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Abstract 26 

Thin layer sediment placement (TLP) is used to build elevation in marshes, counteracting effects 27 

of subsidence and sea level rise. However, TLP success may vary due to plant stress associated 28 

with reductions in nutrient availability and hydrologic flushing or through the creation of acid 29 

sulfate soils. This study examined the influence of sediment grain size and soil amendments on 30 

plant growth, soil and porewater characteristics, and greenhouse gas exchange for three key US 31 

salt marsh plants: Spartina alterniflora (synonym Sporobolus alterniflorus), Spartina patens 32 

(synonym Sporobolus pumilus), and Salicornia pacifica. We found that bioavailable nitrogen 33 

concentrations (measured as extractable NH4+-N) and porewater pH and salinity were inversely 34 

related to grain size, while soil redox was more reducing in finer sediments. This suggests that 35 

utilizing finer sediments in TLP projects will result in a more reduced environment with higher 36 

nutrient availability, while larger grain sized sediments will be better flushed and oxygenated. 37 

We further found that grain size had a significant effect on vegetation biomass allocation and 38 

rates of gas exchange, although these effects were species-specific. We found that soil 39 

amendments (biochar and compost) did not subsidize plant growth but were associated with 40 

increases in soil respiration and methane emissions. Biochar amendments were additionally 41 

ineffective in ameliorating acid sulfate conditions. This study uncovers complex interactions 42 

between sediment type and vegetation, emphasizing limitations of soil amendments. The 43 



findings aid restoration project managers in making informed decisions regarding sediment type, 44 

target vegetation, and soil amendments for successful TLP projects. 45 
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 49 

Implications for practice 50 

•  Utilization of coarse sediment in TLP projects may benefit salt marsh plants less tolerant of 51 

saline and reducing conditions, and will support lower soil carbon accumulation 52 

•  Conversely, utilization of fine sediment in TLP projects may benefit salt marsh plants that are 53 

halophytic or respond positively to added nutrients, and will support greater soil carbon 54 

accumulation 55 

  56 



Introduction 57 

Accelerated sea level rise (SLR) is a major threat to coastal salt marshes, as studies have 58 

suggested that increased rates of SLR have resulted in marsh vegetation die-off and expansion of 59 

tidal channels and ponds (Crosby et al. 2016; Davis et al. 2019; Watson et al. 2016). Analysis of 60 

aerial photographs and peat cores has shown that marsh vegetation can migrate upslope to 61 

compensate for marsh loss at lower elevations (Fagherazzi et al. 2019; Hussein 2009). However, 62 

barriers can preclude the marsh vegetation from migrating upslope, such as urban and 63 

agricultural development, species competition and steep topographic gradients (Fagherazzi et al. 64 

2019; Schieder et al. 2018). As a result of fragmentation and coastal marsh losses, valuable 65 

ecosystem services and functions are at risk, including shoreline stabilization, flood mitigation, 66 

denitrification, and carbon sequestration (Gedan et al. 2011; Sutton-Grier et al. 2015; 67 

Temmerman et al. 2013). Without further action, these ecosystem services and functions will be 68 

degraded due to accelerated SLR.  69 

 70 

Thin layer sediment placement (TLP) is a method of SLR adaptation that increases the elevation 71 

of the marsh platform through the application of sediment, as an effort to prevent over-72 

inundation and extend the lifespan of the marsh (Oldenborg & Steinman 2019; Thorne et al. 73 

2019; Wigand et al. 2017). Target sediment placement thickness varies greatly among restoration 74 

and enhancement projects, often ranging from less than 10 cm up to a meter (Raposa et al. 2023), 75 

depending on the restoration project’s functional goals and the tidal range of the marsh, as a low 76 

tidal range marsh will experience a greater reduction in surface flooding for a commensurately 77 

thinner sediment placement. Additionally, thickness may vary depending on dredged sediment 78 

type, method of application, and grading equipment. For example, TLP projects in New Jersey 79 



had sediment slurries that sorted by grain size during application, resulting in thicker applications 80 

closer to the spray outlet where the larger grained sediments were more concentrated (NJDEP & 81 

TNC 2023). This can have significant effects on underlying vegetation and the subsequent 82 

recolonization of vegetation on the elevated marsh platform, as thinner applications are more 83 

likely to allow for vegetation breaking through the overlying sediment. Projects with thicker 84 

additions or with sediments that act as potential impediments for underlying vegetation to break 85 

through, such as those with heavy clay content, will be more reliant on ingrowth from the edges 86 

of the TLP area (Allison 1995; NJDEP & TNC 2023). Additionally, coarse sediment has a 87 

greater bulk density, and added weight from coarse sediments has in some cases caused mortality 88 

of target vegetation species (Jiang & Middleton 2011; Middleton & Jiang 2013). 89 

 90 

Sediment composition is also a main driver of chemical properties, and as such will alter 91 

vegetation biomass allocation and cause changes in nutrient cycling. For instance, a significant 92 

reduction in Spartina patens stem production was found after dredged sediment addition in the 93 

study of Matzke & Elsey-Quirk (2018); however, there was also an increase in fine root 94 

production, demonstrating a shift in biomass allocation. Furthermore, soil type and texture has 95 

been suggested to shape species growth responses among common wetland species (Howard 96 

