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1. Introduction

Let E be a subset of the unit disk, D. The Buffon needle problem wants to determine the probability
with which a random needle or line intersects E provided that it already intersects the unit disk. At the
same time, let Iy be the line passing through the origin and forming angle 6 with the horizontal axis. The
Favard length of E is the average length of the projection of E onto ly when averaging over all angles 6. It
turns out these two quantities are proportional.

Now, consider the following picture: let us have L many (L > 3) disjoint closed disks (Dy,...,Dy) of
diameter 1/L and strictly inside . These are disks of the first generation. Consider also a piecewise affine
map f = (f1,..., fr) from those disks onto D. Then, f~1(D) = D;U- - -UDp. Furthermore, f~*(D,U---UDy)
it consists of L? disks (groups of L many disks in each D;); we call those disks of the second generation.
We can iterate this procedure: denoting by U, the union of disks of the n-th generation, where U; :=
D1U---UDyp, we form the self-similar Cantor set K = ﬂflozl U,,. This has positive and finite 1-dimensional
Hausdorff measure; thus it is completely unrectifiable in the sense of Besicovitch [8]; and thus its Favard
length is zero [8].

Of course, the disks can be replaced by other shapes. For example, U; can consist of L disjoint squares
with side-length 1/L inside the unit square [0, 1]?> (where the word “strictly” can be omitted but “disjoint”
cannot). One of such Cantor sets is a rather “famous”, namely the 1/4-corner Cantor set, Ky /4 (see [7]).

The L~"-neighbourhood of such sets is roughly U,,, and therefore its Favard length
Fav(U,) — 0, asmn — oo.

But what is Fav(U,,), or what is the speed with which Fav(U,,) decreases? Nobody knows exactly, but there
has been considerable interest in recent years. It is now clear that the answer may depend on several factors;
the magnitude of L; the geometry of Us; the subtle algebraic and number theoretic properties of a certain
trigonometric sum built by the centres of the disks of the first generation. See [2-4,6,10] and the survey
paper [5].

For the 1/4-corner Cantor set K;,4 in particular, the best known estimate from above for its 47"-
neighbourhood is

C.
FaV(N4—n (’Cl/4)) < 1o Ve > 0,

ne

for all large n. We suspect that this estimate can be improved to

C
Fav(Ny-—n(Ky/4)) < nlj_s, Ve > 0,

but at this moment this is only a conjecture.
On the other hand, there is a universal estimate from below obtained in [9] for every self-similar Cantor

set constructed as above:

Fav(N,-n (K)) > —. (1.1)

Slo

For any concrete set, this bound from below could be improved. In fact, it is proven in [1] that for the same
1/4-corner Cantor set Ky /4

1
FaV(N4—n(IC1/4)) > ¢ Ongn
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For random Cantor sets the situation should be simpler. With large probability, Mattila’s lower estimate
(1.1) is met by the same estimate from above (with a different constant). The problem is that in general
there can be many different models of randomness.

In this note, we are interested in an analogue of the random Cantor set appearing in [11] and in [12].
In our case, this will come from the random Cantor disks constructed below at Section 2. The model of
randomness presented here is somewhat different from the ones in the above two papers, but it amazingly
exhibits the same behaviour, as we’ll see below in our main Theorem 1, which we contrast with [11, Theorem
2.2] and [12, Theorem 1].

In particular, we prove an analogue of [12, Theorem 1]. Unfortunately, the randomness of the disk model
we study here is not equivalent to that of the random (square) Cantor set R = (o—, R, from [11], but
it is nonetheless closer compared to the one consltructed in [12]. The essential difference between [12] and
1,2 4n=

s Wins o+ oy W , which are here allowed to be distinct and independent

our consideration are the angles w -

whereas in [12] are all equal. So, our model is a little “more random” than the random Cantor sets of Zhang
in [12].

