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' paraproduct operator for tail spaces. For Bernstein-Markov inequalities the novelty
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is in getting rid of some irritating logarithms and in proving Bernstein—Markov
inequalities for |V f|x rather than for A'/2 f for X-valued polynomials on Hamming

gzz:ﬁgﬁier type cube. There is an interesting difference for giving the estimates for |V f|x rather
Tail spaces than for A/2f as their comparison is equivalent to estimates of Riesz transforms
Bernstein—-Markov inequalities on Hamming cube.
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1. Introduction

We are interested in tail spaces T3(X) of functions

f= f(5)e*

|S|>d

defined on the Hamming cube Q, = {e = (¢1,...,&,) € {—1,1}"}. Here f(S) are coefficients belonging to
Banach space X.
Later we will also need the space of polynomials P;(X):

F=Y" f(9)e*

1S|<d

defined on the Hamming cube €,,. Here f (S) are coefficients belonging to Banach space X, which, in
particular can be just R.
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The reader will notice that in this paper we are mostly interested in bounding the expressions of the
type |V f|x for polynomials of fixed degree on Hamming cube. It would be interesting to get from this the
estimates of the expressions of the type A/2f. For Banach space valued functions the comparison of |V f|x
and A'/2f is mostly an open task.

For Banach space valued functions f : 2,, — X it is not quite clear who majorized whom if we deal with
1AV fll oy and (1941l

It would be of interest to decide for exactly what class of Banach spaces X

||A1/2f||Lp(X) < CpllIV£Flxllp -

We think that this is the class of spaces of finite co-type. In fact, this is one way to express the boundedness
from below of Riesz transform of Hamming cube in spaces LP(Q,,X), 1 < p < oo. For X = R this
boundedness from below is always true for 1 < p < 0o, see the result of E. Ben Efraim and F. Lust-Piquard
[1] proved by non-commutative technique.

On the other hand, the converse inequality, that is the boundedness of Riesz transform of Hamming cube
from above,

IV flxllp < Coll A2 £l o x)

does not have a reasonably wide class of Banach spaces for which it holds [7], [8]. For p > 2 and X = R
this boundedness from above holds, but for 1 < p < 2 it fails even for X = R,, see [1].

Moreover, it can fail even for p > 2 for a very nice UMD space X. Morally this means that it is more
difficult to estimate from above |V f|x than Al/2f.

We give Bernstein-Markov type inequalities for |V f|x in Theorems 3.5, 3.7, 4.1. The proofs are based on
the novel formula used in [11] to prove Enflo’s conjecture (one can familiarize with the conjecture in [18]).

In Theorem 2.6 we reprove a theorem of Mendel and Naor [17] concerning the estimate from below of
|Afllzr(x) for f in the tail space T3(X) for K-convex Banach spaces X. Our proof is quite different from
the one in [17]. The main idea is to use analytic paraproduct operators. A lot is known about these operators
first introduced by Pommerenke, see e.g. [21], [2], [23], and the connection with the tail space estimates on
Hamming cube seems to be new and worth to explore.

The first addendum (Section 6) is devoted to the proof of Lemma 2.8. The second addendum (Section 7)
gives an explanation how to get rid of € in Theorem 2.3 from [4]. This explanation combined with the proof
of Theorem 2.3 in Eskenazis—Ivanisvili’s [4] gives an easier proof of Theorem 2.2, which is one of the main
results of Mendel-Naor’s [17].

Acknowledgments. My deep gratitudes go to Alexander Borichev for very valuable discussions. I am grateful
to Alexandros Eskenazis who found a mistake in the first version of Theorem 3.5.

I am also grateful to both referees for their careful reading. Their remarks helped me to considerably
improve the exposition.

2. Tail spaces estimates and dependence on K-convexity and d
We first cite the problem. In [17], Mendel and Naor asked if for every K-convex Banach space X and

p € (1,00) there exists a finite positive ¢(p, X) such that for every n and d < n, every function f: Q,, - X
in the 73(X) satisfies the estimate

1Al zrx) = cp, X)d|| fllor(x) -
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Moreover, they formulated the tail smoothing conjecture: for every K-convex Banach space X and p € (1, 00)
there exists a finite positive ¢(p, X ), C(p, X) such that for every n and d < n, every function f : Q, — X
in the 74(X) satisfies the estimate

1P fllLecxy < c(p, X)em C@X T £l 0k,

where P; = e7*2 is the heat semi-group on Hamming cube. The estimate for |Af]| Lr(x) would follow just

by integrating from 0 to oco. In Theorem 5.1 of [17] they proved that there exists A(p, X) > 1 such that

t,tA(p’X)

1P fll e (x) < c(p, X )eC@X)d min( NfllLecx) -

Before continuing let us cite a crucial result of Pisier [19].

Theorem 2.1 (Pisier). Let X be a K-convex space. Then for any p € (1,00) there exists angle am € (0, )

—zA

such that operators e are well defined and uniformly bounded in A, := {z € C: |argz| < % }.

In what concerns Mendel-Naor question, they proved in [17] the following result.

Theorem 2.2 (Mendel-Naor).

1

1P fll o) < elp, X)em OO mmEED | pl ey

IAflLexy > clp, X)d* || fll e (x) -
In [4] the following weaker results were proved:

Theorem 2.3 (Eskenazis—Ivanisvili). Let X be a K-conver Banach space and let its angle be provided by
Theorem 2.1. Then for every e > 0 we have

— € min(t, é+5
1P flloocx) < ep, X, e)e” CPX@dmin(bta Ty g o
1Al zr(x) = cp, X,e)d* || fllzr(x) Ve >0.

