

1 **Title:** Promoting success in thin layer sediment placement: effects of sediment grain size and
2 amendments on salt marsh plant growth and greenhouse gas exchange

3

4 **Running Head:** Salt marsh sediment and biochar additions

5

6 **Authors & Affiliations:** Brittany P. Wilburn^{1*}, Kirk Raper^{1,2}, Kenneth B. Raposa³, Andrew B.
7 Gray⁴, Thomas J. Mozdzer⁵, and Elizabeth B. Watson^{1,6}

8

9 ¹Academy of Natural Sciences and the Department of Biodiversity, Earth and Environmental
10 Sciences of Drexel University, Philadelphia, PA 19103, USA

11 ² New Jersey Department of Environmental Protection, Division of Science and Research,
12 Trenton, NJ, USA

13 ³Narangansett Bay National Estuarine Research Reserve, Prudence Island, RI 02872, USA

14 ⁴Department of Environmental Sciences, University of California, Riverside, CA, 92521

15 ⁵Department of Biology, Bryn Mawr College, 101 N Merion Ave, Bryn Mawr, PA 19010, USA

16 ⁶current address: Department of Ecology and Evolution, Stony Brook University, Stony Brook,
17 NY, USA

18 *Corresponding author bpwilburn@gmail.com

19

20

21 **Author contributions**

22 EBW, KBR designed the study; BPW, KLR conducted the study; BPW conducted the data
23 analysis; ABG, TM conducted critical laboratory analysis; BPW, EBW wrote and edited the
24 manuscript; BPW, EBW stewarded data and code.

25

26 **Abstract**

27 Thin layer sediment placement (TLP) is used to build elevation in marshes, counteracting effects
28 of subsidence and sea level rise. However, TLP success may vary due to plant stress associated
29 with reductions in nutrient availability and hydrologic flushing or through the creation of acid
30 sulfate soils. This study examined the influence of sediment grain size and soil amendments on
31 plant growth, soil and porewater characteristics, and greenhouse gas exchange for three key US
32 salt marsh plants: *Spartina alterniflora* (synonym *Sporobolus alterniflorus*), *Spartina patens*
33 (synonym *Sporobolus pumilus*), and *Salicornia pacifica*. We found that bioavailable nitrogen
34 concentrations (measured as extractable $\text{NH}_4^+ \text{-N}$) and porewater pH and salinity were inversely
35 related to grain size, while soil redox was more reducing in finer sediments. This suggests that
36 utilizing finer sediments in TLP projects will result in a more reduced environment with higher
37 nutrient availability, while larger grain sized sediments will be better flushed and oxygenated.
38 We further found that grain size had a significant effect on vegetation biomass allocation and
39 rates of gas exchange, although these effects were species-specific. We found that soil
40 amendments (biochar and compost) did not subsidize plant growth but were associated with
41 increases in soil respiration and methane emissions. Biochar amendments were additionally
42 ineffective in ameliorating acid sulfate conditions. This study uncovers complex interactions
43 between sediment type and vegetation, emphasizing limitations of soil amendments. The

44 findings aid restoration project managers in making informed decisions regarding sediment type,
45 target vegetation, and soil amendments for successful TLP projects.

46

47 **Key words:** salt marsh, sea level rise, particle size distribution, biochar, greenhouse gas, soil
48 amendments, restoration, ecosystem

49

50 **Implications for practice**

51 • Utilization of coarse sediment in TLP projects may benefit salt marsh plants less tolerant of
52 saline and reducing conditions, and will support lower soil carbon accumulation
53 • Conversely, utilization of fine sediment in TLP projects may benefit salt marsh plants that are
54 halophytic or respond positively to added nutrients, and will support greater soil carbon
55 accumulation

56

57 **Introduction**

58 Accelerated sea level rise (SLR) is a major threat to coastal salt marshes, as studies have
59 suggested that increased rates of SLR have resulted in marsh vegetation die-off and expansion of
60 tidal channels and ponds (Crosby et al. 2016; Davis et al. 2019; Watson et al. 2016). Analysis of
61 aerial photographs and peat cores has shown that marsh vegetation can migrate upslope to
62 compensate for marsh loss at lower elevations (Fagherazzi et al. 2019; Hussein 2009). However,
63 barriers can preclude the marsh vegetation from migrating upslope, such as urban and
64 agricultural development, species competition and steep topographic gradients (Fagherazzi et al.
65 2019; Schieder et al. 2018). As a result of fragmentation and coastal marsh losses, valuable
66 ecosystem services and functions are at risk, including shoreline stabilization, flood mitigation,
67 denitrification, and carbon sequestration (Gedan et al. 2011; Sutton-Grier et al. 2015;
68 Temmerman et al. 2013). Without further action, these ecosystem services and functions will be
69 degraded due to accelerated SLR.

70

71 Thin layer sediment placement (TLP) is a method of SLR adaptation that increases the elevation
72 of the marsh platform through the application of sediment, as an effort to prevent over-
73 inundation and extend the lifespan of the marsh (Oldenborg & Steinman 2019; Thorne et al.
74 2019; Wigand et al. 2017). Target sediment placement thickness varies greatly among restoration
75 and enhancement projects, often ranging from less than 10 cm up to a meter (Raposa et al. 2023),
76 depending on the restoration project's functional goals and the tidal range of the marsh, as a low
77 tidal range marsh will experience a greater reduction in surface flooding for a commensurately
78 thinner sediment placement. Additionally, thickness may vary depending on dredged sediment
79 type, method of application, and grading equipment. For example, TLP projects in New Jersey

80 had sediment slurries that sorted by grain size during application, resulting in thicker applications
81 closer to the spray outlet where the larger grained sediments were more concentrated (NJDEP &
82 TNC 2023). This can have significant effects on underlying vegetation and the subsequent
83 recolonization of vegetation on the elevated marsh platform, as thinner applications are more
84 likely to allow for vegetation breaking through the overlying sediment. Projects with thicker
85 additions or with sediments that act as potential impediments for underlying vegetation to break
86 through, such as those with heavy clay content, will be more reliant on ingrowth from the edges
87 of the TLP area (Allison 1995; NJDEP & TNC 2023). Additionally, coarse sediment has a
88 greater bulk density, and added weight from coarse sediments has in some cases caused mortality
89 of target vegetation species (Jiang & Middleton 2011; Middleton & Jiang 2013).

90

91 Sediment composition is also a main driver of chemical properties, and as such will alter
92 vegetation biomass allocation and cause changes in nutrient cycling. For instance, a significant
93 reduction in *Spartina patens* stem production was found after dredged sediment addition in the
94 study of Matzke & Elsey-Quirk (2018); however, there was also an increase in fine root
95 production, demonstrating a shift in biomass allocation. Furthermore, soil type and texture has
96 been suggested to shape species growth responses among common wetland species (Howard
97 2010). The results from these studies strongly suggest that there is an interactive effect between
98 plant species and sediment texture that can be leveraged to plan TLP projects that meet
99 restoration goals.

100

101 Incorporation of biochar and compost into TLP projects may offer a complementary method of
102 enhancing plant recolonization. Biochar is a carbonaceous, porous material formed from anoxic

103 combustion of organic feedstock material and is often used in agriculture and restoration projects
104 to enhance soil fertility, denitrification, hydraulic flow, and carbon sequestration (El-Naggar et
105 al. 2015; Ojeda et al. 2016; Yao et al. 2018). However, biochar characteristics may be dependent
106 upon the feedstock and combustion parameters used to produce the biochar (Atkinson et al.
107 2010). Studies have shown greater long-term carbon sequestration of biochar made from high-
108 lignin feedstocks combusted for longer periods (Tag et al. 2016). Biochar is often applied with
109 compost, as some studies have suggested a synergistic effect on soil fertility (Sánchez-Monedero
110 2019). As compost provides a more bioavailable source of nutrients due to its low recalcitrance,
111 biochar may ensure the released nutrients remain within the rhizosphere by adsorption to the
112 biochar particle surface (Gong et al. 2019).

113

114 Additionally, studies have suggested using biochar as a means of ameliorating soil acidity
115 through moderation of the soil pH, total alkalinity, and metal concentrations (Dai et al. 2017;
116 Manickam et al. 2015; Novak et al. 2009). This benefit of biochar is particularly notable as many
117 benthic sediments have high concentrations of iron sulfide, and oxygenation of these sediments
118 can result in the formation of acid sulfate soils (Salisbury et al. 2017; Xu et al. 2018). Acid
119 sulfate soils, characterized by a pH less than 4, have been shown to have phytotoxic effects on
120 common salt marsh hydrophytes (Ingold & Havill 1984). Incorporation of biochar into dredge
121 sediments may prevent acid sulfate formation by increasing the pH buffering capacity of soil
122 through carbonate formation from the release and transformation of carboxylate groups on the
123 biochar surface (Dai et al. 2017; Leng & Huang 2018; Manickam et al. 2015). Biochar
124 incorporation could thus neutralize acidic soils and enhance plant recolonization. However, most
125 biochar studies have been conducted in agricultural or otherwise non-hydric conditions, with few

126 studies examining biochar properties in wetlands (e.g., Borchard et al. 2019; Wang et al. 2016).
127 It is difficult to generalize the potential benefits of biochar in tidal wetland restorations as there
128 are complicated interactions between sediment type and the emergent properties resulting from
129 the feedstock and treatment of biochar, and how those properties may interact with hydric
130 conditions (Cayuela et al. 2013; Leng & Huang 2018; Sun et al. 2016).

131

132 This study focuses on the three questions relative to TLP projects: (1) the effects of sediment
133 textures typical of dredged material used in TLP projects on the growth of common salt marsh
134 vegetation species, (2) the potential of biochar and compost to enhance plant growth, and (3) the
135 use of biochar to ameliorate soil acidity. Salt marsh plants were grown in greenhouse mesocosms
136 for a full growing season in sediments of varying texture with and without treatments of
137 softwood-feedstock biochar and compost. As previous studies have demonstrated the species-
138 specific sensitivity of hydrophytes to soil texture and water holding capacity (Howard 2010;
139 Matzke & Elsey-Quirk 2018; Muench et al. 2019), we hypothesized that the propagated plants
140 would have higher biomass in coarser sediments. We expected an exaggerated difference in the
141 high marsh species *S. patens* and *S. pacifica*, which are less tolerant of extended inundation
142 conditions, grown in coarse sediments relative to those grown in fine sediments. *S. alterniflora* is
143 a low marsh species and thus was expected to be hardier in fine grained sediments, as it can
144 tolerate longer periods of inundation (Gleason & Ziemen 1981). We further hypothesized that
145 softwood biochar and compost additions would enhance plant growth (Roberts et al. 2015).
146 Lastly, as biochar contains a high amount of surficial carboxylate groups, additions of biochar to
147 sediments may increase the carbonate concentration of sediments through the cleavage of the
148 carboxylates and conversion into carbonate ions, resulting in an increase in the buffering

149 capacity of these sediments (Dai et al. 2017; Leng & Huang 2018; Manickam et al. 2015).
150 Therefore, we hypothesized that softwood biochar would neutralize acidic soils. This study's
151 overall aim was to determine which benthic sediment textures would be most beneficial to TLP
152 restoration projects and whether soil amendments, including biochar and compost, could
153 promote successful early plant recolonization.