We introduce our notations —some borrowed from [12]— in the next Section 2. The problem of interest,
namely the Favard length of a random planar disk-like Cantor set, is explained in Section 3. Our results
and their proofs are postponed to Sections 4 and 5. In Section 6, we compare the differences and difficulties
between our work and that of Peres and Solomyak’s and Zhang’s.

2. Cantor disks

Our work will be heavy on notation; without any ado let us introduce our basic “vocabulary”.

The letter n will stand for a (large) positive integer.

The letter w will be used to denote angles with values inside the interval [0, F]. Now, let us consider a
'3
in wy denotes the position of the angle wy within such a word of length n. We refer to the position of an

word of length n made of the alphabet of angles in [0, Z], i.e. a word of the form wjws - - - wy,. The subscript
angle within a word as the depth of that angle.

Our operators, which we will introduce below, are such that every choice of an angle, say, wy necessitates
four different independent choices for the angle ws; every choice of the angle ws necessitates four different
independent choices for the angle ws; and so on up until depth n where we will have 4"~! different angles
wp. In order to differentiate between all those, for each j, = 1,2,...,4*~1 we write wy* for the jj-th choice
of an angle wy, at depth k. Notice there are 4*~! such choices. Therefore, a typical word from our alphabet
of angles looks as follows, where we note that w;* € [0, 5]

jlz]-v jk:1727"'74k_17

Ji, Jj2 Jk jn -
e wd where jo =1,2,3,4,

wl w2 ...wk
Jn=1,2,...,47 1,

At certain instances, we need to consider cumulatively all angles of a certain depth; given a collection of
words of length n, for each k =1,2,...,n let ), be the collection of all 4*=1 many angles at depth k, that
is

k—1
W = Wy wi ).

With this notation, we may use the symbols w1, w{l, wi, and w] interchangeably as these all refer to the
same single angle.
All the above give to our angles the structure of a rooted tree of height n with root w; and such that

2], and are independent from each

each parent has four children as in Fig. 1. The vertexes have values in [0, §
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Fig. 1. The n-tree of angles with root wj, all angles of depth 1 to 3, and the subtree w; "y of height k with root w; “ii1 at depth

n — k + 1. All angles are enumerated. (The exact values of j, and jn depend on j,_k+1.)

other and from their predecessors and ancestors. This tree we denote by wj - --w/,; the trimmed tree with
root wy and height k we denote as wj ---wj, (for any k = 1,2,...,n). For the subtree of height n — k + 1
with root w , which reaches up to the leaves (that is, from depth k till depth n with starting vertex w- )
we write @/, Later on, we will be working with rooted subtrees of the form &’ i1 To reiterate, @ k’“ﬁ
consists of the angle wfl"_ i1 (asits root) along with all the angles from depth n — k& + 1 till depth n (which
have wﬂ"_’k"ﬂ as an ancestor). This has height k. Alternatively, ZL" “nqq is the collection of all the words
(from our alphabet of angles) which have depth (i.e. length) &k and the first letter is wff il There are 47~ F
such words.

Next, we will need to introduce certain operators and sets. The main objects of interest will be the
operators Dy (k = 0,1,...,n) which will act on trees of angles of depth k. To understand these we need
some auxiliary constructions first.

For any angle w and for a = 0, 1,2, 3 consider the transformations
1 3 o)
Tg(2)= 72+ Ze@‘rw)l (2.1)

where 2 is any number on the complex plane C. Observe that if D is the unit disk, 79(D), T9(D), T9(D), and

T9(D) are disks of radius 1/4 centred respectively at (3/4,0), (0,3/4), (—3/4,0), and (0, —3/4). Introducing

an angle w in T (D), rotates (about (0,0)) the aforementioned disks by angle w in the clockwise direction.
Moreover, given an angle w}* from depth k let QJ * be the set

3 .
. 1 L
QF = U —4k71Ta’€ (D).
a=0
That is, Qj’“ is a collection of four disks of radius 4=% with centres (0,43/4%) and (£3/4%,0) rotated
clockwise by wi*. An example of Q0 appears on Fig. 2.

