gβ,r denote Green’s function with pole at infinity of C \ Ω(r, β). It is rather easy to see that

Gβ,r(1) 
 d
−β π

2π−2 arcsin 2
√

p−1
p , (3.6)

(notice that 2π − 2 arcsin 2
√

p−1
p is the exterior angle for Ω(r, β) at corner points of the lens).

We choose β in (3.6) to have Gβ,r(1) 
 1
d , that is

β = 2 − 2
π

arcsin 2
√

p − 1
p

. (3.7)

3.1. Complex variable

Below we repeatedly use estimates on Green’s function and harmonic measure of relatively simple domains 
that can be found in [3], [13], [6], [24]. In fact, all those domains below can be transformed to strip domains 
considered in [24] by logarithmic mapping. Thorough estimates of harmonic measure on strip domains are 
given in [24]. Green’s function estimates and harmonic measure estimates are basically the same things for 
simply connected domains [6].

Consider a new function in the complex domain:

H(z) := log ‖|∇F (z, ·)|‖p .
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Notice that this function is subharmonic in the whole C. To see this one should write the norm of the gradient 
as the supremum over the dual space Lq(Ωn, �2

n). Then we will get that ‖|∇F (z, ·)|‖p is the supremum over 
the unit ball of this dual space of the absolute values of linear combinations of DjF (z, ε). Each such term is 
analytic and logarithm of absolute value of linear combination of such terms is subharmonic. The supremum 
can be interchanged with logarithm and we get that H(z) is subharmonic.

Let us collect properties of H. As f is a polynomial of degree d, we get that the growth of H at infinity 
is majorized by d log |z|.

In the other hand, we can always think that ‖f‖p = 1, and then we just saw that on the interval 
[−1 + 1

dβ , 1 − 1
dβ ] function H(x) has the estimate:

F (x)/dβ/2 ≤ 1, if p ≥ 2; F (x)/Cdβ/p ≤ 1, if 1 < p < 2 .

Then, say, H(z) − β
2 log d is non positive on [−1 + 1

dβ , 1 − 1
dβ ] and is of order d log |z| at infinity.

But we can say much more by Weissler [25] and Ivanisvili–Nazarov [10]. It tuns out that then H(z) − β
2 log d

is non positive on C \ Ωr,β,. These are the complex hypercontractivity results.
Hence, using Green’s function Gβ,r of C \ Ωr,β with pole at infinity we get that

H(z) − β

2 log d ≤ dGβ,r(z)

uniformly in C \ Gβ,r. Hence,

‖|∇F (z, ·)|‖p

dβ/2 ≤ edGβ,r(z) .

We are interested in this inequality for just one particular z = 1. Now we use (3.7) to have edGβ,r(1) 
 1.
Hence we proved that for p ≥ 2

‖|∇F (1, ·)|‖p

dβ/2 ≤ C .

Exactly the same reasoning shows that for 1 < p < 2

‖|∇F (1, ·)|‖p

dβ/p
≤ C .

Theorem 3.5 is completely proved just by plugging formula (3.7) for β.

Proof. The proof of Theorem 3.7 follows the same lines, but we need to use Theorem 3.8 for Banach spaces 
X∗. This is where we use that if X∗ is of type 2 then is of finite co-type by König–Tzafriri theorem 7.1.14 
in [9]. Type 2 is needed to conclude (using Khintchine–Kahane’s inequality, see e.g. [9]):

Eε

∥∥∥∥∥
∑

εjλj

∥∥∥∥∥
p

≤ CpEε

∥∥∥∥∥
∑

εjλj

∥∥∥∥∥
2

≤ Cp

( ∑
‖λj‖2

X∗)1/2 ≤ Cp . �

3.2. Comparison of Δ1/2· and |∇ · |X

The reader can notice that in this paper we are mostly interested in bounding the expressions of the type 
|∇f |X . It would be interesting to get from this the estimates of the expressions of the type Δ1/2f . But for 
Banach space valued functions it is mostly an open task.
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For Banach space valued functions f : Ωn → X it is not quite clear who majorized whom if we deal with 
‖Δ1/2f‖Lp(X) and ‖|∇f |X‖p.

