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The significance of critical infrastructure systems in maintaining productivity is undeniable. However, such systems remain
susceptible to external disturbances and cascading failures. Instead of operating independently, these physical systems, such
as transportation and stormwater systems, form an interdependent system. This interdependence, particularly important
during flooding, illustrates that the failure of a stormwater system can disrupt traffic networks. To explore the extent of such
interdependency, this study investigates the transportation and stormwater networks in Norman, Oklahoma. Using network
science theories and concepts of multilayered networks, this paper analyzes these systems, both individually and in
combination. The study identifies closely located components in the road and stormwater networks using Moran’s | spatial
autocorrelation metric. Next, the connectivity of these networks is represented in a graph format to investigate the
topological credentials (i.e., rank of relative importance) of the network components (i.e., water inlets, road intersections as
nodes, and stormwater conduits, road segments as links). Moreover, such credentials further change by considering the
weights of the network components (i.e., average daily traffic, water flow). The proximity-based connectivity considerations
between these networks utilizing Moran’s | significance score revealed a good indicator of spatial interdependency. When
incorporating directionality, the multilayer network analysis highlights that highly central components tend to cluster spatially,
unlike the undirected counterpart. The study also identifies vulnerable locations and network components in a combined
network setting that differ from the networks in isolation. In doing so, the research reveals new insights governing the
complex reliance of transportation systems on neighboring stormwater systems.
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tion, stormwater networks interdependent systems that affect each other’s
performance (2). This idea changes the traditional way of
exploring individual system problems into a multistage

problem. The connections between linked infrastructures

Infrastructure functionality, both physical and virtual, is
crucial to the smooth operation of urban life.

Specifically, 16 critical infrastructures are defined by the
U.S. Department of Homeland Security (DHS) to have an
important role in national safety, economy, and public
health (1). These infrastructures behave like connected and

can be seen as operational, functional, gepgraphic, or
logical relationships. For example, some systems interact
directly (e.g., power and communication), some show
cyber or informational interdependency where the rule of
connection is information sharing (e.g., transportation and
power), and some infrastructures have geographic
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interdependency where the systems are connected through
spatial colocation (e.g., transportation and water networks).
Infrastructures have logical or policy related interdependency
where similar components affect the connected systems (e.g.,
transportation and financial services sector) (3—6). In addition,
the intra- and intersystem relationships are highly dynamic and
localized in nature which creates cascading or compounding
failures of systems when exposed to natural hazards (7). One
of the challenges for research is to define and quantify the
systems’ integrated behavior that translates complete
dependency as well as vulnerability information into a logical
framework.

Transportation infrastructure is a critical lifeline service that
contributes to the sustainability and resilience aspects of
society (8, 9). The nature of transportation infrastructure is to
provide connectivity that physically helps other systems to
maintain normal operation. For example, power distribution
lines, underground water distribution, wastewater, and
stormwater lines follow the road network, which represents the
physical dependency and spatial colocation aspects of
connectivity. The financial, economic, chemical, and
agricultural sectors also require connectivity using the
transportation network (logical and indirect dependency
characteristics of connectivity) (2, 10). On the other hand, the
urban water system, particularly the stormwater network, has
great importance in the built environment against pluvial
surface flooding (defined as flooding induced by excessive
precipitation beyond the capacity of the stormwater drainage
system) (11). Having spatial colocation with the transportation
network, failure in the stormwater network may lead to
flooding in the road network (3, 12). On the other hand, the
transportation network can be used to carry emergency
management personnel, raw materials, and goods to manage
and repair the stormwater network (13). In addition, sometimes
parking lots are used as water retention areas during flash
flooding in some cities (14). These examples provide enough
evidence to confirm the functional and geospatial
interdependency of transportation and stormwater systems in
the urban environment. Moreover, these infrastructures are
identified as critical infrastructure by DHS (1). Given that they
are an important part of lifeline services, this paper aims at
exploring aspects of the interdependency of transportation and
stormwater networks.

Since the concept of infrastructure connectedness took
shape in scientific research, numerous approaches and
frameworks have been developed to model the aspects of

interdependency. Consequently, Sun et al. categorized these
methods based on dependency characteristics, interaction rules,
and data driven approaches, also described their scale and
complexity of application

(4). Several quantitative approaches (i.e., graph-based,
input—output-based, agent-based, system dynamicsbased,
Bayesian  network-based, optimization-based, and
econometric-based models), were adopted in previous
studies where, however, the accuracy and outcomes were
compromised by incomplete information about the
interdependency (15). Real-world systems have numerous
drivers and even more tensions between them, so solutions
for one set of drivers may not be good enough for others.
Therefore, it is difficult to establish a deterministic solution
(perfect solution) to this problem (16). Likewise, modeling
of transportation and stormwater system interdependency
is compromised by (a) unavailability of high resolution
topological and operational data which is not publicly
accessible and (b) incomplete understanding of instabilities
and vulnerabilities in both spatial and functional settings.
Research challenges also exist as a result of the lack of a
comprehensive, calibrated, and validated decision support
framework for practitioners. These research gaps
motivated the authors to investigate the interdependency
behavior of transportation and stormwater networks with
an in-depth network-based analysis. Therefore, the
research goal of this paper is to investigate the functional
and spatial interdependency of transportation and
stormwater systems. The objectives to satisfy the goal are
threefold: (i) to explore the spatial interdependency of
transportation and stormwater networks, (ii) to investigate
the aggregate behavior of these systems when spatial,
functional, and connectivity metrics are combined, and (iii)
to compare the individual and multilayer networks’
topological credentials to observe the change in properties
resulting from interdependency. The topological credential
of a network is defined as the quantification of criticality
and vulnerability of its components (e.g., nodes and edges)
based on their topology in the network by applying network
metrics (e.g., degree, centrality) (17). This paper will
answer the following research questions:

To what spatial level are the transportation and
stormwater systems interdependent?

What is the best indicator of spatial
interdependency?

What is the best way to incorporate functional and
spatial interdependencies?

What is the best analysis framework to capture
interdependency?