We also give an enumeration to all the disks for all depths. We number the disks of Qj’“ so that
L ka (D) is the (47 — 3+ a)-th disk at depth k. We call this the k- depth enumeration (of the disks lying

Ik—T
- sk—1

at depth k). Illustratively, we note 4k,lTOw’“ (D), 4k1,1T1°J’“ (D), 7= ITW" (]D)7 e ITW" (D) are the 1st,



D. Vardakis, A. Volberg / J. Math. Anal. Appl. 529 (2024) 127622 5

Fig. 2. The collections Dy, D (w}), Da(wjw})) and Q3.

2nd, (4% — 3)-th, 4*-th disks of depth k. We retain this enumeration as we translate these disks at different
positions on the plane. This will be useful to track down each disk at each step so that our subsequent
constructions make better sense.

2.1. The D operators

Now, we are ready to introduce our main protagonists. The operator Dy, acts on the collection of trees (of
angles) of height & and for each such tree outputs a certain collection of 4% disks of radius 4=%. We define
these inductively below.

To begin with, set Dy =D to be the unit disk.
Next, we define D; by

3
Di(wy) =0 = | Ta" (Do), (2.2)

a=0

that is, Dy (w}) consists of four disks of radius 1/4 centred at (0,£3/4) and (£3/4,0) rotated clockwise by
wi. Recall these disks are enumerated as in Q} above.

For the operator D, consider a tree of height 2, wjw}, which consists of the angles w}, and w3, w3, w3, w;.
Then, we define Dy (wjwh) to be the collection of disks constructed as follows: Replace the 1st, 2nd, 3rd and
4th disk of D; (w}) respectively by Q3, Q2, Q3 and Q3. By “replacing” we mean the translation of QJQ in such
a way that (0,0) is translated to the centre of the j-th disk of D (w}).

Consequently, Do(wjwh) consists of 42 disks of radius 4=2 translated appropriately so that each (2%2
(which is a collection of four disks) replaces one of the disks from D; (w}). For example, the set Q2 is in fact
a subset of the 1st disk of D;(w’); actually Da(wjwh) C D1(w)). Again, the disks comprising Ds(wjw}h) are
enumerated to match Q3, Q2 Q3 and Q3 as we described above. Also see Fig. 2.

Continuing inductively, the operator Dy, acts on the tree wj - - - wj, in this manner: Consider the collection
Dy—1(w] - --wj_;). These are 4°~! many (enumerated) disks. Replace the 1st of them by Q%, the 2nd of them
by Q2, etc., until every disk of Dy_1(w} - --w},_,) has been replaced by four smaller ones. This replacement
is done so that (0,0), as the “centre” of Q7 | is translated to the centre of the j-th disk of Dy_y(w} - -w) ;).
That is, we substitute the j-th disk (from depth k& — 1) with the (45 — 3)-, (45 — 2)-, (45 — 1)-, and 4j-th
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disks of depth k. The resulting collection, which has 4% many disks of radius 47, is Dy (w] ...w},). It holds
that Dg(w] -+ w},) C Di—1(wf -+ wj_q).

In the present work, we will study the collection of disks D,,(w] - - -w!) where the angles wi’“ (for j =
1,...,4Vand all k = 1,2,...,n) of the tree w} - --w!, are chosen randomly with uniform and independent

distributions on the interval [0, 7].

/

Let us describe this picture once more before moving on further. The set D, (w] - - - w!,

) cousists of 4"
disks of radius 4~". These can be separated into 4"~! groups of four, which are copies of

3
. 1 win
Qin = U 4n_1Ta" (Do)
a=0

translated appropriately within the unit disk so that the “centre” of QJr is placed at the centre of the j,-th
disk of D,,_1(w} ...w!,_;) for j, = 1,2,...,4"" 1 That is, each of the 4"~ many disks at depth n — 1 of
radius 4~ ("1 is replaced by four smaller ones of radius 4~". Fig. 2 depicts D,, (W« -w)) forn=0,1,2.