154

155 **Methods**

156 Coastal marsh plant taxa, including *Spartina alterniflora* (synonym *Sporobolus alterniflorus*),
157 *Spartina patens* (synonym *Sporobolus pumilus*), and *Salicornia pacifica*, were obtained from
158 restoration nurseries (Native West Nursery, San Diego, CA & Pinelands Nursery, Columbus, NJ
159 and propagated during the 2018 growing season in a roof-top greenhouse in Philadelphia, PA
160 (39.9539°, -75.1878°) in benthic sediments like those used in TLP projects (Raposa et al. 2023).
161 *S. patens* and *S. alterniflora* were chosen as high and low marsh representatives (respectively)
162 due to their high prevalence within eastern U.S. coastal salt marshes, while *S. pacifica* is a
163 dominant low marsh species of the West Coast. Three experiments were performed to determine
164 if: 1) sediment texture influences the success of restoration planting, 2) if biochar or compost
165 additions facilitate vegetation growth in nutrient-poor dredge sediment, and 3) whether biochar
166 ameliorates acidity caused by oxidation of sulfides in soils. Plants were tempered over two
167 weeks to a final salinity of 20‰, using a mixture of water collected from Barnegat Bay, NJ
168 (39.7483°, -74.1931°) and distilled water. Plants were exposed to ambient light conditions under
169 15% shade cloth, and the greenhouse was outfitted with several fans for temperature moderation.

170

171 *Sediment texture effects on vegetation*

172 Following a 3x4 factorial design replicated four times, three plant species were propagated in
173 four types of homogenized sediments of contrasting textures (Table 1; Fig. S1-S2) over the
174 course of a growing season (130 days; 22 June – 29 Oct 2018). To replicate the way plant plugs
175 are planted in the field in restoration projects post sediment application, plugs (5cm x 5cm x
176 9cm) were obtained from restoration nurseries and those which were relatively homogenous in
177 the amount of biomass present were planted into larger containers (10cm x 10cm x 24cm).
178 Plants were exposed to simulated once-daily tides (MacTavish & Cohen 2014) where plants
179 were flooded to a depth of 5 cm for four hours, and the soil was drained to 16.5 cm below the
180 sediment surface for twenty hours. For reference, this inundation time (17%) corresponds to that
181 considered 'regularly flooded' (Eleuterius and Eleuterius 1979), but is flooded less frequently
182 than that observed for nine of ten Mid-Atlantic marshes which were found to have an average
183 inundation time of 31% (Elsey-Quirk et al. 2022). Inundation times for Cape Cod marshes were
184 found to be 15% in healthy marshes vs. 45% in fragmenting marshes (Smith et al.
185 2012). Sediment texture of soil source material was analyzed for all sediment types using a laser
186 granulometer (LS 13-320, Beckman Coulter, Brea, CA) after pretreatment (Gray et al. 2010).
187 Average particle size distributions were post-processed with Gradistat.v8 software (Blott & Pye
188 2001), including bin aggregation to texture classes and statistical description.
189
190 Photosynthesis, community respiration (CR), net ecosystem exchange (NEE), and CH₄ emissions
191 were measured once from 20 to 29 July 2018 using an ultraportable greenhouse gas analyzer
192 (ABB, San José, CA) in a 20L chamber. Measurements of NEE were collected during five
193 minute incubations in a transparent chamber, and CR fluxes were determined by similar
194 incubations with the chamber covered with black-out material. Photosynthesis was calculated as

195 the sum of CR and NEE. The Ideal Gas Law ($PV = nRT$) was used to convert linear changes in
196 CO_2 and CH_4 concentrations within the chamber during each incubation period to fluxes
197 standardized to the surface area of the plant pots (Powell et al. 2020).

198

199 Porewater was sampled three times (17 August, 18 September, 24 October 2018), using a Rhizon
200 sampler from a depth range of 0-5 cm. Porewater pH was measured using a benchtop Thermo
201 Orion A111 pH meter, and porewater salinity was measured using a YSI pro30 conductivity and
202 salinity meter. At the end of the growing season, aboveground and belowground biomass of the
203 plants was determined by harvesting, washing, and drying the plant samples at 60 °C to a
204 constant weight. Belowground root material was extracted by washing the container sediment
205 over a 2 mm sieve. Soil redox (eH) was measured at a depth of 5 cm at harvest using a benchtop
206 Oakton oxidation-reduction potential electrode. Sediment samples were collected at harvest and
207 processed for KCl extractable ammonium-nitrogen ($\text{NH}_4^+ \text{-N}$), with ammonium concentrations
208 analyzed using the phenate method (EPA Method 350.1; APHA 2012). Saturated hydraulic
209 conductivity (K_{sat}) was measured (for S1-4) using a Decagon KSAT (Decagon Services,
210 Pullman, WA) using the falling head method.

211

212 We conducted short incubation experiments to assess the $\delta^{13}\text{C}$ of the CO_2 emitted from amended
213 soils to help determine whether these emissions could be attributed to plant respiration ($\sim\delta^{13}\text{C}=-$
214 16 to -12‰ for C4 grasses) vs. remineralization of the carbon in biochar or compost ($\sim\delta^{13}\text{C}=-30$
215 to -25‰ associated with C3 plant material) (O'Leary 1988; Smith & Epstein 1971). We sampled
216 the headspace of the chamber containing plant at the beginning and end of 30-m incubations
217 using 60 mL luer lock syringes outfitted with a stopcock, where the gas was evacuated and

218 stored in 0.1 L Cali-5-bond gas pillows. Carbon dioxide was subsequently analyzed for $\delta^{13}\text{CO}_2$
219 using a benchtop Picarro (Santa Clara, CA, USA) G2201i isotope and gas concentration
220 analyzer.

221

222 *Biochar and Compost Treatments*

223 *S. alterniflora* was grown in coarse sand presumed to have low nutrient levels, with the
224 following soil amendments: softwood biochar (10% v/v), compost (10% v/v), and with both
225 softwood biochar (10% v/v) and compost (10% v/v) to match a paired field study (Raposa et al.,
226 2023). Biochar amendments were a commercially available softwood biochar (Blacklite Pure,
227 Pacific Biochar, Santa Rosa, CA; produced from Douglas-Fir feedstock). Compost feedstock
228 included manure, livestock products, aged pine bark, coir, and worm castings (Planting Mix
229 Compost Blend, Organic Mechanics Soil Company, Modena, PA). Plants were propagated under
230 identical conditions as the first experiment over a growing season (22 June – 29 Oct 2018), with
231 16 total units ($n=4$ per each treatment). Plant biomass, CO_2 and CH_4 emissions, porewater
232 salinity and pH, KCl-extractable NH_4^+ -N, and eH measures were conducted.

233

234 Additional samples of *S. pacifica* were grown in two types of benthic sediments prone to
235 acidification (S6, S7) with and without a 10% (v/v) addition of softwood biochar and without
236 tidal flooding. *S. pacifica* was propagated for 181 days; 22 June – 19 December 2018. Each
237 treatment was replicated four to six times for a total of 22 experimental units. As described
238 above, plant total biomass, porewater salinity and pH, KCl-extractable NH_4^+ -N, and eH were
239 measured. In additional porewater total alkalinity was measured (EPA Method 2320 B; APHA
240 2012).

241

242 *Data Analysis*

243 All statistical analyses were performed in R ver. 4.0.3 (R Core Team 2023). Correlation matrices
244 were created to examine the dependency of measured variables. The relationship between
245 sediment texture and edaphic parameters (eH, NH_4^+ -N, K_{sat} , and porewater pH and salinity) was
246 tested using a non-parametric Kruskal-Wallis test with Bonferroni-correction. Significant
247 interactions ($p < 0.05$) were followed by a post hoc non-parametric Dunn's Multiple Comparison
248 Test.

249

250 Plant biomass and photosynthesis were modeled as a function of sediment texture-related
251 parameters (eH, KCL extractable NH_4^+ -N, soil hydraulic conductivity, and porewater pH and
252 salinity) using partial least squares regression (PLSR) due to collinearity of predictors. Each
253 variable was assessed for variable importance in projection (VIP), where VIP scores > 1 represent
254 high importance to the regression. Bonferroni-corrected one-way Analysis of Variance
255 (ANOVA) tests were run to determine differences in sediment grain size effects on plant species'
256 biomass and gas emissions, as well as to test if biochar and compost treatments on low-nutrient
257 sediments significantly impact sediment eH, NH_4^+ -N, porewater pH, and porewater salinity. In
258 certain cases where normality or homoskedasticity assumptions could not be met, Kruskal-Wallis
259 tests were conducted. Significant effects in the ANOVAs or Kruskal-Wallis tests were followed
260 by a post hoc Tukey's Honestly Significant Difference test or Dunn's Multiple Comparison
261 Tests, respectively. To determine the effects of biochar-treatments within non-tidal mesocosms
262 on soil properties (e.g., porewater pH, salinity, eH, NH_4^+ -N, and total alkalinity), Welch's Two
263 Sample t-tests were run.

264

265 **Results**

266 *Sediment texture effects on vegetation*

267 Grain size analysis revealed that S1 had a median particle diameter (d_{50}) of 10.3 μm , while S2,
268 S3, and S4 had median particle size diameters of 213, 451, and 523 μm , respectively (Table 1;
269 Fig. 1). Measurements of K_{sat} showed greater hydraulic conductivity in coarser sediments (Table
270 2). Finer-grained sediments (S1 and S2) and coarser-grained sediments (S3 and S4) were further
271 distinguished by significant differences in sediment eH, porewater pH and salinity (Table 2). S1
272 and S2 had lower sediment eH than S3 and S4 ($p < 0.001$). Porewaters were significantly more
273 alkaline ($p < 0.001$) and 25-28% more saline ($p < 0.01$) for the finer grained sediments (S1, S2).
274 Extractable NH_4^+ -N had an inverse relationship with sediment d_{50} , with higher extractable NH_4^+ -
275 N in finer sediments.