How do the topological credentials change from
individual level to multilayer network?
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Figure 1 shows the hypothetical graph presentation of
the transportation (Gi) and stormwater (Gz) networks. A
graph or network is a mathematical form of representing
the structure of a complex system, where the nodes mean
individual entities and the links or edges represent the
relationships between them (18). In Figure 1 the nodes T
and W show the entities in G; and G,. Additionally,
multilayer network (Gn) is represented by connecting these
two networks with red edges (W3-T3, and W4— T4) which
represent  distinct types of relationship  within
transportation and stormwater networks. For example,

research and modeling approaches. The third section
discusses the data source, structuring, and manipulation.
The fourth section discusses the methodology and results.
The final section concluded the paper by discussing the key
findings and future research scope.

Figure 2. Multilayer network and aggregated network.

Literature Review Interdependency of
Infrastructures
Researchers have been actively investigating the complexities

W1 W5

G, = Transportation Network (Blue)
G, = Stormwater Network (Green)
G,,= Multilayer Network (G, + G,) (Red+Blue+Green)

W,

= nodes from stormwater network

T, = nodes from transportation network

Figure 1. Conceptual figure representing transportation, and
stormwater systems, and their multilayer network.

stormwater is routed from the road to the stormwater
network using inlets, manholes, junctions, and side drains
(T3'W3). On the other hand, emergency crews need to use
the road network to access junctions via manholes (W3!T3)
for maintenance. Therefore, the edge between T and W can
be used to explain this functional interdependency. The
main difference between the individual and multilayer
network is the connectivity (link or edge); while all nodes
and edges in a single layer network represent the same
relationships, different nodes and edges have different
properties in a multilayer network. Moreover, a multilayer
network is different from the aggregated network (Figure
2). For this study, multilayer network metrics will be used
instead of aggregated network, which has some limitations
(explained in a later section) in representing realworld
networks (19).
The paper is organized as follows: the second section
offers a brief but critical literature review of existing
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of systems’ interdependencies for over 20 years. Physical
systems have numerous drivers, and it is difficult to find the
perfect solution for all. The localized and dynamic behavior of
systems, and their probabilistic likelihood of failure, makes it
challenging to combine the story in a single framework. As
such, recent studies emphasize the research need for modeling
the systems’ interdependency, particularly focusing on
capturing cascading, escalating, or compounding failures.
Rinaldi et al. in 2001 proposed an outline where they categorize
interdependency, failure mode, logical interfaces, and other
aspects in a comprehensive framework (3). Likewise,
Zimmerman (5), Dudenhoeffer et al. (20), Zhang and Peeta (6),
and Sharkey et al. (21) classify interdependency from different
perspectives; some classifications are based on systems’
functionalities, reaction to natural hazards, restoration, or
economic impacts. Some other studies (22-25) focus on the
resilience of infrastructures against natural disasters and human
threats and propose frameworks to show the response of
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connected systems to these situations when human,
environmental, and system performance and adaptivity are
combined. State-of-the-art literature suggests the significant
importance of analyzing infrastructures as connected systems
rather than an individual entity.

Many modeling approaches have been proposed for
studying interdependency in the literature. These approaches
vary based on the type of system, availability of data, and
quantifying metrics. Ouyang classified these modeling
techniques into six categories: empirical approaches, agent-
based modeling, system dynamics, economic theory-based
modeling, network-based, and other modeling approaches (15).
That study also summarized the data needs, fundamental
considerations, and computational efficiencies of different
modeling approaches. Similarly, Sun et al. classified the
modeling approaches into three categories: the dependency
table (i.e., includes qualitative and quantitative surveys),
interaction rules (i.e., includes discrete event simulation, agent-
based model, system dynamics, Bayesian-networkbased
models, optimization, mobility model, aggregate supply-
demand model), and data driven approaches (i.e., supervised
and deep learning, text mining, etc.) (4). Some of the
applications of these interdependency modeling approaches are
discussed in the following sections.

McDaniels et al. developed an empirical framework to
capture interdependencies of power, buildings, water, health,
and road transportation systems for the 2003 North American
blackout, 1998 ice storm, and 2004 Hurricane Charley events
by using big data and hierarchical representation of systems
(26). The concept of hierarchy resembles the process of
cascading and escalating failure between systems; however,
failure in real systems does not always maintain hierarchy,
which limits the application of this method for the study of
interdependency. Aghababari and Koliou developed an agent-
based model (ABM) to simulate the subsystems of an education
infrastructure on the occasion of a tornado event and predicted
the response of agents in schools, households, construction
companies, and power and water supply systems (27). Oliva et
al. also proposed an agent-based input—output model that
provides a detailed framework considering the exchange of
resources between infrastructures as an explicit parameter
where the functionality loss is used as an internal parameter
(28). These studies show that ABM generates reliable results in
interdependency modeling yet the requirement of big data to
calibrate and wvalidate the model limits its application.
Additionally, ABM performs microscopic analysis which
represents a big computational challenge.

One of the most popular interdependency modeling
frameworks is graph-based network modeling. Johansson and
Hassel modeled the propagation of disturbance in a railway
system using a network-based approach and identified the
vulnerabilities and performances of all the subsystems (29).

Wang et al. proposed a network modeling framework to
analyze the vulnerability of interdependent infrastructure
systems for the major cities in China and performed case
studies for power and water systems. Critical and vulnerable
components of the connected infrastructures are identified and
ranked by this framework (30). Similarly, Chai et al. analyzed
the characteristics of the critical infrastructure networks and
identified “Oil & Gas,” “Information & Communication
Technologies (ICT),” and “Electricity” infrastructures as the
most important infrastructures on which the performance of
other infrastructures depends. By using network modeling, the
study found that these infrastructures have the potential to
cause the greatest cascading failure (31). Zhang and Peeta
developed the multilayer infrastructure network with spatial
computable general equilibrium (MIN(S)CGE) modeling
framework to capture the interdependencies in the
transportation sector, where they mainly focused on policy
implementation scenarios and their effect on the system (6).
That study did not include comprehensive information about
the propagation of natural disasters or human-caused
disturbances in the framework; however, the model
demonstrated how to include policy implementation within the
interdependent system operation. Sharm and Gardoni
developed a mathematical framework using interface function
along with network modeling and tested the model on a
regional scale for post-earthquake recovery of interdependent
power and water infrastructures (32). In summary, these studies
exhibit the potential of a network-based modeling framework
to express the interdependency of connected and dependent
infrastructures provided overall system information is
available. Though a graph-based approach requires big data to
model the system, this modeling technique has the potential to
represent the system’s connectivity better than ABM. An
integration of ABM with graph-based approach will make a
better modeling framework to predict scenarios based on policy
implications.