3. Favard length

Recall the Favard length of a planar set £ C C is the integral
1
Fav(E) = — / |projy E| df
T
0

where proj, F is the projection of E onto the line with slope tan @ passing through the origin, and |A| is

the (1-dimensional) Lebesgue measure of A.

, 2] with root wy and four branches at each vertex, and

Now, consider an infinite tree of angles from [0
let D be the limit set

Notice that by construction, D a purely unrectifiable planar set. As such, Fav(D) = 0 and by dominated
convergence Fav(D,,(w] - - w},)) — 0 while n — co. In fact, if the angles are randomly chosen uniformly and
independently over [0, 7], by dominated convergence and Fubini E[Fav(D)] = 0 and E[Fav(D, (v} - --w;,))] —
0 as n — oo, where the expectation is taken over all such angles.

The question arises as to the rate with which E[Fav(D, (w] ---w.,))] goes to 0. This we answer in the

following theorem:

Theorem 1. Let n € N and consider a tree of angles of height n with each vertex having four branches.
Suppose that the angles w}* (for all jr = 1,2,.. 41 and all k = 1,2,...,n) are chosen randomly with
uniform and independent distributions on the interval [0,%]. Also set w) = (wj,wi, ... ,w%kil) for each

k=1,2,...,n. Then, there exists a constant ¢ > 0 such that for any 6 € [0, T] it holds that

E,

=~

e, [P0}y D] -] <

n =

Vn € N. (3.1)
Consequently,

Epr... o [Fav(Dy (o) - - )] < % VneN (3.2)
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and also

/ /

liniinanav(Dn(wl cewy)) < 00 VYn € N almost surely. (3.3)
Clearly, (3.3) follows from (3.2) by an immediate application of Fatou’s lemma, whereas (3.2) follows from
(3.1) through Fubini.

4. Statement and use of the main lemma

The present and the following sections are dedicated to the proof of (3.1). Towards this goal, we need
to introduce Lemma 2 below, which describes the decay of the average projection when transitioning from
depth k to depth k + 1. The main difficulty will come from obtaining the square factor appearing in (4.1),
which emanates from the naturally occurring overlap of the projections.

From now on, suppose we are given a tree of angles of height n with four branches at each vertex where

the angles are uniformly and independently distributed random variables on the interval [0, §]. Recall that

given such a tree @iﬁ’k’“ﬁ is the subtree of height k with the vertex wi’fk’cﬁ as its root. Observe that

-J1 _ 1 /
Wy =wpcrwy

For any 6 € [0,%] and all k =1,2,...,n, define the following quantities

is the full tree whilst wi" = win (4, = 1,2,...,4"7 1) are its leaves, i.e. trees of height 1.

2
Di* = By [projy Dy (@), Jn=1,2,..,477
Dyt = B proj D@ 5f1)| s ki = 1,2, 477
Dy =D, =E_ projy, Dp (@), =1

Notice that, because we are averaging over the independent and identically distributed wi"’,
Di=D?=...=D!""  foranyk=1,2,....n
Therefore, it suffices to work with D}; the rest should be identical. Also, note that
D), =E....r, |Projy Dp(w) - -wy,)| .
Now, we are ready to state a simple but important lemma. Also, see [12, Lemma 2.1].