We would like to decide (but this is still an open problem) for exactly what class of Banach spaces X

‖Δ1/2f‖Lp(X) ≤ Cp‖|∇f |X‖p .

We think that this is the class of spaces of finite co-type. In fact, this is one way to express the boundedness 
from below of Riesz transform of Hamming cube in spaces Lp(Ωn, X), 1 < p < ∞. For X = R this 
boundedness from below is always true, see [1].

On the other hand, the converse inequality, that is the boundedness of Riesz transform of Hamming cube 
from above,

‖|∇f |X‖p ≤ Cp‖Δ1/2f‖Lp(X)

does not have a reasonably wide class of Banach spaces for which it holds. For p ≥ 2 and X = R this 
boundedness from above holds, but for 1 < p < 2 it fails, see [1].

It can fail for very nice UMD space X even for p > 2.

4. Another exponent in Theorem 3.7

By Lp(X) we always mean Lp(Ωn; X), where Ωn is Hamming cube. Let 1/q + 1/p = 1. Let P(d, X) be 
the collection of polynomials with coefficients in Banach space X and of degree at most d. We prove that 
Theorem 3.7 can be given a different formulation in the sense of the power of d. Next theorem deals again 
with X such that X∗ is of type 2. In particular, X∗ and X are K-convex. Let πα denote the angle from 
Theorem 2.1.

Theorem 4.1. If f ∈ P(d, X) and X∗ is of type 2, then ‖|∇f |X‖Lp ≤ Cd
2−α

p ‖f‖Lp(X) for 1 < p < 2, and 
‖|∇f |X‖Lp ≤ Cd1− α

2 ‖f‖Lp(X) for p ≥ 2.

Proof. We recall the formula from [11]:

Dje−tΔf(ε) = e−t

(1 − e−2t)1/2 Eξ

(
δj(t)f(ε1 · ξ1(t), . . . , εn · ξn(t))

)
. (4.1)

Here

δj(t) := ξj(t) − e−t

(1 − e−2t)1/2 ,

where ξj(t) are independent random variables having values ±1 with probabilities 1±e−t

2 .
The symmetric counterpart is

δ′
j(t) :=

ξj(t) − ξ′
j(t)

(1 − e−2t)1/2 ,

where vector {ξ′
j(t)} is independent copy of {ξj(t)}.

We use the notation �2
n for �2

n(X∗) with the norm (
∑n

j=1 ‖λj ||2X∗)1/2. From (4.1) for every ε ∈ Ωn we can 
write

|∇e−tΔf(ε)| = e−t

(1 − e−2t)1/2 max
λ:‖λ‖�2 =1

(
Eξ

∣∣∣ n∑
δj(t)〈λj , f(ε · ξ)〉

∣∣∣) .

n j=1
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Hence,

|∇e−tΔf(ε)| ≤ e−t

(1 − e−2t)1/2 max
λ:‖λ‖�2

n
=1

Eξ

∣∣∣ n∑
j=1

δj(t)〈λj , f(ε · ξ(t))〉
∣∣∣ =

e−t

(1 − e−2t)1/2 max
λ:‖λ‖�2

n
=1

(
Eξ

∣∣∣〈 n∑
j=1

δj(t)λj , f(ε · ξ)〉
∣∣∣) ≤

e−t

(1 − e−2t)1/2 max
λ:‖λ‖�2

n
=1

Eξ

(∥∥∥ n∑
j=1

δj(t)λj

∥∥∥
X∗

‖f(ε · ξ)‖X

)
≤

e−t

(1 − e−2t)1/2 max
λ:‖λ‖�2

n
=1

(
Eξ

∥∥∥ n∑
j=1

λjδj(t)
∥∥∥q)1/q (

Eξ‖f(ε · ξ)‖p
)1/p

.