Interdependency of Stormwater and

Transportation Networks

Few studies are found in the literature that analyzed the
interdependency of stormwater and road networks during
adverse weather and natural disasters. AbdelMottaleb and
Zhang combined the transportation and water distribution
networks based on their spatial interdependency and
developed a combined interface graph considering their
connected and vulnerable locations (33). Using the random
forest technique, that study predicted the connectivity
clusters that explained the spatial interdependencys;
however, the developed giant component captured only
17% of the interface network connectivity which weakened
the analysis. Also, other graph metrics were not explored in
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the study which would have indicated the changed graph
properties and interdependency during normal operation.
Dong et al. investigated the failure propagation between
road and sewer networks after an earthquake using graph
percolation theory (34). This modeling approach can
estimate connectivity failures with better accuracy but is
computationally expensive and data intensive. Dong et al.
used the Bayesian network modeling technique to quantify
the failure of a road network from flooding from the
neighboring channel but did not explain the critical
locations and vulnerable components (35). In another
study, Dong et al. developed a graph-based modeling
framework considering the structural, functional, and
topological vulnerabilities of road connectivity using
network percolation theory in the context of a flooding
situation (36). This framework captures the changing travel
pattern during flooding, but macroscopic level giant
component analysis was unable to pinpoint or set criteria to
find locations of compounding failure. Atef et al. proposed
a framework using neighborhood centrality and point
variance to capture spatial and functional interdependence
of water mains and transportation network (37). That study
also lacked identification of the components’ vulnerability
and proper validation.

Some other studies have also explored the
interdependence of road and water systems using different
modeling approaches. Aslani and Mohebbi developed a
resilience assessment framework using a geographically
weighted regression (GWR) model to predict the combined
resilience of interdependent water and transportation
networks (38). Though the GWR integrates spatial attribute
to regression and generates indicators, it is difficult to
interpret the results for practical applications. On the other
hand, fragility curves are also used for vulnerability
analysis which expresses the probability of failure of the
system’s components for a specific disaster scenario. For
transportation and stormwater networks, the fragility curve
is not explicitly defined in the literature, yet some modeling
approaches estimate the failure probability of infrastructure
components based on the influencing factors. Mazumder et
al. used 14 such factors to estimate the economic,
operational, environmental, and social consequences of
water and road segment failures. The study used fuzzy
hierarchical interface which only utilized the joint
probability of failure (39). For systemwide aggregate
analysis, this type of econometric modeling is a good fit.
However, unlike microscopic level analysis, aggregate
modeling frameworks cannot identify the critical
components which are vulnerable to disruption and might
initiate cascading failure between systems. Graph-based
network modeling is more appropriate for this kind of
analysis.

Based on the review above, there is a literature gap in
the area of an interdependency modeling framework for
transportation and stormwater networks that supports the
integration of spatial and functional indicators and
application of network metrics to model the combined
systems’ performance. This paper presents an in-depth
analysis to overcome these challenges.

Review of Graph Metrics

The concept of graph (G) developed from the connectivity of
components in different systems, which include physical,
biological, virtual, and social systems. In graph, system
components are expressed with two terms: nodes (n) and links
or edges (e). For decades, many graph tools have been utilized
to explain the connectivity between components. Most real-
world networks do not exhibit either discrete or random
patterns of connections, long tail in degree distribution, high
clustering coefficient, assortativity, and so forth, which makes
them complex networks (40). In general, a single layer of a
network is represented by nodes and edges explaining the same
type properties G[n,e]; for example, in a transportation
network, nodes and edges can be defined as intersections and
road segments respectively (39, 56, 57). Also, graphs can be
directed or undirected. When the edges of a graph have the
property to express the direction of information flow, it is
defined as directed graph (e.g., the direction of traffic flow in a
road segment); on the contrary, if the edges represent both-way
information flow, it is defined as undirected graph (e.g., both-
way traffic in a road segment). But this representation
sometimes misleads analysis when it presents more than one
property of any connection; so the concept of multilayer
representation of networks came to light that can represent
different properties of the same entity in different layers. For
example, between two intersections there can be transit and
drive routes. Two separate networks are necessary to represent
these two systems where the nodes (intersections) are same.

In a multiplex network, the nodes remain the same but the
edges (representing connections based on a specific property)
between them are different. There can be more than one
different edges between nodes in a multiplex network; for
example, in a social network, the connection between two
persons can be friendship as well as business partnership. For
a multilayer network, two or more networks are connected by
interlayer edges (different than individual networks). For
example, a road network and a stormwater network can be
represented as a multilayer network where these networks can
be connected by interlayer edges (which may represent
interdependent network vulnerability or reliability) (41).
Because of computational challenges, sometimes a multilayer
network is aggregated for easier tensor representation. But this
technique does not always represent the correct topology of the
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networks. For example, an aggregated network sometimes
creates hypothetical nodes and edges which makes all the
networks’ topology uniform (Figure 2). This approach may
generate misleading insights. Although developing and
analyzing a multilayer network is computationally expensive,
it is a more realistic representation of real systems (19).
Moreover, this approach is further enhanced by facilitating
spatially embedded network analysis (42). Given such
advantages, this study considers the multilayer network
approach.

Significant research efforts have been made to explore the
structures, topology, and nature of networks with innovative
tools, theories, and metrics; yet this is still an open research
area for real-world application (43). Some of the graph metrics
used in this study that exhibit the properties of single and
multilayer networks are discussed below.

Degree

The degree of a node is the number of edges that are connected
to it. For a directed graph, degree is expressed as the summation
of in-degree (number of edges coming to the node) and out-
degree (number of edges going out from the node). For
adjacency matrix Ajj (the structure of the graph in the matrix),
degree (Dy) is:

Xn
Di= A 81pj=1
For a multilayer scenario, the definition of degree is the
same but represents with adjacency tensor M and decomposing
multidimensional tensor as (44):

i

Di=BM;U a2b

where B is binary function and U is multidimensional rank-2
tensor.

