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ARTICLE INFO ABSTRACT

Keywords: Scale-free phase-field approach and corresponding finite element method simulations for multivariant marten-
Multivariant martensitic phase transformation sitic phase transformation from cubic Si I to tetragonal Si II in a polycrystalline aggregate are pre-
Silicon polycrystal

sented. Important features of the model are large and very anisotropic transformation strain tensor &, =
{0.1753;0.1753; —0.447} and stress-tensor dependent athermal dissipative threshold for transformation, which
produce essential challenges for computations. 3D polycrystals with stochastically oriented grains are subjected
to uniaxial strain- and stress-controlled loadings under periodic boundary conditions and zero averaged lateral
strains. Coupled evolution of discrete martensitic microstructure, volume fractions of martensitic variants and
Si II, stress and transformation strain tensors, and texture are presented and analyzed. Macroscopic variables
effectively representing multivariant transformational behavior are introduced. Macroscopic stress—strain and
transformational behavior for 55 and 910 grains are close. Large transformation strains and grain boundaries
lead to huge internal stresses of tens GPa, which affect microstructure evolution and macroscopic behavior. In
contrast to a single crystal, the local mechanical instabilities due to phase transformation and negative local
tangent modulus are stabilized at the macroscale by arresting/slowing the growth of Si II regions by the grain
boundaries. This leads to increasing stress during transformation. The developed methodology can be used
for studying similar phase transformations with large transformation strains and for further development by
including plastic strain and strain-induced transformations.

Scale-free phase-field approach
Finite element simulations
Stress-dependent effective threshold
Finite strain

1. Introduction

Silicon is the second most abundant material in the earth’s crust.
The semiconducting Si I phase (cubic diamond lattice, Fd3m space
group) is extensively used in microelectronics, integrated circuits, pho-
tovoltaics, and MEMS/NEMS technologies. Single-crystal Si is also used
in high-power lasers. Polycrystalline Si is widely used in solar pan-
els [1], thin transistors [2], and very large-scale integration (VLSI)
manufacturing. It also has low toxicity and high stability. Due to high
demands, the recent CHIPS and Science Act will provide new funding
to boost the research and manufacturing of semiconductors in the US.
Under the pressure of 10-16 GPa, semiconducting Si I transforms to
metallic phase Si II (f-tin structure, 14, /amd space group). Si I is very
strong and brittle, and hence its bulk hardness is 12 GPa and is deter-
mined by Si [-8i II phase transformation (PT) rather then dislocational
plasticity [3,4]. Stresses exceed 10 GPa for machining (turning, pol-
ishing, scratching, etc.) of single and polycrystalline Si [5]; such loads
cause plastic flow, Si I-Si II and some other PTs, e.g., amorphization.

High-pressure torsion of Si at 24 GPa is used to produce nanostructured
metastable phases [6,7]. Machining of strong brittle semiconducting Si-
I is accompanied by microcrack propagation inside the bulk. PT from
Si I to ductile and weaker Si II is utilized to develop ductile machining
regimes [8], which reduces forces, energy, and damage. This also may
eliminate the necessity of using chemical additives during machining,
which brings definite environmental benefits by reducing pollution.
Since transformation strain tensor that describes the transformation
of cubic to tetragonal Si I — Si II PT has large and very anisotropic prin-
cipal components ¢, = {0.1753;0.1753; —0.447} [9-11], it is clear from
thermodynamics that deviatoric part of the stress tensor should strongly
affect this PT. Both pressure- and stress-induced PTs start at pre-
existing defects (different dislocation configurations, grain boundaries),
which represent stress concentrators. However, in many of the applica-
tions, like turning, polishing, scratching, friction, high-pressure torsion
and ball milling, PTs occur during plastic deformation. According to
classification [12-14], such PTs are called plastic strain-induced PT
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Fig. 1. Grain distribution generated from DREAM.3D for (a) 55 grains showing the local orientations of individual grains (red = 1, yellow = 2, green = 3) and (b) 910 grains.
Each grain has a different orientation that is randomly assigned to make sure the sample, on the whole, is texture-free. Files with complete information about orientation of each
grain for both samples are given in supplementary material. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

under high pressure, and they occur at defects permanently generated
during plastic flow. Strain-induced PTs require completely different
thermodynamic, kinetic, and experimental treatments than pressure-
and stress-induced PTs.

There are numerous very strong effects of plastic deformations on
PTs, summarized in [12-18]; one of the most important is a drastic
reduction in PT pressure. Thus, plastic strain-induced PTs from graphite
to hexagonal and cubic diamonds were obtained at 0.4 and 0.7 GPa, 50
and 100 times lower than under hydrostatic loading, respectively, and
well below the phase equilibrium pressure of 2.45 GPa [18]. About an
order of magnitude reduction in PT pressure was reported for PT from
rhombohedral to cubic BN [19], hexagonal to wurtzitic BN [20], and
from « to w Zr [21,22].

The effect of plastic straining on PTs in Si is also very strong but
more sophisticated. Thus, under compression and shear in rotational
diamond anvil cell [23], Si Il was obtained at 5.2 GPa, but not directly
from Si I, but via Si III. However, in these experiments, only optical,
pressure, and electric resistivity measurements were utilized without
in situ X-ray diffraction. In our recent in situ X-ray diffraction experi-
ments [24], the PTs pressure for direct Si I-Si II PT was reduced from
13.5 (hydrostatic loading) to 2.5 GPa (plastic straining) for micron size
Si particles and from 16.2 GPa to 0.4 GPa for 100 nm Si nanoparticles,
i.e., by a factor of 40.5 (and 26.3 below the phase equilibrium pressure
of 10.5 GPa [25]).

To understand the effect of stress tensor and plastic strain on Si I-Si
II PT, various techniques at multiple scales are used. With first principle
simulations, the lattice instability for Si I under two-parametric load-
ings was studied in [26-29]. Although it is not specified, it is related
to Si I-Si II PT. The stress-strain behavior and elastic instabilities
leading to Si I-Si II PT under all six components of the stress tensor
were determined in [30,31]. While this seems to be impossible due
to a large number of combinations, the following solution was found.
First, the analytical expression for crystal lattice instability criterion
was formulated within the phase-field approach (PFA) [10,11,32]. Then
it was confirmed and quantified with first principle simulations in [30].

A similar approach was realized earlier with molecular dynam-
ics simulations [10,11] under the action of three normal stresses.
Molecular dynamics simulations of PTs in Si during various loadings,
nanoindentation, scratching, and surface processing were performed
in [4,33-37].

