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We consider a model of randomness for self-similar Cantor sets of finite and positive 
1-Hausdorff measure. We find the sharp rate of decay of the probability that a Buffon 
needle lands δ-close to a Cantor set of this particular randomness. Two quite different 
models of randomness for Cantor sets, by Peres and Solomyak, and by Shiwen Zhang, 
appear to have the same order of decay for the Buffon needle probability: c

log 1
δ

. In 
this note, we prove the same rate of decay for a third model of randomness, which 
asserts a vague feeling that any “reasonable” random Cantor set of positive and 
finite length will have Favard length of order c

log 1
δ

for its δ-neighbourhood. The 
estimate from below was obtained long ago by Mattila.
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1. Introduction

Let E be a subset of the unit disk, D. The Buffon needle problem wants to determine the probability 
with which a random needle or line intersects E provided that it already intersects the unit disk. At the 
same time, let lθ be the line passing through the origin and forming angle θ with the horizontal axis. The 
Favard length of E is the average length of the projection of E onto lθ when averaging over all angles θ. It 
turns out these two quantities are proportional.

Now, consider the following picture: let us have L many (L ≥ 3) disjoint closed disks (D1, . . . , DL) of 
diameter 1/L and strictly inside D. These are disks of the first generation. Consider also a piecewise affine 
map f = (f1, . . . , fL) from those disks onto D. Then, f−1(D) = D1∪· · ·∪DL. Furthermore, f−1(D1∪· · ·∪DL)
it consists of L2 disks (groups of L many disks in each Di); we call those disks of the second generation. 
We can iterate this procedure: denoting by Un the union of disks of the n-th generation, where U1 :=
D1 ∪ · · · ∪ DL, we form the self-similar Cantor set K =

⋂∞
n=1 Un. This has positive and finite 1-dimensional 

Hausdorff measure; thus it is completely unrectifiable in the sense of Besicovitch [8]; and thus its Favard 
length is zero [8].

Of course, the disks can be replaced by other shapes. For example, U1 can consist of L disjoint squares 
with side-length 1/L inside the unit square [0, 1]2 (where the word “strictly” can be omitted but “disjoint” 
cannot). One of such Cantor sets is a rather “famous”, namely the 1/4-corner Cantor set, K1/4 (see [7]).

The L−n-neighbourhood of such sets is roughly Un, and therefore its Favard length

Fav(Un) → 0, as n → ∞.

But what is Fav(Un), or what is the speed with which Fav(Un) decreases? Nobody knows exactly, but there 
has been considerable interest in recent years. It is now clear that the answer may depend on several factors; 
the magnitude of L; the geometry of U1; the subtle algebraic and number theoretic properties of a certain 
trigonometric sum built by the centres of the disks of the first generation. See [2–4,6,10] and the survey 
paper [5].

For the 1/4-corner Cantor set K1/4 in particular, the best known estimate from above for its 4−n-
neighbourhood is

Fav(N4−n(K1/4)) ≤ Cε

n
1
6 −ε

, ∀ε > 0,

for all large n. We suspect that this estimate can be improved to

Fav(N4−n(K1/4)) ≤ Cε

n1+ε
, ∀ε > 0,

but at this moment this is only a conjecture.

On the other hand, there is a universal estimate from below obtained in [9] for every self-similar Cantor 
set constructed as above:

Fav(N4−n(K)) ≥ c

n
. (1.1)

For any concrete set, this bound from below could be improved. In fact, it is proven in [1] that for the same 
1/4-corner Cantor set K1/4

Fav(N4−n(K1/4)) ≥ c log n
.

n
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For random Cantor sets the situation should be simpler. With large probability, Mattila’s lower estimate 
(1.1) is met by the same estimate from above (with a different constant). The problem is that in general 
there can be many different models of randomness.

In this note, we are interested in an analogue of the random Cantor set appearing in [11] and in [12]. 
In our case, this will come from the random Cantor disks constructed below at Section 2. The model of 
randomness presented here is somewhat different from the ones in the above two papers, but it amazingly 
exhibits the same behaviour, as we’ll see below in our main Theorem 1, which we contrast with [11, Theorem 
2.2] and [12, Theorem 1].

In particular, we prove an analogue of [12, Theorem 1]. Unfortunately, the randomness of the disk model 
we study here is not equivalent to that of the random (square) Cantor set R =

⋂∞
n=0 Rn from [11], but 

it is nonetheless closer compared to the one constructed in [12]. The essential difference between [12] and 
our consideration are the angles ω1

n, ω2
n, . . . , ω4n−1

n , which are here allowed to be distinct and independent 
whereas in [12] are all equal. So, our model is a little “more random” than the random Cantor sets of Zhang 
in [12].

We introduce our notations —some borrowed from [12]— in the next Section 2. The problem of interest, 
namely the Favard length of a random planar disk-like Cantor set, is explained in Section 3. Our results 
and their proofs are postponed to Sections 4 and 5. In Section 6, we compare the differences and difficulties 
between our work and that of Peres and Solomyak’s and Zhang’s.