Degree Distribution

In real networks, degree distribution follows power law with
long right skewed tail distribution. This represents the presence
of higher degree nodes, but they are few in number; on the other
hand, higher number and lower degree nodes are connected to
the hubs and make the network dynamics. This attribute
validates the scale free property of the network (45). The same
behavior is observed for single- and multi-layer networks (46).

Density

Network density is the ratio of actual connection to all potential
connections. This metric gives an idea of having options for

potential connection between nodes. For a single layer
network, density of graph G[n,e] is expressed as in Malek et al.
47):

2e
Density=, forumdirected network 83bnnd 1b e
Density=, for directed network d4b n 1

P Cintralayer + P Cinterlayer

Density= P ni 3nj + Pintralayer ni +32ni1b i, j=layers

0For multilayer networkp a5p

Diameter

The diameter of a network is expressed as the size of
longest shortest path between nodes. It represents the linear
size of the network; a larger diameter represents longer
connectivity to access nodes (48).

Eigenvector Centrality

The eigenvector centrality (EC) of a node measures its
relative influence in the network. This estimation is based
on the importance of neighboring nodes and their influence
(49). Calculation of EC is based on finding the leading
eigenvector and expressed as:

1X a6p
EC=ki j Aijej
where k; is the largest eigenvalue of adjacency matrix A. Ajj
is the adjacency matrix and for multilayer network it is the
higher rank adjacency tensor. The advantage of EC is that
the value depends on the summation of neighboring values;
large EC value indicates that the node is surrounded by
many important neighbors.

Betweenness Centrality

Betweenness centrality (BC) of nodes is defined as the
number of shortest paths in the network that pass through
that node. The node that more frequently sits on the shortest
paths has a higher BC value. BC is a path based metric that
evaluates the amount of influence of a node in the network
(47). The BC of a node in graph G is expressed as:

X gij 0 bn
BC = wj 07bij gij

where wjj is the weight of the path between nodes i and j, g;
is the number of shortest paths between nodes i and j, and
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gij @ pv is the number of shortest paths that pass through
node v (not the v as end point). The same concept and
equation are applicable for estimating the BC value of
edges.
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Figure 3. Road and stormwater networks inside the analysis boundary.

Data Description

The road and stormwater of Norman,
Cleveland County, Oklahoma are selected for this study for
the following reasons: (i) the topology of the networks is
known and (ii) high resolution network information is
available. Figure 3 shows the map of road and stormwater
networks within the analysis boundary (50). The data were
collected from various sources, including state level
organizations like Oklahoma Department of Transportation
and Norman City open GIS portal websites (50, 51). The
road network data includes high resolution network
information, average annual daily traffic (AADT) data, 15-
minute traffic count data, and clearly distinguishable
intersections. However, this study considered only auto-
based trips (AADT) while other modes including
pedestrian, active transportation, transit, and so forth also
contribute to traffic operations. Heavy rainfall leading to
flash flooding in a road network tends to limit pedestrian
activities, thus the functional aspects of a road network in
this context are better understood by auto-based trips (52).

Because of discontinuities in the GIS data, the
construction of a stormwater network requires additional
filtration processes. Some of the local stormwater
structures, such as culverts, were isolated from the original
database and posed difficulties when all the components
were combined. Additionally, some local pipelines and
culverts provide immediate drainage of water from roads
but are not a part of the stormwater network. Consideration
of these isolated components would create incorrect
mathematical formulation of the network. Such noise was
thus removed from the GIS data for better representation of
the network. This filtration process required careful
observations and, out of 6,374 nodes, 1,637 (25.68%)

networks

nodes were removed. Moreover, the stormwater network
consists of a network of pipes at primary level that carries
water to natural creeks and subsequently the water flows
maintaining the hierarchy of channels. The GIS data
considers the pipe network and natural systems separately,
however, for this paper, both natural and pipe networks are
combined into one shape file (Figure 3). Moreover, some
of the links in the stormwater network were missing; these
were difficult to see because they are buried underground.
Based on a reconnaissance survey, some of the missing
stormwater links were reconstructed. Finally, the pipe
diameter was integrated in the hydrologic modeling
(discussed in a later section) to obtain the direction and
volume of water flow for a specific rainfall scenario.
Network analysis is performed later to integrate these two
vital pieces of information.

Methods and Results Network
Representation

To evaluate the topological credentials of the road and
stormwater systems, the GIS data is converted to a network or
graph. Moreover, recent progress in computational power
makes it possible to embed geographic coordinates information
inside the graphs. For this paper, the shape files were converted
to georeferenced graph files using relational database in R (53).
Figures 4 and 5 illustrate the graph representation of the road
(G1) and stormwater networks (G»), respectively. All the nodes
and the edges are geotagged to keep the spatial reference
embedded in the network.
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Figure 4. Graph representation of road network.

Figure 5. Graph representation of stormwater network.

Nodes and Edges. For the road network (G), the intersections
are defined as nodes and the road segments as edges. Using
these criteria, the total number of nodes and edges in the road
network were found to be 1,716 and 2,476, respectively. In the
stormwater network (G»), inlets, manholes, and junctions of the
pipelines are defined as nodes and the connections (conduits
and creeks carrying stormwater) between the associated nodes
as edges. The total number of nodes and edges were found to
be 4,737 and 5,455, respectively.

Directionality. For this study, G; and G are defined as
undirected and weighted graphs and G;’ and G’ are defined as
directed and weighted graphs. Network analysis is performed
for both directed and undirected graphs. Moreover, Gm and G’
are defined as undirected and directed multilayer networks
accordingly. In all cases the edges between G1 and G2 are
bidirectional.
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Graph Weight. Different aspects, properties, or attributes of
real-world systems can be integrated into a network with
proper distribution of weight and thus treated as important
consideration for network analysis. For example, this study
used traffic volume (AADT) as a weighting factor for the
road network analysis. This is logical because some local

100 ft radius
sphere

real-time stormwater flow will make the study more
realistic which is compromised by unavailability of data.
Moreover, there is a complexity in calculating the capacity
of natural channels, especially when they are considered in
combination with pipelines. Therefore, the simulated water
flow volume better represents the approaching flash

Stormwater

Stormwater Network

100 ft radius
sphere
- ?