Nanoscale PFA for PT Si I-Si II in a single crystal with correspond-
ing simulations was developed in [38-42]. It was calibrated by results
of molecular dynamics simulations in [10,11]. The effect of a single
dislocation on this PT under uniaxial compression is modeled in [40].

The main general problem with nanoscale PFA is that the width of the
martensitic interface is ~1 nm and one needs at least 3-5 finite elements
within the interface [43], making problem computationally expensive
for large samples. Hence this model can be used to treat nano-sized
samples only.

Here, we will consider scale-free PFA for modeling discrete marten-
sitic microstructure. It was developed for small strains in [44,45] and
updated and applied to NiTi shape memory alloy in [46]. The only
finite-strain generalization of the scale-free model for finite strains is
presented in [47]. This model was applied for simulations of Si I-Si
II PT in a single crystal using the finite element method (FEM). The
next natural step is to simulate PTs in Si and discrete martensitic
microstructure in a polycrystalline sample, which was not done yet and
is quite a challenging problem. Actually, we are not aware of PFA
simulations of PTs for a polycrystal at large strains for any material.

In this work, we extend the modeling presented in [47] to Si I-Si
II PT in 3D polycrystalline samples with up to 1000 grains. The main
computational (and constitutive) challenge is to reach convergence
of the computational procedure due to strong nonlinearities, large
transformation strain localization with large gradients within a single-
element diffuse interface, and elastic instabilities in some grains. For
a single crystal, just two loadings, uniaxial and hydrostatic, have been
considered in [47]. However, each grain is subjected to different com-
plex and heterogeneous loading in a polycrystal. While we used the
simplest quadratic in elastic Lagrangian strain expression (Eq. (7)) for
the elastic energy, it is shown in [48] that even simple uniaxial com-
pression leads to elastic instability. This instability can cause additional
strain localization and divergence of solution. Due to the variety of
heterogeneous complex loadings, different for different grains, chances
for various elastic instabilities and divergence are very high. Periodic
boundary conditions along the lateral surfaces played important part
in the avoiding divergence. Another problem is to adequately quantita-
tively present the evolution of the local and average volume fraction of
martensitic variants; a straightforward approach leads to contradictory
results.

The paper is organized as follows. In Section 2 complete system of
coupled PFA and nonlinear mechanics equations is presented. Materials
parameters for the model are given in Section 3. Problem formulations,
results of simulations, and their analyses are presented in Section 4.
Coupled evolution of discrete martensitic microstructure, volume frac-
tions of martensitic variants and Si II, stress and transformation strain
tensors, and texture are presented and analyzed. Concluding remarks
are summarized in Section 5.
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Fig. 2. Evolution of volume fractions of phases for strain-controlled loading of a sample with 55 grains. The figure shows snapshots at different stages of completion of simulation

(25%, 50%, 75%, and 100%) in different columns for Si II, ¢, and each martensitic variant, c;.

referred to the web version of this article.)

2. Model description

Here, we expand the microscale model for multivariant martensitic
PTs developed in [47] for a polycrystalline elastic materials. The main
features of the scale-free PFA, which significantly differ it from the
traditional nanoscale PFAs are:

1. The energy term that includes gradients of the order parameters
and determines the phase interface widths and the interface
energies is excluded. This makes the model scale-free. Inter-
face width is getting equal to a single finite element, which is
much more computationally economical than in the nanoscale
approach, where 3-5 elements are usually required to reproduce
analytical solution for an interface [43]. However, this leads to
two problems. (a) The solution is mesh dependent. However,
detailed computational experiments in [44,45,47] show that the
solution becomes practically mesh-independent after the mesh
size is 80 times smaller than the sample size. (b) Since the
volume fraction of martensite varies from 0 to 1 within the one-
element thick interface, for large transformation strains, there
are large strain gradients within the interface, which leads often
to divergence in the FEM solution.

(For interpretation of the references to color in this figure legend, the reader is

2. The interfaces between individual martensitic variants are not

resolved. Each of these variant has a width of d ~ 10 nm,
i.e., thousands of interfaces at the microscale, making the prob-
lem computationally impractical. Here, martensite is considered
a mixture of martensitic variants with corresponding volume
fractions.

. Since there is no need to reproduce atomic level energy land-

scape versus order parameters, the linear mixture rule is applied
for all material properties. This is in contrast to higher-order
polynomials in order parameters for nanoscale PFA. Also, the
athermal dissipative threshold for interface propagation (inter-
face friction) can be easily introduced in the scale-free model,
while this is a problem for the nanoscale model.

. The volume fraction of the martensite is the order parameter,

i.e., it is responsible for the material instability and transforma-
tion strain localization at the interface between austenite and
martensite. The volume fractions of the individual martensitic
variants are only internal variables and do not produce any insta-
bilities. That is how we eliminate interfaces between martensitic
variants.

All the above features allow us to economically model multivariant
martensitic PTs in a sample of arbitrary size.
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Fig. 3. Evolution of volume fractions for strain-controlled loading of a sample with 910 grains. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Since martensitic variants are in twin relationship with each other,
this model automatically includes twinning in the martensite as one
of the stress relaxation mechanisms. Note that molecular dynamics
simulations in [37] that show twinning in the martensite without
dislocation activity reproduce well the Si I-Si II and variant-variant
interface orientations.

Vectors and tensors are designated with boldface symbols. We des-
ignate contractions of tensors A = {4;;} and B = {B};} over one and
two indices as A-B = {A;; B;,} and A: B = A;; Bj;. The transpose of A is
AT; I is the unit tensor; V,, is the gradient operator in the undeformed
state.