We wish to prove that if q > 2 then

‖|∇e−tΔf(ε)|‖p ≤ C(q)e−t

(1 − e−2t)1/p
‖f‖Lp(X) , (4.2)

and if 1 ≤ q ≤ 2 then

‖|∇e−tΔf(ε)|‖p ≤ C(q)e−t

(1 − e−2t)1/2 ‖f‖Lp(X) . (4.3)

For that let us work now with the term Eξ

∥∥∥ ∑n
j=1 λjδj(t)

∥∥∥q

X∗
for a fixed {λj} ∈ �2

n of norm 1.

Bq := Eξ

∥∥∥ n∑
j=1

λjδj(t)
∥∥∥q

≤ Eξ,ξ′

∥∥∥ n∑
j=1

λjδ′
j(t)

∥∥∥q

=

Eξ,ξ′Er

∥∥∥ n∑
j=1

riλjδ′
j(t)

∥∥∥q

,

where ri are independent Rademacher random variables.
The next lemma was provided by A. Borichev.

Lemma 4.2. Let a, b ≥ 0 and Q ≥ 2 be a large number. Then

(a + b)Q ≤ 6aQ + QQbQ .

Proof. We need to show that for all positive t, (t + 1)Q ≤ 6tQ + QQ. If t ≤ Q − 1 this is immediate. If 
t ≥ Q − 1 ≥ 1, we write

(t + 1)Q = tQ
( t + 1

t

)Q

≤ tQ
( t + 1

t

)t+1
≤ 2tQ

(
1 + 1

t

)t

≤ 2etQ . �
We continue to estimate Bq:

Bq ≤ Eξ,ξ′Er

∥∥∥ n∑
j=1

riλjδ′
j(t)

∥∥∥q

X∗
≤ CqEξ,ξ′

(
Er

∥∥∥ n∑
j=1

riλjδ′
j(t)

∥∥∥2

X∗

)q/2
≤

CqDq/2Eξ,ξ′

( n∑
|δ′

j(t)|2‖λj‖2
X∗

)q/2
.

j=1
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In the last inequality we used that X∗ is of type 2. The penultimate inequality is Kahane–Khintchine’s 
inequality, see [9].

Notice that if 1 ≤ q ≤ 2 then the above inequality gives

Bq ≤ CqDq/2
(

Eξ,ξ′

n∑
j=1

|δ′
j(t)|2‖λj‖2

X∗

)q/2

Hence,

1 ≤ q ≤ 2 ⇒ B ≤ CqD1/2
( n∑

j=1
‖λj‖2

X∗

)1/2
≤ CqD1/2 . (4.4)

The estimate in case 2 < q < ∞ is much more interesting.
Now we will continue by thinking that q is an even integer, q = 2k (it is not important, just convenient). 

Let us now estimate

E := Eξ,ξ′

( n∑
j=1

|δ′
j(t)|2‖λj‖2

)k

(4.5)

We denote

fj := |δ′
j(t)|2‖λj‖2 . (4.6)

Below we use Lemma 4.2 with Q := q/2 − 1 = k − 1:

Eξ,ξ′(
∑n

j=1 fj)k = Eξ,ξ′
∑n

i=1(
∑n

j=1 fj)k−1fi =

Eξ,ξ′
∑n

i=1((f1 + . . . fi−1 + fi+1 + . . . fn) + fi)k−1fi ≤Lemma 4.2

(k − 1)k−1Eξ,ξ′
∑n

i=1 fk
i + 6Eξ,ξ′

∑n
i=1(f1 + . . . fi−1 + fi+1 + . . . fn)k−1Eξ,ξ′fi ≤

(k − 1)k−1Eξ,ξ′
∑n

i=1 fk
i + 6Eξ,ξ′(

∑n
j=1 fj)k−1Eξ,ξ′(

∑n
j=1 fj) ≤

(k − 1)k−1Eξ,ξ′
∑n

i=1 fk
i + 6(k − 2)k−2Eξ,ξ′

∑n
i=1 fk−1

i Eξ,ξ′(
∑n

j=1 fj) +

62Eξ,ξ′(
∑n

j=1 fj)k−2[
Eξ,ξ′(

∑n
j=1 fj)