The proof of the latter theorem was easier than that of Theorem 2.2, but there was a price to pay by the
extra e (the constants involved depend badly on ¢).

Remark 2.4. In Theorem 2.6 we will prove differently the second inequality of Theorem 2.2. In what concerns
the first inequality of Theorem 2.2 we explain in the Section 7 how one can adapt the simpler reasoning of

[4,5] to get rid of £ as well.

Theorem 2.5 (Eskenazis—Ivanisvili). Let f € Paim(X) N Ta(X). Let X be a K-convexr Banach space. Then

d
IAfllrx) > c(an)EHf”LP(X) .
Moreover,

dN\1/2
1/2 , > el
1AVl ) = o, X) (=) IS la
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It is well known that the second inequality above implies the first one, just because of [14]:

AP Fll o) < AUAFNT 0 o - 1Oy -

Now we will prove the result that falls a bit short of the conjecture, but at least it gets rid of 1/m in the
Theorem 2.5 above and gets rid of € in Theorem 2.3.

Theorem 2.6. Let X be a K-convex space, p € (1,00), and « from Pisier theorem be in (0,1]. Then

[AfllLex) = elp, X)d* [ fllr(x) -

Remark 2.7. This theorem is not new, see [17] Theorem 5.1. But the proof is different and it uses the
so-called analytic paraproduct operators, about which a lot is known.

Proof. Given f on Q,, from the tail space 74(X) let us introduce a new function F' of one more variable:

F(w,e) = Z w!S f(S)e?,

|S|>d

and let us recognize that it is a bounded LP(X)-valued function of w in 2-gone G, :={w:w =e"%,z € A,}.
This is just reformulation of Pisier’s theorem. Moreover it is not only bounded but also holomorphic in G,

F € H®(Gy; LP(X)).

Notice that the same works for —G,, as the flip w — —w can be absorbed by the flip ¢ — —&. Let us
consider a domain O, := G, U —G,,. It is easy to see that its boundary is smooth at all points except —1
and 1, where O, forms angle ma by two real analytic curves (actually its boundary is real analytic except
for £1, where real analytic curves form an angle ar). Operator

S FS)E% = 3wl i(s)e’

S| IS]
is uniformly bounded from L?(X) to itself by Theorem 2.1.

Notice that wF;, = > ¢ w!SI|S|f(S)eS and Af = s 1S|£(S)eS. So wF’(w) is obtained by applying
Pisier’s Fourier multiplier operator to A f. Therefore we have

12 (W) (0, 2o (x)) < ClwFy (W)l (04,10 (x)) < MIAfllLe(x) - (2.1)
The first inequality is a trivial maximal principle for holomorphic functions, the second one is again the

same Pisier’s theorem.
By the next step we want the estimate of the following type (for F’(w) built by f € T4(X))

|[F(w)]| roe (0,12 (x)) < €allFrp (W) e (0., L2 (x)) (2.2)

with a small g4 for large d.
Let ¢ be the conformal map from the unit disc D onto O, ¢(0) = 0. Then (2.2) is equivalent to

| F o @l goe(p,Lr(x)) < allF 0 @l o (p,Lr(x)) (2.3)
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Obviously, for z € D

z

Fop(z) = / Flop(() - ¢ (C)dC .

0

Denote g(¢) := F’ o ¢(¢) and introduce the operator (sometimes called analytic paraproduct with symbol v)

z

T,q = / 9() - & (Q)dC .

0

Seems like it was Pommerenke who studied this operator first. Then it was widely researched, see e.g. [21],
[2], [23] and the references therein. We need to understand the estimate of this operator on the space of
(vector-valued) functions with the property that all their Taylor coefficients at 0 vanish till the order d — 1.
In other words we need to understand the norm of the operator T}, where ¢ = fOC ¢lY'(O)d¢. o

Let us write the Taylor expansion of conformal map ¢:
o(z) =2+ 522 +....

Then it is possible to prove

Lemma 2.8.
5 — (2.4)
PENE T e :
And || < n=t7e.
See Section 6 for the proof.
We can write
T¢9=/g(€)-w’(C)dC=C?/gd4+2c§‘/g-édé+---+
0 0 0

mc%/g(m_ldg—i—....
0

Function g(¢) - (™! in our case is from Tz, k > d, and its H>°(D) norm is exactly the H° (D) norm of
g itself.

So we need to understand how to estimate the norm of integration operator on Ty, m > 0, for all m
in H°°(D) norm (vector-valued, but this will not ne important).

Lemma 2.9. Let k be positive integer. There exists an L*(T) function s with L*(T) norm at most % such
that 3(k +3),7 >0, is ﬁ

<k+.i+1
ki A

5(¢)%- maps ¢¥*7 into % Thus the integration operator is multiplication by ¢ composed with convolution
with s. But multiplication on ¢ does not change the norm on tail spaces of H*>*(D) (regardless of whether it

Suppose this Lemma is proved. The integration operator maps ¢**7 into The convolution operator
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is vector valued or scalar valued). Hence, if Lemma 2.9 is proved then we can estimate g € H*(D; LP(X)),
9(0) =0,¢'(0) = 0,...,¢"“"1(0) = 0:

= 1
T oo -LP < C [eS] -Lp o - L .
1T gl izrx)) < Collgllz=oi (X»mZ:lmlcmldm_l
Using Lemma 2.8 we conclude
gl <l S S
gllHe=(D;L?(X)) = 9llHe=(D;LP (X)) medtm—1-—

m=1

Callgll zro ;e (x))d™
Hence we proved that
[ F o @l o (D;Lr(x)) < CallFhy © @l o (pnr(x)d™ (2.5)
Then we get (2.2):
1F Nl e 0asLe(x)) < Call ol 0miznxyd™®
We can now combine this with (2.1) and obtain
| '] roe (0;p (x)) < Ca MI|JAF||Lo(xyyd .
But F(1) = f. Hence we get the proof of the theorem modulo Lemma 2.9:
I fllr(x)) < Co M|AF | pe(xyd™*, Yf € Ta(X).