2.1. Kinematics

Let us consider polycrystalline Si I aggregate in the undeformed
stress-free configuration £,. The orientation of each grain is charac-
terized by the rotation tensor R, in the undeformed configuration,
which rotates local cubic crystallographic axes of the grain to the global
coordinate system. Tensors R, do not evolve during loading and PTs.
The deformation gradient F is multiplicatively split into the elastic F,
and the transformational F, parts:

F=Vyr=F,.F; F,=R,-U,; F,=F @

t

Here, r is the position vector in the current deformed configuration £;
F, is defined as F after complete local stress release (producing the
intermediate configuration £2,) and is considered to be rotation-free; U,
is the symmetric elastic right stretch tensor and R, is the orthogonal
lattice rotation tensor during loading and PT, which determines texture
evolution. The transformation deformation gradient is defined using the
mixture rule for m variants as

m
Fo=I+g=1+Y R,-Z-Rlc, )
i=1
where ¢, is the transformation strain, &, is the transformation strain
of the ith martensitic variant in the local crystallographic basis of the
grain, and the ¢; is the volume fraction of the ith variant in terms of
volumes in the reference configuration.
The total, elastic, and transformational Lagrangian strains are de-
fined as
1 T . 1
E = E(F F—1); Ee—z
Utilization of multiplicative decomposition Eq. (1) results in the follow-
ing relationship:

1
(FT.F,-I); E, = E(F,T-F, -D. 3)

E,=F'(E-E)F/ C))

We will also need the ratios of elemental volumes 4V and mass
densities p in the different configurations, which are described by the
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Fig. 4. Evolution of components of the transformation strain tensor ¢, for strain-controlled loading of a sample with 55 grains.

Jacobian determinants:

dv o
J=-— =2 =detF;
vy~ e
avi _ po dv _ p
Jy=—"L=2=detF; J,=-— == =detF,. 5
T ety <=y, L, (5)

2.2. Helmholtz free energy

In defining the Helmholtz free energy y per unit undeformed vol-
ume in £, of the mixture of austenite and m martensitic variants,

contributions from the elastic ¢, thermal (or chemical) y?, and

interaction y" energy are given by
W(F,,¢;,0) = Jy(F,,c) +w’(0,c) +w'(c). ©

The elastic energy y* is defined in &, (current configuration), and
the Jacobian determinant J, maps it into €, (initial configuration).
The term y™ = Accy > 0 with ¢y and ¢ for the volume fractions
of the austenite and martensite, respectively, includes the interactions
between austenite and martensite, the energy of internal stresses, as
well as the austenite-martensite phase interface energy; interaction
between martensitic variants is neglected to avoid formation of variant—
variant interfaces. Positive A results in a negative tangent modulus
of the equilibrium stress-strain curve during PT [44,45,47], which
results in local mechanical instability and the formation of the localized
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Fig. 5. Evolution of the components of the transformation strain tensor ¢, for strain-controlled loading of a sample with 910 grains.

transformation bands/regions of the product phase. In such a way, a R;"’ as

discrete martensitic structure is reproduced, similar to the nanoscale

PFA. The thermal (chemical) free energy y? is the free energy at zero Giikl — le Rkn qu R"C“I”’" (8)
i

applied stresses and neglected interaction between phases. It depends
on the temperature 0 and volume fractions of all phases.

The elastic energy is expressed as Since the thermal energy of all martensitic variants is the same,
m w? =y? = y? | the thermal energy of the mixture is
e lp.ep = Lok piiph. Gkl = Y @ikl %) ! ;oM
W_E e* '8_5 e e’ _ZF Cp,
p=0 m m
0 0 0 0
v’ =) cw(0) =coy,0) + cy,,(0); c= ) ¢ c=1-c, 9)
where the components of the fourth-rank elastic moduli tensor C’ K Zg i 0¥4 M ; ! 0

the global coordinate system are defined in terms of components in the
local for each grain crystallographic system C,”" and grain rotations where y/g = wﬁ is the thermal energy of austenite.
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lack of physical sense for ¢, is described in the text.

2.3. Dissipation inequality

The Plank’s inequality for isothermal processes is
D=P':F -y >0, (10)

where D is the dissipation rate per unit undeformed volume; P is the
first Piola—Kirchhoff stress. After traditional thermodynamic manipula-
tions, D can be expressed as the product of the thermodynamic driving
forces for A — M;, X5, and M; — M,, X, transformations and
conjugate rates:

D= ZX,Oc,0+Z Z X6 205

Jj=1i=j+1

e e i < Cle)* -1
X,.0=Wl.0—5Ee.(C,.—C0).Ee—E(Ee.C(c).Ee)F,

£, — Ay — A1 - 2¢);

Jt o 2N JI s . —1. .
Xij=Wij=5E(C-C)E - = (E.:C(c):E,) F;':(g,; — £,
Wio=P"-F,:e, = JF -c-F' - F ¢,

W, =PT-F, (e, —£,;)=JF -c-F"' - F[li(e,; — £)). 1D

Here, ¢, and ¢;; are the rate of change of volume fraction of variant i
due to transformation to the austenite and variant j, respectively; W},
is the transformation work for austenite to martensite PT, Wj; is the
transformation work for variant j to variant i transformation, Ay? is the
jump in thermal free energy during transformation, and ¢ = J~' P.FT
is the Cauchy (true) stress tensor.

While the PFA does not explicitly includes phase interfaces, they
appear as a result of the solution of the boundary-value problem. Then
one can derive the expression for the thermodynamic driving force for
the austenite-martensite interface propagation, see [47]:

m
J;
Ez

=) 6X=P-F e,y - 3E,
i=1 2

izl

J,
1(Cy —Cy):E, —3(E 1C(0):1E,) F ' teyy — Ay,
m m
£ = 25,.5”.; Cy = ZE,.Ci, 12)
i=1 i=1

where ¢; = i /c is the volume fraction of M; within martensitic mixture,
thus Y7, = 1. This expression is obtamed from the expression
for the d15$1pat10n rate due to the austenite-martensite PTs at the
phase interface D,_,, = Xx¢. It is shown in [47] that for the sta-
tionary phase interface Xy is equal to the athermal threshold for the
austenite-martensite interface propagation.

Acta Materialia 254 (2023) 118996
2.4. Kinetic equations

The kinetic equations are formulated as follows for the A « M, PTs

ép=AoXip —kig) if {X;g—k;_o(c,o)>08& ¢;<1&cy>0}  A— M,
éo = AoXig +king) if { X+ kio(cpo) <0&e;>08& ¢y <1} M, = A
¢o=0 otherwise; i=12,....m
13)
and for M; & M; PTs
¢ = A Xy if{X;>0&¢; <1&¢; >0} j—i
or {X;;<0&¢;>0&¢; <1} i—j
¢;=0 otherwise; Lj=12,....m
a4

where k;_ is the athermal threshold and 4, and 4;; are the kinetic
coefficients. We neglect the athermal threshold for Mj < M; PTs. The
non-strict inequalities for the volume fraction of phases in Egs. (13)-
(14) imply that the PT from any phase does not occur if the parent
phase does not exist or if the product phase is complete.