2010). The results from these studies strongly suggest that there is an interactive effect between 97 

plant species and sediment texture that can be leveraged to plan TLP projects that meet 98 

restoration goals.  99 

 100 

Incorporation of biochar and compost into TLP projects may offer a complementary method of 101 

enhancing plant recolonization. Biochar is a carbonaceous, porous material formed from anoxic 102 



combustion of organic feedstock material and is often used in agriculture and restoration projects 103 

to enhance soil fertility, denitrification, hydraulic flow, and carbon sequestration (El-Naggar et 104 

al. 2015; Ojeda et al. 2016; Yao et al. 2018). However, biochar characteristics may be dependent 105 

upon the feedstock and combustion parameters used to produce the biochar (Atkinson et al. 106 

2010). Studies have shown greater long-term carbon sequestration of biochar made from high-107 

lignin feedstocks combusted for longer periods (Tag et al. 2016). Biochar is often applied with 108 

compost, as some studies have suggested a synergistic effect on soil fertility (Sánchez-Monedero 109 

2019). As compost provides a more bioavailable source of nutrients due to its low recalcitrance, 110 

biochar may ensure the released nutrients remain within the rhizosphere by adsorption to the 111 

biochar particle surface (Gong et al. 2019).  112 

 113 

Additionally, studies have suggested using biochar as a means of ameliorating soil acidity 114 

through moderation of the soil pH, total alkalinity, and metal concentrations (Dai et al. 2017; 115 

Manickam et al. 2015; Novak et al. 2009). This benefit of biochar is particularly notable as many 116 

benthic sediments have high concentrations of iron sulfide, and oxygenation of these sediments 117 

can result in the formation of acid sulfate soils (Salisbury et al. 2017; Xu et al. 2018). Acid 118 

sulfate soils, characterized by a pH less than 4, have been shown to have phytotoxic effects on 119 

common salt marsh hydrophytes (Ingold & Havill 1984). Incorporation of biochar into dredge 120 

sediments may prevent acid sulfate formation by increasing the pH buffering capacity of soil 121 

through carbonate formation from the release and transformation of carboxylate groups on the 122 

biochar surface (Dai et al. 2017; Leng & Huang 2018; Manickam et al. 2015). Biochar 123 

incorporation could thus neutralize acidic soils and enhance plant recolonization. However, most 124 

biochar studies have been conducted in agricultural or otherwise non-hydric conditions, with few 125 



studies examining biochar properties in wetlands (e.g., Borchard et al. 2019; Wang et al. 2016). 126 

It is difficult to generalize the potential benefits of biochar in tidal wetland restorations as there 127 

are complicated interactions between sediment type and the emergent properties resulting from 128 

the feedstock and treatment of biochar, and how those properties may interact with hydric 129 

conditions (Cayuela et al. 2013; Leng & Huang 2018; Sun et al. 2016).  130 

 131 

This study focuses on the three questions relative to TLP projects: (1) the effects of sediment 132 

textures typical of dredged material used in TLP projects on the growth of common salt marsh 133 

vegetation species, (2) the potential of biochar and compost to enhance plant growth, and (3) the 134 

use of biochar to ameliorate soil acidity. Salt marsh plants were grown in greenhouse mesocosms 135 

for a full growing season in sediments of varying texture with and without treatments of 136 

softwood-feedstock biochar and compost. As previous studies have demonstrated the species-137 

specific sensitivity of hydrophytes to soil texture and water holding capacity (Howard 2010; 138 

Matzke & Elsey-Quirk 2018; Muench et al. 2019), we hypothesized that the propagated plants 139 

would have higher biomass in coarser sediments. We expected an exaggerated difference in the 140 

high marsh species S. patens and S. pacifica, which are less tolerant of extended inundation 141 

conditions, grown in coarse sediments relative to those grown in fine sediments. S. alterniflora is 142 

a low marsh species and thus was expected to be hardier in fine grained sediments, as it can 143 

tolerate longer periods of inundation (Gleason & Ziemen 1981). We further hypothesized that 144 

softwood biochar and compost additions would enhance plant growth (Roberts et al. 2015). 145 

Lastly, as biochar contains a high amount of surficial carboxylate groups, additions of biochar to 146 

sediments may increase the carbonate concentration of sediments through the cleavage of the 147 

carboxylates and conversion into carbonate ions, resulting in an increase in the buffering 148 



capacity of these sediments (Dai et al. 2017; Leng & Huang 2018; Manickam et al. 2015). 149 

Therefore, we hypothesized that softwood biochar would neutralize acidic soils. This study’s 150 

overall aim was to determine which benthic sediment textures would be most beneficial to TLP 151 

restoration projects and whether soil amendments, including biochar and compost, could 152 

promote successful early plant recolonization.    153 

 154 

Methods 155 

Coastal marsh plant taxa, including Spartina alterniflora (synonym Sporobolus alterniflorus), 156 