2. Cantor disks

Our work will be heavy on notation; without any ado let us introduce our basic “vocabulary”.

The letter n will stand for a (large) positive integer.
The letter ω will be used to denote angles with values inside the interval [0, π2 ]. Now, let us consider a 

word of length n made of the alphabet of angles in [0, π2 ], i.e. a word of the form ω1ω2 · · · ωn. The subscript 
in ωk denotes the position of the angle ωk within such a word of length n. We refer to the position of an 
angle within a word as the depth of that angle.

Our operators, which we will introduce below, are such that every choice of an angle, say, ω1 necessitates 
four different independent choices for the angle ω2; every choice of the angle ω2 necessitates four different 
independent choices for the angle ω3; and so on up until depth n where we will have 4n−1 different angles 
ωn. In order to differentiate between all those, for each jk = 1, 2, . . . , 4k−1 we write ωjk

k for the jk-th choice 
of an angle ωk at depth k. Notice there are 4k−1 such choices. Therefore, a typical word from our alphabet 
of angles looks as follows, where we note that ωjk

k ∈ [0, π2 ]:

ωj1
1 ωj2

2 · · · ωjk

k · · · ωjn
n where

j1 = 1 , jk = 1, 2, . . . , 4k−1 ,

j2 = 1, 2, 3, 4 , · · ·
· · · jn = 1, 2, . . . , 4n−1.

At certain instances, we need to consider cumulatively all angles of a certain depth; given a collection of 
words of length n, for each k = 1, 2, . . . , n let ω′

k be the collection of all 4k−1 many angles at depth k, that 
is

ω′
k = (ω1

k, . . . , ω4k−1

k ).

With this notation, we may use the symbols ω1, ωj1
1 , ω1

1 , and ω′
1 interchangeably as these all refer to the 

same single angle.
All the above give to our angles the structure of a rooted tree of height n with root ω1 and such that 

each parent has four children as in Fig. 1. The vertexes have values in [0, π ], and are independent from each 
2
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Fig. 1. The n-tree of angles with root ω1
1 , all angles of depth 1 to 3, and the subtree ω̄jn−k+1

n−k+1 of height k with root ωjn−k+1
n−k+1 at depth 

n − k + 1. All angles are enumerated. (The exact values of jn and j′
n depend on jn−k+1.)

other and from their predecessors and ancestors. This tree we denote by ω′
1 · · · ω′

n; the trimmed tree with 
root ω1 and height k we denote as ω′

1 · · · ω′
k (for any k = 1, 2, . . . , n). For the subtree of height n − k + 1

with root ωjk

k , which reaches up to the leaves (that is, from depth k till depth n with starting vertex ωjk

k ) 
we write ω̄jk

k . Later on, we will be working with rooted subtrees of the form ω̄jn−k+1
n−k+1 . To reiterate, ω̄jn−k+1

n−k+1
consists of the angle ωjn−k+1

n−k+1 (as its root) along with all the angles from depth n − k + 1 till depth n (which 

have ωjn−k+1
n−k+1 as an ancestor). This has height k. Alternatively, ω̄jn−k+1

n−k+1 is the collection of all the words 
(from our alphabet of angles) which have depth (i.e. length) k and the first letter is ωjn−k+1

n−k+1 . There are 4n−k

such words.

Next, we will need to introduce certain operators and sets. The main objects of interest will be the 
operators Dk (k = 0, 1, . . . , n) which will act on trees of angles of depth k. To understand these we need 
some auxiliary constructions first.

For any angle ω and for α = 0, 1, 2, 3 consider the transformations

T ω
α (z) = 1

4z + 3
4e(α π

2 −ω)i (2.1)

where z is any number on the complex plane C. Observe that if D is the unit disk, T 0
0 (D), T 0

1 (D), T 0
2 (D), and 

T 0
3 (D) are disks of radius 1/4 centred respectively at (3/4, 0), (0, 3/4), (−3/4, 0), and (0, −3/4). Introducing 

an angle ω in T ω
α (D), rotates (about (0, 0)) the aforementioned disks by angle ω in the clockwise direction.

Moreover, given an angle ωjk

k from depth k let Ωjk

k be the set

Ωjk

k =
3⋃

α=0

1
4k−1 T

ω
jk
k

α (D).

That is, Ωjk

k is a collection of four disks of radius 4−k with centres (0, ±3/4k) and (±3/4k, 0) rotated 
clockwise by ωjk

k . An example of Ω1
2 appears on Fig. 2.

We also give an enumeration to all the disks for all depths. We number the disks of Ωjk

k so that 
1

4k−1 T
ω

jk
k

α (D) is the (4jk −3 +α)-th disk at depth k. We call this the k-depth enumeration (of the disks lying 

at depth k). Illustratively, we note 1
k−1 T

ω1
k

0 (D), 1
k−1 T

ω1
k

1 (D), 1
k−1 T

ω4k−1
k

0 (D), 1
k−1 T

ω4k−1
k

3 (D) are the 1st, 
4 4 4 4
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Fig. 2. The collections D0, D1(ω′
1), D2(ω′

1ω′
2) and Ω1

2.

