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tion, stormwater networks 

Infrastructure functionality, both physical and virtual, is 

crucial to the smooth operation of urban life. 

Specifically, 16 critical infrastructures are defined by the 

U.S. Department of Homeland Security (DHS) to have an 

important role in national safety, economy, and public 

health (1). These infrastructures behave like connected and 

interdependent systems that affect each other’s 

performance (2). This idea changes the traditional way of 

exploring individual system problems into a multistage 

problem. The connections between linked infrastructures 

can be seen as operational, functional, gepgraphic, or 

logical relationships. For example, some systems interact 

directly (e.g., power and communication), some show 

cyber or informational interdependency where the rule of 

connection is information sharing (e.g., transportation and 

power), and some infrastructures have geographic 
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interdependency where the systems are connected through 

spatial colocation (e.g., transportation and water networks). 

Infrastructures have logical or policy related interdependency 

where similar components affect the connected systems (e.g., 

transportation and financial services sector) (3–6). In addition, 

the intra- and intersystem relationships are highly dynamic and 

localized in nature which creates cascading or compounding 

failures of systems when exposed to natural hazards (7). One 

of the challenges for research is to define and quantify the 

systems’ integrated behavior that translates complete 

dependency as well as vulnerability information into a logical 

framework. 

Transportation infrastructure is a critical lifeline service that 

contributes to the sustainability and resilience aspects of 

society (8, 9). The nature of transportation infrastructure is to 

provide connectivity that physically helps other systems to 

maintain normal operation. For example, power distribution 

lines, underground water distribution, wastewater, and 

stormwater lines follow the road network, which represents the 

physical dependency and spatial colocation aspects of 

connectivity. The financial, economic, chemical, and 

agricultural sectors also require connectivity using the 

transportation network (logical and indirect dependency 

characteristics of connectivity) (2, 10). On the other hand, the 

urban water system, particularly the stormwater network, has 

great importance in the built environment against pluvial 

surface flooding (defined as flooding induced by excessive 

precipitation beyond the capacity of the stormwater drainage 

system) (11). Having spatial colocation with the transportation 

network, failure in the stormwater network may lead to 

flooding in the road network (3, 12). On the other hand, the 

transportation network can be used to carry emergency 

management personnel, raw materials, and goods to manage 

and repair the stormwater network (13). In addition, sometimes 

parking lots are used as water retention areas during flash 

flooding in some cities (14). These examples provide enough 

evidence to confirm the functional and geospatial 

interdependency of transportation and stormwater systems in 

the urban environment. Moreover, these infrastructures are 

identified as critical infrastructure by DHS (1). Given that they 

are an important part of lifeline services, this paper aims at 

exploring aspects of the interdependency of transportation and 

stormwater networks. 

Since the concept of infrastructure connectedness took 

shape in scientific research, numerous approaches and 

frameworks have been developed to model the aspects of 

interdependency. Consequently, Sun et al. categorized these 

methods based on dependency characteristics, interaction rules, 

and data driven approaches, also described their scale and 

complexity of application 

(4). Several quantitative approaches (i.e., graph-based, 

input–output-based, agent-based, system dynamicsbased, 

Bayesian network-based, optimization-based, and 

econometric-based models), were adopted in previous 

studies where, however, the accuracy and outcomes were 

compromised by incomplete information about the 

interdependency (15). Real-world systems have numerous 

drivers and even more tensions between them, so solutions 

for one set of drivers may not be good enough for others. 

Therefore, it is difficult to establish a deterministic solution 

(perfect solution) to this problem (16). Likewise, modeling 

of transportation and stormwater system interdependency 

is compromised by (a) unavailability of high resolution 

topological and operational data which is not publicly 

accessible and (b) incomplete understanding of instabilities 

and vulnerabilities in both spatial and functional settings. 

Research challenges also exist as a result of the lack of a 

comprehensive, calibrated, and validated decision support 

framework for practitioners. These research gaps 

motivated the authors to investigate the interdependency 

behavior of transportation and stormwater networks with 

an in-depth network-based analysis. Therefore, the 

research goal of this paper is to investigate the functional 

and spatial interdependency of transportation and 

stormwater systems. The objectives to satisfy the goal are 

threefold: (i) to explore the spatial interdependency of 

transportation and stormwater networks, (ii) to investigate 

the aggregate behavior of these systems when spatial, 

functional, and connectivity metrics are combined, and (iii) 

to compare the individual and multilayer networks’ 

topological credentials to observe the change in properties 

resulting from interdependency. The topological credential 

of a network is defined as the quantification of criticality 

and vulnerability of its components (e.g., nodes and edges) 

based on their topology in the network by applying network 

metrics (e.g., degree, centrality) (17). This paper will 

answer the following research questions: 

 To what spatial level are the transportation and 

stormwater systems interdependent? 