-
4

Stormwater &\
Edges \ L™
oAk s

N Wasr

Figure 6. Multilayer network representation with georeferenced nodes and edges.

roads may have good connectivity but, from an operational
point of view, may have less AADT. Weight based on
AADT can capture this functional importance of a
particular road segment (edge). Moreover, AADT
represents an average yearly variable that is more reliable
at representing this importance than other metrics like flow
or speed. To capture the functional behavior of the road
network, AADT based weight (normalized between 0 and
1) is assigned to the road edges. For the stormwater
network, weight (normalized between 0 and 1) is assigned
to edges based on the volume of water flow for a particular
precipitation scenario (detailed discussion is added in
“Hydrologic Modeling” below). However, integration of

flooding scenario. In a multilayer network (Gm), the
interlayer edge weight is assigned based on spatial
autocorrelation (local Moran’s I scores). The reasoning is
discussed in the next section.
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Multilayer Graph. The multilayer graph (Gn) representation
combines the stormwater and road networks and is developed
based on spatial colocation between these networks (Figure 6).
This relationship is established from spatial correlation
analysis using global and local Moran’s I values. Moreover,
stormwater from highways drains to storm sewers through side
drains, inlets, manholes, and so forth. Failure in stormwater
conduits’ capacity or other structural components results in
standing water on the roadways which has an impact on traffic
operations. Therefore, these two systems have functional
interdependency. The multilayer network is developed in a way
that captures both relationships between these systems. For

Table 1. Network Properties

that overcome the challenge of connecting nodes at different
elevations. Using ArcGIS Desktop (V10.8) (54) the spatial
analyses are performed and the node indexes that satisfy the
above criteria are identified. Finally, the inter- and intra-layer
nodes and connectivity information are structured in the R
environment using “tidygraph,” ‘“igraph,” and “tidyverse”
libraries and coded into the software muxViz (55— 57). This
state-of-the-art software is developed in R library and has the
capability to represent interdependent and connected
multilayer networks.

After coding the Gi, G2, Gi', G2, Gm, and Gy, along with
their weight, the graph properties are estimated, which are

Unweighted and Undirected

Weighted and Undirected

Road Stormwater Multilayer Road Stormwater network Multilayer
network network network network network
Graph properties Nodes 1,716 4,737 6,454 Same as for unweighted graph
Edges 2,476 5,455 9,952 Same as for unweighted graph
Diameter 68 232 72 10.64 92.53 15
Density 0.00168 0.00040 0.00048 Same as for weighted graph
Mean path length 25.54 87.6 25.24 3.38 33.95 3.78
Node properties
Average degree 2.89 1.92 4.33 2.89 1.92 4.33
Eigenvector centrality 11 17 4 20 20 28
(number of nodes within
the threshold [.0.5/1]%)
Node betweenness centrality 51 156 41 33 116 23
(number of nodes within
the threshold [.0.5/1]%*)
Link property 64 145 36 55 115 29

Edge betweenness centrality
(number of nodes within
the threshold [.0.5/1]%)

*Note: Values are normalized between 0 to 1, where 0.5 is the threshold value and 1 is the highest value.

identifying the connectivity between G1 and G2, it is assumed
that nodes from the road and stormwater network within a
sphere of 100 ft radius have a connection between them, and
the interlayer edges are created based on this assumption
(Figure 6). In our study area, most of the inlets are found to be
near or at road intersections. As such, the study went through a
rigorous trial-and-error method to obtain 100 ft radius distance
that provides an optimal area where most water inlets at an
intersection are included. Moreover, any radius greater than
100 ft resulted in problematic links or edges for the
multilayered system, that is, water inlets located at one road
intersection may end up connecting with another intersection.
Instead of circles, spheres are used to capture the relationships

summarized in Table 1. After considering weight, the diameter
of the graph is reduced, meaning more connectivity is
observed. This is because the algorithm assigns 1 as the weight
to all edges in unweighted analysis; however, an appropriate
edge weight (normalized between 0 and 1) is assigned in
weighted analysis which is less than 1 in most cases.

Spatial Interdependency

To investigate the spatial interdependency of G; and G,
spatial autocorrelation with Moran’s 1 statistics is used
(58). Compared with other methods, Moran’s I statistic is
powerful because it can capture both global and local
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spatial autocorrelation, and so it has become the
wellestablished  model  for  expressing  spatial
autocorrelation (59, 60). In this analysis, both local and
global Moran’s 1 values are reported for identifying
neighbors in different spaces (61). The global Moran’s 1
represents the overall clustering of any variable in the space
using spatial weighting (rook/queen contiguity and orders)
and averaged variables, expressed as:

P P w;i0x; xP(x x)
N i j

Iglobal = Pi 6Xi sz

a8p W

where N is the number of observations, x is the mean of the
variable, w is spatial weight, and W is the sum of all spatial
weights. The inference of Moran’s I statistics is based on
the null hypothesis of complete randomness in space, that
is, no pattern of autocorrelation. The value of I ranges from
21 to 1, where 1 means perfect cluster together, 0 is
complete randomness of clusters, and 21
Figure 7. Spatial autocorrelation between G;and Ga.

means perfectly dispersed. However, global I value gives
one statistic for both networks considering the global
homogeneity of nodes whereas some local clusters may be
present in space. The concept of local Moran’s I statistic is
useful to capture this scenario. The local Moran’s I statistic
calculates individual spatial units separately and identifies
the significance over space, expressed as:

X X XN
Tlocal=

wij0xi xp a a9p
j=1

PN oi=10xixbP
N a= a10p

where the symbols represent the same meaning as in
Equation 8. The global measure of Moran’s I for the roads
and stormwater networks is +0.3362, this means that the
nodes of the road and stormwater networks are clustered in
space. The recorded Z-score is 44.276 which shows that the
result is significant. Figure 7 shows Moran’s I scatter plot
with high—high (top-right quadrant), low—low (bottom-left
quadrant) clustering regions, which is visualized in the
local cluster map. The global Moran’s I value and the Z-
score provide evidence of spatial clustering of nodes from
transportation and stormwater networks which affirm the
presence of spatial interdependency between them.
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Likewise local Moran’s I values indicate local clustering
and, based on this spatial correlation between nodes from
the said networks, a multilayer network is constructed.
Moreover, the local Moran’s 1 gives a spatial context to
assign weight to spatially interdependent edges of Gm. This
study considers local Moran’s 1 value (normalized) as a
spatial weight for multilayer network analysis.