2nd, (4k − 3)-th, 4k-th disks of depth k. We retain this enumeration as we translate these disks at different 
positions on the plane. This will be useful to track down each disk at each step so that our subsequent 
constructions make better sense.

2.1. The D operators

Now, we are ready to introduce our main protagonists. The operator Dk acts on the collection of trees (of 
angles) of height k and for each such tree outputs a certain collection of 4k disks of radius 4−k. We define 
these inductively below.

To begin with, set D0 = D to be the unit disk.
Next, we define D1 by

D1(ω′
1) = Ω1

1 =
3⋃

α=0
T

ω1
1

α (D0), (2.2)

that is, D1(ω′
1) consists of four disks of radius 1/4 centred at (0, ±3/4) and (±3/4, 0) rotated clockwise by 

ω1. Recall these disks are enumerated as in Ω1
1 above.

For the operator D2, consider a tree of height 2, ω′
1ω′

2, which consists of the angles ω1
1, and ω1

2 , ω2
2 , ω3

2 , ω4
2 . 

Then, we define D2(ω′
1ω′

2) to be the collection of disks constructed as follows: Replace the 1st, 2nd, 3rd and 
4th disk of D1(ω′

1) respectively by Ω1
2, Ω2

2, Ω3
2 and Ω4

2. By “replacing” we mean the translation of Ωj
2 in such 

a way that (0, 0) is translated to the centre of the j-th disk of D1(ω′
1).

Consequently, D2(ω′
1ω′

2) consists of 42 disks of radius 4−2 translated appropriately so that each Ωj2
2

(which is a collection of four disks) replaces one of the disks from D1(ω′
1). For example, the set Ω1

2 is in fact 
a subset of the 1st disk of D1(ω′); actually D2(ω′

1ω′
2) ⊂ D1(ω′

1). Again, the disks comprising D2(ω′
1ω′

2) are 
enumerated to match Ω1

2, Ω2
2, Ω3

2 and Ω4
2 as we described above. Also see Fig. 2.

Continuing inductively, the operator Dk acts on the tree ω′
1 · · · ω′

k in this manner: Consider the collection 
Dk−1(ω′

1 · · · ω′
k−1). These are 4k−1 many (enumerated) disks. Replace the 1st of them by Ω1

k, the 2nd of them 
by Ω2

k, etc., until every disk of Dk−1(ω′
1 · · · ω′

k−1) has been replaced by four smaller ones. This replacement 
is done so that (0, 0), as the “centre” of Ωj

k, is translated to the centre of the j-th disk of Dk−1(ω′
1 · · · ω′

k−1). 
That is, we substitute the j-th disk (from depth k − 1) with the (4j − 3)-, (4j − 2)-, (4j − 1)-, and 4j-th 
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disks of depth k. The resulting collection, which has 4k many disks of radius 4−k, is Dk(ω′
1 . . . ω′

k). It holds 
that Dk(ω′

1 · · · ω′
k) ⊂ Dk−1(ω′

1 · · · ω′
k−1).

In the present work, we will study the collection of disks Dn(ω′
1 · · · ω′

n) where the angles ωjk

k (for jk =
1, . . . , 4k−1 and all k = 1, 2, . . . , n) of the tree ω′

1 · · · ω′
n are chosen randomly with uniform and independent 

distributions on the interval [0, π2 ].
Let us describe this picture once more before moving on further. The set Dn(ω′

1 · · · ω′
n) consists of 4n

disks of radius 4−n. These can be separated into 4n−1 groups of four, which are copies of

Ωjn
n =

3⋃
α=0

1
4n−1 T

ωjn
n

α (D0)

translated appropriately within the unit disk so that the “centre” of Ωjn
n is placed at the centre of the jn-th 

disk of Dn−1(ω′
1 . . . ω′

n−1) for jn = 1, 2, . . . , 4n−1. That is, each of the 4n−1 many disks at depth n − 1 of 
radius 4−(n−1) is replaced by four smaller ones of radius 4−n. Fig. 2 depicts Dn(ω′

1 · · · ω′
n) for n = 0, 1, 2.

3. Favard length

Recall the Favard length of a planar set E ⊂ C is the integral

Fav(E) = 1
π

π∫
0

|projθ E| dθ

where projθ E is the projection of E onto the line with slope tan θ passing through the origin, and |A| is 
the (1-dimensional) Lebesgue measure of A.

Now, consider an infinite tree of angles from [0, π2 ] with root ω1 and four branches at each vertex, and 
let D be the limit set

D =
∞⋂

n=0
Dn(ω′

1 · · · ω′
n).