276

277 Regression analyses demonstrated relationships between edaphic parameters and plant species
278 responses (Fig. 2; Table S1-4). Aboveground biomass of *S. pacifica* and *S. patens* was positively
279 correlated with redox ($r=0.64, p<0.001$; $r=0.72, p<0.001$, respectively) and K_{sat} ($r=0.59,$
280 $p<0.001$; $r=0.31, p=0.1$). However, *S. alterniflora* aboveground biomass was negatively
281 correlated with redox ($r=-0.26, p=0.07$) and K_{sat} ($r=-0.56, p<0.001$). Belowground biomass of the
282 three plant species was found to be negatively correlated with K_{sat} ($r=-0.50, p=0.01$), such that
283 there was greater belowground biomass in sediments with low K_{sat} . PLS regression suggested
284 biomass and greenhouse gas exchange were also found to be significantly related to edaphic
285 characteristics, including porewater pH, porewater salinity, K_{sat} , eH, and NH_4^+ -N (Tables S5-10).
286 Important predictors were K_{sat} for aboveground biomass ($VIP=1.34$), K_{sat} , porewater ammonium

287 and pH ($VIP=1.57$, 1.06, and 1.02, respectively) for belowground biomass, and K_{sat} , and salinity
288 for respiration ($VIP=1.33$, 0.99), and NEE ($VIP=1.55$, 1.49).

289

290 Responses of plant growth to treatments varied (Fig. 3; Table S11-S13). *S. pacifica* had little
291 aboveground growth in S2, and *S. patens* displayed more of a threshold effect, with lower growth
292 in the two finer sediments and greater growth in the two coarser sediments. There were no
293 statistically significant differences among treatments for *S. patens* for either biomass or CO₂
294 exchange (Table S12). Generally, the coarsest sediments (S4) had the greatest respiration rates
295 (Fig. 4; Tables S11-13), and also the greatest rates of carbon dioxide photosynthetic uptake for *S.*
296 *pacifica* and *S. patens*, the less inundation tolerant taxa. Despite differences in CO₂ effluxes
297 across species, emissions of CH₄ from all three plant species mesocosms were significantly
298 higher in S2 sediments (Table S11-13). Of the three species, *S. pacifica* mesocosms produced the
299 most CH₄ emissions, at a rate of $2,598 \pm 1,107 \mu\text{mol CH}_4 \text{ m}^{-2} \text{ hr}^{-1}$.

300

301 *Biochar and Compost Treatments*

302 Biochar and compost amendments had significant effects on some soil characteristics in the
303 coarse, low-nutrient S5 sediment (Table 2). Biochar and compost amendments resulted in an
304 average increase in extractable NH₄⁺-N by 86% and an increase in average soil eH of 434%
305 compared to unamended S5 sediments. Additionally, while the biochar treatment increased the
306 pH and decreased the salinity of S5 porewater, the treatments with compost (both with and
307 without the second addition of biochar) decreased pH and increased salinity. Although the
308 biomass of *S. alterniflora* grown in S5 sediments was not statistically different between
309 treatments (Fig. 5a), the greatest average biomass (for aboveground, belowground, and total

310 biomass measurements) was found in plants grown in S5 without any soil amendments. Average
311 total biomass measured 39% greater for plants grown without additives in comparison with
312 plants grown with compost soil additives, 33% greater in comparison with plants grown with
313 biochar additives, and 20% greater than plants grown with both biochar and compost additives.

314

315 Carbon dioxide efflux from *S. alterniflora* mesocosms reflected the trends of biomass
316 measurements (Fig. 5b). Photosynthesis, CR, and NEE rates had no statistical differences among
317 treatments. However, NEE was negative for unamended sediments and biochar amended
318 sediments (-6.21 ± 2.65 and $-1.40 \pm 3.57 \mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$, respectively), while amendments with
319 compost and compost with biochar resulted in positive emissions (3.08 ± 4.63 and 3.59 ± 5.43
320 $\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$, respectively). Emissions of CH₄ were highest from mesocosms that were
321 treated with compost (Fig. 5c), where compost-only treatments (S5C) resulted in the statistically
322 highest rate of emissions at $332 \pm 82.9 \mu\text{mol CH}_4 \text{ m}^{-2} \text{ hr}^{-1}$, compared to unamended soils which
323 emitted $3.60 \pm 3.20 \mu\text{mol CH}_4 \text{ m}^{-2} \text{ hr}^{-1}$.

324

325 The $\delta^{13}\text{C}$ of CO₂ emitted from compost amended sediments was more negative than that emitted
326 from biochar and unamended sediments (Fig. 5d). Increased sediment respiration from compost-
327 amended sediments likely originated from compost decomposing, which had a more negative
328 isotope ratio than the C4 plant *Spartina alterniflora*. In contrast, sediments not amended with
329 compost emitted more positive $\delta^{13}\text{C}$ CO₂, suggesting origination from enhanced soil respiration
330 rather than the remineralization of biochar. This suggests that biochar is stable in the soil, but
331 enhances soil carbon decomposition.

332

333 Although two sediments were used to test if biochar could prevent development of acid sulfate
334 soil conditions only one sediment (S6) acidified. Porewater pH of unamended S6 sediments was
335 more acidic (3.46 ± 0.22) than biochar-amended sediments 4.06 ± 0.48 ($p < 0.05$) (Table 2;
336 Table S15). Biochar additions were also associated with a +355 mV increase in eH in amended
337 sediments. Biochar additions were associated with an increase in the total alkalinity of S7
338 sediments, which did not acidify, by 67% and an increase in eH and pH by 149% and 3%,
339 respectively.

340

341 **Discussion**

342 The colonization and zonation of marsh vegetation is a direct response to varying environmental
343 parameters, such as sediment type, salinity, hydrology, and elevation (Contreras-Cruzado et al.
344 2017; Moffett et al. 2010; Pennings & Callaway 1992). Sediment type is a strong driver of
345 zonation as it encompasses a number of parameters that influence how a plant allocates biomass,
346 assimilates water and nutrients, and respires (Akhtar et al. 2015; Howard 2010; Maricle & Lee
347 2007). Our studies confirmed that salt marsh vegetation is sensitive to edaphic properties related
348 to grain size, and additionally that the response is species-specific.

349

350 Beneficial use of dredge material, such as in the case of TLP projects, is a progressively more
351 common method of increasing marsh elevation in response to accelerating rates of SLR (Ganju
352 2019). Utilizing TLP for raising marsh elevations has been an overall effective method of
353 increasing the resilience of valuable marsh habitats to climate change through enhancing
354 elevation capital (NJDEP & TNC 2023), but dredge sediment has been shown to have mixed
355 effects on wetland vegetation biomass (Grandy et al. 2018), resulting in variable rates of

356 revegetation and subsequent sediment capture. Grandy et al. (2018) demonstrated that these
357 shifts in growth rates may be due to species-specific interaction with the physical and chemical
358 properties of sediment.

359

360 For example, we determined that coarser sediments resulted in higher K_{sat} , allowing for
361 porewater flushing. This may benefit plants less tolerant of inundation or salinity, such as *S.*
362 *patens* (Muensch et al. 2019; Schile et al. 2011). However, these higher flushing rates may reduce
363 the availability of nutrients around the root zone (Fisher & Acreman 2004). As in the case of
364 constructed wetlands for water treatment, high retention rates are important as they allow for
365 maximum nutrient absorption by marsh plants, and flushing the water too quickly results in a
366 lack of assimilation of nutrients (Reinhardt et al. 2005). In line with this, the finest sediment in
367 this study, S1, contained the highest concentration of extracted $\text{NH}_4^+ \text{-N}$ compared to the other
368 sediments. This sediment also had the lowest K_{sat} , demonstrating a clear trade-off between K_{sat}
369 and nutrient concentrations. This has important implications for designing TLP projects. Systems
370 in which *S. alterniflora* is dominant may benefit from application of moderate grain sized
371 sediments, as nutrients were not a significant driver of biomass for this species due to its ability
372 to efficiently capture bioavailable nitrogen (Muensch et al. 2019). Salt marshes dominated by *S.*
373 *patens*, on the other hand, may benefit greatest from larger grain sediment applications. For
374 species that grow best under high drainage and high nutrient availability, such as *S. pacifica*,
375 choosing a sediment texture will involve tradeoffs. However, it should be noted that the design
376 of this study limited plants to accessing nutrients only from the dredge sediment within the pots,
377 while a field TLP project would consist of the dredge material as well as the original marsh
378 platform below. This original sediment layer may act as an important source of pre-existing

379 nutrient and carbon stock needed for enhanced growth, but it may also result in consistent
380 saturation of lower sediment depths, depending on its composition and the thickness of placed
381 sediments.

382

383 Grain size of sediments added in TLP projects had a significant impact on greenhouse gas
384 emissions, which is an important consideration when designing a restoration project with climate
385 change mitigation goals. Dredged material must be chosen carefully, as finer grained sediments
386 are likely to contain a higher proportion of organic content. When removed from anoxic
387 conditions and placed upon the marsh surface, these sediments oxidize and decompose, resulting
388 in carbon mineralization and escalated CO₂ and CH₄ emissions, a similar process that occurs in
389 de-watered aquatic sediments (Paranaíba et al. 2020). However, these increases are typically
390 temporary, with microbial activity peaking within a few weeks (Luo et al. 2016).

391

392 Overall, our observations of NEE and CR were similar to those reported in the literature for salt
393 marshes, although our variables had slightly greater spreads (e.g., NEE of -10 to +10 $\mu\text{mol m}^{-2} \text{s}^{-1}$
394 vs. more typical values in the field of -2 to +2 $\mu\text{mol m}^{-2} \text{s}^{-1}$) (e.g., Martin and Moseman-
395 Valtierra 2015; Emery et al., 2019; Powell et al., 2020). We found that finer grain sediments
396 were associated with lower CO₂ emissions (measured as CR or NEE) than coarse-grained
397 sediments. This is likely a result of the anoxic conditions found in the fine-grained sediments vs.
398 vs. the more oxygenated conditions found in coarser sediments, which promotes carbon turnover.
399 This result aligns with another study examining the effects of bioturbation and plant root
400 oxygenation on greenhouse gas emissions, where it was demonstrated that more porous
401 sediments resulted in overall higher CO₂ emissions (Gribsholt & Kristensen 2002). Sediments

402 with a higher clay composition are better able to form soil particle aggregates, which act as a
403 protective layer around smaller organic particulates (Kirk 2004).