Proof. The proof of Lemma 2.9. We assume that k is even, which is enough for the proof. We consider

first S(x) = Zj’;l Sinjj””, it is bounded and has Fourier coefficients as we wish: 1/j, j # 0. Now we wish to

change its Fourier coefficients in the interval j € [—k, k] and not change the Fourier coefficients outside this

interval, and make the L*(—n, 7) norm of modified function to be at most Cy/k. Consider nodes z,. := g
r=—-k+1,...,-3,—1,1,3,...,k — 1. The number of nodes is k. Construct the Lagrange trigonometric

interpolation polynomial L (z),

Z St I (sine — sin @,y,)

L2 (Sina, —sina,,)

Clearly Ly (x) has non-zero Fourier coefficients only on [—k + 1,k — 1]. It is easy to check that it is an odd

function. Notice that the sign of S(x) — Ly () alternates, it is a positive function on [0, ;75 ), negative on
(51 k3—j:1), et cetera.
Consider “triangular” cos, call it ¢(z), it is linear on [—m, 0], linear on [0, 7] and ¢(0) = 1, ¢(£7) = —1. Its

integral vanishes. So if we consider ¢((k + 1)z) its Fourier coefficients vanish on [—k, k]. Then ¢/((k + 1)z)
also has its Fourier coefficients vanishing on [—k, k], in particular, the scalar product in L?(—m, )

(Li(@), ¢ ((k + 1)) = 0.

Therefore,
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(S(x) = Li(2), ¢ ((k+ 1)) = (S(x), ¢ ((k + 1)x)) .

But ¢/((k + 1)x = £1, moreover the pattern of signs repeats the pattern of signs of S(z) — Li(x), namely
s 3

=T k_+1)’ et cetera. We conclude that

it is a positive function on [0 negative on (

)

15(x) = Li() ]l = (S(2) = Li(x), ¢ ((k + 1)z)) = (S(z), ¢ ((k + 1)) .

But obviously the right hand side here is at most Cy/k again by noticing that the oscillation of S on intervals
of order < 1/k is ¢/k. Lemma 2.9 is proved and thus the tail theorem is proved as well. O

Remark 2.10. Lemma 2.9 should be very well known and widely used, but I am grateful to Rostislav Matveev
[16] for this elegant proof of Lemma 2.9.

3. On Bernstein—Markov inequality and the dependence on X and p

By L?(X) we always mean LP(Q,; X).
We first cite four theorems from [4].

Theorem 3.1 (Eskenazis—Ivanisvili). Let X be an arbitrary Banach space and p € [1,00]. Then
IAfllLex) < P fllLecx), Vf € Pa(X).
Theorem 3.2 (Eskenazis—Ivanisvili). Let X be a Banach space and p € [1,00]. Then if for all n
IAfllrx) < A =n)d?||fllex), VS € Pa(X),
then X is of finite co-type.
Theorem 3.3 (Eskenazis—Ivanisvili). Let X be a K-convexr Banach space and p € (1,00). Then
IAflLex) < Clp, X)d> =P X | fllpoixy,  Vf € Pa(X),

Theorem 3.4 (Eskenazis—Ivanisvili). Let X = R and p € (1,00). Then

— 2 arcsin 2vp—1
1AfllLr < Clp)d* = v fllee, VS € Pa(X).

Now we will prove the following results.

Theorem 3.5. Let X =R, p € [2,00). Then

— 1 arcsin 2v2—1
IV£llze < Clp)d' ™= v [ fllee, VS € Pa(X).

If p € (1,2) then

, 2arcsin ZVF
VAl < Clp)de ™77 [|fllr, V[ € Pa(X).

Remark 3.6. It is almost Theorem 15 of [4], but we get rid of logd term in the estimate (30) of Theorem 15
of [4].
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We recall the reader that if 1 < p < co then |AY2f||» < C(p)|Vf|lL» for scalar valued functions (the
result of E. Ben Efraim and F. Lust-Piquard [1]). But the opposite inequality true only for 2 < p < oo, [1].
Morally this means that it is more difficult to estimate from above |V f| than A'/2f (even for scalar valued
f). Also clearly the power of d doubles up when we pass the estimate from ||A'/2f||1» to the estimate of
[AVAIZS

When we deal with the P4(X) and X* has type 2, it also has finite co-type r € [2,00) by Konig-Tzafriri
theorem (see [9], Theorem 7.1.14). Then we have the following result.

Jr

Theorem 3.7. Let X* be of type 2 (and automatically of certain co-type r < 00), and p € (1,00), =1,

then

1,1
P q

2
IV 1xlzr < Cp)d? st

|fllLe(xy,  Vf € Pa(X),

where
Vix = (S IDfI%)?
=1

In Section 4 we will prove another version of this theorem. Theorem 4.1 below establishes the similar
estimate but with a different power of d.