Spartina patens (synonym Sporobolus pumilus), and Salicornia pacifica, were obtained from 157 

restoration nurseries (Native West Nursery, San Diego, CA & Pinelands Nursery, Columbus, NJ 158 

and propagated during the 2018 growing season in a roof-top greenhouse in Philadelphia, PA 159 

(39.9539°, -75.1878°) in benthic sediments like those used in TLP projects (Raposa et al. 2023).  160 

S. patens and S. alterniflora were chosen as high and low marsh representatives (respectively) 161 

due to their high prevalence within eastern U.S. coastal salt marshes, while S. pacifica is a 162 

dominant low marsh species of the West Coast. Three experiments were performed to determine 163 

if: 1) sediment texture influences the success of restoration planting, 2) if biochar or compost 164 

additions facilitate vegetation growth in nutrient-poor dredge sediment, and 3) whether biochar 165 

ameliorates acidity caused by oxidation of sulfides in soils. Plants were tempered over two 166 

weeks to a final salinity of 20‰, using a mixture of water collected from Barnegat Bay, NJ 167 

(39.7483°, -74.1931°) and distilled water. Plants were exposed to ambient light conditions under 168 

15% shade cloth, and the greenhouse was outfitted with several fans for temperature moderation.  169 

 170 

Sediment texture effects on vegetation  171 



Following a 3x4 factorial design replicated four times, three plant species were propagated in 172 

four types of homogenized sediments of contrasting textures (Table 1; Fig. S1-S2) over the 173 

course of a growing season (130 days; 22 June – 29 Oct 2018). To replicate the way plant plugs 174 

are planted in the field in restoration projects post sediment application, plugs (5cm x 5cm x 175 

9cm) were obtained from restoration nurseries and those which were relatively homogenous in 176 

the amount of biomass present were planted into larger containers (10cm x 10cm x 24cm). 177 

Plants were exposed to simulated once-daily tides (MacTavish & Cohen 2014) where plants 178 

were flooded to a depth of 5 cm for four hours, and the soil was drained to 16.5 cm below the 179 

sediment surface for twenty hours. For reference, this inundation time (17%) corresponds to that 180 

considered 'regularly flooded' (Eleuterius and Eleuterius 1979), but is flooded less frequently 181 

than that observed for nine of ten Mid-Atlantic marshes which were found to have an average 182 

inundation time of 31% (Elsey-Quirk et al. 2022). Inundation times for Cape Cod marshes were 183 

found to be 15% in healthy marshes vs. 45% in fragmenting marshes (Smith et al. 184 

2012).Sediment texture of soil source material was analyzed for all sediment types using a laser 185 

granulometer (LS 13-320, Beckman Coulter, Brea, CA) after pretreatment (Gray et al. 2010). 186 

Average particle size distributions were post-processed with Gradistat.v8 software (Blott & Pye 187 

2001), including bin aggregation to texture classes and statistical description.  188 

 189 

Photosynthesis, community respiration (CR), net ecosystem exchange (NEE), and CH4 emissions 190 

were measured once from 20 to 29 July 2018 using an ultraportable greenhouse gas analyzer 191 

(ABB, San José, CA) in a 20L chamber. Measurements of NEE were collected during five 192 

minute incubations in a transparent chamber, and CR fluxes were determined by similar 193 

incubations with the chamber covered with black-out material.  Photosynthesis was calculated as 194 



the sum of CR and NEE. The Ideal Gas Law (PV = nRT) was used to convert linear changes in 195 

CO2 and CH4 concentrations within the chamber during each incubation period to fluxes 196 

standardized to the surface area of the plant pots (Powell et al. 2020). 197 

 198 

Porewater was sampled three times (17 August, 18 September, 24 October 2018), using a Rhizon 199 

sampler from a depth range of 0-5 cm. Porewater pH was measured using a benchtop Thermo 200 

Orion A111 pH meter, and porewater salinity was measured using a YSI pro30 conductivity and 201 

salinity meter. At the end of the growing season, aboveground and belowground biomass of the 202 

plants was determined by harvesting, washing, and drying the plant samples at 60 °C to a 203 

constant weight. Belowground root material was extracted by washing the container sediment 204 

over a 2 mm sieve. Soil redox (eH) was measured at a depth of 5 cm at harvest using a benchtop 205 

Oakton oxidation-reduction potential electrode. Sediment samples were collected at harvest and 206 

processed for KCl extractable ammonium-nitrogen (NH4+-N), with ammonium concentrations 207 

analyzed using the phenate method (EPA Method 350.1; APHA 2012). Saturated hydraulic 208 

conductivity (Ksat) was measured (for S1-4) using a Decagon KSAT (Decagon Services, 209 

Pullman, WA) using the falling head method.  210 

 211 

We conducted short incubation experiments to assess the δ13C of the CO2 emitted from amended 212 

soils to help determine whether these emissions could be attributed to plant respiration (~δ 13C=-213 