2.5. Macroscopic parameters

Macroscopic Cauchy stress and the first Piola—Kirchhoff stress, the
deformation gradient, transformation strain, and volume fraction of Si
II and each martensitic variant, averaged over the sample, are defined
as [49-51]

F=— cdV; p=L Pavy; 15)
Vv 0 Jv,
= 1 = 1 _ 1
F=— FdVy; F,~— F,dVy; E~— £dVy;  (16)
Vo Jv, Y Jy, Y Jy,
1
c=— [ cdVy, == [ ¢dVp. 17
‘ Vo Iy, “ro T A aero an

For the Cauchy stress and the first Piola—Kirchhoff stress, the deforma-
tion gradient, and volume fractions ¢ and ¢;, averaging equations are
strict; for the transformation deformation gradient and strain, they are
approximate because, in the unloaded stress-free state, they generally
are not compatible due to residual elastic strain. We use Eq. (16)
because the exact equation is quite bulky and is for F, instead of F,.
Eq. (17) for ¢;, while formally correct, is misleading (Section 4.2). Other
macroscopic parameters are defined via F and P by equations similar
to the corresponding local equations:

6=et Fy'P-F';  E= %(FT-F -n. 18)
Eq. (18) for the Cauchy stress is used instead of Eq. (15) because inte-
gration over the fixed parallelepiped with regular cubic mesh is much
simpler and faster than the integration over the deformed volume.

3. Model parameters

The material parameters required for the implementation of the
model, the same as in [47], are presented in Section 2 are listed in
Table 1. The transformation strain tensors are taken from the MD
simulations in [10,11], and in the local crystallographic axes for all
three variants are given by

01753 0 0 0.1753 0 0

e.=| 0 01753 0o |; &,=| 0 —04470 0 |[;
0 0 —0.4470 0 0 0.1753
—04470 0 0

g5=| o 01753 0 |. 19)
0 0 01753
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Fig. 7. Evolution of components of the Cauchy stress tensor for strain-controlled loading of a sample with 55 grains.

where 6 is the Kronecker delta (6" = 1 for i = j and 6" = 0 for
i #j), A", u" and v" for a cubic and tetragonal crystal lattice are given

The elastic constants for both phases are collected from [31,52]. The by Egs. (21) and (22), respectively:

constants C(;j in Table 1 denote the independent elastic constants of the

austenite, and Cij denote those of the first variant of the martensite, A=2=P=cl'-c?-2c%,
both in the local c;ystallographic axes. The components of the tensor 2ul =22 =243 = C2,
of elastic moduli C¥* can be calculated using
2wl =202 =203 = ¢, 21
3

Cijkl — Z[Anﬁinajnaknaln + ”n(ainéjnakl + 5lj6kn51n)

=l M=22=cl - (c? +2c%),

+VI(8MeTRs 4 5Insik s 4 singI sk 4 sin st sk, (20) B =CB 4 +20% —2(C +20%),
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Fig. 8. Evolution of the components of the Cauchy stress tensor for strain-controlled loading of a sample with 910 grains.

2l =22 = ¢, 23 =20 — ",

2wl =22 = C%, 2v3 =20 — %, (22)

Under hydrostatic conditions, the phase equilibrium pressure pg"
10.5 GPa [25] at J, = 0.764. The jump in the thermal energy Ay? =
—pf)q(J, — 1) = 2.47 GPa, where elastic strain and change in elastic
moduli are neglected. Localization of strain is required to reproduce
discrete microstructure. As noted in [47], to obtain strain localization,
the strain rate should be commensurate with the rate of transformation.

The kinetic coefficient 4 and interaction parameter A are selected to
ensure that this condition is satisfied.

It is found with the first principle and molecular dynamics sim-
ulations [10,11,30] that the criteria for Si I<Si II PTs are linearly
dependent on the Cauchy stress components normal to the cubic faces.
We assume the same for the microscale experiments, where the role
of defects is effectively included. For cubic to tetragonal PTs, the PT
criteria are given by [40,47]

A= M, : a(o) + 0y) + bloy > ¢?;
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Table 1

Material parameters including kinetic coefficient 4(Pa s)~', dimensionless constants in
the expression for effective thresholds, as well as interaction coefficient A, jump in the
thermal energy Ay, and elastic constants, all in GPa.

A A Ay? d dy r ry

0.02 2 2.47 0.082 0.111 -0.90 0.338

oo o a o & o g o

167.5 80.1 65.0 174.76 136.68 60.24 42.22 102.0 68.0
M, - A: a'(o;+0y)+bo3 <, (23)

where a?,b?,¢?,a", b and ¢ are constants determined empirically. To
make the thermodynamic PT conditions consistent with experimen-
tal conditions, the athermal threshold k;_, is considered to be stress
and volume fraction dependent, as described in detail in [47], and
calculated based on the relations

ki_o = Jla (c;)(o| + 0,) + az(c;)o3];

ay(c;) =d; +(rp —dy)c;; k=1and3, 24)

where d, and r; are the fitting parameters, given in Table 1. They are
determined by substituting expressions for k;_, from Eq. (24) in the
transformation criteria in Eq. (13) with the driving forces from Eq. (11)
and some empirical data.

4. Study of multivariant microstructure evolution

A finite element implementation of the scale-free model is devel-
oped in the open-source FEM code deal.II [53] using 8-noded 3D cubic
linear elements with first-order interpolation and full integration. For
such elements, calculations of volume averaged of any parameter a in
the undeformed configuration is the sum of values « in each quadrature
point divided by the number of quadrature points. Microstructure
evolution is studied for polycrystalline samples containing two different
numbers of grains, 55 and 910, as shown in Fig. 1. The total number of
the finite elements and integration points were ~2.1 million and ~16.7
million, respectively, for both cases. If we consider position vector r and
volume fractions ¢, ¢,, and ¢; as the primary independent variables,
then the total number of degrees of freedom is six times the number of
the integration points.

A 3D unit cube sample is constructed in DREAM.3D [54] with the
required number of grains. Each grain in the sample is assigned an
orientation randomly so that the overall sample remains texture free.
Grain boundaries represent 2D surfaces of zero thickness (otherwise,
the model will not be scale free), as in most polycrystalline models,
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even at nanoscale [55,56]. These are surfaces of jump of all orientation-
dependent material properties, like elastic moduli and transformation
strain tensors. As we will see in simulations, these jumps produce both
stress concentrations for the nucleation of martensite and obstacles for
PT transfer from grain to grain.