Lemma 2. With notation as above, if wi’“ are uniformly and independently distributed random variables on
[0, 3], there exists a constant ¢ > 4 such that for any n € N (and any 6 € [0, 3])

Di <Dy —c'(D})?  forallk=1,...,n—1. (4.1)

In our computations later, we will have that ¢ = 12v/2. But this is possibly not sharp.
Provided this holds true we can give a very compact proof of Theorem 1 using induction:

Proof of Theorem 1. Let ¢ be as in Lemma 2 and note that D < D} <2 < . Also, Di < c.
Next, assume D}, < 7 for some 2 <k <n — 1. From Lemma 2, and by the monotonicity of the function
x —a?/cin [0, 5], we see that

_ c c k—1 c
Do S Di= DR < - g = e < 5y
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Therefore, Di < 7+ holds for all for 1 <%k <n —1 and thus for k = n we get
Ew@--wg |pr0j6 Dn(wll o w;?,)| = Dl <

This is (3.1). Equation (3.2) follows after integrating with respect to 6, and (3.3) after applying Fatou’s
Lemma. O

5. Proving the main lemma

Whatever follows is dedicated to the proof of (4.1).

First, we rewrite the length of the projection of a set in more convenient way. Let [y and lé‘ be two lines
through the origin so that Iy forms an angle 6 with the horizontal axis and lé‘ is perpendicular to ly. Also,
let n be the unit normal vector of [;. The length of the projection of a planar set E C C onto the line ly
can be written as

projy E| = [{t eR : (lz +tm)NE # 0} = / dt. (5.1)

(Ig +tn)NE#0D

For brevity, we denote the line I + tn by ;- (t) where ¢ € R. Additionally, because of the symmetry of
our considerations, we can assume without loss of generality that 6 = 0 —as we will average over all 6 at
the end. So, we can simply omit writing 6 altogether from now on.

The idea behind Lemma 2 is to look at the collection D, (w] - --w},) at depth n but “zoomed in” so that
it looks like depth 1. Then, we go one level up and look at the disks of depth n — 1 and n zooming in
enough so that they to look like depth 2; and so forth. If we rewrite the projections in the form of (5.1), the
average overlap at each level is of at least a square factor compared to the total average projection of the
level above.

This last comparison is paramount to the proof. It will follow from the fact that the disks in our con-
structions never get too close to one another. In fact, this observation is not true in the case of the random
square Cantor sets, which is the reason why we cannot directly apply the arguments here to the setting of
[11].

Let us proceed with the proof of (4.1).

Fix some k = 1,2,...,n and recall that by construction (eq. (2.2))

3 1
Di(Whopy1) = U 75" (Dy).
a=0

This means that each disk from the collection Dy (@} 41) lies inside one of the above four disks, and
therefore we can separate Dy, (@711_ r+1) into four groups of disks depending on their positioning at depth 1.
More precisely, for each o = 0, 1,2, 3 define 7;{“(@111_,%1) as

T @npgr) = Ta" (Do) () Prl@p—psn): (5.2)

That is, the set T2 (w;_, ;) consists of those disks of Dy(@;_, ) which lie inside the j-radius disk

UJl
To." "t (Dp) as in Fig. 3. We can think of 7:5(@}17,%1) as the East, North, West, and South parts of
Dy (@;,_j41) respectively for o = 0,1,2, 3. From this definition, it is also clear that
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T1 (Wn k+1) —71( Wy 10 Wi k+2)

T k1)

2
Wi — k42

1
Whn—k+1

Dk(‘:’}hkﬂ)

T (@ k1)
7§k (‘DvlLfk+1)

Fig. 3. The four groups of disks at depth k rotated by w,ll_k_'_l, which make up Dy (&i’,—k+1)'

Di(@ppr1) = |J TH@h_ii0)- (5.3)

~41-3+a _ ~lta
et 2 W, % to- (Recall our

In fact, 7F(w;)_, 1) depends only on the angle w;_, ., and the subtree @
enumeration of the angles in Section 2.) Thus, we can write TF(w)_,, ) as

T (@nir1) = T (@ geg1s On i 0)- (5.4)
5.1. Key observations

There are two key observations regarding the sets T (w0l . 41)- First, note that each point of the in-
1
terval (—1,1) can be covered by at most two of the projections projTa" ***(Dy) for different a’s. Since

Ta(@) _ky1) C T ~"*1(Dy), the same holds true for proj 7F (@} _ 441); the intersection (N, proj T (@) _,41)
is empty when the intersection is over more than two values of «.