Proof. We recall the formula from [11]:

eft

Dje 2 f(e) = mEf (5j(t)f(€1 “&1(t), .- e fn(t))) : (3.1)
Here

&) —et
9;(t) := (=22

where £;(t) are independent random variables having values £1 with probabilities 1i§—t

From (3.1) for every ¢ € §,, we can write

67t

Ve 21 (e)| = (1= 20172 xal =1 ‘Eg z; A0 (0 (e g(t))’ '
E j=

Hence,

67t

VeSO < (= ey i Be| S A0 <

e—t

(1— 20172 xyAlm =1 (Eg‘ i} )‘j(sj(t)‘q> " (Edf(g ' £)|p> "
2 iz

Raise it to the power p and integrate:

—t P . a\ /4
[IVe2 F(e)I2 < (_ZTW) EEelfe- P max (B3 na0[)"" =
j=1

(1 AlAlL2 =1
n
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q)p/q
q>p/q

€7t

E¢E.|f(e-OI"- (m)p e (E§‘ 2&'&'(0
2 iz

—t

e P n
(m) 1£1I5 - A:”J&nHa:;lc:1 (Eg‘ ;Ajaj(t)

Consider the case 1 < ¢ < 2. Then we just use

(Be| Sons0]")"" < (B S nssof ) =1,
Jj=1 j=1

because {d;(t)}}_, is an orthonormal system and [[Al[;z = 1.
We will use this later:

—t

1<g<2=|[Ve 2 f(e)lllf < (3-2)

(&
=l

a\1/q
Now let us consider the case ¢ > 2. In this case we need to estimate (Eg‘ doio1 Aid;(t) ) differently.

First of all we can replace §;(¢) by

< §i(t) — &)
5j(t) = W

with &(t) be an independent copy of &;(t). This is just by Jensen inequality and E¢}(t) = e~*. Random
variables are symmetric and we use the following result.
The following contraction principle is a classical result of Maurey and Pisier (see, e.g., [20, Proposition

3.2]). We spell out a version with explicit constants. 0O

Theorem 3.8. Let (X, | - ||) be a Banach space of cotype © < oo, let by, ...,0, be i.i.d. symmetric random
variables, and let € be uniformly distributed on {—1,1}". Then for anyn > 1, A\1,..., \p € X, and 1 < ¢ <

oo, we have
a\ 1/q

with L, = LCy(X)max(1, (r/q)"/?), where L is a universal constant.

a\ 1/aq o0
) < Lr7q/P{|5(t)1| > s}pmax@n ds (E

0

> A6
j=1

n
E Aj€j
=1

In the current situation X = R, so r = 2 and max(q,2) = g. Notice also that

[ U0 - 01> sytieds =211 = ey,
0

Therefore,

(Eg‘jilkjaj(t)‘q)l/q <cn- e_2t)1/q—1/2 (Ef’jil/\jgj‘q)l/q
C(q)
(1 —e2t)1/2-1/q
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by Khintchine inequality and by [|All;z = 1.
We will use this later: if ¢ > 2 then

C(g)e™" C(g)e™?

Ve 2 f@llly < m\lfllp = mllfl\p-

(3.3)

Now let us use (3.2) for p > 2 and (3.3) for 1 < p < 2 to finish the proof. We can consider x = e~ and
write those inequalities as the estimate of p-th norm of

Fy(x,e) := Zx‘s‘f(S)as, where f = Zf(S)ss, 0<z<l1.
s g

We get
IVFG@ Al < sl Vo€ -1y > (3.
and
IV F@ M < sl W€ [FLLL<p <2, (35)

We initially have this estimates only for 0 < x < 1 but flipping x — —z is absorbed by flipping ¢ — —¢. By
other methods these estimates were obtained also in [4], see (229) and (203) there.

Now we consider an auxiliary domain of the type considered in [4]. Let us fix 8 € (1,2) to be chosen
later. Fix r > 1. Consider lens domain Q(r) = {z : [z —ivr2 = 1] < r, |z + ivr? — 1] < r}. Consider

O(r, B) == (1 - diﬁ)g(r).

Let G, denote Green’s function with pole at infinity of C\ Q(r, 5). It is rather easy to see that

—B————5 =7
Gﬂ’r(l) = d 27w —2arcsin 2 Z 1 , (3.6)

(notice that 27 — 2 arcsin 2V5_1 is the exterior angle for Q(r, ) at corner points of the lens).

We choose 3 in (3.6) to have Gg (1) < %, that is

2 2vp—1
B:foarcsinpi.
™

3.1. Complex variable

Below we repeatedly use estimates on Green’s function and harmonic measure of relatively simple domains
that can be found in [3], [13], [6], [24]. In fact, all those domains below can be transformed to strip domains
considered in [24] by logarithmic mapping. Thorough estimates of harmonic measure on strip domains are
given in [24]. Green’s function estimates and harmonic measure estimates are basically the same things for
simply connected domains [6].

Consider a new function in the complex domain:

H(z) = log [[[VF(z,)]llp -



A. Volberg / J. Math. Anal. Appl. 529 (2024) 127597 11

Notice that this function is subharmonic in the whole C. To see this one should write the norm of the gradient
as the supremum over the dual space LI(€2,,¢2). Then we will get that |||V F(z,)|||, is the supremum over
the unit ball of this dual space of the absolute values of linear combinations of D;F(z,¢). Each such term is
analytic and logarithm of absolute value of linear combination of such terms is subharmonic. The supremum
can be interchanged with logarithm and we get that H(z) is subharmonic.

Let us collect properties of H. As f is a polynomial of degree d, we get that the growth of H at infinity
is majorized by dlog |z|.

In the other hand, we can always think that | f||, = 1, and then we just saw that on the interval
[-1+ 5,1 — 2] function H(z) has the estimate:

F(z)/d?? <1, ifp>2, F(z)/Cd°P <1, ifl<p<2.