]2 ≤

(k − 1)k−1Eξ,ξ′
∑n

i=1 fk
i + · · · + 6�(k − �)k−�Eξ,ξ′(

∑n
j=1 fk−�

j )
[
Eξ,ξ′(

∑n
j=1 fj)

]� + . . .

+6k−1[
Eξ,ξ′(

∑n
j=1 fj)

]k
.

We used the fact that δ′
j(t), j = 1, . . . , n, are independent exactly as this has been done in Rosenthal’s [22].

Now coming back to our notation (4.6) we see that as

E|δ′
j(t)|2 = 2, E|δ′

j(t)|m ≤ 2m−1

√
1 − e−2t

m−2 . (4.7)

Eξ,ξ′(
n∑

j=1
fj) ≤ 2‖{λj}‖2

�2
n
,

Eξ,ξ′(
n∑

fk−�
j ) ≤ 22k−2�

√
−2t

2k−2�−2

n∑
‖λj‖2k−2� .
j=1 1 − e j=1
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Therefore, we can estimate E from (4.5) as follows:

E ≤ 24k
k−2∑
�=0

[ (k − �)k−�

√
1 − e−2t

2k−2�−2

n∑
j=1

‖λj‖2k−2�‖{λj}‖2�
]

+ 24k‖{λj}‖2k .

This obviously gives

E ≤ 2(24)k
k−2∑
�=0

(k − �)k−�
( 1√

1 − e−2t

)2k−2�−2( n∑
j=1

‖λj‖2
)k−�

‖{λj}‖2� +

24k‖{λj}‖2k .

And so,

E ≤ C ′(q)‖{λj}‖q
k−2∑
�=0

(k − �)k−�
( 1√

1 − e−2t

)2k−2�−2

Then

B ≤ C(q)
(1 − e−2t)

1
2 − 1

q

‖{λj}‖�2
n(X∗) = C(q)

(1 − e−2t)
1
2 − 1

q

. (4.8)

Now let us use (4.2) for 1 < p < 2 and (4.3) for p ≥ 2 to finish the proof. We can consider x = e−t and 
write those inequalities as the estimate of p-th norm of

Ff (x, ε) :=
∑

S

x|S|f̂(S)εS , where f =
∑

S

f̂(S)εS , 0 ≤ x ≤ 1 .

We get from (4.8) and (4.4) correspondingly that

‖|∇F (x, ·)|‖p ≤ |x|
(1 − x2)1/p

‖f‖Lp(X), ∀x ∈ [−1, 1], 1 < p < 2 . (4.9)

‖|∇F (x, ·)|‖p ≤ |x|
(1 − x2)1/2 ‖f‖Lp(X), ∀x ∈ [−1, 1], p ≥ 2 . (4.10)

We initially have this estimates only for 0 ≤ x ≤ 1 but flipping x → −x is absorbed by flipping ε → −ε.
Now consider a new function in the complex domain:

H(z) := log ‖|∇F (z, ·)|X‖p .

We repeat verbatim the reasoning of Section 3.1 but instead of domain Ω \ Ω(β, r) and its Green’s function, 
we consider domain C \ [−1 + 1

d2 , 1 − 1
d2 ], whose Green’s function Gd satisfies

Gd(1) 
 1
d

.