16 to -12‰ for C4 grasses) vs. remineralization of the carbon in biochar or compost (~δ 13C=-30 214 

to -25‰ associated with C3 plant material) (O'Leary 1988; Smith & Epstein 1971). We sampled 215 

the headspace of the chamber containing plant at the beginning and end of 30-m incubations 216 

using 60 mL luer lock syringes outfitted with a stopcock, where the gas was evacuated and 217 



stored in 0.1 L Cali-5-bond gas pillows. Carbon dioxide was subsequently analyzed for δ 13CO2 218 

using a benchtop Picarro (Santa Clara, CA, USA) G2201i isotope and gas concentration 219 

analyzer.  220 

 221 

Biochar and Compost Treatments 222 

S. alterniflora was grown in coarse sand presumed to have low nutrient levels, with the 223 

following soil amendments: softwood biochar (10% v/v), compost (10% v/v), and with both 224 

softwood biochar (10% v/v) and compost (10% v/v) to match a paired field study (Raposa et al., 225 

2023). Biochar amendments were a commercially available softwood biochar (Blacklite Pure, 226 

Pacific Biochar, Santa Rosa, CA; produced from Douglas-Fir feedstock). Compost feedstock 227 

included manure, livestock products, aged pine bark, coir, and worm castings (Planting Mix 228 

Compost Blend, Organic Mechanics Soil Company, Modena, PA). Plants were propagated under 229 

identical conditions as the first experiment over a growing season (22 June – 29 Oct 2018), with 230 

16 total units (n=4 per each treatment). Plant biomass, CO2 and CH4 emissions, porewater 231 

salinity and pH, KCl-extractable NH4+-N, and eH measures were conducted.  232 

 233 

Additional samples of S. pacifica were grown in two types of benthic sediments prone to 234 

acidification (S6, S7) with and without a 10% (v/v) addition of softwood biochar and without 235 

tidal flooding. S. pacifica was propagated for 181 days; 22 June – 19 December 2018. Each 236 

treatment was replicated four to six times for a total of 22 experimental units. As described 237 

above, plant total biomass, porewater salinity and pH, KCl-extractable NH4+-N, and eH were 238 

measured. In additional porewater total alkalinity was measured (EPA Method 2320 B; APHA 239 

2012).  240 



 241 

Data Analysis 242 

All statistical analyses were performed in R ver. 4.0.3 (R Core Team 2023). Correlation matrices 243 

were created to examine the dependency of measured variables. The relationship between 244 

sediment texture and edaphic parameters (eH, NH4+-N, Ksat, and porewater pH and salinity) was 245 

tested using a non-parametric Kruskal-Wallis test with Bonferroni-correction. Significant 246 

interactions (p<0.05) were followed by a post hoc non-parametric Dunn’s Multiple Comparison 247 

Test.  248 

 249 

Plant biomass and photosynthesis were modeled as a function of sediment texture-related 250 

parameters (eH, KCL extractable NH4+-N, soil hydraulic conductivity, and porewater pH and 251 

salinity) using partial least squares regression (PLSR) due to collinearity of predictors. Each 252 

variable was assessed for variable importance in projection (VIP), where VIP scores >1 represent 253 

high importance to the regression. Bonferroni-corrected one-way Analysis of Variance 254 

(ANOVA) tests were run to determine differences in sediment grain size effects on plant species’ 255 

biomass and gas emissions, as well as to test if biochar and compost treatments on low-nutrient 256 

sediments significantly impact sediment eH, NH4+-N, porewater pH, and porewater salinity. In 257 

certain cases where normality or homoskedasticity assumptions could not be met, Kruskal-Wallis 258 

tests were conducted. Significant effects in the ANOVAs or Kruksal-Wallis tests were followed 259 

by a post hoc Tukey’s Honestly Significant Difference test or Dunn’s Multiple Comparison 260 

Tests, respectively. To determine the effects of biochar-treatments within non-tidal mesocosms 261 

on soil properties (e.g., porewater pH, salinity, eH, NH4+-N, and total alkalinity), Welch’s Two 262 

Sample t-tests were run.  263 



 264 

Results 265 

Sediment texture effects on vegetation 266 

Grain size analysis revealed that S1 had a median particle diameter (d50) of 10.3 µm, while S2, 267 

S3, and S4 had median particle size diameters of 213, 451, and 523 µm, respectively (Table 1; 268 

Fig. 1). Measurements of Ksat showed greater hydraulic conductivity in coarser sediments (Table 269 

2). Finer-grained sediments (S1 and S2) and coarser-grained sediments (S3 and S4) were further 270 

distinguished by significant differences in sediment eH, porewater pH and salinity (Table 2). S1 271 

and S2 had lower sediment eH than S3 and S4 (p < 0.001). Porewaters were significantly more 272 

alkaline (p < 0.001) and 25-28% more saline (p < 0.01) for the finer grained sediments (S1, S2). 273 

Extractable NH4+-N had an inverse relationship with sediment d50, with higher extractable NH4+-274 