Then, say, H(z) — glogd is non positive on [—1 + d%, 1-— %] and is of order dlog|z| at infinity.

But we can say much more by Weissler [25] and Ivanisvili-Nazarov [10]. It tuns out that then H(z) 7/23 logd
is non positive on C\ Q, 3. These are the complex hypercontractivity results.

Hence, using Green’s function Gg , of C\ Q, g with pole at infinity we get that

H(z)— g logd < dGpg (%)
uniformly in C\ Gpg . Hence,

IVEG )y — a0
aer =T

We are interested in this inequality for just one particular z = 1. Now we use (3.7) to have edGsr(1) < 1,
Hence we proved that for p > 2

[IVEQ, )l
Tar =9

Exactly the same reasoning shows that for 1 < p < 2

IIVE(L )l
o =9

Theorem 3.5 is completely proved just by plugging formula (3.7) for 3.

Proof. The proof of Theorem 3.7 follows the same lines, but we need to use Theorem 3.8 for Banach spaces
X*. This is where we use that if X* is of type 2 then is of finite co-type by Koénig—Tzafriri theorem 7.1.14
in [9]. Type 2 is needed to conclude (using Khintchine-Kahane’s inequality, see e.g. [9]):

E‘S Zsj)\j Z&?j)\j

<G INIE)2<C,. o

2

< C,E.
p

3.2. Comparison of AY?- and |V - |x

The reader can notice that in this paper we are mostly interested in bounding the expressions of the type
|V f|x. It would be interesting to get from this the estimates of the expressions of the type AY2f. But for
Banach space valued functions it is mostly an open task.
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For Banach space valued functions f : ,, — X it is not quite clear who majorized whom if we deal with
[AY2 f || Lo (x) and [[[V f]xlp-
We would like to decide (but this is still an open problem) for exactly what class of Banach spaces X

IAY2 Fllr o) < ColllV Flxlp-

We think that this is the class of spaces of finite co-type. In fact, this is one way to express the boundedness
from below of Riesz transform of Hamming cube in spaces LP(Q,,X), 1 < p < oco. For X = R this
boundedness from below is always true, see [1].

On the other hand, the converse inequality, that is the boundedness of Riesz transform of Hamming cube
from above,

IV f1xllp < Coll A2 £l e (x)

does not have a reasonably wide class of Banach spaces for which it holds. For p > 2 and X = R this
boundedness from above holds, but for 1 < p < 2 it fails, see [1].
It can fail for very nice UMD space X even for p > 2.

4. Another exponent in Theorem 3.7

By LP(X) we always mean LP(Q,; X), where §2,, is Hamming cube. Let 1/¢+ 1/p = 1. Let P(d, X) be
the collection of polynomials with coefficients in Banach space X and of degree at most d. We prove that
Theorem 3.7 can be given a different formulation in the sense of the power of d. Next theorem deals again
with X such that X™* is of type 2. In particular, X* and X are K-convex. Let ma denote the angle from
Theorem 2.1.

Theorem 4.1. If f € P(d, X) and X* is of type 2, then |||V flx|lrr < cd* " I fllLe(xy for 1 <p <2, and
IIVFlxllr < CA'75 (| fllLo(x) forp > 2.

Proof. We recall the formula from [11]:

—t

e (5O & 0 on 1)) (4.1)

Dje "2 f(e) = (=

Here

j t)—et
d;(t) == (fi)ew,

where &;(t) are independent random variables having values +1 with probabilities %‘ﬂ
The symmetric counterpart is

’ gj(t) - 53(’5)
8;(t) = m,

where vector {¢’(t)} is independent copy of {&; ()}
We use the notation ¢2 for ¢2(X*) with the norm (Z?Zl Aj11%-)/2. From (4.1) for every € € €, we can
write

€7t

Ve "2 f(e)| = 1—e2)1/2 ,\:Igll\%{:l (Eg‘ Z;éj(tx}\j’ fle: §)>D '
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Hence,

—t

Ve O < gz i, B o000 fle - €0))] =

(1 —e=26)1/2 X7 2 =1

—t

ﬂiw i <E£‘<i 35 (1)A;, f(e- §)>D <

—t

at%mmMmglﬂﬁﬁ Y MECRIBE

N (el o)

—t

) .
et B3
=T A:|\Ii1|6§:1( ¢ ;Ajaj(ﬂ

We wish to prove that if ¢ > 2 then

_ C(q)e~t
Ve @l < o sl @2)
and if 1 < ¢ < 2 then
_ C(g)et
Ve 2@l < o ezl o (43)

a
For that let us work now with the term EgH Z?Zl /\j5j(t)HX for a fixed {)\;} € £2 of norm 1.

> aaof =

;) (¢ )

~ q
Bt = EsH Z)\ﬂj(t)H < E¢e
j=1

E¢ o E

where r; are independent Rademacher random variables.
The next lemma was provided by A. Borichev.