This proves

‖|∇F (1, ·)|X‖p ≤ C .

dmax(2/p,1)
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But (4.8) and (4.4) can be used more efficiently if we use Pisier’s Theorem 2.1 again. In fact, it can be 
used. As X∗ has type 2, it is K convex. Then X is K-convex. Let us fix β to be chosen later and consider 
domain

Oβ,α :=
(

1 − 1
dβ

)
Oα,

where Oα was introduced in the previous Section.
As X is K-concave, so is �2(X). Consequently (4.8) and (4.4) and Pisier’s Theorem 2.1 applied to 

Lp(Ωn, �2(X)) show that

‖|∇F (z, ·)|X‖ ≤ Cdβ/p, 1 < p < 2, ≤ Cdβ/2, p ≥ 2, z ∈ Oβ,α .

Let Gβ,α denote Green’s function of C \ Ōβ,α.
We repeat verbatim the reasoning of Section 3.1 but instead of domain Ω \Ω(β, r) and its Green’s function, 

we consider domain C \ Ōβ,α whose Green’s function Gβ,α satisfies

Gβ,α(1) 

( 1

dβ

) π
2π−πα 
 1

d
,

if

β = 2 − α .

This proves

‖|∇F (1, ·)|X‖p

dmax( 2−α
p , 2−α

2 )
≤ C .

Theorem 4.1 is proved. �
Remark 4.3. We already mentioned in Section 3.2 that the boundedness of Riesz transform of Hamming 
cube from above,

‖|∇f |X‖p ≤ Cp‖Δ1/2f‖Lp(X)

does not have a reasonably wide class of Banach spaces for which it holds. For p ≥ 2 and X = R this 
boundedness from above holds, but for 1 < p < 2 it fails, see [1]. It can fail for a very nice UMD space X
even for p > 2. Therefore, Theorem 3.3 or other Bernstein–Markov type estimates of Δ1/2f in [4] for X-
valued polynomials f with X being K-convex cannot help to prove the estimates of the type of Theorem 4.1
or Theorem 3.7.

5. Non-commutative random variables and Bernstein–Markov inequalities on Hamming cube

We wish to demonstrate how the technique of non-commutative random variables can be used to prove 
certain Bernstein–Markov inequalities on Hamming cube. The estimates below are not as good as in the 
previous Section, and what follows serves only illustrative purpose of showing a beautiful approach.

To the best of our knowledge this approach was introduced by Francoise Lust-Piquard in [14], [1]. Almost 
all results of those papers are commutative (with the exception of results on CAR algebra), all methods 
are non-commutative. And even though many non-commutative proofs of those papers are by now made 
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commutative (see, e.g. [12]), still some non-commutative proofs did not get a commutative analog up to 
now.

The non-commutative proof of a certain Bernstein–Markov inequality below is given not because of its 
efficiency, but because of its beauty.

We will prove now that for p ≥ 2

f : Ωn → R, deg f ≤ d ⇒ ‖|∇f |‖p ≤ Cp d‖f‖p, (5.1)

which is worse than Theorem 3.5.
Let

Q =
[

0 1
1 0

]
, P =

[
0 i

−i 0

]
, U = iQP .

They have anti-commutative relationship

QP = −PQ . (5.2)

Let Qj = I⊗. . . Q ⊗I · · ·⊗I, Pj = I⊗. . . P ⊗I · · ·⊗I, on j-th place. These are independent non-commutative 
random variables in the sense of tr = sum of diagonal elements divided by 2n.

Put QA = Πi∈AQi, PA = Πi∈APi

Now one considers algebra generated by Qj, Pj (this is algebra of all matrices M2n). We have a projection 
P from multi-linear polynomials in Pj , Qj (notice P 2 = I, Q2 = I) that kills everything except terms having 
only Q′s.

Small (really easy) algebra shows (see [1]) that P can be written as ρ Diag ρ∗, where ρ is a conjugation 
by a unitary operator, and Diag, is an operator on matrices that just kills all matrix elements except the 
diagonal. This Diag is obviously the contraction on Schatten-von Neumann class Sp for any p ∈ [1, ∞]
(obvious for Hilbert–Schmidt, p = 2, class and for bounded operators–so interpolation does that).