404

405 However, we found extremely high emissions of methane from one sediment type (S2), that far
406 exceeded ($\sim 1000 \mu\text{mol m}^{-2} \text{ hr}^{-1}$) typical observations in salt marshes of $-5 + 10 \mu\text{mol m}^{-2} \text{ hr}^{-1}$
407 (Martin and Moseman-Valtierra 2015; Emery et al., 2019; Powell et al., 2020), although these
408 emissions levels are not uncommon for oligohaline tidal marshes (Martin and Moseman-
409 Valtierra 2015). There was also a trend towards higher methane emissions ($100 \mu\text{mol m}^{-2} \text{ hr}^{-1}$) in
410 another fine sediment type for *S. pacifica*. This finding highlights the potential for benthic
411 sediment placed in marshes to be a source of methane to the atmosphere, offsetting carbon
412 sequestration benefits of marsh restoration.

413

414 Biochar has been touted as a method to increase carbon sequestration through multiple routes,
415 including increasing the direct burial and sequestration of the recalcitrant carbon within the soil,
416 enhanced plant biomass, suppression of CO_2 , CH_4 , and N_2O production, and adsorption of
417 carbon to the biochar particle, (Agegnehu et al. 2015; Roberts et al. 2015; Yin et al. 2022).
418 Compost and biochar amendments are used together to enhance plant growth (Agegnehu et al.
419 2015; Darby et al. 2016). Our study demonstrated that biochar amendments did not suppress
420 greenhouse gas emissions, nor enhance growth. These results may suggest that the soil
421 amendments primed the microbial community and enhanced decomposition.

422

423 We found no difference in the $\delta^{13}\text{C}$ of respired carbon between the biochar amended and control
424 soils, suggesting that biochar may have primed microbial communities (Bernal et al. 2017).

425 Given that a key goal of biochar incorporation in restoration projects is carbon sequestration, our
426 findings suggest that incorporation of amendments should be studied as part of the project
427 design. We recommend any large-scale application of carbon-based amendments into a wetland
428 environment should be preceded by a pilot study to test different biochar feedstock and dosage
429 interactions with target plant species and sediment combinations. A more recalcitrant feedstock
430 biochar may allow for increased carbon sequestration by reducing emissions due to its reduced
431 bioavailability (Tag et al. 2016), while labile biochar feedstocks may be more bioavailable but
432 provide an increased nutrient supply for vegetation. An increased dosage of biochar may
433 additionally increase the potential nutrient load, but exacerbate emissions, depending on the
434 feedstock as well as the particle size, where larger particle sizes will result in increased aeration
435 of sediments. Because we did not see an effect on *S. alterniflora* with an addition of both biochar
436 and compost, a larger dose may not be more effective for this species; however, other species
437 may be more receptive to the increased carbon and nutrient load. We further suggest a multi-year
438 effort to monitor any microbial or biogeochemical changes over time.

439

440 Biochar has been noted to contain alkaline functional groups, lending itself to increasing pH
441 (Yuan et al. 2011) and reducing the formation of acid sulfate soils (Manickam et al. 2015). We
442 found that biochar amendments did not prevent acidification, like the findings of Novak et al.
443 (2018). However, biochar amendments did impact some sediment chemical properties, including
444 eH, total alkalinity, and porewater pH. It is possible that softwood biochar could be utilized to
445 increase the buffer capacity of the marsh system over time (Gunarathne et al. 2020). We
446 hypothesize that given more time in a more reduced environment, the biochar would have

447 created a more substantial buffer capacity within the mesocosms, providing a higher likelihood
448 of preventing acidification of the sediments, such as during droughts.

449
450 Through our examination of sediments and soil amendments, we demonstrated the important
451 trade-offs related to using specific sediment textures that must be considered before application
452 of beneficial use of dredged material for TLP. Grain size was associated with multiple other
453 sediment physicochemical properties and can be used to help predict the success of TLP projects.
454 Additionally, we provided insight into the limitations of biochar and compost additions to
455 enhance vegetation growth and prevent acid sulfate formation in dredge sediments, while also
456 determining which sediment chemical properties are significantly affected by these amendments.
457 This investigation highlights the necessity of performing smaller pilot studies with various
458 combinations of sediments and vegetation before application to a natural landscape.

459

460 **Acknowledgements**

461 This material is based upon work supported by the National Science Foundation under Grant
462 No.1946302, as well as award NA14NOS4190145 from the National Estuarine Research
463 Reserve System Science Collaborative, which supports collaborative research that addresses
464 coastal management problems important to the reserves. The Science Collaborative is funded by
465 the National Oceanic and Atmospheric Administration and managed by the University of
466 Michigan Water Center. We are grateful for the assistance of Camilla Ibarra, Farzana Rahman,
467 and Habibata Sylla in the greenhouse, Megan Tyrell of the Waquoit Bay Research Reserve, who
468 donated sediment, and Kari St. Laurent, Jocelyn Sessa, and Grace Panetti, who gave critical
469 feedback on an earlier version of this manuscript. Data and code available at:

470 <https://doi.org/10.5061/dryad.xsj3tx9nx>

471

472 **Literature Cited**

473 Agegnehu G, Bird MI, Nelson PN, Bass AM (2015) The ameliorating effects of biochar and
474 compost on soil quality and plant growth on a Ferralsol. *Soil Research* 53: 1–12

475 Akhtar SS, Andersen MN, Liu F (2015) Biochar mitigates salinity stress in potato. *Journal of*
476 *Agronomy and Crop Science* 201: 368–378. <https://doi.org/10.1111/jac.12132>

477 Allison SK (1995) Recovery from small-scale anthropogenic disturbances by northern California
478 salt marsh plant assemblages. *Ecological Applications* 5:693–702
479 <https://doi.org/10.2307/1941978>

480 Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural
481 benefits from biochar application to temperate soils: A review. *Plant and Soil*, 337:1–18
482 <https://doi.org/10.1007/s11104-010-0464-5>

483 Bernal B, Megonigal JP, Mozdzer TJ (2017) An invasive wetland grass primes deep soil carbon
484 pools. *Global Change Biology*, 23: 2104–2116 <https://doi.org/10.1111/gcb.13539>

485 Blott SJ, Pye K (2001) GRADISTAT: A grain size distribution and statistics package for the
486 analysis of unconsolidated sediments. *Earth Surface Processes and Landforms*, 26:
487 1237–1248 <https://doi.org/10.1002/esp.261>

488 Borchard N, Schirrmann M, Cayuela ML, Kammann C, Wrage-Mönnig N, Estavillo JM,
489 Fuertes-Mendizábal T, Sigua G, Spokas K, Ippolito JA, Novak J (2019) Biochar, soil and
490 land-use interactions that reduce nitrate leaching and N₂O emissions: A meta-analysis.
491 *Science of The Total Environment* 651: 2354–2364
492 <https://doi.org/10.1016/j.scitotenv.2018.10.060>

493 Cayuela ML, Sánchez-Monedero MA, Roig A, Hanley K, Enders A, Lehmann J (2013) Biochar
494 and denitrification in soils: When, how much and why does biochar reduce N₂O
495 emissions? *Scientific Reports* 3: 1732 <https://doi.org/10.1038/srep01732>

496 Cheong SM, Silliman B, Wong PP, Van Wesenbeeck B, Kim CK, Guannel G (2013) Coastal
497 adaptation with ecological engineering. *Nature Climate Change*, 3: 787
498 <https://doi.org/10.1038/nclimate1854>

499 Contreras-Cruzado I, Infante-Izquierdo MD, Márquez-García B, Hermoso-López V, Polo A,
500 Nieva FJ, Cartes-Barroso JB, Castillo JM, Muñoz-Rodríguez A (2017) Relationships
501 between spatio-temporal changes in the sedimentary environment and halophytes
502 zonation in salt marshes. *Geoderma* 305: 173–187
503 <https://doi.org/10.1016/j.geoderma.2017.05.037>

504 Crosby SC, Sax DF, Palmer ME, Booth, HS, Deegan LA, Bertness MD, Leslie HM (2016) Salt
505 marsh persistence is threatened by predicted sea-level rise. *Estuarine, Coastal and Shelf*
506 *Science* 181: 93–99 <https://doi.org/10.1016/j.ecss.2016.08.018>

507 Dai Z, Zhang X, Tang C, Muhammad N, Wu J, Brookes PC, Xu J (2017) Potential role of
508 biochars in decreasing soil acidification—A critical review. *Science of the Total*
509 *Environment* 581-2: 601-611 <https://doi.org/10.1016/j.scitotenv.2016.12.169>

510 Darby I, Xu C, Wallace HM, Joseph S, Pace B, Bai SH (2016) Short-term dynamics of carbon
511 and nitrogen using compost, compost-biochar mixture and organo-mineral biochar.
512 *Environmental Science and Pollution Research International* 23: 11267–11278
513 <https://doi.org/10.1007/s11356-016-6336-7>

514 Davis MJ, Woo I, De La Cruz SEW (2019) Development and implementation of an empirical
515 habitat change model and decision support tool for estuarine ecosystems. *Ecological*
516 *Modelling* 410: 108722 <https://doi.org/10.1016/j.ecolmodel.2019.108722>

517

518 El-Naggar AH, Usman AR, Al-Omran A, Ok YS, Ahmad M, Al-Wabel MI (2015) Carbon
519 mineralization and nutrient availability in calcareous sandy soils amended with woody
520 waste biochar *Chemosphere* 138: 67-73
521 <https://doi.org/10.1016/j.chemosphere.2015.05.052>

522 Eleuterius LN, Eleuterius CK (1979). Tide levels and salt marsh zonation. *Bulletin of Marine
523 Science* 29: 394-400

524 Elsey-Quirk T, Watson EB, Raper K, Kreeger D, Paudel B, Haaf L, Maxwell-Doyle M, Padeletti
525 A, Reilly E, Velinsky DJ. 2022. Relationships between ecosystem properties and sea-
526 level rise vulnerability of tidal wetlands of the US Mid-Atlantic. *Environmental
527 Monitoring and Assessment* 194: 292 <https://doi.org/10.1007/s10661-022-09949-y>