Complex Network Analysis

Degree and Degree Distribution. The degrees of Gi, G, and G,
are estimated using Equations 1 and 2. For this analysis, an
undirected network is considered, which means the degrees
shown in Figures 8 and 9 are the sum of all in-degree and out-
degree. After the analysis, the highest degrees for Gi, G, and
Gn are found to be 5, 7, and 28, respectively. This means that
some of the nodes in the multilayer network are highly
connected compared with the individual networks. The
distribution of node degree is presented in Figure 8, which
shows a long tail right skewed power law distribution for all
three networks.

2500

2000 —
- —Road Network
%‘500 Stormwater Network
= \ .
EOUU . Multilayer Network

500-\/-

1 2345678 91011121314151617 181920212223 242526272829
Degree

Figure 8. Degree distribution of G1, G,, and Gp,.

This implies the presence of nodes with very high degree
values, meaning the presence of hubs with high connectivity.
This power distribution is the property of realworld networks
and the graph developed for the three networks resembles this
property (62). In addition, G, has nodes with higher degree
compared with G; and G> as it connects both layers with
hypothetical interlayer edges. These interlayer edges represent
the spatial dependency attribute between the two layers; the
development and definition of these edges are significant
contributions of this study. Table 1 shows that the average
degree of Gn is 4.33, which is significantly higher than G
(2.89) and G2 (1.92). The nodes with degree values of Gi, Ga,
and Gy, are illustrated in the map (Figure 9, a—c). Most of the
nodes (intersections) in the road network with higher degrees
are identified around the local roads (“Alameda St at the

roundabout [degree = 5], “Santa Fe Ave,” “Miller Ave,”
“Main St,” and “24™ Ave”). For the stormwater network, the
nodes with highest degree values are found near the residential
areas (near “Boyed St” and “Flood Ave,” “Main St” and
“Ponca Ave,” “Classen Blvd” and “Lindsey St”). For the
multilayer network, the nodes with higher degree values are
found near the residential areas while some of them are close
to creeks (“Cater Ave” and “Apache St,” “Robinson St” and
“Fay Ave,” “lowa St and “Berry Ave,” “Boyed St” and
“Jenkins Ave”). The degree of a node represents varied
fundamental properties in a network. Other network properties,
for example, centrality, are highly dependent on the degree of
a node. The changing pattern of topological credentials based
on node degree identifies the significant influence of the built
environment, as higher degree nodes are found near residential
areas.

Eigenvector Centrality (EC). Equation 7 is used to estimate the
weighted EC for undirected networks Gi, Gz, and Gn
(normalized between 0 and 1). For this analysis G; and G; are
assigned AADT and conduit capacity as weight, respectively.
In addition, Moran’s I significance value is assigned as weight
to the nodes with interlayer connectivity. It is found that both
G and G; have 20 nodes with EC values above the threshold
(.0.5/1), (where 0.5 is the threshold value and 1 the largest
value, denoted as 0.5/1). Similarly, G, has 28 nodes with the
highest EC value within same threshold (0.5/1). As the node
degree distributions of all three networks are right skewed long
tail power distribution, the EC values are also expected to
follow the same property trend. This result shows the presence
of very few nodes with high EC values (1.2% for G, 0.4% for
Ga, and 0.4% for Gn), which follows the same characteristics
as degree. The nodes with highest EC values are also found to
be spatially clustered for all three networks (Figure 10, a—c) but
the clusters are not in the same places. For G; the nodes are
clustered near “Cleveland Elementary School”; for G; the
nodes are clustered between “Main St”” and “Porter Ave”; but
for G the nodes are near “Carter Ave” and “Comanche St.”
This seems logical since many of the stormwater nodes are
located in neighboring locations and connect to ‘“Bishop
Creek.” EC in Gn is also estimated based on the combination
of Gi, Gz, and their interlayer connections, so the influential
nodes have shifted to some other places. In other words, highly
influential nodes in a multilayer network that dictate the intra-
and inter-connectivity are not the same as in individual
systems, rather the properties are changed and new central
locations identified. Figure 10, a—c, shows the classification of
nodes based on EC values for Gi, G2, and Gp.

Node Betweenness Centrality (BC). Weighted BCs
(normalized between 0 and 1) of nodes for undirected
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networks Gi, G2, and Gp, are estimated using Equation 7
where the weights are considered same as in the previous
analysis. The result reveals that G; has 33 nodes and G has
116 nodes within the threshold of [.0.5/1]. The same
analysis is performed on the G, and only 23 nodes were
found within the higher BC value threshold [.0.5/1]. This
means that BC value changes significantly from individual
network to multilayer network. The nodes with classified
BC values of networks Gi, G2, and Gy, are shown in Figure
11, a—c. It is identified that the most central nodes in the
road network are found near “Eufaula St” and “Jones
Ave”’; some are scattered near “College Ave,” “Elm Ave,”
and “Barley St.” Since intersections in local roads provide
connectivity to roads with higher AADT, the local roads are
more central in the analysis area. On the contrary, the
highest central nodes in G, are found near “Main St” and
“Legacy Trails,” which is logical as many stormwater
conduits connect in this location. For Gy, the locations are
close to that of G and G, (“Eufaula St” and “Main St”’)
and this seems rational since nodes with higher BC values
in individual networks are located nearby. In general, BC
is an important shortest path
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_ BC (normalized between 0 and 1) of Gi, G2, and Gm. The

[ oot weights used for this analysis are the same as in the previous
. Pl analysis; the only difference is that weights are assigned to
-\‘{!‘M“ﬁm the edges instead of nodes. Individual layer BC values with

fp ] classification are shown in Figure 13, a, d. For G, the most
central edges are located near “College Ave,” “Lindsey St,”

Figure 12. Hydrologic analysis of the study area.

based metric used for network traffic pattern analysis (63) and
water distribution system analysis (64), and the same metric
makes an important contribution to multilayer network
analysis (64).