N in finer sediments.  275 

 276 

Regression analyses demonstrated relationships between edaphic parameters and plant species 277 

responses (Fig. 2; Table S1-4). Aboveground biomass of S. pacifica and S. patens was positively 278 

correlated with redox (r=0.64, p<0.001; r=0.72, p<0.001, respectively) and Ksat (r=0.59, 279 

p<0.001; r=0.31, p=0.1).  However, S. alterniflora aboveground biomass was negatively 280 

correlated with redox (r=-0.26, p=0.07) and Ksat (r=-0.56, p<0.001). Belowground biomass of the 281 

three plant species was found to be negatively correlated with Ksat (r=-0.50, p=0.01), such that 282 

there was greater belowground biomass in sediments with low Ksat. PLS regression suggested 283 

biomass and greenhouse gas exchange were also found to be significantly related to edaphic 284 

characteristics, including porewater pH, porewater salinity, Ksat, eH, and NH4+-N (Tables S5-10). 285 

Important predictors were Ksat for aboveground biomass (VIP=1.34), Ksat, porewater ammonium 286 



and pH (VIP=1.57, 1.06, and 1.02, respectively) for belowground biomass, and Ksat, and salinity 287 

for respiration (VIP=1.33, 0.99), and NEE (VIP=1.55, 1.49). 288 

 289 

Responses of plant growth to treatments varied (Fig. 3; Table S11-S13). S. pacifica had little 290 

aboveground growth in S2, and S. patens displayed more of a threshold effect, with lower growth 291 

in the two finer sediments and greater growth in the two coarser sediments. There were no 292 

statistically significant differences among treatments for S. patens for either biomass or CO2 293 

exchange (Table S12). Generally, the coarsest sediments (S4) had the greatest respiration rates 294 

(Fig. 4; Tables S11-13), and also the greatest rates of carbon dioxide photosynthetic uptake for S. 295 

pacifica and S. patens, the less inundation tolerant taxa. Despite differences in CO2 effluxes 296 

across species, emissions of CH4 from all three plant species mesocosms were significantly 297 

higher in S2 sediments (Table S11-13). Of the three species, S. pacifica mesocosms produced the 298 

most CH4 emissions, at a rate of 2,598 ± 1,107 µmol CH4 m-2 hr-1. 299 

 300 

Biochar and Compost Treatments 301 

Biochar and compost amendments had significant effects on some soil characteristics in the 302 

coarse, low-nutrient S5 sediment (Table 2). Biochar and compost amendments resulted in an 303 

average increase in extractable NH4+-N by 86% and an increase in average soil eH of 434% 304 

compared to unamended S5 sediments. Additionally, while the biochar treatment increased the 305 

pH and decreased the salinity of S5 porewater, the treatments with compost (both with and 306 

without the second addition of biochar) decreased pH and increased salinity. Although the 307 

biomass of S. alterniflora grown in S5 sediments was not statistically different between 308 

treatments (Fig. 5a), the greatest average biomass (for aboveground, belowground, and total 309 



biomass measurements) was found in plants grown in S5 without any soil amendments. Average 310 

total biomass measured 39% greater for plants grown without additives in comparison with 311 

plants grown with compost soil additives, 33% greater in comparison with plants grown with 312 

biochar additives, and 20% greater than plants grown with both biochar and compost additives.  313 

 314 

Carbon dioxide efflux from S. alterniflora mesocosms reflected the trends of biomass 315 

measurements (Fig. 5b). Photosynthesis, CR, and NEE rates had no statistical differences among 316 

treatments. However, NEE was negative for unamended sediments and biochar amended 317 

sediments (-6.21±2.65 and -1.40±3.57 µmol CO2 m-2 s-1, respectively), while amendments with 318 

compost and compost with biochar resulted in positive emissions (3.08 ± 4.63 and 3.59 ± 5.43 319 

µmol CO2 m-2 s-1, respectively).  Emissions of CH4 were highest from mesocosms that were 320 

treated with compost (Fig. 5c), where compost-only treatments (S5C) resulted in the statistically 321 

highest rate of emissions at 332 ± 82.9 µmol CH4 m-2 hr-1, compared to unamended soils which 322 

emitted 3.60 ± 3.20 µmol CH4 m-2 hr-1. 323 

 324 

The δ13C of CO2 emitted from compost amended sediments was more negative than that emitted 325 

from biochar and unamended sediments (Fig. 5d). Increased sediment respiration from compost-326 

amended sediments likely originated from compost decomposing, which had a more negative 327 

isotope ratio than the C4 plant Spartina alterniflora. In contrast, sediments not amended with 328 

compost emitted more positive δ13C CO2, suggesting origination from enhanced soil respiration 329 

rather than the remineralization of biochar. This suggests that biochar is stable in the soil, but 330 

enhances soil carbon decomposition.  331 

 332 



Although two sediments were used to test if biochar could prevent development of acid sulfate 333 

soil conditions only one sediment (S6) acidified. Porewater pH of unamended S6 sediments was 334 

more acidic (3.46 ± 0.22) than biochar-amended sediments 4.06 ± 0.48 (p < 0.05) (Table 2; 335 