528 Emery HE, Angell JH, Fulweiler RW (2019) Salt marsh greenhouse gas fluxes and microbial
529 communities are not sensitive to the first year of precipitation change. *Journal of
530 Geophysical Research: Biogeosciences* 124: 1071-1087

531 Fagherazzi S, Anisfeld SC, Blum LK, Long EV, Feagin RA, Fernandes A, Kearney WS,
532 Williams K (2019) Sea level rise and the dynamics of the marsh-upland boundary. In
533 *Frontiers in Environmental Science* 7: 25 <https://doi.org/10.3389/fenvs.2019.00025>

534 Fisher J, Acreman MC (2004) Wetland nutrient removal: A review of the evidence. *Hydrology
535 and Earth System Sciences* 8: 673–685

536 Gao Q, Shi Z, Luo J, Liu J (2020) Microstructural insight into permeability and water retention
537 property of compacted binary silty clay *Journal of Central South University* 27: 2068–
538 2081 <https://doi.org/10.1007/s11771-020-4431-x>

539 Ganju NK (2019) Marshes are the new beaches: Integrating sediment transport into restoration
540 planning. *Estuaries and Coasts* 42: 917–926 <https://doi.org/10.1007/s12237-019-00531-3>

541 Gedan KB, Kirwan ML, Wolanski E, Barbier EB, Silliman BR (2011) The present and future
542 role of coastal wetland vegetation in protecting shorelines: Answering recent challenges
543 to the paradigm. *Climatic Change* 106: 7–29 <https://doi.org/10.1007/s10584-010-0003-7>

544 Ghosh D, Gopal B (2010) Effect of hydraulic retention time on the treatment of secondary
545 effluent in a subsurface flow constructed wetland. *Ecological Engineering* 36: 1044–
546 1051. <https://doi.org/10.1016/j.ecoleng.2010.04.017>

547 Gleason ML, Zieman JC (1981) Influence of tidal inundation on internal oxygen supply of
548 *Spartina alterniflora* and *Spartina patens*. *Estuarine, Coastal and Shelf Science*, 13: 47–
549 57. [https://doi.org/10.1016/S0302-3524\(81\)80104-1](https://doi.org/10.1016/S0302-3524(81)80104-1)

550 Gong H, Tan Z, Zhang L, Huang Q (2019). Preparation of biochar with high absorbability and its
551 nutrient adsorption–desorption behaviour. *Science of The Total Environment*, 694,
552 133728. <https://doi.org/10.1016/j.scitotenv.2019.133728>

553 Grandy I, Messina L, Anemaet E, Middleton BA (2018) Effects of sediment application on
554 *Nyssa aquatica* and *Taxodium distichum* saplings. *Wetlands* 38: 855–859.
555 <https://doi.org/10.1007/s13157-018-1011-z>

556 Gray AB, Pasternack GB, Watson EB (2010) Hydrogen peroxide treatment effects on the
557 particle size distribution of alluvial and marsh sediments. *The Holocene* 20: 293–301.
558 <https://doi.org/10.1177/0959683609350390>

559 Gribsholt B, Kristensen E. (2002). Effects of bioturbation and plant roots on salt marsh
560 biogeochemistry: A mesocosm study. *Marine Ecology Progress Series* 241: 71–87.

561 Gunarathne V, Senadeera A, Gunarathne U, Biswas JK, Almaroai YA, Vithanage M. (2020).
562 Potential of biochar and organic amendments for reclamation of coastal acidic-salt
563 affected soil. *Biochar* 2: 107–120 <https://doi.org/10.1007/s42773-020-00036-4>

564 Hamin EM, Abunnasr Y, Roman Dilthey M, Judge PK, Kenney MA, Kirshen P, Sheahan TC,
565 DeGroot DJ, Ryan RL, McAdoo BG, Nurse L, Buxton JA, Sutton-Grier AE, Albright E
566 A, Marin MA, Fricke R (2018) Pathways to Coastal Resiliency: The Adaptive Gradients
567 Framework. *Sustainability* 10:2629 <https://doi.org/10.3390/su10082629>

568 Howard RJ (2010) Intraspecific variation in growth of marsh macrophytes in response to salinity
569 and soil type: Implications for wetland restoration. *Estuaries and Coasts* 33: 127–138.
570 <https://doi.org/10.1007/s12237-009-9227-z>

571 Hussein AH (2009). Modeling of Sea-Level Rise and Deforestation in Submerging Coastal
572 Ultisols of Chesapeake Bay. *Soil Science Society of America Journal* 73: 185–196

573 Igalavithana AD, Choi SW, Dissanayake PD, Shang J, Wang CH, Yang X, Kim S, Tsang DCW,
574 Lee KB, Ok YS (2020) Gasification biochar from biowaste (food waste and wood waste)
575 for effective CO₂ adsorption. *Journal of Hazardous Materials* 391: 121147
576 <https://doi.org/10.1016/j.jhazmat.2019.121147>

577 Ingold A, Havill DC (1984) The influence of sulphide on the distribution of higher plants in salt
578 marshes. *Journal of Ecology*, 72: 1043–1054. <https://doi.org/10.2307/2259550>

579 Jiang M, Middleton BA (2011) Soil characteristics of sediment-amended Baldcypress (*Taxodium
580 distichum*) swamps of Coastal Louisiana. *Wetlands* 31: 735–744.
581 <https://doi.org/10.1007/s13157-011-0189-0>

582 Kirk GJD (2004) The Biogeochemistry of submerged soils . Wiley, West Sussex, England

583 Koch MS, Mendelsohn IA (1989) Sulfide as a soil phytotoxin—Differential responses in 2
584 marsh species. *Journal of Ecology* 77: 565–578.

585 Kusler JA, Kentula ME. Wetland creation and restoration: The status of the science. United
586 States Environmental Protection Agency EPA/600/3-89/038.

587 Leng L, Huang H (2018). An overview of the effect of pyrolysis process parameters on biochar
588 stability. *Bioresource Technology* 270: 627-642
589 <https://doi.org/10.1016/j.biortech.2018.09.030>

590 Liu G, Chen L, Jiang Z, Zheng H, Dai Y, Luo X, Wang Z (2017). Aging impacts of low
591 molecular weight organic acids (LMWOAs) on furfural production residue-derived
592 biochars: Porosity, functional properties, and inorganic minerals. *Science of The Total
593 Environment* 607–608: 1428–1436. <https://doi.org/10.1016/J.SCITOTENV.2017.07.046>

594 Luo X, Wang L, Liu G, Wang X, Wang Z, Zheng H (2016) Effects of biochar on carbon
595 mineralization of coastal wetland soils in the Yellow River Delta, China. *Ecological
596 Engineering* 94: 329–336 <https://doi.org/10.1016/J.ECOLENG.2016.06.004>

597 MacTavish RM, Cohen RA (2014) A simple, inexpensive, and field-relevant microcosm tidal
598 simulator for use in marsh macrophyte studies. *Applications in Plant Sciences* 2(11):
599 1400058. <https://doi.org/10.3732/apps.1400058>

600 Manickam T, Cornelissen G, Bachmann RT, Ibrahim IZ, Mulder J, Hale SE (2015) Biochar
601 application in Malaysian sandy and acid sulfate soils: Soil amelioration effects and
602 improved crop production over two cropping seasons. *Sustainability* 7(12): 16756-16770
603 <https://doi.org/10.3390/su71215842>

604 Maricle BR, Lee RW (2007). Root respiration and oxygen flux in salt marsh grasses from
605 different elevational zones *Marine Biology* 151: 413–423 <https://doi.org/10.1007/s00227-006-0493-z>

606 Martin RM, Moseman-Valtierra S (2015) Greenhouse gas fluxes vary between *Phragmites
607 australis* and native vegetation zones in coastal wetlands along a salinity gradient.
608 *Wetlands* 35: 1021-1031.

609

610 Matzke S, Elsey-Quirk T (2018). *Spartina patens* productivity and soil organic matter response
611 to sedimentation and nutrient enrichment. *Wetlands* 38: 1233–1244.
612 <https://doi.org/10.1007/s13157-018-1030-9>

613 Middleton BA, Jiang M (2013) Use of sediment amendments to rehabilitate sinking coastal
614 swamp forests in Louisiana. *Ecological Engineering* 54: 183–191.
615 <https://doi.org/10.1016/j.ecoleng.2013.01.025>

616 Moffett KB, Robinson DA, Gorelick SM (2010) Relationship of salt marsh vegetation zonation
617 to spatial patterns in soil moisture, salinity, and topography. *Ecosystems* 13: 1287–1302.

618 Muensch A, Elsey-Quirk T, Yang Z (2019) Competitive reversal between plant species is driven
619 by species-specific tolerance to flooding stress and nutrient acquisition during early
620 marsh succession. *Journal of Applied Ecology* 56: 2236–2247
621 <https://doi.org/10.1111/1365-2664.13458>

622 NJDEP, TNC (2023) Beneficial Use of Dredged Material to Enhance Salt Marsh Habitat in New
623 Jersey: Monitoring and Project Assessment, New Jersey Department of Environmental
624 Protection, Trenton, New Jersey, <https://dspace.njstatelib.org/handle/10929/110092>

625 Novak JM, Busscher WJ, Laird DL, Ahmedna M, Watts DW, Niandou MAS (2009). Impact of
626 biochar amendment on fertility of a southeastern coastal plain soil. *Soil Science* 174: 105–
627 112 <https://doi.org/10.1097/SS.0b013e3181981d9a>

628 Ojeda G, Patrício J, Mattana S, Sobral AJFN (2016) Effects of biochar addition to estuarine
629 sediments. *Journal of Soils and Sediments* 16(10), 2482–2491
630 <https://doi.org/10.1007/s11368-016-1493-3>

631 O’Leary MH (1988) Carbon Isotopes in Photosynthesis. *BioScience* 38: 328–336.

632 Oldenborg KA, Steinman AD (2019). Impact of sediment dredging on sediment phosphorus flux
633 in a restored riparian wetland. *Science of the Total Environment* 650: 1969–1979.
634 <https://doi.org/10.1016/j.scitotenv.2018.09.298>