Hydrologic Analysis. Hydrologic analysis of the storm water
system is performed to reveal the direction and the volume of
the water flow in the study area, which provides information
about direction of edges in the stormwater network. The edge
BC of the directed stormwater network in the following
section utilizes such information to perform and obtain
realistic results. The stormwater in the study area flows by
gravity, firstly from the roads to the storm sewers and finally
inside the storm sewer network. To perform the hydrologic
analysis, the area is divided into several sub-catchment zones
and a sample precipitation (minimum 2.5in. per hour to
maximum 7.5in. per hour) is assigned to observe the direction
of the water flow. The elevations of junctions, inlets, and
manholes are estimated from the digital elevation map of
Norman, Oklahoma (65). Additionally, the creeks in the study
area are treated as part of the stormwater pipe network. The
overall outfalls for water to go out of the area are considered
as the end points of the creeks (Figure 12). The hydrologic
simulation performed in the Storm Water Management
Model (SWMM), software from the U.S. Environmental
Protection Agency, gives the direction and volume of water
flow in the pipe network (66). Based on this, the directed
stormwater network (G’) is defined and the volume of water
flow in the pipes is considered as a weighting factor for
network analysis.

Edge Betweenness Centrality (BC). Edge BC is another
important shortest path based network measure that identifies
how central an edge is in the network. For this analysis,
Equation 7 is used to estimate the weighted and undirected

and “Eufaula St.” Being parts of local roads, these central
road segments provide more connectivity than arterial roads.
Similarly, some central edges of G follow parts of the creeks
and others are in the pipe network. To be more specific, for
G and G a total of 55 and 115 edges, respectively, are found
within the BC threshold above 0.5 in a scale of 0 to 1.
Similarly, 29 edges are found to be central for G, for the same
BC threshold [0.5/1]. This result exhibits the changed
topology of the multilayer network and identifies edges that
are important for the combined network as opposed to results
from analysis of individual networks. This means that
multilayer network indicates to locations where road and
stormwater networks are mutually central (critical). Any
disruption in these central locations may create cascading
failures that propagate from one network to another. Figure
13, a, ¢, and e, show the locations of edges with centrality
values (darker and thicker lines have higher centrality) for G,
Go, and Gy, It is also identified that all the edges with high
BC are close to locations which are vulnerable to cascading
failure (for G;“Eufaula St and “Barkley St,” for G near
“Main St” and “Legacy Trail,” and for Gy, around “Eufaula
St,” “Main St,”” and “Legacy trail ).

Directed Network Analysis. For analysis of the directed
networks, edges of the road, stormwater, and multilayer
networks are expressed with direction and introduced as G’,
Gy’, and Gyn’. For the road network (Gi’), traffic flow
direction is considered as the direction of flow in the edges.
In the study area, most of the roads are bidirectional except
for a few links, so the network is cyclic, that is, there are more
than one path to navigate between nodes. For the stormwater
network, the direction of edges is considered based on
direction of water flow, which is identified from hydrologic
analysis. This network has acyclic tree structure, that is, the
presence of hierarchy of edges, and water flows from lower
to higher ranked elements based on gravity. This is a more
realistic representation of the physical system, as water
cannot flow backward in the directed network.

The interdependent multilayer (Gn’) network is also
considered as a directed network, where the individual layers’
edge direction remains the same as before and interlayer links
are represented as bidirectional edges. This is rational
representation of the direction as failures (or vulnerability)
between the two systems is assumed to cascade through the
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Figure 13. Locations of central edges of: (a) undirected road network (G;), (b) directed road network (G1’), (c) undirected stormwater
network (G,), (d) directed stormwater network (G>’), (e) undirected multilayer network (Gn,), and (f) directed multilayer network (G,’)
based on betweenness centrality (BC) value.
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and stormwater networks. Other than direction of flow, all
weights of the network components are considered same as
G

The road network is analyzed for both directed and
undirected cases, but no significant difference in BC of
edges is observed because the network structure is cyclic
and almost all the roads are bidirectional (Figure 13, a and
b). This study considers both local and arterial streets,
where a small part of “West Main St (an arterial road) has
one-directional flow. Additionally, a few of the local roads
are in one-way operation, so the network analysis shows
similar results for both networks (G; and G;’). Parts of
“Brks St” and “Eufaula St” are identified as central in the
road network. It is also observed that edges having similar
BC exhibit high spatial correlation (clustering) which is a
good predictor of traffic patterns (63).

On the other hand, water flow in the stormwater network
is different than traffic flow, in that water flows in one
direction in each edge. The flow starts from inlets, then
follows conduits based on elevation and finally reaches the
creeks. A hierarchy of components is observed in this
network. This observation leads to significantly different
results in unidirectional and directional analysis. While the
pipes connected to secondary stormwater conduits and a
small part of natural creeks are found to be central in
undirected analysis, the natural creeks are identified as
central in directed network analysis (Figure 13, ¢ and d). In
practice, this is the expected result. By interpreting the
flood hazard map of Norman, Oklahoma (data collected
from FEMA), the creeks are identified as potential flood
hazard zones too (67). Therefore, the directional analysis of
edge BC can express the criticality of stormwater
components for flooding in the study area.

The central edges based on edge BC values in the
multilayer network (Gn’) are illustrated in (Figures 13, e
and f). Compared with analysis of undirected networks,
more specific spatial clusters of central locations are
observed in the multilayer network when directed network
analysis is performed. This phenomenon is observed in real
networks, as discussed earlier (63). The multilayer network
(Gn’) identifies the edges with high centrality as near
“Brks St,” “Elm Ave,” and “Eufaula St,” which are also
close to those identified by individual road and stormwater
network analysis.