R(θ)QA = Πj∈A(Qj cos θ + Pj sin θ) , R(θ)PA = Πj∈A(Pj cos θ − Qj sin θ) .

One can easily check that the action of R(θ) is R(θ)∗TR(θ) where R(θ) is a unitary matrix which is n-fold 
tensor product of

ρθ =
[

1 0
0 eiθ

]

Extend it by linearity onto the whole algebra M2n . Then it is obvious that automorphism R(θ) preserves 
all Schatten–von Neumann Sp norms.

For any f =
∑

A⊂[n] f̂(A)εA, the reasoning of [1] dictates to assign a non-commutative object, a matrix 
from M2n given by

Tf =
∑

A⊂[n]

f̂(A)QA .

Such matrices form commutative sub-algebra M2n ⊂ M2n . Operators ∂j , Dj can be considered on M2n , 
acting in a canonical way. For example,

∂iQA =
{

QA\i, if i ∈ A;
0, if i /∈ A .
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. 
And Di := Qi∂i.
Consider now a matrix valued function

Af (θ) = R(θ)Tf .

It is a trigonometric polynomial of degree at most d with matrix coefficients. Bernstein–Markov inequality 
(its proof) works for such matrix valued polynomials in exactly the same way as for scalar polynomials. The 
easiest way to see that is to prove Bernstein–Markov estimate by convolution with Fejer kernels. Then we 
get

∥∥∥ d

dθ
Af (θ)

∥∥∥
Sp

≤ 2d
∥∥∥Af (θ)

∥∥∥
Sp

, 1 ≤ p ≤ ∞.

On the other hand we can calculate easily d
dθ R(θ)(QA) =

−
∑
j∈A

Πi∈A,i<j(cos θQi + sin θPi)((− sin θQj + cos θPj)Πi∈A,i>j(cos θQi + sin θPi) .

By commutativity relations between Pj , Qi, we observe that this is nothing else but − 
∑

j∈A R(θ)
(
Pj∂jQA

)
. 

Hence

d

dθ
Af (θ) = d

dθ
R(θ)Tf = −R(θ)

( n∑
j=1

Pj∂jTf

)
. (5.3)

Therefore,

‖R(θ)
( n∑

j=1
Pj∂jTf

)
‖Sp

≤ 2d ‖R(θ)Tf ‖Sp
.

Transformation Rθ preserves Sp norms (see above), and so

‖
n∑

j=1
Pj∂jTf ‖Sp

≤ 2d ‖Tf ‖Sp
. (5.4)

Let ε(k)
j = −1 if j = k and = 1 otherwise. Following [1] we see that ‖ 

∑n
j=1 Pj∂jTf ‖Sp

= ‖ 
∑n

j=1 ε
(k)
j Pj∂jTf ‖Sp

This is because

Qk

( n∑
j=1

Pj∂jQA

)
Qk =

n∑
j=1

ε
(k)
j Pj∂jQA, ∀A,

by anti-commutative relation PQ = −QP . Hence, for any sequence of signs

‖
n∑

j=1
Pj∂jTf ‖Sp

= ‖
n∑

j=1
εjPj∂jTf ‖Sp

.

Now one should use a non-commutative Khintchine inequality of Lust-Piquard and Pisier [15] and 2 ≤ p ≤
∞:

Eε‖
n∑

εjPj∂jTf ‖Sp

p ‖

( n∑
(∂jTf )∗P ∗

j Pj∂jTf

)1/2‖Sp
+

j=1 j=1
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( n∑
j=1

Pj∂jTf (∂jTf )∗P ∗
j

)1/2‖Sp
.

But P ∗
j Pj = P 2

j = I, and in the second term Pj and ∂jTf commute (as there is identity matrix on the j-th 
place of ∂jTf ). Therefore

‖
( n∑

j=1
(∂jTf )∗P ∗

j Pj∂jTf

)1/2‖Sp
+

( n∑
j=1

Pj∂jTf (∂jTf )∗P ∗
j )1/2‖Sp

=

2‖
( n∑

j=1
(∂jTf )∗∂jTf

)1/2‖Sp
.