Notice that by construction, D a purely unrectifiable planar set. As such, Fav(D) = 0 and by dominated 
convergence Fav(Dn(ω′

1 · · · ω′
n)) → 0 while n → ∞. In fact, if the angles are randomly chosen uniformly and 

independently over [0, π2 ], by dominated convergence and Fubini E[Fav(D)] = 0 and E[Fav(Dn(ω′
1 · · · ω′

n))] →
0 as n → ∞, where the expectation is taken over all such angles.

The question arises as to the rate with which E[Fav(Dn(ω′
1 · · · ω′

n))] goes to 0. This we answer in the 
following theorem:

Theorem 1. Let n ∈ N and consider a tree of angles of height n with each vertex having four branches. 
Suppose that the angles ωjk

k (for all jk = 1, 2, . . . , 4k−1 and all k = 1, 2, . . . , n) are chosen randomly with 
uniform and independent distributions on the interval [0, π2 ]. Also set ω′

k = (ω1
k, ω2

k, . . . , ω4k−1

k ) for each 
k = 1, 2, . . . , n. Then, there exists a constant c > 0 such that for any θ ∈ [0, π2 ] it holds that

Eω′
1··· ω′

n
|projθ Dn(ω′

1 · · · ω′
n)| ≤ c

n
∀n ∈ N. (3.1)

Consequently,

Eω′ ··· ω′ [Fav(Dn(ω′
1 · · · ω′

n))] ≤ c ∀n ∈ N (3.2)

1 n n
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and also

lim inf
n→∞

n Fav(Dn(ω′
1 · · · ω′

n)) < ∞ ∀n ∈ N almost surely. (3.3)

Clearly, (3.3) follows from (3.2) by an immediate application of Fatou’s lemma, whereas (3.2) follows from 
(3.1) through Fubini.

4. Statement and use of the main lemma

The present and the following sections are dedicated to the proof of (3.1). Towards this goal, we need 
to introduce Lemma 2 below, which describes the decay of the average projection when transitioning from 
depth k to depth k + 1. The main difficulty will come from obtaining the square factor appearing in (4.1), 
which emanates from the naturally occurring overlap of the projections.

From now on, suppose we are given a tree of angles of height n with four branches at each vertex where 
the angles are uniformly and independently distributed random variables on the interval [0, π2 ]. Recall that 
given such a tree ω̄

jn−k+1
n−k+1 is the subtree of height k with the vertex ω

jn−k+1
n−k+1 as its root. Observe that 

ω̄j1
1 = ω′

1 · · · ω′
n is the full tree whilst ω̄jn

n = ωjn
n (jn = 1, 2, . . . , 4n−1) are its leaves, i.e. trees of height 1.

For any θ ∈ [0, π2 ] and all k = 1, 2, . . . , n, define the following quantities

Djn

1 = Eω̄jn
n

∣∣projθ D1(ω̄jn
n )

∣∣ , jn = 1, 2, . . . , 4n−1

D
jn−k+1
k = E

ω̄
jn−k+1
n−k+1

∣∣∣projθ Dk(ω̄jn−k+1
n−k+1 )

∣∣∣ , jn−k+1 = 1, 2, . . . , 4n−k

Dj1
n = D1

n = E
ω̄

j1
1

∣∣∣projθ Dn(ω̄j1
1 )

∣∣∣ , j1 = 1.

Notice that, because we are averaging over the independent and identically distributed ωjk

k ,

D1
k = D2

k = · · · = D4n−k

k for any k = 1, 2, . . . , n.

Therefore, it suffices to work with D1
k; the rest should be identical. Also, note that

D1
n = Eω′

1··· ω′
n

|projθ Dn(ω′
1 · · · ω′

n)| .

Now, we are ready to state a simple but important lemma. Also, see [12, Lemma 2.1].

Lemma 2. With notation as above, if ωjk

k are uniformly and independently distributed random variables on 
[0, π2 ], there exists a constant c ≥ 4 such that for any n ∈ N (and any θ ∈ [0, π2 ])

D1
k+1 ≤ D1

k − c−1(D1
k)2 for all k = 1, . . . , n − 1. (4.1)

In our computations later, we will have that c = 12
√

2. But this is possibly not sharp.
Provided this holds true we can give a very compact proof of Theorem 1 using induction:

Proof of Theorem 1. Let c be as in Lemma 2 and note that D1
2 ≤ D1

1 < 2 ≤ c
2 . Also, D1

1 < c.
Next, assume D1

k < c
k for some 2 ≤ k ≤ n − 1. From Lemma 2, and by the monotonicity of the function 

x − x2/c in [0, c2 ], we see that

D1
k+1 ≤ D1

k − c−1(D1
k)2 <

c − c = c
k − 1

<
c

.

k k2 k2 k + 1
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Therefore, D1
k < c

k holds for all for 1 ≤ k ≤ n − 1 and thus for k = n we get

Eω′
1··· ω′

n
|projθ Dn(ω′

1 · · · ω′
n)| = D1

n <
c

n
.