Lemma 4.2. Let a,b > 0 and Q > 2 be a large number. Then
(a+ b)Q < 6a% + QW%

Proof. We need to show that for all positive ¢, (t + 1)? < 6t9 + Q2. If t < Q — 1 this is immediate. If
t>Q—1>1, we write

t+1yQ £ 1yt 1\t
(t—&—l)Q:tQ(%) gt%%) gzt‘?<1+z) <22, O

We continue to estimate BY:

S rasf,)" s

q/
CDq/QEf&’(ZW )"

A0 < CoBee (B
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In the last inequality we used that X™* is of type 2. The penultimate inequality is Kahane—Khintchine’s
inequality, see [9].
Notice that if 1 < g < 2 then the above inequality gives

B < 0,0 (Bee 0PI ) "

J=1

Hence,

n 1/2
1<q<2=B<CDA( Y INI) T <DV (4.4)
j=1

The estimate in case 2 < g < oo is much more interesting.
Now we will continue by thinking that ¢ is an even integer, ¢ = 2k (it is not important, just convenient).
Let us now estimate

n

k
E = Eeo (3 10,0)PINIP) (4.5)
j=1
We denote
fi = 18O P11 (4.6)

Below we use Lemma 4.2 with Q :=¢/2—-1=Fk — 1:

Eeo (X7 [ =Bee S O ) i =
Eeo Y r ((fi4 .. ficr + firr + oo fo) + fo) L fi <Bemma 4.2
(k=1 Ee e S0 fE 4+ 6Eee S0 (fr o fimt + figa + o fu)  Bee fi <
(k=) " Bee D30 fF+6Ee e (X7 [i) " Eee (37 fi) <
(k=1 "Bee Y0, fF+6(k—2)" 2Bee Yoy 1 Bee (X7, f5) +
6 Beer (X7 £)F* [Bee (X7, )] <
(k= 1)FBee S0y fF 4+ 64k — 0 Be e (X7, F ) [Bee (X0, 1)
+65 L [Be o0 (7, £5)]"

We used the fact that 53(15), j=1,...,n, are independent exactly as this has been done in Rosenthal’s [22].
Now coming back to our notation (4.6) we see that as

2m—1

V1= 672tm72 .
Eeo (Y f) < 2I{NHZ,
j=1

E[5;(H) =2, El5;0)|" < (4.7)

22k 20

T 22”A [
N—

Eco (D fi79<
j=1
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Therefore, we can estimate E from (4.5) as follows:

k— k"
E < oat ( IR0 2] + 2450 1126
; [\/1_721@ 20— 2; }

This obviously gives

k—2 n
1 2k—20—2 k—¢
E < 200" Y (k- 0 (=) (D INI2) " A +
=0 Jj=1

247 {0317
And so,
k—2
1 2k—20—2
B < C@I{NHT Y (k- 0" (——=)
Then
Clq Clq
B < %H{)‘j}”éﬁm*) = % (4.8)
(1 —e2t)27 7 (1—e2)27%
Now let us use (4.2) for 1 < p < 2 and (4.3) for p > 2 to finish the proof. We can consider z = ¢~* and
write those inequalities as the estimate of p-th norm of
€)= Zx‘s‘f(S)ss, where f = Zf(S)ss, 0<z<l1.
S S
We get from (4.8) and (4.4) correspondingly that
|z
IIVE (@, )l < mllfllm(xw vze[-L1,1<p<2. (4.9)
||
IIVE ()l < WIIfHLP(X), Vo e [-1,1],p > 2. (4.10)

We initially have this estimates only for 0 < x < 1 but flipping x — —z is absorbed by flipping ¢ — —e¢.
Now consider a new function in the complex domain:

H(z) :=log [[[VF(z,)|xlp-

We repeat verbatim the reasoning of Section 3.1 but instead of domain Q\ Q(8,r) and its Green’s function,
we consider domain C \ [-1+ 45,1 — ], whose Green’s function G satisfies

1

This proves

[IVED,)Ix|lp
dmax(2/p,1) < c.
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But (4.8) and (4.4) can be used more efficiently if we use Pisier’s Theorem 2.1 again. In fact, it can be
used. As X* has type 2, it is K convex. Then X is K-convex. Let us fix § to be chosen later and consider
domain

03,0 = (1 - diﬁ) Og,

where O, was introduced in the previous Section.
As X is K-concave, so is ¢?(X). Consequently (4.8) and (4.4) and Pisier’s Theorem 2.1 applied to
LP(Q,,, /?(X)) show that

[IVE(z,)|x]| < Cd°/P, 1<p<2, <Cd? p>2 2€0p,.
Let G, denote Green’s function of C\ Ofg’a.

We repeat verbatim the reasoning of Section 3.1 but instead of domain Q\Q(3, r) and its Green’s function,
we consider domain C\ Og, whose Green’s function Gg , satisfies

1\owa 1
GraW = (35) 77 =5
if
b=2—q«.
This proves
F(1,-
IVF Il o
dmax(T,T)

Theorem 4.1 is proved. O

Remark 4.3. We already mentioned in Section 3.2 that the boundedness of Riesz transform of Hamming
cube from above,

IV flxllp < Coll A2 £l Lo (x)

does not have a reasonably wide class of Banach spaces for which it holds. For p > 2 and X = R this
boundedness from above holds, but for 1 < p < 2 it fails, see [1]. It can fail for a very nice UMD space X
even for p > 2. Therefore, Theorem 3.3 or other Bernstein-Markov type estimates of AY2f in [4] for X-
valued polynomials f with X being K-convex cannot help to prove the estimates of the type of Theorem 4.1
or Theorem 3.7.

5. Non-commutative random variables and Bernstein-Markov inequalities on Hamming cube

We wish to demonstrate how the technique of non-commutative random variables can be used to prove
certain Bernstein—-Markov inequalities on Hamming cube. The estimates below are not as good as in the
previous Section, and what follows serves only illustrative purpose of showing a beautiful approach.

To the best of our knowledge this approach was introduced by Francoise Lust-Piquard in [14], [1]. Almost
all results of those papers are commutative (with the exception of results on CAR algebra), all methods
are non-commutative. And even though many non-commutative proofs of those papers are by now made
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commutative (see, e.g. [12]), still some non-commutative proofs did not get a commutative analog up to
now.