Table S15). Biochar additions were also associated with a +355 mV increase in eH in amended 336 

sediments. Biochar additions were associated with an increase in the total alkalinity of S7 337 

sediments, which did not acidify, by 67% and an increase in eH and pH by 149% and 3%, 338 

respectively. 339 

 340 

Discussion 341 

The colonization and zonation of marsh vegetation is a direct response to varying environmental 342 

parameters, such as sediment type, salinity, hydrology, and elevation (Contreras-Cruzado et al. 343 

2017; Moffett et al. 2010; Pennings & Callaway 1992). Sediment type is a strong driver of 344 

zonation as it encompasses a number of parameters that influence how a plant allocates biomass, 345 

assimilates water and nutrients, and respires (Akhtar et al. 2015; Howard 2010; Maricle & Lee 346 

2007). Our studies confirmed that salt marsh vegetation is sensitive to edaphic properties related 347 

to grain size, and additionally that the response is species-specific.  348 

 349 

Beneficial use of dredge material, such as in the case of TLP projects, is a progressively more 350 

common method of increasing marsh elevation in response to accelerating rates of SLR (Ganju 351 

2019). Utilizing TLP for raising marsh elevations has been an overall effective method of 352 

increasing the resilience of valuable marsh habitats to climate change through enhancing 353 

elevation capital (NJDEP & TNC 2023), but dredge sediment has been shown to have mixed 354 

effects on wetland vegetation biomass (Grandy et al. 2018), resulting in variable rates of 355 



revegetation and subsequent sediment capture. Grandy et al. (2018) demonstrated that these 356 

shifts in growth rates may be due to species-specific interaction with the physical and chemical 357 

properties of sediment.  358 

 359 

For example, we determined that coarser sediments resulted in higher Ksat, allowing for 360 

porewater flushing. This may benefit plants less tolerant of inundation or salinity, such as S. 361 

patens (Muench et al. 2019; Schile et al. 2011). However, these higher flushing rates may reduce 362 

the availability of nutrients around the root zone (Fisher & Acreman 2004). As in the case of 363 

constructed wetlands for water treatment, high retention rates are important as they allow for 364 

maximum nutrient absorption by marsh plants, and flushing the water too quickly results in a 365 

lack of assimilation of nutrients (Reinhardt et al. 2005). In line with this, the finest sediment in 366 

this study, S1, contained the highest concentration of extracted NH4+-N compared to the other 367 

sediments. This sediment also had the lowest Ksat, demonstrating a clear trade-off between Ksat 368 

and nutrient concentrations. This has important implications for designing TLP projects. Systems 369 

in which S. alterniflora is dominant may benefit from application of moderate grain sized 370 

sediments, as nutrients were not a significant driver of biomass for this species due to its ability 371 

to efficiently capture bioavailable nitrogen (Muench et al. 2019). Salt marshes dominated by S. 372 

patens, on the other hand, may benefit greatest from larger grain sediment applications. For 373 

species that grow best under high drainage and high nutrient availability, such as S. pacifica, 374 

choosing a sediment texture will involve tradeoffs. However, it should be noted that the design 375 

of this study limited plants to accessing nutrients only from the dredge sediment within the pots, 376 

while a field TLP project would consist of the dredge material as well as the original marsh 377 

platform below. This original sediment layer may act as an important source of pre-existing 378 



nutrient and carbon stock needed for enhanced growth, but it may also result in consistent 379 

saturation of lower sediment depths, depending on its composition and the thickness of placed 380 

sediments.  381 

 382 

Grain size of sediments added in TLP projects had a significant impact on greenhouse gas 383 

emissions, which is an important consideration when designing a restoration project with climate 384 

change mitigation goals. Dredged material must be chosen carefully, as finer grained sediments 385 

are likely to contain a higher proportion of organic content. When removed from anoxic 386 

conditions and placed upon the marsh surface, these sediments oxidize and decompose, resulting 387 

in carbon mineralization and escalated CO2 and CH4 emissions, a similar process that occurs in 388 

de-watered aquatic sediments (Paranaíba et al. 2020). However, these increases are typically 389 

temporary, with microbial activity peaking within a few weeks (Luo et al. 2016).  390 

 391 

Overall, our observations of NEE and CR were similar to those reported in the literature for salt 392 

marshes, although our variables had slightly greater spreads (e.g., NEE of -10 to +10 μmol m-2 s-393 

1 vs. more typical values in the field of -2 to +2 μmol m-2 s-1) (e.g., Martin and Moseman-394 

Valtierra 2015; Emery et al., 2019; Powell et al., 2020). We found that finer grain sediments 395 

were associated with lower CO2 emissions (measured as CR or NEE) than coarse-grained 396 

sediments. This is likely a result of the anoxic conditions found in the fine-grained sediments vs. 397 

vs. the more oxygenated conditions found in coarser sediments, which promotes carbon turnover. 398 

This result aligns with another study examining the effects of bioturbation and plant root 399 

oxygenation on greenhouse gas emissions, where it was demonstrated that more porous 400 

sediments resulted in overall higher CO2 emissions (Gribsholt & Kristensen 2002). Sediments 401 



with a higher clay composition are better able to form soil particle aggregates, which act as a 402 

protective layer around smaller organic particulates (Kirk 2004).  403 

 404 

However, we found extremely high emissions of methane from one sediment type (S2), that far 405 

exceeded (~1000 μmol m-2 hr-1) typical observations in salt marshes of -5 + 10 μmol m-2 hr-1 406 