This is (3.1). Equation (3.2) follows after integrating with respect to θ, and (3.3) after applying Fatou’s 
Lemma. �
5. Proving the main lemma

Whatever follows is dedicated to the proof of (4.1).

First, we rewrite the length of the projection of a set in more convenient way. Let lθ and l⊥
θ be two lines 

through the origin so that lθ forms an angle θ with the horizontal axis and l⊥
θ is perpendicular to lθ. Also, 

let n be the unit normal vector of l⊥
θ . The length of the projection of a planar set E ⊂ C onto the line lθ

can be written as

|projθ E| =
∣∣{t ∈ R : (l⊥

θ + tn) ∩ E �= ∅}
∣∣ =

∫
(l⊥

θ +tn)∩E �=∅

dt. (5.1)

For brevity, we denote the line l⊥
θ + tn by l⊥

θ (t) where t ∈ R. Additionally, because of the symmetry of 
our considerations, we can assume without loss of generality that θ = 0 —as we will average over all θ at 
the end. So, we can simply omit writing θ altogether from now on.

The idea behind Lemma 2 is to look at the collection Dn(ω′
1 · · · ω′

n) at depth n but “zoomed in” so that 
it looks like depth 1. Then, we go one level up and look at the disks of depth n − 1 and n zooming in 
enough so that they to look like depth 2; and so forth. If we rewrite the projections in the form of (5.1), the 
average overlap at each level is of at least a square factor compared to the total average projection of the 
level above.

This last comparison is paramount to the proof. It will follow from the fact that the disks in our con-
structions never get too close to one another. In fact, this observation is not true in the case of the random 
square Cantor sets, which is the reason why we cannot directly apply the arguments here to the setting of 
[11].

Let us proceed with the proof of (4.1).

Fix some k = 1, 2, . . . , n and recall that by construction (eq. (2.2))

D1(ω1
n−k+1) =

3⋃
α=0

T
ω1

n−k+1
α (D0).

This means that each disk from the collection Dk(ω̄1
n−k+1) lies inside one of the above four disks, and 

therefore we can separate Dk(ω̄1
n−k+1) into four groups of disks depending on their positioning at depth 1.

More precisely, for each α = 0, 1, 2, 3 define T k
α (ω̄1

n−k+1) as

T k
α (ω̄1

n−k+1) = T
ω1

n−k+1
α (D0)

⋂
Dk(ω̄1

n−k+1). (5.2)

That is, the set T k
α (ω̄1

n−k+1) consists of those disks of Dk(ω̄1
n−k+1) which lie inside the 1

4 -radius disk 

T
ω1

n−k+1
α (D0) as in Fig. 3. We can think of T k

α (ω̄1
n−k+1) as the East, North, West, and South parts of 

Dk(ω̄1
n−k+1), respectively for α = 0, 1, 2, 3. From this definition, it is also clear that
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Fig. 3. The four groups of disks at depth k rotated by ω1
n−k+1, which make up Dk(ω̄1

n−k+1).

Dk(ω̄1
n−k+1) =

3⋃
α=0

T k
α (ω̄1

n−k+1). (5.3)

In fact, T k
α (ω̄1

n−k+1) depends only on the angle ω1
n−k+1 and the subtree ω̄4·1−3+α

n−k+2 = ω̄1+α
n−k+2. (Recall our 

enumeration of the angles in Section 2.) Thus, we can write T k
α (ω̄1

n−k+1) as

T k
α (ω̄1

n−k+1) = T k
α (ω1

n−k+1, ω̄1+α
n−k+2). (5.4)

5.1. Key observations

There are two key observations regarding the sets T k
α (ω̄1

n−k+1). First, note that each point of the in-
terval (−1, 1) can be covered by at most two of the projections proj T

ω1
n−k+1

α (D0) for different α’s. Since 

T k
α (ω̄1

n−k+1) ⊂ T
ω1

n−k+1
α (D0), the same holds true for proj T k

α (ω̄1
n−k+1); the intersection 

⋂
α proj T k

α (ω̄1
n−k+1)

is empty when the intersection is over more than two values of α.
Second, we can compare the average projections of T k

α (ω̄1
n−k+1) =T k

α (ω1
n−k+1, ω̄1+α

n−k+2) and Dk−1(ω̄1+α
n−k+2). 