635 Paranaíba JR, Quadra G, Josué IIP, Almeida RM, Mendonça R, Cardoso SJ, Silva J, Kosten S,
636 Campos JM, Almeida J, Araújo RL, Roland F, Barros N (2020) Sediment drying–
637 rewetting cycles enhance greenhouse gas emissions, nutrient and trace element release,
638 and promote water cytogenotoxicity. *Plos one* 15: e0231082.
639 <https://doi.org/10.1371/journal.pone.0231082>

640 Pennings SC, Callaway RM (1992) Salt Marsh Plant Zonation: The Relative Importance of
641 Competition and Physical Factors. *Ecology* 73: 681–690 <https://doi.org/10.2307/1940774>

642 Powell EB, Krause JR, Martin RM, Watson EB (2020) Pond excavation reduces coastal wetland
643 carbon dioxide assimilation. *Journal of Geophysical Research: Biogeosciences* 125:
644 e2019JG005187 <https://doi.org/10.1029/2019JG005187>

645 R Core Team (2023) R: A language and environment for statistical computing. <https://www.r-project.org/>

646 Raposa KB, Woolfolk A, Endris CA, Fountain MC, Moore G, Tyrrell M, Swerida R, Lerberg S,
647 Puckett BJ, Ferner MC, Hollister J, Burdick DM, Champlin L, Krause JR, Haines D,
648 Gray AB, Watson EB, Wasson K. (2023). Evaluating Thin-Layer Sediment Placement as
649 a Tool for Enhancing Tidal Marsh Resilience: A Coordinated Experiment Across Eight
650 US National Estuarine Research Reserves. *Estuaries and Coasts* 46: 595–615
651 <https://doi.org/10.1007/s12237-022-01161-y>

652 Reinhardt M, Gächter R, Wehrli B, Müller B (2005) Phosphorus Retention in Small Constructed
653 Wetlands Treating Agricultural Drainage Water. *Journal of Environmental Quality* 34:
654 1251–1259 <https://doi.org/10.2134/jeq2004.0325>

656 Restuccia F, Mašek O, Hadden RM, Rein G (2019) Quantifying self-heating ignition of biochar
657 as a function of feedstock and the pyrolysis reactor temperature. *Fuel* 236: 201–213.
658 <https://doi.org/10.1016/J.FUEL.2018.08.141>

659 Roberts DA, Cole AJ, Paul NA, de Nys R (2015). Algal biochar enhances the re-vegetation of
660 stockpiled mine soils with native grass. *Journal of Environmental Management* 161:
661 173–180. <https://doi.org/10.1016/j.jenvman.2015.07.002>

662 Sánchez-Monedero MA, Cayuela ML, Sánchez-García M, Vandecasteele B, D’Hose T, López
663 G, Martínez-Gaitán C, Kuikman PJ, Sinicco T, Mondini C (2019) Agronomic Evaluation
664 of Biochar, Compost and Biochar-Blended Compost across Different Cropping Systems:
665 Perspective from the European Project FERTIPLUS. *Agronomy* 9: 225
666 <https://doi.org/10.3390/agronomy9050225>

667 Salisbury A, Stolt MH, Surabian DA (2017). Simulated upland placement of estuarine dredged
668 materials. *Geoderma* 308: 226–234. <https://doi.org/10.1016/j.geoderma.2017.04.005>

669 Schieder NW, Walters DC, Kirwan ML (2018) Massive Upland to Wetland Conversion
670 Compensated for Historical Marsh Loss in Chesapeake Bay, USA. *Estuaries and Coasts*,
671 41: 940–951 <https://doi.org/10.1007/s12237-017-0336-9>

672 Schile LM, Callaway JC, Parker VT, Vasey MC (2011) Salinity and Inundation Influence
673 Productivity of the Halophytic Plant *Sarcocornia pacifica*. *Wetlands*, 31: 1165–1174.
674 <https://doi.org/10.1007/s13157-011-0227-y>

675 Smith BN, Epstein S (1971) Two Categories of 13 C/ 12 C Ratios for Higher Plants. *Plant
676 Physiology* 47: 380–384 <https://doi.org/10.1104/PP.47.3.380>

677 Smith SM, Medeiros KC, Tyrrell MC (2012). Hydrology, herbivory, and the decline of *Spartina
678 patens* (Aiton) Muhl. in outer Cape Cod salt marshes (Massachusetts, USA). *Journal of
679 Coastal Research* 28: 602–612.

680 Spokas KA, Koskinen WC, Baker JM, Reicosky DC (2009). Impacts of woodchip biochar
681 additions on greenhouse gas production and sorption/degradation of two herbicides in a
682 Minnesota soil. *Chemosphere* 77: 574–581
683 <https://doi.org/10.1016/j.chemosphere.2009.06.053>

684 Sun J, He F, Zhang Z, Shao H, Xu G (2016) Temperature and moisture responses to carbon
685 mineralization in the biochar-amended saline soil. *Science of The Total Environment*
686 569–570: 390–394. <https://doi.org/10.1016/J.SCITOTENV.2016.06.082>

687 Sutton-Grier AE, Wowk K, Bamford H (2015) Future of our coasts: The potential for natural and
688 hybrid infrastructure to enhance the resilience of our coastal communities, economies and
689 ecosystems. *Environmental Science & Policy* 51: 137–148.
690 <https://doi.org/10.1016/j.envsci.2015.04.006>

691 Tag AT, Duman G, Ucar S, Yanik J (2016) Effects of feedstock type and pyrolysis temperature
692 on potential applications of biochar. *Journal of Analytical and Applied Pyrolysis* 120:
693 200–206. <https://doi.org/10.1016/j.jaap.2016.05.006>

694 Temmerman S, Meire P, Bouma TJ, Herman PMJ, Ysebaert T, De Vriend HJ (2013) Ecosystem-
695 based coastal defense in the face of global change. *Nature*, 504: 79

696 Thorne KM, Freeman CM, Rosencranz JA, Ganju NK, Guntenspergen GR (2019) Thin-layer
697 sediment addition to an existing salt marsh to combats sea-level rise and improve
698 endangered species habitat in California, USA. *Ecological Engineering*, 136: 197–208.
699 <https://doi.org/10.1016/j.ecoleng.2019.05.011>

700 Van Coppenolle R, Temmerman S (2019) A global exploration of tidal wetland creation for
701 nature-based flood risk mitigation in coastal cities. *Estuarine, Coastal and Shelf Science*,
702 226: 106262. <https://doi.org/10.1016/j.ecss.2019.106262>

703 Wang J, Xiong Z, Kuzyakov Y (2016) Biochar stability in soil: Meta-analysis of decomposition
704 and priming effects. *GCB Bioenergy* 8: 512–523. <https://doi.org/10.1111/gcbb.12266>

705 Watson EB, Szura K, Wigand C, Raposa KB, Blount K, Cencer M (2016) Sea level rise, drought
706 and the decline of *Spartina patens* in New England marshes. *Biological Conservation*
707 196: 173–181. <https://doi.org/10.1016/j.biocon.2016.02.011>

708 Wigand C, Ardito T, Chaffee C, Ferguson W, Paton S, Raposa K, Vandemoer C, Watson EB
709 (2017) A Climate Change Adaptation Strategy for Management of Coastal Marsh
710 Systems. *Estuaries and Coasts* 40: 682–693. <https://doi.org/10.1007/s12237-015-0003-y>

711 Wilson AM, Evans T, Moore W, Schutte CA, Joye SB, Hughes AH, Anderson JL (2015)
712 Groundwater controls ecological zonation of salt marsh macrophytes. *Ecology* 96: 840–
713 849. <https://doi.org/10.1890/13-2183.1>

714 Xu N, Morgan B, Rate AW (2018) From source to sink: Rare-earth elements trace the legacy of
715 sulfuric dredge spoils on estuarine sediments. *Science of the Total Environment* 637:
716 1537–1549 <https://doi.org/10.1016/j.scitotenv.2018.04.398>

717 Yao SQ, Groffman PM, Alewell C, Ballantine K (2018) Soil amendments promote
718 denitrification in restored wetlands. *Restoration Ecology* 26: 294–302.
719 <https://doi.org/10.1111/rec.12573>

720 Yin J, Zhao L, Xu X, Li D, Qiu H, Cao X (2022) Evaluation of long-term carbon sequestration
721 of biochar in soil with biogeochemical field model. *Science of The Total Environment*,
722 822: 153576. <https://doi.org/10.1016/j.scitotenv.2022.153576>

723 Yuan JH, Xu RK, Zhang H (2011) The forms of alkalis in the biochar produced from crop
724 residues at different temperatures. *Bioresource Technology* 102: 3488–3497.
725 <https://doi.org/10.1016/j.biortech.2010.11.018>

726 Zubbri NA, Mohamed AR, Kamiuchi N, Mohammadi M (2020) Enhancement of CO₂ adsorption
727 on biochar sorbent modified by metal incorporation. *Environmental Science and
728 Pollution Research* 27: 11809–11829. <https://doi.org/10.1007/s11356-020-07734-3>

729 Table 1. Sediment types used in greenhouse experiments. S6 is a 50/50 (% v/v) mixture of coarse sand and benthic mud. *Sediments
 730 were obtained from Graniterock A. R. Wilson Quarry, Aromas, CA 95004.