 What is the best indicator of spatial 

interdependency? 

 What is the best way to incorporate functional and 

spatial interdependencies? 

 What is the best analysis framework to capture 

interdependency? 

 How do the topological credentials change from 

individual level to multilayer network? 



Kays et al 3 

 

Figure 1 shows the hypothetical graph presentation of 

the transportation (G1) and stormwater (G2) networks. A 

graph or network is a mathematical form of representing 

the structure of a complex system, where the nodes mean 

individual entities and the links or edges represent the 

relationships between them (18). In Figure 1 the nodes T 

and W show the entities in G1 and G2. Additionally, 

multilayer network (Gm) is represented by connecting these 

two networks with red edges (W3–T3, and W4– T4) which 

represent distinct types of relationship within 

transportation and stormwater networks. For example, 

stormwater is routed from the road to the stormwater 

network using inlets, manholes, junctions, and side drains 

(T3!W3). On the other hand, emergency crews need to use 

the road network to access junctions via manholes (W3!T3) 

for maintenance. Therefore, the edge between T and W can 

be used to explain this functional interdependency. The 

main difference between the individual and multilayer 

network is the connectivity (link or edge); while all nodes 

and edges in a single layer network represent the same 

relationships, different nodes and edges have different 

properties in a multilayer network. Moreover, a multilayer 

network is different from the aggregated network (Figure 

2). For this study, multilayer network metrics will be used 

instead of aggregated network, which has some limitations 

(explained in a later section) in representing realworld 

networks (19). 

The paper is organized as follows: the second section 

offers a brief but critical literature review of existing 

research and modeling approaches. The third section 

discusses the data source, structuring, and manipulation. 

The fourth section discusses the methodology and results. 

The final section concluded the paper by discussing the key 

findings and future research scope. 

Figure 2. Multilayer network and aggregated network. 

Literature Review Interdependency of 

Infrastructures 
Researchers have been actively investigating the complexities 

of systems’ interdependencies for over 20 years. Physical 

systems have numerous drivers, and it is difficult to find the 

perfect solution for all. The localized and dynamic behavior of 

systems, and their probabilistic likelihood of failure, makes it 

challenging to combine the story in a single framework. As 

such, recent studies emphasize the research need for modeling 

the systems’ interdependency, particularly focusing on 

capturing cascading, escalating, or compounding failures. 

Rinaldi et al. in 2001 proposed an outline where they categorize 

interdependency, failure mode, logical interfaces, and other 

aspects in a comprehensive framework (3). Likewise, 

Zimmerman (5), Dudenhoeffer et al. (20), Zhang and Peeta (6), 

and Sharkey et al. (21) classify interdependency from different 

perspectives; some classifications are based on systems’ 

functionalities, reaction to natural hazards, restoration, or 

economic impacts. Some other studies (22–25) focus on the 

resilience of infrastructures against natural disasters and human 

threats and propose frameworks to show the response of 
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connected systems to these situations when human, 

environmental, and system performance and adaptivity are 

combined. State-of-the-art literature suggests the significant 

importance of analyzing infrastructures as connected systems 

rather than an individual entity. 

Many modeling approaches have been proposed for 

studying interdependency in the literature. These approaches 

vary based on the type of system, availability of data, and 

quantifying metrics. Ouyang classified these modeling 

techniques into six categories: empirical approaches, agent-

based modeling, system dynamics, economic theory-based 

modeling, network-based, and other modeling approaches (15). 

That study also summarized the data needs, fundamental 

considerations, and computational efficiencies of different 

modeling approaches. Similarly, Sun et al. classified the 

modeling approaches into three categories: the dependency 

table (i.e., includes qualitative and quantitative surveys), 

interaction rules (i.e., includes discrete event simulation, agent-

based model, system dynamics, Bayesian-networkbased 

models, optimization, mobility model, aggregate supply-

demand model), and data driven approaches (i.e., supervised 

and deep learning, text mining, etc.) (4). Some of the 

applications of these interdependency modeling approaches are 

discussed in the following sections. 