Notice that both these collections consist of 4k−1 many disks, which in fact have the same n-depth enumer-
ations. This means that they correspond to the same disks of the collection Dn(ω′

1 · · · ω′
n). The difference is 

that the disks of the former are translated according to D1(ω1
n−k+1) and have radius 4−k, whereas the ones 

of the latter have radius 4−(k−1).
Consequently, T k

α (ω̄1
n−k+1) is a shifted copy of Dk−1(ω̄1+α

n−k+2) dilated by a factor of 1/4. (See Fig. 4.) As 
such, the (average of the) projections of T k

α (ω̄1
n−k+1) and Dk−1(ω̄1+α

n−k+2) should also differ by a factor of 
1/4. In other words, for any α = 0, 1, 2, 3 we have

Eω̄1
n−k+1

∣∣proj T k
α (ω̄1

n−k+1)
∣∣ = Eω1

n−k+1
Eω̄1+α

n−k+2

∣∣proj T k
α (ω1

n−k+1, ω̄1+α
n−k+2)

∣∣
= 1

4Eω̄1+α
n−k+2

∣∣proj Dk−1(ω̄1+α
n−k+2)

∣∣ .
(5.5)

5.2. The estimates

Utilising the above, we can now estimate D1
k in terms of D1

k−1.
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Fig. 4. Dilating T k
1 (ω̄n−k+1) by 4 gives a copy of Dk−1(ω̄2

n−k+2).

For starters, note that from (5.3) we can write

D1
k = Eω̄1

n−k+1

∣∣proj Dk(ω̄1
n−k+1)

∣∣

= Eω̄1
n−k+1

3∑
α=0

∣∣proj T k
α (ω̄1

n−k+1)
∣∣ − Eω̄1

n−k+1

3∑
α,β=0
α�=β

∣∣proj T k
α (ω̄1

n−k+1) ∩ proj T k
β (ω̄1

n−k+1)
∣∣ +

+ Eω̄1
n−k+1

3∑
α,β,γ=0

α�=β �=γ �=α

∣∣proj T k
α (ω̄1

n−k+1) ∩ proj T k
β (ω̄1

n−k+1) ∩ proj T k
γ (ω̄1

n−k+1)
∣∣ −

− Eω̄1
n−k+1

∣∣proj T k
0 (ω̄1

n−k+1) ∩ proj T k
1 (ω̄1

n−k+1) ∩ proj T k
2 (ω̄1

n−k+1) ∩ proj T k
3 (ω̄1

n−k+1)
∣∣ .

The last two lines equal 0 from our first observation above (in Section 5.1). Furthermore, we can disregard 
all but one of the summands from the second sum to get an inequality:

D1
k ≤ Eω̄1

n−k+1

3∑
α=0

∣∣proj T k
α (ω̄1

n−k+1)
∣∣ − Eω̄1

n−k+1

∣∣proj T k
0 (ω̄1

n−k+1) ∩ proj T k
1 (ω̄1

n−k+1)
∣∣ . (5.6)

This last step might seem rather crude, but it will suffice for our purposes. Besides, Theorem 1 eventually 
establishes an equality considering Mattila’s lower bound.

Utilising (5.5), we see that

Eω̄1
n−k+1

3∑
α=0

∣∣proj T k
α (ω̄1

n−k+1)
∣∣ = 1

4

3∑
α=0

Eω̄1+α
n−k+2

∣∣proj Dk−1(ω̄1+α
n−k+2)

∣∣

= 1
4(D1

k−1 + D2
k−1 + D3

k−1 + D4
k−1)

= D1
k−1,

since D1+α
k−1 = D1

k−1 for any α = 0, 1, 2, 3. Applying this to (5.6), we get

D1
k ≤ D1

k−1 − Eω̄1
n−k+1

∣∣proj T k
0 (ω̄1

n−k+1) ∩ proj T k
1 (ω̄1

n−k+1)
∣∣ . (5.7)

The final big step is to estimate the overlap term 
∣∣proj T k

0 (ω̄1
n−k+1) ∩ proj T k

1 (ω̄1
n−k+1)

∣∣ from below. But 
recall that T k

0 (ω̄1
n−k+1) and T k

1 (ω̄1
n−k+1) depend (aside from ω1

n−k+1) respectively on ω̄1
n−k+2 and ω̄2

n−k+2
as in (5.4).

First, we average with respect to the subtrees ω̄1
n−k+2 and ω̄2

n−k+2, and afterwards we integrate over their 
common ancestor ω1

n−k+1. To simplify the notation, let us write ω̄1,2
n−k+2 for both the subtrees ω̄1

n−k+2 and 
ω̄2

n−k+2. Then, we have
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Eω̄1,2
n−k+2

∣∣proj T k
0 (ω̄1

n−k+1) ∩ proj T k
1 (ω̄1

n−k+1)
∣∣

= Eω̄1,2
n−k+2

∣∣proj T k
0 (ω1

n−k+1, ω̄1
n−k+2) ∩ proj T k

1 (ω1
n−k+1, ω̄2

n−k+2)
∣∣

(5.1)=====
∫

Pω̄1,2
n−k+2

(
l⊥(t) ∩ T k

0 (ω1
n−k+1, ω̄1

n−k+2) �= ∅ and l⊥(t) ∩ T k
1 (ω1

n−k+1, ω̄2
n−k+2) �= ∅

)
dt

=
∫

Pω̄1,2
n−k+2

(
l⊥(t) ∩ T k

0 (ω1
n−k+1, ω̄1

n−k+2) �= ∅
)

· Pω̄1,2
n−k+2

(
l⊥(t) ∩ T k

1 (ω1
n−k+1, ω̄2

n−k+2) �= ∅
)

dt

=
∫

Pω̄1
n−k+2

(
l⊥(t) ∩ T k

0 (ω1
n−k+1, ω̄1

n−k+2) �= ∅
)

· Pω̄2
n−k+2

(
l⊥(t) ∩ T k

1 (ω1
n−k+1, ω̄2

n−k+2) �= ∅
)

dt

=: E(ω1
n−k+1).