The non-commutative proof of a certain Bernstein—-Markov inequality below is given not because of its
efficiency, but because of its beauty.

We will prove now that for p > 2

[ = Rydeg f <d = [[[Vfll, < Cpd|fllp (5.1)

which is worse than Theorem 3.5.
Let

0 1 0 =1 .
Q= {1 0}, P= [Z (ﬂ U =iQP.
They have anti-commutative relationship

QP =-PQ. (5.2)

Let Q; = I®...Q®1---®I, P =1®...P®I---®I, on j-th place. These are independent non-commutative
random variables in the sense of tr = sum of diagonal elements divided by 2™.

Put Qa = ;caQi, Pa = 1lical;

Now one considers algebra generated by @)}, P; (this is algebra of all matrices Man ). We have a projection
P from multi-linear polynomials in P;, Q; (notice P? = I, Q* = I that kills everything except terms having
only @’s.

Small (really easy) algebra shows (see [1]) that P can be written as p Diag p*, where p is a conjugation
by a unitary operator, and Diag, is an operator on matrices that just kills all matrix elements except the
diagonal. This Diag is obviously the contraction on Schatten-von Neumann class S, for any p € [1, 0]
(obvious for Hilbert—Schmidt, p = 2, class and for bounded operators—so interpolation does that).

R(0)Qa =1Ljca(Qjcosd + Pjsing), R(6)Pa =Iljca(Pjcostd —Q,;sinb).

One can easily check that the action of R(6) is R(0)*TR(f) where R(f) is a unitary matrix which is n-fold
tensor product of
1 0
Po = I:O ei0:|

Extend it by linearity onto the whole algebra Man. Then it is obvious that automorphism R(6) preserves
all Schatten—von Neumann .S}, norms.

For any [ = ZAC[H] f(A)e?, the reasoning of [1] dictates to assign a non-commutative object, a matrix
from Maon given by

Tr= > f(A)Qa.

AC([n]

Such matrices form commutative sub-algebra Man C Man. Operators d;, D; can be considered on Mon,
acting in a canonical way. For example,

12 fEA,
0iQa = QA.\ ,1 '
0,ifi¢g A.
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And Dz = Qi&».

Consider now a matrix valued function

It is a trigonometric polynomial of degree at most d with matrix coefficients. Bernstein—Markov inequality
(its proof) works for such matrix valued polynomials in exactly the same way as for scalar polynomials. The
easiest way to see that is to prove Bernstein—-Markov estimate by convolution with Fejer kernels. Then we
get

| 40|, <20 . 1<p<oo

Sp

On the other hand we can calculate easily -LR(6)(Q4) =

- Z IMica,icj(cos 0Q; + sin OF;)((—sin0Q; + cos 0P )ILic a,i~;(cos 0Q; + sin O F;) .
JjEA

By commutativity relations between P;, ();, we observe that this is nothing else but — ZjeA R(6) (PjanA).
Hence

4 40) = d%R(o)Tf - 772(0)(2 Pjaij) . (5.3)

Therefore,

n

IRO) (Y PiosTy ) ls, < 24 [ROT s,
j=1

Transformation Ry preserves S, norms (see above), and so
1Y Po;Tyls, < 2d|T¥lls, - (5.4)
j=1

Let sgk) = —1if j = k and = 1 otherwise. Following [1] we see that || >>7_, P;0;T¢|s, = | 2_.
This is because

" p.o,Ty|s,

Jlj P

c(O"Pi0;Qa)Qr =Y P0;Qa, VA,
j=1

Jj=1

by anti-commutative relation PQQ = —QP. Hence, for any sequence of signs

| ZPa Tylls, = |l ZEJP 9iTslls, -

j=1

Now one should use a non-commutative Khintchine inequality of Lust-Piquard and Pisier [15] and 2 < p <
00:

n n . 12
E.| Y e P0;Tylls, =p |(D_(0;T) Py P0sTy) " " |ls,+
=1

Jj=1



A. Volberg / J. Math. Anal. Appl. 529 (2024) 127597 19

(ZPjaij(aij)*Pf)l/lesp :

Jj=1

But Py P; = Pj2 = I, and in the second term P; and 9;Ty commute (as there is identity matrix on the j-th
place of 9;T). Therefore

n

||(Z(aij)*Pijaij)UQHSP + (D PoTH(0;Ts) P s, =

j=1 j=1

- %
21(> (05T 0;Ty) s, -
j=1

Using (5.4) we conclude that for p € [2, 00)

n

« 1/2
1> @1 0;75) lls, < Cpdl Ty lls, -

Jj=1

Both matrices in the left hand side and the right hand side are form commutative algebra M,,. They are T}
and Tyy|. It is left to notice that for any scalar function f on Q,, we have ||T¢||s, = || f|/z»(q, - This is just
by using the basis of characteristic function of point sets {e} on Q, to compute the S, norm of Ts. This
basis consists of eigenfunctions of T with eigenvalues f (). This is easy, see in [1].

We finally proved (5.1) by non-commutative approach of Francoise Lust-Piquard.

6. Addendum 1: Fourier coefficients of conformal map ¢

We consider the domain
O, = -Gy, UG,,

where G, = {w:w = e %, |arg 2| < T2}, It is not very difficult to write down the boundary of this domain
(see Section 7 below, where we partially do this). Then one can notice that it consists of two real analytic
curve I'y, I'_ | symmetric with respect to R and forming angle 7 at —1, 1.