Two types of compression are applied, strain-controlled and stress-
controlled. For both cases, periodic boundary conditions are applied
in directions 1 and 2 with averaged zero averaged strains in these di-
rections. Application of the periodic boundary conditions significantly
simplified elimination of divergence of the computational procedure
in comparison with other conditions. Such conditions are realized
when Si is clamped in the 1-2 plane; a thin Si layer is attached to
the rigid substrate, or within a shock wave. For the strain-controlled
case, periodic boundary conditions are applied in the direction 3 as
well, and a sample is subjected to a uniaxial compressive averaged
strain in direction 3. For the stress-controlled loading, on the external
planes orthogonal to axis 3, the sample is subjected to homogeneous
compressive normal Cauchy stress in the deformed configuration with
zero shear stresses, i.e., like under the action of the liquid. Stress-
controlled loading ends with constant “pressure in liquid” of 11 GPa.
In total, four simulations are run with two different numbers of grains
and two different loading conditions.

4.1. Elastic instabilities, convergence, and periodic boundary conditions

Due to finite elastic strains and various complex loadings for dif-
ferent grains, elastic instabilities may occur even for the simplest
expression (Eq. (7)) for the elastic energy, as shown in [48] for the
uniaxial compression. Elastic instability at finite strains is determined
by the condition [26,57,58]

det [BH] <0 25)

with the effective elastic moduli

Bk — @ikl _ gij skl 4 l(oilﬁjk + ok 4 Mgl 4 gl k). (26)
2

Here, C/¥ are the components of the fourth-rank elastic moduli tensor
from the expression for the elastic energy Eq. (7). The tensor B/
was introduced in [59] as the coefficients in the relationship between
stresses and small strains of the pre-deformed crystals and in [60] as the
derivative of the Cauchy stress with respect to small strain increment
from the current configuration. It is shown in [61] that B/* can also
be determined from the relationship between the Jaumann derivative
of the Cauchy stress 6"/ and deformation rate d¥' which are used as
an input in various computational codes (e.g., ABAQUS or deal.Ill) for
nonlinear elastic problems.

Our preliminary simulations with the constant Cauchy stresses at
the lateral surfaces of the sample instead of periodic boundary condi-
tions had a divergence problem. Checking the elastic instability con-
ditions, Egs. (25) and (26) confirmed that they are satisfied in some
finite elements. While after meeting the instability conditions related
to the PT (inequalities in Eq. (13)), the system evolves according to
kinetic Eq. (13), after losing elastic stability, there is no kinetic equation
for the elastic deformation rate that will govern the evolution of the
system to the new elastically stable state, which is also unknown.
That is why numerical solution diverges. Attempts to resolve the prob-
lems by adding viscous stresses after reaching local instabilities were
unsuccessful and were not further used. Convergence was achieved
only after applying periodic boundary conditions along the lateral
sample surfaces. Periodic conditions significantly limit the possibility
of system deformation in the lateral directions and suppress elastic
instabilities. Locally, periodic conditions result in stresses for which
elastic instability conditions Eqgs. (25) and (26) are not met. While
periodic conditions allow us to perform current studies, there is a
clear need to further address this problem for the general stress states,
including elastic instabilities. This requires studying these instabilities
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and, if they cannot be avoided, developing the constitutive equations
that connect them with ¢, for describing the kinetics of PTs in a way
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that the system evolves toward martensitic variants without divergence.
This problem will be addressed in the future.
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over the sample based on Eq. (17) vs. strain for stress-controlled loading. The lack of
physical sense for ¢; is described in the text.

4.2. Strain-controlled loading

For strain-controlled loading, the initial strain rate used, in the
elastic regime, is 1 x 1072 s~! and reduced to 5 x 107> s~! once the
material starts to transform. While we can choose any strain rate, such
low strain rates are chosen because they are not achievable in atomistic
simulations. Figs. 2 and 3 show the evolution of martensite at three
intermediate stages (25%, 50%, and 75% of the simulation) and the
final stage of the simulation. The first row shows the total volume
fraction of martensite ¢ followed by those for individual martensitic
variants. The black lines in Figs. 2 and 3 outline the grain boundaries
for all the grains. The videos demonstrating the evolution of the volume
fractions are provided in the supplementary material. Volume fractions
of each martensitic variant ¢; and martensite ¢ averaged over the
sample based on Eq. (17) vs. strain are shown in Fig. 6. Nucleation
starts mostly at the grain boundaries and triple junctions, which repre-
sent stress concentrators. Nucleation starts with the dominant variant,
which produces maximum transformation work; two other variants
appear in the same regions to accommodate the transformation strain
and reduce internal stresses. A similar proportion between variants
remains during further growth. In grains with different orientations,
growth occurs either along the grain boundaries or inside the grain,
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which is arrested either at grain boundaries or other martensitic units.
The general trend is that the lower-angle grain boundaries produce
lower stress concentration for nucleation of martensitic variants but
lower resistance for martensitic units to pass from grain to grain.
The larger-angle grain boundaries produce large stress concentration
and cause nucleation and growth of the martensite along the grain
boundary but strongly resist or prevent passing transformation to the
neighboring grain. In each unit full transformation to Si II occurs
quickly, thus forming discrete Si II microstructure, as desired. With
increasing strain, both Si II broadening of existing Si II regions and
the appearance of new nuclei occur. At the end of the loading, PT is
completed almost everywhere, with small residual Si I pockets. They
are caused by internal stresses due to large transformation strains. For
both numbers of grains, ¢ saturates at 96%.

It can be clearly seen from Figs. 2, 3 and 6 that the second and
the third variants are dominating over the first one, which looks
contradictory. To better understand the reasons for these results, let,
for simplicity and illustration, consider 5 grains: grain 1 oriented with
[100] direction along axis 3 (variant 1); grains 2 and 3, rotated by +90°
about axis 1 (variant 1), and grains 4 and 5, rotated by +90° about
axis 2 (variant 3). Due to symmetry, this is still the same single crystal.
If we treat it like a single crystal and transform it homogeneously till
completion, we obtain ¢, = 1, ¢, = ¢; = 0, and ¢, = ¢,;. However, if
we treat it as a polycrystal, in grain 1, we will have the same ¢; = 1,
¢, = ¢3 = 0 and g = ¢,. In the local coordinate system of grains

2 and 3, this transformation strain looks like €, = ¢, i.e., ¢; = 1,
¢; = ¢3 = 0. Similarly, in the local coordinate system of grains 4 and
5, the transformation strain is g3, i.e., ¢ = 1, ¢; = ¢, = 0. After

averaging these volume fractions over the entire sample, we obtain
¢; =1/5, ¢; = ¢3 = 2/5, what we approximately observe in Fig. 6. The
main point is that ¢; for each grain does not have a lot of sense unless
the orientation of the grain is shown. That is why we give complete
information about orientation of each grain in supplementary material
and show orientations in Fig. 1a. The average over the sample ¢; does
not have any physical sense because the orientation of grains is not
taken into account; they cannot be used in the macroscopic theories.
The average over the sample ¢ has clear physical sense.