The 3rd equality above holds because for a fixed angle ω1
n−k+1 the events

{l⊥(t) ∩ T k
α (ω1

n−k+1, ω̄1+α
n−k+2) �= ∅}

for different α’s are independent.
It would be very nice if these two events would have the same probability for each t. Then, we would use 

Hölder’s inequality to get that

E(ω1
n−k+1) =

∫ [
Pω̄1

n−k+2

(
l⊥(t) ∩ T k

0 (ω1
n−k+1, ω̄1

n−k+2) �= ∅
)]2

dt

≥ C

(∫
Pω̄1

n−k+2

(
l⊥(t) ∩ T k

0 (ω1
n−k+1, ω̄1

n−k+2) �= ∅
)

dt

)2

.

Unfortunately, this is not the case.

Nevertheless, there is a way to approximate the overlap E(ω1
n−k+1).

To keep things clean, let us denote

ψ := ω1
n−k+1, ψ̄1 := ω̄1

n−k+2, ψ̄2 := ω̄2
n−k+2 and s(ψ) := 3

4(1 − cos ψ),

and keep all angles fixed for now.
As discussed in Section 5.1, the average projections of T k

0 (ψ, ψ̄1) and T k
1 (ψ, ψ̄2) are shifted (and dilated) 

copies of Dk−1(ψ̄1) and Dk−1(ψ̄2), respectively. In particular, proj T k
0 (0, ψ̄1) and proj T k

1 (0, ψ̄1) are disjoint 
(cf (2.1) and (5.2)).

A simple geometric consideration (see Fig. 5) shows that the projections of T k
0 (0, ψ̄1) and T k

0 (ψ, ψ̄1) differ 
only by a shift of s(ψ), i.e.

proj T k
0 (ψ, ψ̄1) = s(ψ) + proj T k

0 (0, ψ̄1).

Similarly, the projections of T k
1 (ψ, ψ̄2) and T k

0 (0, ψ̄1) differ (on average) by a shift of s(ψ − π
2 ).

As a consequence, the events

{l⊥(t) ∩ T k
0 (ψ, ψ̄1) �= ∅} and {l⊥(t) ∩ T k

1 (ψ, ψ̄2) �= ∅}

might not have the same probability, but their probabilities are equal to

Pψ̄1

(
l⊥(t′) ∩ T k

0 (0, ψ̄1)
)
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Fig. 5. The projections of T k
0 (ψ, ψ̄) and T k

1 (ψ, ψ̄) are contained in copies of the interval ( 1
2 , 1) shifted by s(ψ) and s(ψ − π

2 ), 
respectively.

for some appropriately shifted t′, since ψ̄1 and ψ̄2 are independent. We make this explicit in the following 
lemma.

Lemma 3. With notation as above, it holds that

Pψ̄1

(
l⊥(t) ∩ T k

0 (ψ, ψ̄1) �= ∅
)

= Pψ̄1

(
l⊥(t + s(ψ)) ∩ T k

0 (0, ψ̄1) �= ∅
)

and

Pψ̄2

(
l⊥(t) ∩ T k

1 (ψ, ψ̄2) �= ∅
)

= Pψ̄1

(
l⊥(t + s(ψ − π

2 )) ∩ T k
0 (0, ψ̄1) �= ∅

)
. (5.8)

With Lemma 3 at hand along with (5.1), we can rewrite the overlap with our current notation in a more 
convenient way. First, let us denote

F (t) := Pψ̄1

(
l⊥(t) ∩ T k

0 (0, ψ̄1)
)

. (5.9)

Then, we see that

E(ψ) =
∫

Pψ̄1

(
l⊥(t) ∩ T k

0 (ψ, ψ̄1) �= ∅
)

· Pψ̄2

(
l⊥(t) ∩ T k

1 (ψ, ψ̄2) �= ∅
)

dt

=
∫

Pψ̄1

(
l⊥(t + s(ψ)) ∩ T k

0 (0, ψ̄1) �= ∅
)

· Pψ̄1

(
l⊥(t + s(ψ − π

2 )) ∩ T k
0 (0, ψ̄1) �= ∅

)
dt

=
∫

F (t + s(ψ)) · F (t + s(ψ − π

2 ))dt,
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where the first equality is simply the definition of E .
At this point, if we integrate over ψ ∈ [0, π2 ], we get that the

Expectation of the overlap =
∫

E(ψ)dψ =
∫ ∫

F (t + s(ψ)) · F (t + s(ψ − π

2 ))dψdt.