731

Sediment	sand (%)	silt (%)	clay (%)	Sample Sorting	Sediment Name	Collection Location(s)
S1	17.1	65.6	17.3	Polymodal, Very Poorly Sorted	Very Fine Sandy Medium Silt	39.5386°, -74.3253°
S2	65.6	29.6	4.8	Bimodal, Very Poorly Sorted	Very Coarse Silty Coarse Sand	39.7433°, -74.1183°
S3	96.7	2.7	0.6	Unimodal, Poorly Sorted	Poorly Sorted Coarse Sand	39.7700°, -74.1892°*
S4	94.8	4.0	1.2	Unimodal, Poorly Sorted	Poorly Sorted Medium Sand	39.6128°, -74.2628°
S5	99.8	0.1	0.1	Unimodal, Moderately Well Sorted	Moderately Well Sorted Coarse Sand	39.6511°, -74.1711°
S6	95.6	3.5	0.9	Unimodal, Poorly Sorted	Poorly Sorted Coarse Sand	41.3283°, -71.7614° & 39.7700°, -74.1892°
S7	76.2	20.2	3.6	Polymodal, Very Poorly Sorted	Very Coarse Silty Coarse Sand	41.3283°, -71.7614° & 41.5787°, -71.4542°

732

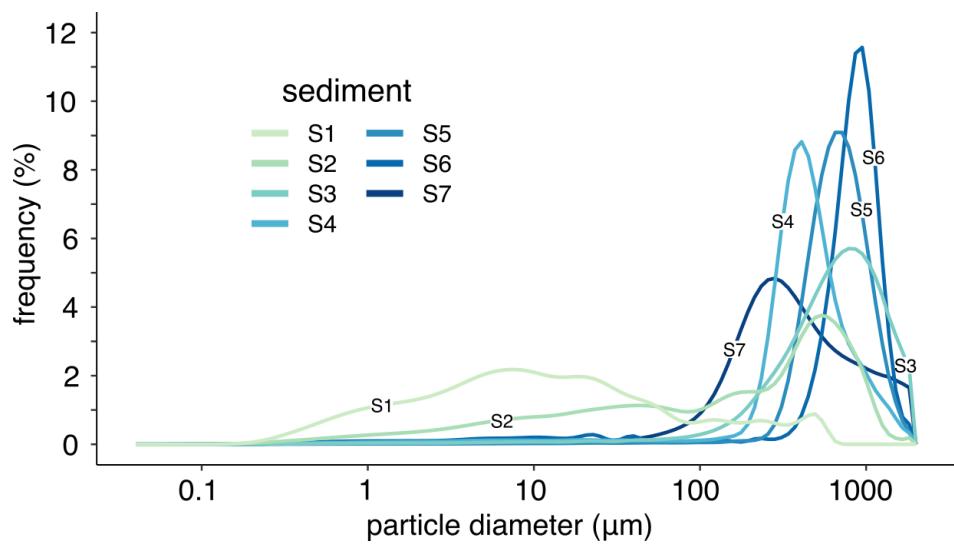
733 Table 2. Average sediment property measurements of all experimental treatments. Uncertainty
 734 (\pm) denotes one standard error. Abbreviations: eH = oxidation-reduction potential; K_{sat} =
 735 saturated hydraulic conductivity; and $\text{NH}_4^+ \text{-N}$ = ammonium – nitrogen.

736

Sediment	eH (mV)	$\text{NH}_4^+ \text{-N}$ ($\mu\text{Mol g}_{\text{dry}}^{-1}$)	K_{sat} (cm s ⁻¹ at 10°C)	pH	salinity (‰)
S1	-144 \pm 5.34	1.62 \pm 0.18	5.60*10 ⁻⁵	8.09 \pm 0.04	26.3 \pm 0.53
S2	-152 \pm 0.72	0.77 \pm 0.10	9.71*10 ⁻⁵	7.98 \pm 0.02	26.0 \pm 0.70
S3	18.0 \pm 3.88	0.57 \pm 0.11	9.98*10 ⁻⁴	7.36 \pm 0.08	24.2 \pm 1.17
S4	29.6 \pm 5.50	0.51 \pm 0.13	0.03	7.58 \pm 0.05	20.7 \pm 0.31
S5	38.9 \pm 5.13	0.29 \pm 0.05	-	7.93 \pm 0.02	19.9 \pm 0.21
S5B	208 \pm 125	0.54 \pm 0.16	-	7.99 \pm 0.04	19.3 \pm 0.05
S5C	113 \pm 56.8	0.47 \pm 0.12	-	7.87 \pm 0.04	20.1 \pm 0.24
S5BC	184 \pm 119	0.48 \pm 0.11	-	7.85 \pm 0.03	21.8 \pm 0.34
S6	296 \pm 1.87	2.70 \pm 0.41	-	3.46 \pm 0.22	47.4 \pm 3.24
S7	651 \pm 3.52	1.49 \pm 0.20	-	4.06 \pm 0.48	44.1 \pm 3.21
S7B	47.6 \pm 1.66	0.74 \pm 0.17	-	7.58 \pm 0.08	37.7 \pm 1.52

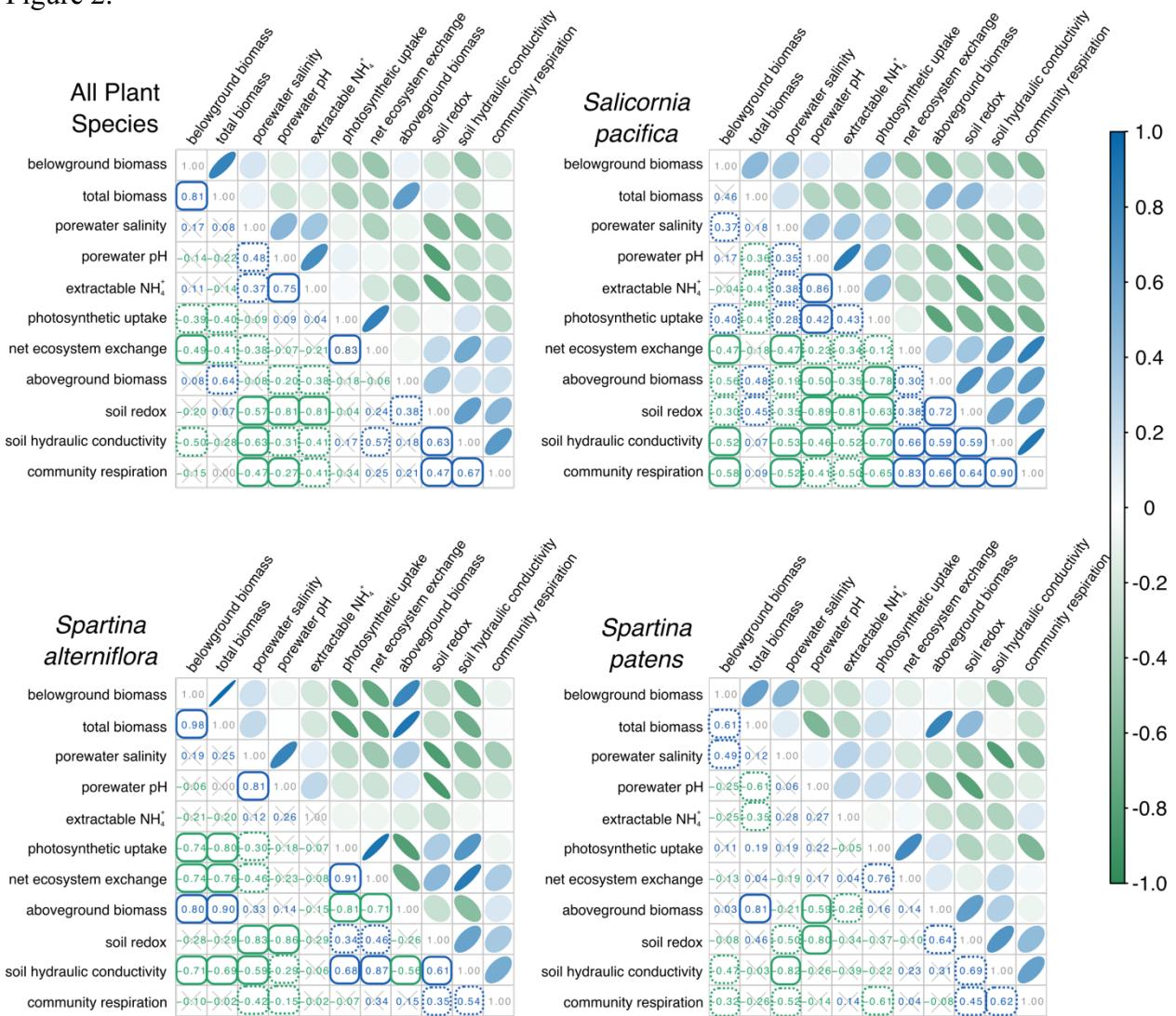
737

738 Figure 1. Particle size distribution curves for sediments and mixtures utilized in this study.
739 Sediment S1 had the lowest median particle diameter (d_{50}) of 10.3 μm , and S6 had the highest
740 d_{50} of 883 μm . All other sediments' d_{50} ranged from 213 to 747 μm in the following order of
741 increasing d_{50} : S2 < S7 < S4 < S5 < S3.
742