(Martin and Moseman-Valtierra 2015; Emery et al., 2019; Powell et al., 2020), although these 407 

emissions levels are not uncommon for oligohaline tidal marshes (Martin and Moseman-408 

Valtierra 2015). There was also a trend towards higher methane emissions (100 μmol m-2 hr-1) in 409 

another fine sediment type for S. pacifica. This finding highlights the potential for benthic 410 

sediment placed in marshes to be a source of methane to the atmosphere, offsetting carbon 411 

sequestration benefits of marsh restoration. 412 

 413 

Biochar has been touted as a method to increase carbon sequestration through multiple routes, 414 

including increasing the direct burial and sequestration of the recalcitrant carbon within the soil, 415 

enhanced plant biomass, suppression of CO2, CH4, and N2O production, and adsorption of 416 

carbon to the biochar particle, (Agegnehu et al. 2015; Roberts et al. 2015; Yin et al. 2022). 417 

Compost and biochar amendments are used together to enhance plant growth (Agegnehu et al. 418 

2015; Darby et al. 2016). Our study demonstrated that biochar amendments did not suppress 419 

greenhouse gas emissions, nor enhance growth. These results may suggest that the soil 420 

amendments primed the microbial community and enhanced decomposition.  421 

 422 

We found no difference in the δ13C of respired carbon between the biochar amended and control 423 

soils, suggesting that biochar may have primed microbial communities (Bernal et al. 2017). 424 



Given that a key goal of biochar incorporation in restoration projects is carbon sequestration, our 425 

findings suggest that incorporation of amendments should be studied as part of the project 426 

design. We recommend any large-scale application of carbon-based amendments into a wetland 427 

environment should be preceded by a pilot study to test different biochar feedstock and dosage 428 

interactions with target plant species and sediment combinations. A more recalcitrant feedstock 429 

biochar may allow for increased carbon sequestration by reducing emissions due to its reduced 430 

bioavailability (Tag et al. 2016), while labile biochar feedstocks may be more bioavailable but 431 

provide an increased nutrient supply for vegetation. An increased dosage of biochar may 432 

additionally increase the potential nutrient load, but exacerbate emissions, depending on the 433 

feedstock as well as the particle size, where larger particle sizes will result in increased aeration 434 

of sediments. Because we did not see an effect on S. alterniflora with an addition of both biochar 435 

and compost, a larger dose may not be more effective for this species; however, other species 436 

may be more receptive to the increased carbon and nutrient load. We further suggest a multi-year 437 

effort to monitor any microbial or biogeochemical changes over time. 438 

 439 

Biochar has been noted to contain alkaline functional groups, lending itself to increasing pH 440 

(Yuan et al. 2011) and reducing the formation of acid sulfate soils (Manickam et al. 2015). We 441 

found that biochar amendments did not prevent acidification, like the findings of Novak et al. 442 

(2018). However, biochar amendments did impact some sediment chemical properties, including 443 

eH, total alkalinity, and porewater pH. It is possible that softwood biochar could be utilized to 444 

increase the buffer capacity of the marsh system over time (Gunarathne et al. 2020). We 445 

hypothesize that given more time in a more reduced environment, the biochar would have 446 



created a more substantial buffer capacity within the mesocosms, providing a higher likelihood 447 

of preventing acidification of the sediments, such as during droughts.  448 

 449 

Through our examination of sediments and soil amendments, we demonstrated the important 450 

trade-offs related to using specific sediment textures that must be considered before application 451 

of beneficial use of dredged material for TLP. Grain size was associated with multiple other 452 

sediment physicochemical properties and can be used to help predict the success of TLP projects. 453 

Additionally, we provided insight into the limitations of biochar and compost additions to 454 

enhance vegetation growth and prevent acid sulfate formation in dredge sediments, while also 455 

determining which sediment chemical properties are significantly affected by these amendments. 456 

This investigation highlights the necessity of performing smaller pilot studies with various 457 

combinations of sediments and vegetation before application to a natural landscape.  458 
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Table 1. Sediment types used in greenhouse experiments. S6 is a 50/50 (% v/v) mixture of coarse sand and benthic mud. *Sediments 729 
were obtained from Graniterock A. R. Wilson Quarry, Aromas, CA 95004. 730 
 731 
Sediment  sand (%) silt (%) clay (%) Sample Sorting Sediment Name Collection Location(s)  