We suggest the following ways to present a multivariant structure
in the polycrystal. For local presentation, one can show a triad of local
crystallographic axes in each grain along with fields ¢; (Fig. 1a). One
can present fields of six components of ¢¢; for each variant M, in the
global coordinate system, which is 18 fields. For the above example
with 5 grains, in each grain, we will have components of ¢ in the
global coordinate system, which is consistent with the treatment of the
aggregate as a single crystal. More compact is to present six fields of
six components of the total transformation strain €, = Y, | £,¢; in the
global coordinate system (Figs. 4 and 5), which takes into account in
more averaged sense both an orientation of grain and fields c;. For the
averaged description, one can use a plot of six components of ,.

As it follows from Figs. 4 and 5, normal components of &, vary
between extremes —0.447 and 0.1753 corresponding to the full local
transformation in single variant oriented along the global coordinate
axes, despite zero averaged total lateral strains. Shear components
vary between extremes + 0.31, also despite zero averaged. Colors
corresponding to zero value of each component of transformation strain
is clear from colors of large Si I regions at 25% transformation progress
corresponding ¢ = 0 in Figs. 2 and 3. For both grain sizes one
sees strong heterogeneity of transformation strains from grain to grain
and within grains. Note that fields at the surface do not completely
represent fields in the entire volume, that is why some results may look
counterintuitive. For example, while averaged £;° is larger than ¢!! and
s,zz, this is not evident from the surface fields.

Despite the fact that for the smaller number of grains size of Si
II units is larger, difference in é(E;;) (and even ¢;(Es3)) for different
number of grains is small (Fig. 6). Initiation of PT occurs at the same
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Fig. 14. Evolution of volume fractions of phases for stress-controlled loading of a sample with 55 grains.

stress o,, = —10.33 GPa for both grain sizes, and stress-strain curves
in Fig. 9 also differ insignificantly. That means that the current model
does not describe experimentally observed effect of the grain size on
the Si I to Si II PT pressure or stress [24,62—-64]. This is not surprising
and expected for any scale-free model, especially for a change in grain
size as small as by a factor of 2.5. The main classical reason for a
scale effect is a limited number of nucleation sites in small grains [65].
Since the current model does not include dislocations as local stress
concentrators in bulk and at grain boundaries, it should not exhibit any
grain size effect. This will be the next step in the development of this
model. We plan to apply the same scale-free approach for introducing
discrete dislocations via the solution of the contact problem, as it was
done in [66,67] for small strains and 2D formulations. Of course, it is
much more challenging to do this for 3D and large strains. Another
reason for grain-size dependence of PT parameters for grain sizes
less than 100 nm is the finite width (~1 nm) of a disordered grain
boundary in 1D model in [68]. Some nanoscale PFAs also introduced
the finite width of the grain boundaries, also ~1 nm thick, to either
fully suppress PT in it [69,70] or, in contrast, promote nucleation by
relaxing transformation strain in the grain boundaries [71,72]. While
both types of advancements of the PFA reach clear qualitative goals,
the reality is much more complex. These works neglect misorientation
angle between grains, while even our simplest model with zero-width
grain boundaries shows that for small misorientations, transfer of PT
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from grain to grain easily occurs, while for large misorientations it does
not. Changes in grain boundary energy during PT and surface stresses
at phase interfaces and grain boundaries may play a crucial role in
promoting or suppressing nucleation at the grain boundary, similar to
an external surface [73]. Also, the ratio of the width of grain boundary
to the phase interface width may strongly affect solutions [74,75].
However, all these nanoscale effects cannot be included in a scale-free
model applicable to large samples.

Figs. 7 and 8 shows the evolution of all components of Cauchy
stresses throughout the simulation. It can be noticed from Figs. 7
and 8 that the grain boundaries and triple junctions have the highest
stresses of both signs, which cause nucleation of the dominating variant
accompanied by two other variants and growth, often along the grain
boundaries. Next, a large stress concentration of both signs appears
at the phase interface, causing further nucleation in bulk (so-called
autocatalytic effect). The peak stresses are huge for both normal and
even shear stresses. Thus, for small grains, ¢,, varies from —45 to 35 GPa
and o33 varies from —40 to 10 GPa. Similar, shear stress ¢}, varies from
—20 to 20 GPa and 6,3 varies from —15 to 15 GPa. For large grains, the
magnitude of extremes in stresses is smaller by 5 to 10 GPa. Despite
this difference for different grain sizes, the macroscopic PT initiation
stress ¢,, = —10.33 GPa is the same, and the entire ¢,, — £,, curve
do not differ significantly. The initiation stress is determined by the
transformation work, which depends on all components of the stress
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Fig. 15. Evolution of volume fractions of phases for stress-controlled loading of a sample with 910 grains.

tensor. While stresses are different, the transformation work may be
approximately the same for both grain sizes. This is similar to results
in [40], where a strong stress concentrator due to a dislocation in Si
produced a relatively small contribution to the transformation work.

The stress—strain plots for strain-controlled loading are given in
Fig. 9. After PT starts at E;; = —0.06 and 633 = —10.33 GPa for
both small and large grains, the stress—strain plots continue along the
elastic curve of the austenite with small nonlinearities. This behavior is
because, initially, the transformation rate is very low, as can be noticed
from Fig. 6. Si Il nuclei are localized near stress concentrators without
essential growth. Only at E;; = —0.07 does intense growth start, which
leads to a strong reduction in tangent modulus. Note that for a single
crystal, the tangent modulus is getting negative at the onset of the
PT, causing macroscopic instability [47]. In contrast, for polycrystals,
the local mechanical instabilities due to PT and negative local tangent
modulus are stabilized at the macroscale by arresting/slowing the
growth of Si II regions by the grain boundaries and generating the
internal back stresses. This is reflected by the positive tangent moduli
in the stress-strain plots in Fig. 9. While intuitively, the more grain
boundaries we have, the higher the tangent moduli should be, in fact,
the response for 910 grains is slightly softer than that of 55 grains
Fig. 9. The reasons are: (a) more triple junctions and nucleation sites for
smaller grains leading to more Si II regions; (b) smaller misorientation
between neighboring grains leading to easier transfer of PT growth
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from grain to grain, and (c) a larger number of surrounding grains
giving more chances to find proper orientation for new nucleation
caused by internal stresses in the transforming grains. Although there
is a noticeable difference in the response for both cases, the maximum
difference is <1 GPa or <10%. Such a small difference implies that it
is unnecessary to treat a sample with such a large number of grains
to estimate the macroscopic behavior of a polycrystal. Note that the
Lagrangian elastic strain at the end of simulation, at E;; = —0.22, is
—0.1, i.e., comparable to the transformation strain.