1: 0, — D can be extended to a slightly wider domain bounded by real

Hence, the conformal map ¢~
analytic curves v,4,7v—, such that «, lies a bit higher than I'; and meets I'y at +1, and forms angle 77
with T'y at points £1, where 7 is a small strictly positive number. Symmetrically for y_,T'_.

Then conformal map ¢ is extended to domain R bounded by two symmetric real analytic curves, inter-

secting T only at £1 and making angle (o + 7)7m with T at those points.

Then
1 11,
on= [ et ———/ Mo = [ el
OR

T

Now we us that on IR, 1 we have |1] < for z = x + iy. We get

= 1+a("')|7/\
2 2 20
1 1 apnl/o
nl S [ gty S [y = [t g,
0 0 0
The last integral is < -1z [~ e e=bs g <
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7. Addendum 2: boundary of O, and getting rid of £ in the proof of Theorem 6 of [4]

This section explains how to get rid of an € in a theorem of Eskenazis and Ivanisvili [4] This ¢ was also
avoided by a different approach already by Mendel and Naor [17]. But the proof in [4] is easier and it seems
to be nice to push it to the level of result of [17] by eliminating this irritating e that otherwise blows up the
constants. This is what we will do now.

We consider two domains

Q(r) :={z€ C:max{|z —ivr2 =1, |z +ivVr2 =1} <r},

and
O, = -Gy UG,,

where G, = {w: w = e7*,|arg z| < 5*}. We would like to compare those two domains for

1
mo = 2arcsin — . (7.1)
r

The choice of r is dictated by the fact that for this choice the angle that the boundaries have at point 1 is
the same (and symmetrically at —1).

It is not very difficult to write down the boundary of O, we will do this now for its parts near points
+1.

Define a as follows tan"* = 2. Let us consider G, N {Rz € [0,5]}. Consider G,(a/2) =
e~ GanR=€0.31} = fw = u+iv =%, 2 € Go N Rz € [0, 2]}. It consists of arcs S of the circles centered
at point (0,0) of radii e7,0 < t < ¢, and each arc is symmetric (w.r. to R), and has angle 2arctan Zt.
In particular, S,/ is a half-circle that intercepts v-axis at points +e—9/2

Go(a/2) consists of Sg 9 and of two real analytic symmetric (w.r. to R) arcs, one of them I'(a/2) (the one

. The boundary of the domain
in C.) being given by parametric equation:

I'(a/2) : u:e*tcoszt, v:e*tsinzt, 0<t<a/2.
a a

. . . . 2 . . .
We also have an interesting circle of radius r := /1 + % = ﬁ, with center at —ivr2 —1 = —ir =
2
uxe’

—i cotan( 7).
Let us check that I'(a/2) lies below the circle, in other words that

2 2 2
(e_t cos Et) + (e_t sin Et + 2) <1+ a—Q, for small t > 0.
a a s T
This is the same as

a T
e 42 P 2gin—t < 1.
T a

We write

42 83 2 3
1—2t4 — — — 4+ 420l —t+———=+. )t —ct’+...) =
+ 5 g Tt ( to g T )t —ct®+...)

4
1+t3—§t3—2ct3+-~-<1,



A. Volberg / J. Math. Anal. Appl. 529 (2024) 127597 21

if ¢ is small as ¢ is positive. So the lens domain Q(r) of [4] seems to contain O, at least it is not contained
in it as I'(a/2) lies inside Q(r).

That represents a small problem for [4] because inclusion (103) there is not valid if one chooses r according
to our preferred choice (7.1). In its turn this is reflected in the formulas for conformal mapping one uses
around (103). But the formula for conformal mapping of the unit disc onto Q(r) is straightforward.

But if one chooses r not according to (7.1) but smaller, than the angle of the lens domain at +1 is
smaller than ma and inclusion (103) holds. Thus Theorem 6 of [4] reproves the heat smoothing result of [17]
with A(p, X) > é, where « is the angle from Pisier’s Theorem 2.1. But one can notice that just a small
improvement in [4] reasoning gives the heat smoothing result with A(p, X) = 1.

Let us indicate this small change that should be implemented to get A(p, X) = é in Theorem 6 of [4].

As, in the contrast to (103) of [4], we have Q, C Q(r) with r as in (7.1), then one need the estimates of
conformal mapping of the disk onto O, (the smaller of two domains). Of course the angle that boundary
of O, form at point 1 (and —1) is just 7« (in notations of [4] it is #). This angle is the same for Q(r). But
this observation is not enough to conclude the same asymptotic for conformal maps on these two domains.

However, this is a not a real problem. It is easy to see that asymptotic is in fact the same. To see that one
transforms ,, and Q(r) to strips by logarithmic map and then one uses Warschawski’s estimate from [24],
pages 280-281. It shows that asymptotic is the same because one can easily compute that [*° ©’(u)?/O(u) du
converges, see [24], pages 280281, for the explanation what is ©(u) for strips.

The heat smoothing conjecture of [17] claims that A(p, X) = 1 for K-convex X, but it is still a conjecture.
The important time is ty = d%. The estimate of Theorem 2.6, or slightly strengthened estimate of Theorem
6 of [4] or Theorem 5.1 of [17], all those estimates show that if X is K convex, then for X-valued f in the
d-tail space

HeftOAfHLP(X) <Ol fllzr(x) -

This does not give us any interesting information. What the heat smoothing conjecture basically says is the
following, let o be the angle from Pisier’s Theorem 2.1, then

to = [le 2 fllox) < e fllrx). e(d) =0, d— oo.

s

This is still open.
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