Conclusions

The analytical framework developed in this study uncovers
a unique approach to represent two physical systems, that
is, the road and the stormwater networks in a multilayer
network structure. In addition to that, global Moran’s I is
used as an indicator to quantify the spatial interdependency
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between the two networks. Moreover, weight is assigned to
networks (i.e., AADT as functional weight of road network,
conduit capacity as weight of the stormwater network, and
local Moran’s I significance value as spatial weight to
interlayer edges) to capture the functional and spatial
relationships. The topological credentials of road,
stormwater, and multilayer networks are thus estimated.
Finally, the analysis framework captures the metrics for
interdependency study. Overall, this analytical approach to
investigate two systems gives an understanding about the
applicability of multilayer approach for spatial and
functional relationships in addition to connectivity between
networks. Additionally, the critical locations and
components identified by multilayer network and
individual networks spatially coincide with actual flood
hazard zones, which shows the credibility of network
metrics to identify critical locations. The detailed analysis
in this paper provides the following key insights:

Spatial autocorrelation estimated by global Moran’s |
is a good indicator of spatial interdependence.
Moreover, spatial weight (assigned to links or edges
between road and stormwater networks) generated
from local Moran’s I produces logical estimates of
topological credentials.

Most of the central road segments (based on BC) are
identified as local roads whereas the study includes
local, collector, and arterial roads. In a city area, local
roads are more connected and produce higher degree
nodes and central edges compared with less
connected arterial roads.

Most of the central edges (based on BC) of the
stormwater network are found along the creeks. The
directed and weighted network analyses capture the
real representation of the stormwater network while
the undirected analysis cannot identify the hierarchy
of water flow properly.

EC estimates the most influential nodes in the
network and this study found that the nodes with high
EC are spatially clustered near nodes with high
degree. The locations are not the same for stormwater,
road, and multilayer networks, however. EC indicates
the node’s importance by its neighboring nodes.
However, EC cannot capture path influence in an
individual or multilayer network. Therefore, EC can
be used to capture node influence (intersections/
manholes/ junction) for vulnerability analysis.

The directed network analyses of road, stormwater,
and multilayer networks show that edges with high
BC are spatially close to each other. Undirected
network analysis cannot capture this
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phenomenon (i.e., for multilayer network, the edges
with similar centrality are more scattered).

For the multilayer network, most central nodes and edges

are found in proximity to those of stormwater and road
networks (BC).
Topological credentials (degree and BC) also indicate
the criticality of the similar nodes and edges. One of
challenges of studying the “interdependency of
systems” is to identify locations vulnerable to
cascading failure. This study indicates that the
topological credentials of a multilayer network have the
ability to indicate critical components and locations
vulnerable to cascading failure. For example, if a road
segment is flooded in the north-western part of the study
area because of the capacity failure of a stormwater
pipe, the failure is less severe than if the same
phenomenon were to happen near “Elm Ave” or
“Eufaula St.”” The effect of cascading and escalating of
failure is higher near the more central edges.

Based on the results of the analysis, this study offers the
following recommendations for the future interdependency
modeling. Networks’ topological credentials have the potential
to contribute to modeling of systems’ interdependency,
especially when the systems are physical and have spatial as
well as operational relationships. Moreover, a network-based
modeling approach should consider multilayer network
representation of the combined systems which is more credible
than single layer network analysis. This study also suggests that
directed network analysis captures the real physical system
better than undirected analysis, so future analysis should not
ignore the directionality aspect of networks. Since spatial
autocorrelation analysis can capture spatial dependencies
between systems, vulnerability analysis should include this
geographical relationship of networks as a metric for better
understanding of systems.

This study was limited by some assumptions which were
made for simplicity of analysis. It was approximated by trial-
and-error method that nodes of road and stormwater networks
need to be within a 100 ft radius sphere to define the spatial
interdependency between them. Additionally the scaling effect,
which is an important property of network analysis (17), is not
captured in this study For example, some natural creeks close
to the boundary of the study area have lower ranking (based on
EC and BC) whereas these channels are an important part of
the overall stormwater system. This scenario would be captured
if the analysis were performed on a bigger scale. Moreover, the
study is conducted for a specific location (i.e., Norman,
Oklahoma) which limits the validation process. AADT for the
road network and water flow volume for the stormwater
network are considered as functional components for the
analysis framework. Instead of one, a set of functional
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components (e.g., AADT, speed, flow for road network) may
better represent the overall functionality of the system.
Moreover, real-time stormwater flow measurement can be
integrated into the framework as a weighting factor for the
network analysis. It is not proven if the analysis is free of
ecological fallacy as the spatial analysis is performed based on
the data within the boundary. While on a macro scale, there is
logical interdependency between the road and stormwater
networks, for example, runoff management, changed land use
pattern, maintenance and repair works indirectly affect both
systems, this study was confined to direct special and
functional relationships only. This study also considered that
the spatial interdependency of networks is at the node level,
while the relationship can be edge-to-edge. As the inlets and
manholes from stormwater networks are mostly found at or
near road intersections, this consideration simplifies the
analysis framework by connecting the nodes from these
networks. Also, this study captures the properties and
phenomenon at the node, inside edge failures cannot be
captured until they reach the nodes. However, this limitation
can be overcome by using dual representation of graph (68).
To overcome these limitations, as well as based on the
facts and evidence explored in this study, some future
directions of research are identified. The analytical
framework developed in this study will be used to
investigate cascading failure between the networks using
real flood scenarios. While the proposed research approach
provides new insights into the understanding of how
critically road networks depend on stormwater systems, it
would benefit future research to utilize the findings of this
study in testing different disruption scenarios caused by
flooding (i.e., removing a section of Interstate would have
less impact than removing an arterial or collector road that
runs parallel to it, making the situation much more
catastrophic) at different geographic scales, landscape and
topography (i.e., rural versus urban; city versus county;
grid versus radial road patterns; high elevation versus
elevation differences). Furthermore, the scaling effect can
be addressed by investigation of the topological credentials
for multilayer networks of more than two systems.
Sensitivity and elasticity analysis of graph metrics from
different case studies will validate the modeling
framework. While this study analyzed four centralities,
other metrics, like closeness centrality or PageRank
centrality can be tested to identify the most important
topological credentials that capture the interdependency
between the systems. A timely research need is to develop
a calibrated and validated modeling framework to address
the behavior of a “system of systems” using complex
network science. Finally integrating atop level modeling
approach, for example, ABM, in the framework may help
to interpret better the interdependency of systems.
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