Figs. 10 and 11 shows the pole figures for 55 and 910 grains,
respectively. Figs. 10(a) and 11(a) for initial austenite demonstrate
quite an even spread in all the directions because the random texture
of the stress-free initial configuration was chosen. Fig. 10(a) shows few
low-density regions because of the lower number of grains. Comparing
the initial (Fig. 10(a)) and final (Fig. 10(b)) austenite for 55 grains, we
can clearly notice depletion of the austenite grains due to their trans-
formation to martensite. Similar depletion is not noticed in Fig. 11(b)
for 910 grains because many grains do not completely transform to
martensite. The increase in density in Figs. 10(b) or 11(b) is because of
the rotation of part of or entire austenitic grains, which was observed
for single crystal as well [47].

Figs. 10(c)—(e) and 11(c)-(e) present the pole figures for the three
martensitic variants at the last stage of simulations. As expected, there
is a 90° rotation relation between the first and the second or the third
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Fig. 16. Evolution of the components of the transformation strain tensor for stress-controlled loading of a sample with 55 grains.

variant about the (001) axis. The trends in the volume fractions of the
individual martensitic variant in Figs. 10 and 11 match that of Fig. 6.
The first variant is the lowest in both cases, as only the grains that have
their c-axis aligned with the loading direction can transform to the first
variant. As for the second or the third variants, they primarily need to
be oriented such that their a or b-axis needs to be aligned with the
loading direction. But because of the boundary conditions used, there
are lateral stresses which can contribute to giving a resultant load in
the preferred axes assisting in the transformation. This phenomenon is
not possible for the first variant as the lateral stresses are only a fraction
of the applied load and cannot be the primary contributor to fulfilling
the phase transformation criteria.
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4.3. Stress-controlled loading

In stress-controlled, the stress is applied at a rate of —4 MPa/s
till it reaches —11 GPa and held constant thereafter. Figs. 14 and 15
show the evolution of the volume fraction of Si II and the individual
martensitic variants, Figs. 16 and 17 show the transformation strain
tensor components, and Figs. 18 and 19 show the stress components at
different simulation stages for 55 and 910 grains. The videos showing
the evolution of the volume fractions are provided in the supplementary
material. Volume fraction of each martensitic variant ¢; averaged over
the sample based on Eq. (17) and ¢ vs. strain is shown in Fig. 13. There
is no significant difference, in comparison with the strain-controlled
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Fig. 17. Evolution of the components of the transformation strain tensor for strain-controlled loading of a sample with 910 grains.

case, in nucleation at grain boundaries and triple junctions and char-
acter of growth of martensitic units, stress concentrations, and that
¢, =~ & =~ 2¢,. The same discussion on the luck of the physical sense
in ¢; is valid; ¢ has a physical meaning only.

Stress-controlled compression for both numbers of grains is up to
42% transformation to Si II, after which process diverges. The stress—
strain plots for strain-controlled loading are given in Fig. 12. The PT
starts immediately at —11 GPa and continues to the end of simulations
at E;; = —0.116. These values are larger than those for strain-controlled
loading: at —11 GPa, we have E;; = —0.063 and ¢ = 2.4 x 1073 only;
however, at Ej; —0.116 one gets ¢ = 0.362 for strain-controlled
loading. The possibility of larger strains and transformation progress
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at —11 GPa is related to less constraint deformation at the horizontal
external surfaces. Periodic conditions for displacements along the axis
3 for strain-controlled loading lead to more homogeneous PT near
both horizontal surfaces and small deviations from the flat surfaces. In
contrast, for stress-controlled loading, lack of periodic conditions along
the axis 3 leads to much pronounced PT near the upper horizontal
surface, which spreads in the upper part of the sample. This leads to
the loss of stability of Si II nuclei near stress concentrators, their fast
growth, interaction, coalescence, and more pronounced auto-catalytic
effect. Thus, specific boundary conditions are very influential, which
is necessary to take into account in the problem formulation. The
difference in volume fractions of M; for 55 and 910 grains in Fig. 6
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Fig. 18. Evolution of the components of the Cauchy stress tensor for stress-controlled loading of a sample with 55 grains.

and ¢ is much smaller than for the strain-controlled loading in Fig. 6,
again due to less restrictive boundary conditions.

The peak stresses are large but smaller than for strain-controlled
loading (Figs. 18 and 19). Thus, for small grains, ¢,, varies from —33
to 30 GPa and o33 varies from —25 to 5 GPa. Similar, shear stress o,
and 6,3 vary from —15 to 15 GPa. For large grains, the magnitude of
extremes in stresses are smaller by 5 to 10 GPa, like for strain-controlled
loading. Lower peak stresses are partially caused by a smaller volume
fraction of Si IL

Figs. 20 and 21 show the pole figures for 55 and 910 grains,
respectively, for the stress-controlled loading. Figs. 20(a) and 21(a)
show initial austenite texture for both cases, which are the same as

18

the ones chosen for strain-controlled loading. For both 55 and 910
grains, there is no significant depletion of the austenite, unlike for the
strain-controlled loading, because the ¢ = 0.42 only. This is reflected
in the small difference between Fig. 20(a) and (b), and in sparsely
distributed Fig. 20(c)-(e). Contrary to this, Fig. 21(c)-(e) show the
pole figures with more uniform distributions because grains in many
different orientations start transforming to martensite like in the case
of Fig. 11.