Let’s make this change of variables: u = t + 3
4 (1 − cos ψ) and v = t + 3

4 (1 − cos(ψ − π
2 )). The Jacobian of 

this change is at most 3
√

2
4 , and thus

Expectation of the overlap ≥ 4
3
√

2

∫ ∫
F (u)F (v)dudv = 2

√
2

3

(∫
F (t)dt

)2

.

Now, we can revert to our initial notation. And since there is no dependence on ω̄3
n−k+1 or ω̄4

n−k+1, we 
get

Eω̄1
n−k+1

∣∣proj T k
0 (ω̄1

n−k+1) ∩ proj T k
1 (ω̄1

n−k+1)
∣∣

= Expectation of the overlap

≥ 2
√

2
3

(
Eω̄1

n−k+1

∣∣proj T k
0 (ω̄1

n−k+1)
∣∣)2

(5.5)===== 2
√

2
3 · 1

16

(
Eω̄1

n−k+2

∣∣proj Dk−1(ω̄1
n−k+2)

∣∣)2

= 1
12

√
2

(D1
k−1)2.

Finally, combining the fact that

Eω̄1
n−k+1

∣∣proj T k
0 (ω̄1

n−k+1) ∩ proj T k
1 (ω̄1

n−k+1)
∣∣ ≥ 1

12
√

2
(D1

k−1)2

with (5.7) and setting c = 12
√

2 we get

D1
k ≤ D1

k−1 − c−1(D1
k−1)2.

Lemma 2 is proved.

6. Comparison with [12] and [11]

The random Cantor set in [12] is a very close relative of the random Cantor set in this note, the difference 
is that Zhang’s random construction of n generations has n independent rotations involved, whereas our 
construction has 1 + · · · + 4n−1 independent rotations. There the disks of generation k are rotated by the 
same angle ωk, while in this note we have 4k−1 independent rotations of disks of generation k. Naturally, it 
is more difficult to work in a more chaotic model such as ours, and the techniques here use independence 
in a more involved way than in [12]. It is just a little harder to make sense of the combinatorics involved in 
our model.

On the other hand, there are many “common places”: the use of overlap as the way to see the rate of 
decays of successive approximations of the random Cantor set, the use of Lemma 2, as well as the technical 
Lemma 3.

Concerning [11], there are two main differences which create difficulties. The first is the fact that at most 
two of the projections projθ T k

α (ω̄1
n−k+1) can intersect at each point on the line lθ. This is equivalent to 
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line l⊥
θ (t) intersecting at most two of the disks for any t, and is key to the square factor appearing in our 

calculations.
However, this is simply not true in the case of squares. In fact, in the Peres and Solomyak case the 

corresponding line l⊥
θ (t) can simultaneously intersect 3 squares of generation k for any k and any t. Because 

of this, the inequalities appearing here cannot be translated directly in the square setting.

But even if this wasn’t an obstacle, the reader should pay attention to Lemma 3. Let’s pretend that we 
can repeat everything before this lemma for the model of Peres and Solomyak. The role of the angle ω1

n−k+1
will be played by the “Favard angle” θ, the shift function s(ω1

n−k+1) will be replaced by

s(θ) = 1
2 sin θ,

and all seems to be following smoothly along the same lines. Also, the following equality

∫
E1{

l⊥
θ (t)∩T k

0 (ω̄1
n−k+1) �=∅

}dθ =
∫

E1{
l⊥
θ (t+s(θ))∩T k

1 (ω̄1
n−k+1) �=∅

}dθ, (6.1)

which would be the analogue of (5.8), makes sense in principle if we understand ω’s as the random variables 
in the Peres–Solomyak model, which assume the values 0, 1, 2, 3 (instead of values in the interval [0, π2 ] as 
in our’s and Zhang’s models).

But, there is a caveat. We reduced the function of two variables

G(ψ, t) := Pω̄1
n−k+2

(
l⊥(t) ∩ T k

0 (ψ, ω̄1
n−k+2) �= ∅

)

to the composition with a function of one variable and the shift (see (5.9) for the definition of F ):

G(ψ, t) = G(0, t + s(ψ)) = F (t + s(ψ)) (6.2)

thanks to (5.8). But looking at (6.1), we can notice that the function

G(θ, t) := E1{
l⊥
θ (t)∩T k

0 (ω̄1
n−k+2) �=∅

}

cannot be written as some F(t + S(θ)).
As a result of this misfortune, we cannot write

Expectation of the overlap =
∫

E(θ)dθ =
∫ ∫

F(t + S(θ)) · F(t)dθdt

as before. Working similarly, this would in turn bring about the term (
∫

Fdt)2. Instead, we only have that

Expectation of the overlap =
∫

E(θ)dθ =
∫ ∫

G(θ, t) · G(θ, t + S(θ)))dθdt,

and it is not clear (at least to us) how to estimate this integral from below as no change of variables seems 
to be of help.
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