Using (5.4) we conclude that for p ∈ [2, ∞)

‖
( n∑

j=1
(∂jTf )∗∂jTf

)1/2‖Sp
≤ Cpd‖Tf ‖Sp

.

Both matrices in the left hand side and the right hand side are form commutative algebra Mn. They are Tf

and T|∇f |. It is left to notice that for any scalar function f on Ωn we have ‖Tf ‖Sp
= ‖f‖Lp(Ωn

. This is just 
by using the basis of characteristic function of point sets {ε} on Ωn to compute the Sp norm of Tf . This 
basis consists of eigenfunctions of Tf with eigenvalues f(ε). This is easy, see in [1].

We finally proved (5.1) by non-commutative approach of Francoise Lust-Piquard.

6. Addendum 1: Fourier coefficients of conformal map ϕ

We consider the domain

Oα := −Gα ∪ Gα,

where Gα = {w : w = e−z, | arg z| ≤ πα
2 }. It is not very difficult to write down the boundary of this domain 

(see Section 7 below, where we partially do this). Then one can notice that it consists of two real analytic 
curve Γ+, Γ−, symmetric with respect to R and forming angle πα at −1, 1.

Hence, the conformal map ϕ−1 : Oα → D can be extended to a slightly wider domain bounded by real 
analytic curves γ+, γ−, such that γ+ lies a bit higher than Γ+ and meets Γ+ at ±1, and forms angle τπ

with Γ+ at points ±1, where τ is a small strictly positive number. Symmetrically for γ−, Γ−.
Then conformal map ϕ is extended to domain R bounded by two symmetric real analytic curves, inter-

secting T only at ±1 and making angle (α + τ)π with T at those points.
Then

cm =
∫
T

1
zm+1 ϕ(z)dz = − 1

m

∫
∂R

ϕ(z)d 1
zm

= 1
m

∫
∂R

1
zm

ϕ′(z)dz

Now we us that on ∂R, ±1 we have | 1
z | ≤ 1

1+a(τ)|y| for z = x + iy. We get

|cm| �
2∫

0

1
(1 + ay)m

1
y1−α

dy �
2∫

0

e−a1m y dyα =
2α∫
0

e−b(mαt)1/α

dt .

The last integral is ≤ 1
α

∫ ∞
e−bs

1
α ds � 1

α .
m 0 m
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7. Addendum 2: boundary of Oα and getting rid of ε in the proof of Theorem 6 of [4]

This section explains how to get rid of an ε in a theorem of Eskenazis and Ivanisvili [4] This ε was also 
avoided by a different approach already by Mendel and Naor [17]. But the proof in [4] is easier and it seems 
to be nice to push it to the level of result of [17] by eliminating this irritating ε that otherwise blows up the 
constants. This is what we will do now.

We consider two domains

Ω(r) := {z ∈ C : max{|z − i
√

r2 − 1|, |z + i
√

r2 − 1|} < r},

and

Oα := −Gα ∪ Gα,

where Gα = {w : w = e−z, | arg z| ≤ πα
2 }. We would like to compare those two domains for

πα = 2 arcsin 1
r

. (7.1)

The choice of r is dictated by the fact that for this choice the angle that the boundaries have at point 1 is 
the same (and symmetrically at −1).

It is not very difficult to write down the boundary of Oα, we will do this now for its parts near points 
±1.

Define a as follows tan πα
2 = π

a . Let us consider Gα ∩ {�z ∈ [0, a2 ]}. Consider Gα(a/2) :=
e−Gα∩{
z∈[0, a

2 ]} = {w = u + iv = e−z, z ∈ Gα ∩ �z ∈ [0, a2 ]}. It consists of arcs St of the circles centered 
at point (0, 0) of radii e−t, 0 ≤ t ≤ a

2 , and each arc is symmetric (w.r. to R), and has angle 2 arctan π
a t. 