5. Concluding remarks

In the paper, the first scale-free PFA modeling of the multivariant
martensitic PT from cubic Si I to tetragonal Si II in a polycrystalline
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Fig. 19. Evolution of the components of the Cauchy stress tensor for strain-controlled loading of a sample with 910 grains.

aggregate with up to 1000 grains is presented. All computational
challenges related to large and very anisotropic transformation strain
tensors, the stress-tensor dependent athermal dissipative threshold for
the PT, and elastic instabilities due to a variety of complex loadings
in each grain, are overcome. The importance of the simulations should
also be stressed by the fact that since Si II does not exist under ambient
conditions, its microstructure cannot be studied using traditional post-
mortem methods (SEM, TEM, etc.). For a single crystal, positions of
Si I-Si II interfaces can be determined using in-situ high-pressure Laue
diffraction, but still, in combination with molecular dynamics [37]. For
polycrystals, this is currently impossible.
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Coupled evolution of discrete martensitic microstructure, volume
fractions of martensitic variants, and Si II, stress and transformation
strain tensors, and texture are presented and analyzed. It is demon-
strated that the volume fraction of each martensitic variant ¢; in each
grain does not have a lot of sense unless the orientation of the grain
is explicitly shown. The average over the sample ¢; does not have
any physical sense because the orientation of grains is not taken into
account; they are misleading and cannot be used in the macroscopic
theories. Macroscopic variables effectively representing multivariant
transformational behavior are introduced. One can present fields of six
components of g;;¢; for each variant M; in the global coordinate system.
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Fig. 20. Pole figures of (a) initial austenite, (b) residual austenite, (¢) final martensitic variant M,, (d) M,, and (e) M; for stress-controlled loading of 55 grains.

More compact is to present six components of the total transformation
strain &, = | £,¢; in the global coordinate system. For the averaged
description, one can utilize six components of &,.

For strain-controlled uniaxial compression with periodic conditions
in all directions, almost complete (96%) PT was reached with small

20

pockets of residual Si I. For stress-controlled uniaxial compression
without periodic conditions in the loading direction, 42% of completion
of was achieved at —11 GPa, much larger than 0.24% for the same
axial stress for strain-controlled loading, but relatively close volume
fraction of Si II was reached for the same strain. Lack of periodic
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Fig. 21. Pole figures of (a) initial austenite, (b) residual austenite, (c) final martensitic variant M,, (d) M,, and (e) M; for stress-controlled loading of 910 grains.

conditions in the loading direction results in less constraint deformation stress concentrators, their fast growth, interaction, and coalescence.
at the horizontal external surfaces and more localized transformation Thus, tiny detail in the boundary conditions is very influential, which
near one of them, which leads to loss of stability of Si II nuclei near is necessary to take into account in the problem formulation.
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Despite the simplest model for the grain boundaries, namely zero
width 2D surfaces with a jump of all orientation-dependent mate-
rial properties, they reproduce the main desired features generically
observed in experiments and nanoscale PFAs with finite-width grain
boundaries [69-72] for various material systems. The general trend
is that the lower-angle grain boundaries produce lower stress concen-
tration for martensite nucleation but lower resistance for martensitic
units to pass from grain to grain. The larger-angle grain boundaries
produce large stress concentration and cause nucleation and growth
of martensite along the grain boundary but strongly resist or prevent
passing PT to the neighboring grain. Note that models [69-72] do
not include misorientation of grains in the grain boundary model and
athermal interfacial friction, in contrast to our model.

In contrast to a single crystal, the local mechanical instabilities
due to PT and negative local tangent modulus are stabilized at the
macroscale by arresting/slowing the growth of Si II regions by the
grain boundaries and generating the internal back stresses. This leads
to an increasing magnitude of stress during PT, typical for various
nonhydrostatic loadings of Si in experiments [15,24]. Of course, a more
realistic model of the grain boundaries is required, but it is not clear
how properties of a nanometer thick grain boundary can be effectively
included in a model for large samples.

Large transformation strains and grain boundaries lead to huge
internal stresses, which affect the microstructure evolution and macro-
scopic behavior. The peak stresses reach 45 GPa in compression, 35
GPa in tension, and 20 GPa in shear for strain-controlled loading of
910 grains; for 55 grains, the magnitude of extremes in stresses are
smaller by 5 to 10 GPa. For stress-controlled loading and small grains,
the peak stresses reach 35 GPa in compression, 30 GPa in tension, and
15 GPa in shear; for large grains, they are smaller by 5-10 GPa, like
for strain-controlled loading. Lower peak stresses for stress-controlled
loading are partially caused by a smaller volume fraction of Si IL
Despite these differences, the macroscopic (overall) stress—strain and
transformational behavior for 55 and 910 grains are quite close and
differ less than by 10% for strain-controlled loading and even less for
stress-controlled one. This allows the determination of the macroscopic
constitutive equations by treating aggregate with a small number of
grains. On the other hand, that means that the current model does not
describe experimentally observed effect of the grain size on the SiI to Si
II PT pressure or stress [24,62-64]; however, this is not surprising and
was expected for any scale-free model. The reason is that the current
model does not include dislocations as local stress concentrators in bulk
and at grain boundaries. This will be the next step in developing the
current model. We can use the same approach for introducing discrete
dislocations via the solution of the contact problem, as it was done
in [66,67] for small strains and 2D formulations.

Obtained results are also an important step in studying plastic
strain-induced PTs. The main hypothesis [12] is that they initiate at
the tip of dislocation pileups against grain boundaries, which causes
strong stress concentration for all stress components proportional to the
number of dislocations in a pileup. These stresses drastically reduce the
required external pressure needed for nucleation and further growth.
Nanoscale PFA for coupled PTs and discrete dislocations allows us
to treat a bicrystal and to qualitatively prove this hypothesis [76-
78], however, for 2D and small strain formulation. Our scale-free
PFA [66,67] introduced discrete dislocations via the solution of the
contact problem. It has been applied to 2D polycrystalline samples with
several dozen grains and also for small strain formulation. Of course, it
is much more challenging to do this for 3D and large strains.

In [56,69,70], continuum von Mises plasticity is included in PFAs
for PTs. While this is a reasonably good way to describe stress relax-
ation for temperature-, pressure-, and stress-induced PTs, description of
plastic strain-induced PTs requires discrete dislocation microstructure
and corresponding stress concentrators.
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The developed methodology can be used for studying various PTs
with large transformation strains (e.g., hexagonal and rhombohedral
graphite to hexagonal and cubic diamond, similar PTs from graphite-
like BN to superhard diamond-like BN, PTs in semiconducting Ge and
GaSb, etc.) and for further development for plastic strain-induced PTs.
Elastic instabilities with the problems discussed in Section 4.1 are
expected for these crystals as well, thus strict methods of their inclusion
in the PT kinetics should be developed.
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