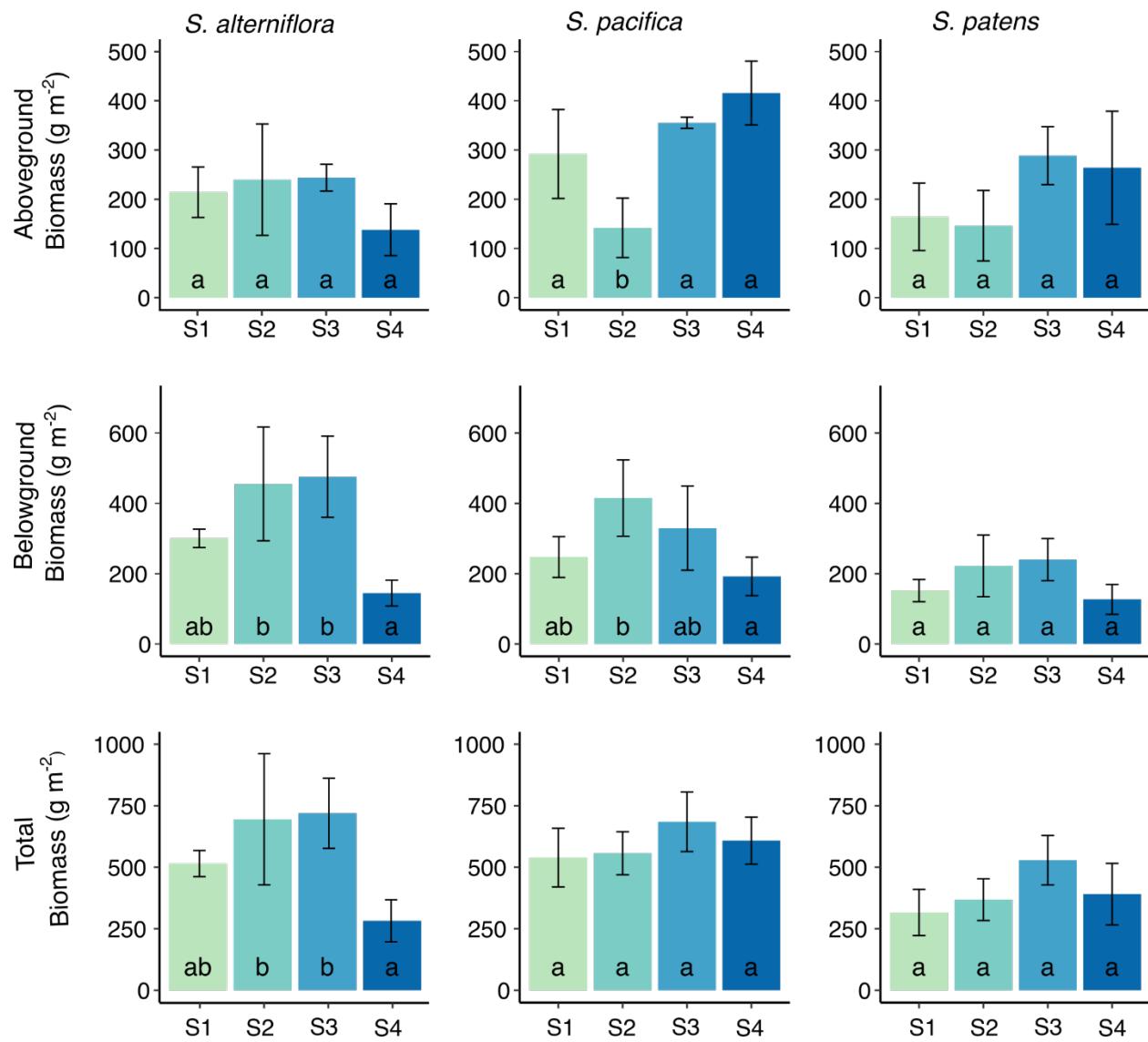

743 Figure 2. Correlation matrices of measured soil and plant characteristics for plants grown in
744 different soil textures. Correlations are shown by r ; regressions where $p < 0.05$ were outlined in
745 dashed lines; where $p < 0.001$ are outlined in solid lines; regressions where $p > 0.05$ are covered by
746 an X (Table S1-S4).
747

748 Figure 3. Aboveground, belowground, and total biomass of three species of representative plant
749 species (*S. alterniflora*, *S. pacifica*, and *S. patens*) grown in four sediments of varying texture.
750 Sediments increase in saturated hydraulic conductivity from left to right. Error bars are \pm
751 standard error. Different letters denote statistically significant differences between treatments.
752

753 Figure 4. Average rates of net ecosystem exchange (NEE), photosynthesis, and community
754 respiration (CR) of three representative plant species (*S. alterniflora*, *S. pacifica*, and *S. patens*)
755 grown in four sediments of varying texture. Positive values represent emissions of greenhouse
756 gases, and negative values represent carbon fixation. Sediments increase in saturated hydraulic
757 conductivity from left to right. Error bars are \pm SE. Note that methane emissions are represented
758 as per hour and are displayed on a logarithmic scale. Different letters denote statistically
759 significant differences between treatments.
760

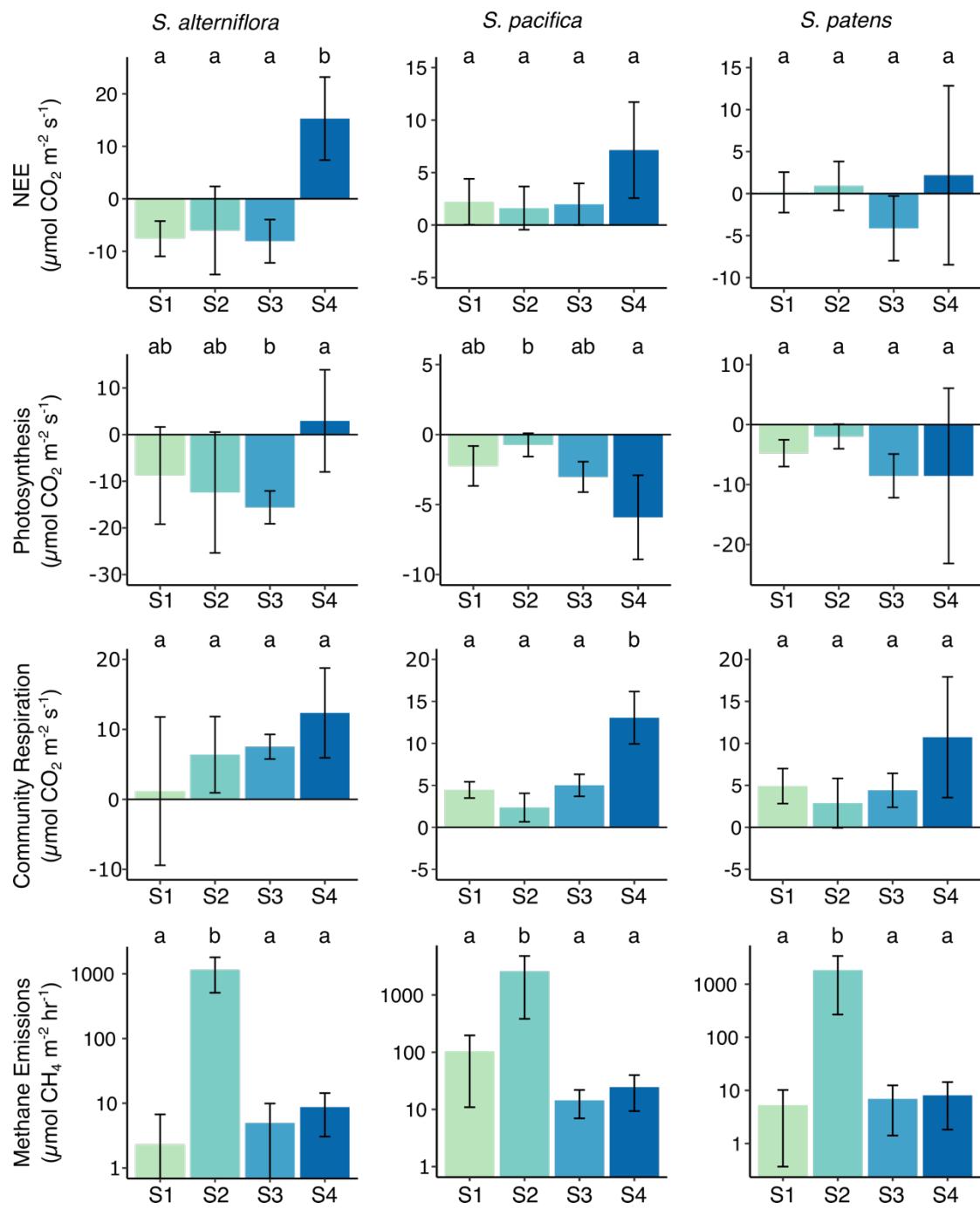

761 Figure 5. Average biomass (a), CO_2 gas efflux (b), CH_4 gas efflux (c) of *S. alterniflora* grown in
762 low nutrient beach sand (sediment type S5) with and without treatments of biochar (sediment
763 type S5B), compost (sediment type S5C), or a combination of biochar and compost (sediment
764 type S5BC). No significant differences were found in the biomass or CO_2 gas efflux across all
765 treatments; however, significant differences were found in the methane emissions of mesocosms
766 treated with compost ($p < 0.01$) but not the combination of biochar and compost (Table S14).
767 Error bars are \pm SE. Note that methane emissions are represented as per hour and are displayed
768 on a logarithmic scale. (d) shows changes in $\delta^{13}\text{C}$ over time for CO_2 for incubations. Different
769 letters denote statistically significant differences between treatments.

770 Figure 1.
771

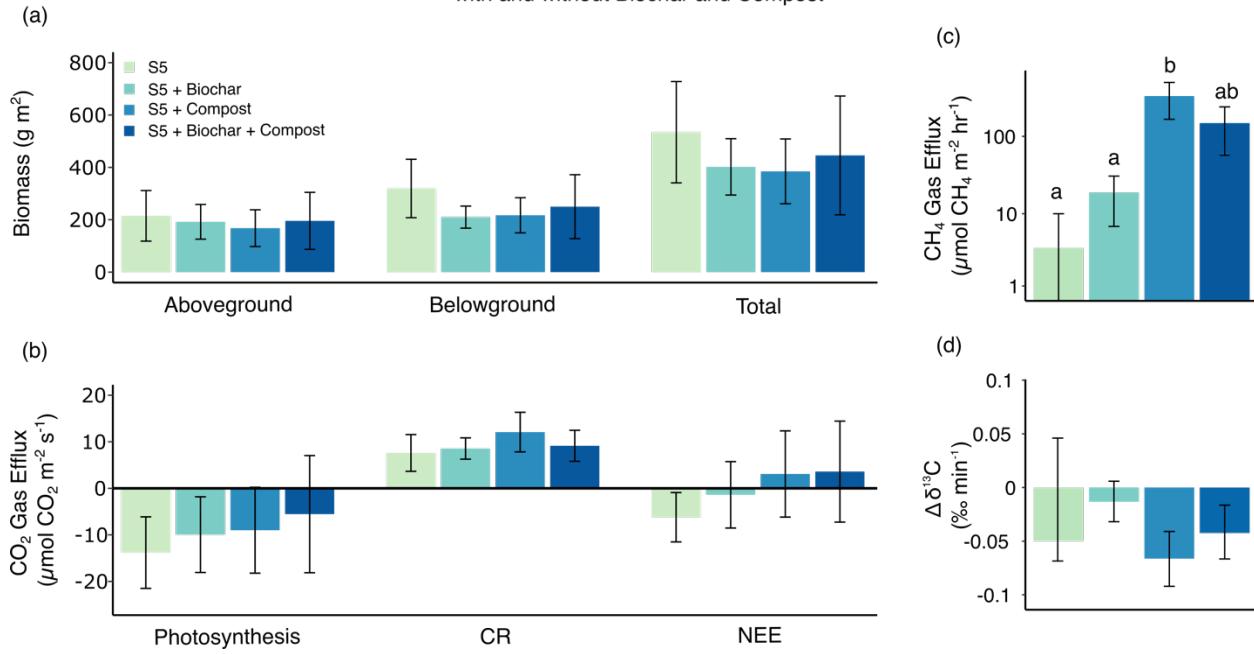

772

773 Figure 2.

775 Figure 3.
776


Vegetation Biomass in Varying Grain Size Treatments

777


778 Figure 4.
779

Mesocosm Gas Efflux in Varying Grain Size Treatments

781 Figure 5.
782

Vegetation Biomass and Mesocosm Gas Efflux in Low Nutrient Sand
with and without Biochar and Compost

783

784