Second, we can compare the average projections of T¥(wh ., ) =TF (Wl 441, @ :LJFIH_Q) and Dk,l(&)}:%_ir?).
Notice that both these collections consist of 4*~! many disks, which in fact have the same n-depth enumer-
ations. This means that they correspond to the same disks of the collection Dy, (w] - - - wl,). The difference is
that the disks of the former are translated according to D;(w) +1) and have radius 47F whereas the ones
of the latter have radius 4=(~1).

Consequently, 7T (wl_, ;) is a shifted copy of Dy_1(wht%,,) dilated by a factor of 1/4. (See Fig. 4.) As
such, the (average of the) projections of TF(w}!_, ) and Dj_ 1(@ht k+2) should also differ by a factor of
1/4. In other words, for any o = 0,1,2,3 we have

Eos_yp Pro T8 @noin)| = EBur_, Eaea | [Prof T (@n e ©,5020)|
1 N (5.5)
= ZEwHQ |pr0J D1 (w n— k+2)| :

5.2. The estimates

Utilising the above, we can now estimate D} in terms of D}_;.
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7—1k((:)711—k+1) Dk—l(ai—kﬂ)

TG igr)

1
Wn—k41

Dy(@yy 1) Q

G

2
Wh—k+2

k(o1
Ts' (@ ky1)

Fig. 4. Dilating le(LD,,L,kJA) by 4 gives a copy of Dk,l(@i7k+2).

For starters, note that from (5.3) we can write

Dy =Eg: e |proj Di (@5 411)|
3
= (Z) Z pI‘Q] n k-‘rl) W k1 Z |pI‘OJ n k+1)mprOJ7;3( n— k+1)|+
a=0 a,B=0
a8
3
+Eor Y [proi T (@) _pr) Nproj T3 (@h_gr1) N proj T (@ _jsr)| —
a,B,y=0
a# By
7E |pI‘OJ76( Wy — k+1)mprOJ7—l( n— k+1)mpr0.]7—2( n— k—&-l)mpro.],]?’)( n— k+1)|'

The last two lines equal 0 from our first observation above (in Section 5.1). Furthermore, we can disregard
all but one of the summands from the second sum to get an inequality:

3
D L g Z|pf0J Wn— k+1)‘ ]E@Lk“ |Pf0J7B( Wn— k+1)ﬁpr0JT1( n— k+1)| (5.6)

This last step might seem rather crude, but it will suffice for our purposes. Besides, Theorem 1 eventually
establishes an equality considering Mattila’s lower bound.
Utilising (5.5), we see that

@y k+12|pr037 n—k+1) ZE ita |proj Dp1(w o)

= Z(Di—l +D;_+Di_,+Dy_y)

= Dliflﬁ
since Dt = D}, for any a = 0,1,2,3. Applying this to (5.6), we get
Dj, < Dj_y —Eg1 . [proj T¢" (@ _g41) N Proj T (@p_jy1)]| - (5.7)

The final big step is to estimate the overlap term |proj T (w;: _, 1) Nproj TF (@}, ;)| from below. But
recall that T (wl ;) and T{*(@}._, ) depend (aside from w}, k+1) respectively on @) _, ., and @2 _, .,
as in (5.4).