S1 17.1 65.6 17.3 Polymodal, 
Very Poorly Sorted 

Very Fine Sandy 
Medium Silt 39.5386°, -74.3253° 

S2 65.6 29.6 4.8 Bimodal,  
Very Poorly Sorted 

Very Coarse Silty 
Coarse Sand  39.7433°, -74.1183° 

S3 96.7 2.7 0.6 Unimodal,  
Poorly Sorted 

Poorly Sorted 
Coarse Sand  39.7700°, -74.1892°* 

S4 94.8 4.0 1.2 Unimodal,  
Poorly Sorted 

Poorly Sorted 
Medium Sand  39.6128°, -74.2628° 

S5 99.8 0.1 0.1 Unimodal,  
Moderately Well Sorted 

Moderately Well 
Sorted Coarse Sand  39.6511°, -74.1711° 

S6 95.6 3.5 0.9 Unimodal,  
Poorly Sorted 

Poorly Sorted 
Coarse Sand 

41.3283°, -71.7614° & 
39.7700°, -74.1892° 

S7 76.2 20.2 3.6 Polymodal, 
Very Poorly Sorted 

Very Coarse Silty 
Coarse Sand  

41.3283°, -71.7614° & 
41.5787°, -71.4542° 
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Table 2.  Average sediment property measurements of all experimental treatments. Uncertainty 733 
(±) denotes one standard error. Abbreviations: eH = oxidation-reduction potential; Ksat = 734 
saturated hydraulic conductivity; and NH4+-N = ammonium – nitrogen. 735 
 736 
Sediment eH (mV) NH4+-N 

(µMol gdry-1) 
Ksat (cm s-1 at 

10°C) 
pH salinity (‰) 

S1 -144 ± 5.34 1.62 ± 0.18 5.60*10-5 8.09 ± 0.04 26.3 ± 0.53 

S2 -152 ± 0.72 0.77 ± 0.10 9.71*10-5 7.98 ± 0.02 26.0± 0.70 

S3 18.0 ± 3.88 0.57 ± 0.11 9.98*10-4 7.36 ± 0.08 24.2 ± 1.17 

S4 29.6 ± 5.50 0.51 ± 0.13 0.03 7.58 ± 0.05 20.7 ± 0.31 

S5 38.9 ± 5.13 0.29 ± 0.05 - 7.93 ± 0.02 19.9 ± 0.21 

S5B 208 ± 125 0.54 ± 0.16 - 7.99 ± 0.04 19.3 ± 0.05 

S5C 113 ± 56.8 0.47 ± 0.12 - 7.87 ± 0.04 20.1 ± 0.24 

S5BC 184 ± 119 0.48 ± 0.11 - 7.85 ± 0.03 21.8 ± 0.34 

S6 296 ± 1.87 2.70 ± 0.41 - 3.46 ± 0.22 47.4 ± 3.24 

S7 651 ± 3.52 1.49 ± 0.20 - 4.06 ± 0.48 44.1 ± 3.21 

S7B 47.6 ± 1.66 0.74 ± 0.17 - 7.58 ± 0.08 37.7 ± 1.52 
737 
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Figure 1. Particle size distribution curves for sediments and mixtures utilized in this study. 738 
Sediment S1 had the lowest median particle diameter (d50) of 10.3 µm, and S6 had the highest 739 
d50 of 883 µm. All other sediments’ d50 ranged from 213 to 747 µm in the following order of 740 
increasing d50: S2 < S7 < S4 < S5 < S3.  741 
 742 
Figure 2. Correlation matrices of measured soil and plant characteristics for plants grown in 743 
different soil textures. Correlations are shown by r; regressions where p<0.05 were outlined in 744 
dashed lines; where p<0.001 are outlined in solid lines; regressions where p>0.05 are covered by 745 
an X (Table S1-S4).  746 
 747 
Figure 3. Aboveground, belowground, and total biomass of three species of representative plant 748 
species (S. alterniflora, S. pacifica, and S. patens) grown in four sediments of varying texture. 749 
Sediments increase in saturated hydraulic conductivity from left to right. Error bars are ± 750 
standard error. Different letters denote statistically significant differences between treatments. 751 
 752 
Figure 4. Average rates of net ecosystem exchange (NEE), photosynthesis, and community 753 
respiration (CR) of three representative plant species (S. alterniflora, S. pacifica, and S. patens) 754 
grown in four sediments of varying texture. Positive values represent emissions of greenhouse 755 
gases, and negative values represent carbon fixation. Sediments increase in saturated hydraulic 756 
conductivity from left to right. Error bars are ± SE. Note that methane emissions are represented 757 
as per hour and are displayed on a logarithmic scale. Different letters denote statistically 758 
significant differences between treatments. 759 
 760 
Figure 5. Average biomass (a), CO2 gas efflux (b), CH4 gas efflux (c) of S. alterniflora grown in 761 
low nutrient beach sand (sediment type S5) with and without treatments of biochar (sediment 762 
type S5B), compost (sediment type S5C), or a combination of biochar and compost (sediment 763 
type S5BC). No significant differences were found in the biomass or CO2 gas efflux across all 764 
treatments; however, significant differences were found in the methane emissions of mesocosms 765 
treated with compost (p < 0.01) but not the combination of biochar and compost (Table S14). 766 
Error bars are ± SE. Note that methane emissions are represented as per hour and are displayed 767 
on a logarithmic scale. (d) shows changes in δ13C over time for CO2 for incubations.Different 768 
letters denote statistically significant differences between treatments.769 
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