In particular, Sa/2 is a half-circle that intercepts v-axis at points ±e−a/2. The boundary of the domain 
Gα(a/2) consists of Sa/2 and of two real analytic symmetric (w.r. to R) arcs, one of them Γ(a/2) (the one 
in C+) being given by parametric equation:

Γ(a/2) : u = e−t cos π

a
t, v = e−t sin π

a
t, 0 ≤ t ≤ a/2 .

We also have an interesting circle of radius r :=
√

1 + a2

π2 = 1
sin( πα

2 ) , with center at −i
√

r2 − 1 = −i a
π =

−i cotan( πα
2 ).

Let us check that Γ(a/2) lies below the circle, in other words that

(
e−t cos π

a
t
)2

+
(

e−t sin π

a
t + a

π

)2
< 1 + a2

π2 , for small t > 0 .

This is the same as

e−2t + 2e−t a

π
sin π

a
t < 1 .

We write

1 − 2t + 4t2

2 − 8t3

6 + · · · + 2(1 − t + t2

2 − t3

6 + ...)(t − ct3 + . . . ) =

1 + t3 − 4
t3 − 2ct3 + · · · < 1,
3
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if t is small as c is positive. So the lens domain Ω(r) of [4] seems to contain Oα, at least it is not contained 
in it as Γ(a/2) lies inside Ω(r).

That represents a small problem for [4] because inclusion (103) there is not valid if one chooses r according 
to our preferred choice (7.1). In its turn this is reflected in the formulas for conformal mapping one uses 
around (103). But the formula for conformal mapping of the unit disc onto Ω(r) is straightforward.

But if one chooses r not according to (7.1) but smaller, than the angle of the lens domain at ±1 is 
smaller than πα and inclusion (103) holds. Thus Theorem 6 of [4] reproves the heat smoothing result of [17]
with A(p, X) > 1

α , where α is the angle from Pisier’s Theorem 2.1. But one can notice that just a small 
improvement in [4] reasoning gives the heat smoothing result with A(p, X) = 1

α .
Let us indicate this small change that should be implemented to get A(p, X) = 1

α in Theorem 6 of [4].
As, in the contrast to (103) of [4], we have Ωα ⊂ Ω(r) with r as in (7.1), then one need the estimates of 

conformal mapping of the disk onto Oα (the smaller of two domains). Of course the angle that boundary 
of Oα form at point 1 (and −1) is just πα (in notations of [4] it is θ). This angle is the same for Ω(r). But 
this observation is not enough to conclude the same asymptotic for conformal maps on these two domains.

However, this is a not a real problem. It is easy to see that asymptotic is in fact the same. To see that one 
transforms Ωα and Ω(r) to strips by logarithmic map and then one uses Warschawski’s estimate from [24], 
pages 280–281. It shows that asymptotic is the same because one can easily compute that 

∫ ∞ Θ′(u)2/Θ(u) du

converges, see [24], pages 280–281, for the explanation what is Θ(u) for strips.
The heat smoothing conjecture of [17] claims that A(p, X) = 1 for K-convex X, but it is still a conjecture. 

The important time is t0 = 1
dα . The estimate of Theorem 2.6, or slightly strengthened estimate of Theorem 

6 of [4] or Theorem 5.1 of [17], all those estimates show that if X is K convex, then for X-valued f in the 
d-tail space

‖e−t0Δf‖Lp(X) ≤ C‖f‖Lp(X) .

This does not give us any interesting information. What the heat smoothing conjecture basically says is the 
following, let α be the angle from Pisier’s Theorem 2.1, then

t0 = 1
dα

⇒ ‖e−t0Δf‖Lp(X) ≤ ε(d)‖f‖Lp(X), ε(d) → 0, d → ∞ .

This is still open.
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