First, we average With respect to the subtrees LD}L g2 and wa k12> and afterwards we integrate over their
common ancestor w! +1- To simplify the notation, let us write wl 2 4o for both the subtrees ol 4o and

@2 _ 1o Then, we have
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Esrz ., |p10j Tg" (@~ 1) N PrOj Ty (@i 1) |

=Eg |P1"0J75( Wh 1O gra) PO T (W) poyy, @ @p_joio)|

/P_12k+2( ()076( Wh— k1) W k+2)7é® AND ZL()ﬂﬁ( Wh— kg1 Wi k+2)7é®)dt

El

(CRY)

P12 2( ()ﬂ%( Wn—k+1: W TlL k+2)7é(/)) P@}LfH ( ()07-1( Wn—k+1s W 121 k+2)?é®)

The 3rd equality above holds because for a fixed angle w} 41 the events

{ll(t) N Toic(wrll—kﬂaa’rliiw) # 0}

for different a’s are independent.
It would be very nice if these two events would have the same probability for each ¢. Then, we would use
Holder’s inequality to get that

5(W7117k+1):/[P; HQ( () N To (W15 @ k+2)7é®>]2

20(/Pw;k+ () N T @l k+2)¢®)dt)2-

Unfortunately, this is not the case.

Nevertheless, there is a way to approximate the overlap &(w),_ ;. 1)-
To keep things clean, let us denote

o o 3
b= Wy V1= Op e, V2= 00 phn and s(¢) = 1(1 — cos 1),

and keep all angles fixed for now.

As discussed in Section 5.1, the average projections of T (1, 1"') and T (¢, 1?) are shifted (and dilated)
copies of Dy_1(¥") and ’Dk_l(d)Q), respectively. In particular, proj 7¢(0, ') and proj 7;(0,¢") are disjoint
(cf (2.1) and (5.2)).

A simple geometric consideration (see Fig. 5) shows that the projections of T¢*(0,') and T (1, 1!) differ
only by a shift of s(v), i.e.

proj T (¥, ¥') = s(¥) + proj Tg*(0, ).

Similarly, the projections of 7{¥(¢,4?) and 7§ (0,4") differ (on average) by a shift of s(¢) — 5)
As a consequence, the events

{F&) N Ty @, 0 #0} and {I7() N T (v, 0%) # 0}

might not have the same probability, but their probabilities are equal to

Py (") N T30, 9Y)



12 D. Vardakis, A. Volberg / J. Math. Anal. Appl. 529 (2024) 127622

T (v, 47)
760,91
sW—3) .
PR SU— 1 1
(0,0) Jv — —~ lo (z-axis)
s(¢) L s(¥)
T3, 9

Fig. 5. The projections of 'Tok (¢,%) and 7’1’“ (¢,) are contained in copies of the interval (%, 1) shifted by s(¢) and s(v — %),
respectively.

for some appropriately shifted ', since 1! and 1? are independent. We make this explicit in the following
lemma.

Lemma 3. With notation as above, it holds that
Byu (1) VT (0, 81) #0) = By (1t + 5() NT£(0,0Y) # 0)
and
Pye (L0 N T, 9%) #0) = By (Kt + 5w = 2) NTF0,8") #0). (5.8)

With Lemma 3 at hand along with (5.1), we can rewrite the overlap with our current notation in a more
convenient way. First, let us denote

F(t) =Py (I (1) N T3 (0,4")) . (5.9)

Then, we see that

Pou (M) N T (0, 91) # 0) - Pra (11(6) N T (v, 4°) # 0) dt

/Pl (It + s(1) N TG0, 9") # 0) - Pwl( (t—i—s(i/}——))ﬂTk( wl)#(l))dt
/Ft+s (t—l—s(w——)) t,
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where the first equality is simply the definition of £.
At this point, if we integrate over ¥ € [0, 5], we get that the

Expectation of the overlap = /E(z/J)dw = // F(t+s()) - F(t+ sy — —))dz/Jdt.

Let’s make this change of variables: u =t 4+ 2(1 — cost)) and v = t + 2(1 — cos(¢) — %)). The Jacobian of

this change is at most 2¥2, and thus

2
2
Expectation of the overlap > > // v)dudv = \3/_ (/ (t )dt) .

Now, we can revert to our initial notation. And since there is no dependence on w3, or @) _, ., we
get

E ’PTOJ 76 ( Wn— k:-‘rl) M proj 7d1k(@1lz—lc+1)’

—k+1

= Expectation of the overlap

9 2
\3/_<]E et |PTOJ76( Wy, — k+1)‘)

(5.5 2v/2
— 23 116<

(Dy-1)%.

2
‘I’}z—k+2 ‘proj Dkfl (a}’rllflc+2) D

1
C12V2

Finally, combining the fact that
]E |PFOJ76 ( Wr—kt1) m10f0J7—1 ( Wr— k+1)| 2 —(Diq)z

with (5.7) and setting ¢ = 12v/2 we get

Dy < Dyy —c (D)™
Lemma 2 is proved.
6. Comparison with [12] and [11]

The random Cantor set in [12] is a very close relative of the random Cantor set in this note, the difference
is that Zhang’s random construction of n generations has n independent rotations involved, whereas our
construction has 1 + --- 4+ 4"~! independent rotations. There the disks of generation k are rotated by the
same angle wy,, while in this note we have 4*~! independent rotations of disks of generation k. Naturally, it
is more difficult to work in a more chaotic model such as ours, and the techniques here use independence
in a more involved way than in [12]. It is just a little harder to make sense of the combinatorics involved in
our model.

On the other hand, there are many “common places”: the use of overlap as the way to see the rate of
decays of successive approximations of the random Cantor set, the use of Lemma 2, as well as the technical
Lemma 3.

Concerning [11], there are two main differences which create difficulties. The first is the fact that at most
two of the projections proj, 7.X (@ . 4+1) can intersect at each point on the line lp. This is equivalent to
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line l(,l(t) intersecting at most two of the disks for any ¢, and is key to the square factor appearing in our
calculations.

However, this is simply not true in the case of squares. In fact, in the Peres and Solomyak case the
corresponding line lé‘(t) can simultaneously intersect 3 squares of generation k for any k and any ¢. Because
of this, the inequalities appearing here cannot be translated directly in the square setting.

But even if this wasn’t an obstacle, the reader should pay attention to Lemma 3. Let’s pretend that we
can repeat everything before this lemma for the model of Peres and Solomyak. The role of the angle w! 11
will be played by the “Favard angle” 0, the shift function s(w! _, +1) will be replaced by

1
s(0) = 5 sin 6,

and all seems to be following smoothly along the same lines. Also, the following equality

/El{lé<t>n%k<a;,_k+l>¢w}d9:/El{l¢<t+s<e>>nﬂk<@;_k+l>¢m}d97 (6.1)

which would be the analogue of (5.8), makes sense in principle if we understand w’s as the random variables

in the Peres-Solomyak model, which assume the values 0,1,2,3 (instead of values in the interval [0, 5] as

in our’s and Zhang’s models).
But, there is a caveat. We reduced the function of two variables

G(w7t> = P@i7k+2 (ZL(t) N %k(w7@r117k+2) # [Z))
to the composition with a function of one variable and the shift (see (5.9) for the definition of F):
G(¥,1) = G(0, 1+ 5(¢)) = F(t + s(1)) (6.2)
thanks to (5.8). But looking at (6.1), we can notice that the function
9(9, t) = El{lé(t)m%k(a}}l—k-*—Q)#@}

cannot be written as some F(t + S(0)).
As a result of this misfortune, we cannot write

Expectation of the overlap = /5(0)d9 = // F(t+ S(9)) - F(t)dodt
as before. Working similarly, this would in turn bring about the term ( f Fdt)?. Instead, we only have that

Expectation of the overlap = /8(9)(10 = // G(0,t)-G(0,t+ S(0)))dbdt,

and it is not clear (at least to us) how to estimate this integral from below as no change of variables seems
to be of help.
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