McDaniels et al. developed an empirical framework to 

capture interdependencies of power, buildings, water, health, 

and road transportation systems for the 2003 North American 

blackout, 1998 ice storm, and 2004 Hurricane Charley events 

by using big data and hierarchical representation of systems 

(26). The concept of hierarchy resembles the process of 

cascading and escalating failure between systems; however, 

failure in real systems does not always maintain hierarchy, 

which limits the application of this method for the study of 

interdependency. Aghababari and Koliou developed an agent-

based model (ABM) to simulate the subsystems of an education 

infrastructure on the occasion of a tornado event and predicted 

the response of agents in schools, households, construction 

companies, and power and water supply systems (27). Oliva et 

al. also proposed an agent-based input–output model that 

provides a detailed framework considering the exchange of 

resources between infrastructures as an explicit parameter 

where the functionality loss is used as an internal parameter 

(28). These studies show that ABM generates reliable results in 

interdependency modeling yet the requirement of big data to 

calibrate and validate the model limits its application. 

Additionally, ABM performs microscopic analysis which 

represents a big computational challenge. 

One of the most popular interdependency modeling 

frameworks is graph-based network modeling. Johansson and 

Hassel modeled the propagation of disturbance in a railway 

system using a network-based approach and identified the 

vulnerabilities and performances of all the subsystems (29). 

Wang et al. proposed a network modeling framework to 

analyze the vulnerability of interdependent infrastructure 

systems for the major cities in China and performed case 

studies for power and water systems. Critical and vulnerable 

components of the connected infrastructures are identified and 

ranked by this framework (30). Similarly, Chai et al. analyzed 

the characteristics of the critical infrastructure networks and 

identified ‘‘Oil & Gas,’’ ‘‘Information & Communication 

Technologies (ICT),’’ and ‘‘Electricity’’ infrastructures as the 

most important infrastructures on which the performance of 

other infrastructures depends. By using network modeling, the 

study found that these infrastructures have the potential to 

cause the greatest cascading failure (31). Zhang and Peeta 

developed the multilayer infrastructure network with spatial 

computable general equilibrium (MIN(S)CGE) modeling 

framework to capture the interdependencies in the 

transportation sector, where they mainly focused on policy 

implementation scenarios and their effect on the system (6). 

That study did not include comprehensive information about 

the propagation of natural disasters or human-caused 

disturbances in the framework; however, the model 

demonstrated how to include policy implementation within the 

interdependent system operation. Sharm and Gardoni 

developed a mathematical framework using interface function 

along with network modeling and tested the model on a 

regional scale for post-earthquake recovery of interdependent 

power and water infrastructures (32). In summary, these studies 

exhibit the potential of a network-based modeling framework 

to express the interdependency of connected and dependent 

infrastructures provided overall system information is 

available. Though a graph-based approach requires big data to 

model the system, this modeling technique has the potential to 

represent the system’s connectivity better than ABM. An 

integration of ABM with graph-based approach will make a 

better modeling framework to predict scenarios based on policy 

implications. 

Interdependency of Stormwater and 

Transportation Networks 
Few studies are found in the literature that analyzed the 

interdependency of stormwater and road networks during 

adverse weather and natural disasters. AbdelMottaleb and 

Zhang combined the transportation and water distribution 

networks based on their spatial interdependency and 

developed a combined interface graph considering their 

connected and vulnerable locations (33). Using the random 

forest technique, that study predicted the connectivity 

clusters that explained the spatial interdependency; 

however, the developed giant component captured only 

17% of the interface network connectivity which weakened 

the analysis. Also, other graph metrics were not explored in 
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the study which would have indicated the changed graph 

properties and interdependency during normal operation. 

Dong et al. investigated the failure propagation between 

road and sewer networks after an earthquake using graph 

percolation theory (34). This modeling approach can 

estimate connectivity failures with better accuracy but is 

computationally expensive and data intensive. Dong et al. 

used the Bayesian network modeling technique to quantify 

the failure of a road network from flooding from the 

neighboring channel but did not explain the critical 

locations and vulnerable components (35). In another 

study, Dong et al. developed a graph-based modeling 

framework considering the structural, functional, and 

topological vulnerabilities of road connectivity using 

network percolation theory in the context of a flooding 

situation (36). This framework captures the changing travel 

pattern during flooding, but macroscopic level giant 

component analysis was unable to pinpoint or set criteria to 

find locations of compounding failure. Atef et al. proposed 

a framework using neighborhood centrality and point 

variance to capture spatial and functional interdependence 

of water mains and transportation network (37). That study 

also lacked identification of the components’ vulnerability 

and proper validation. 

Some other studies have also explored the 

interdependence of road and water systems using different 

modeling approaches. Aslani and Mohebbi developed a 

resilience assessment framework using a geographically 

weighted regression (GWR) model to predict the combined 

resilience of interdependent water and transportation 

networks (38). Though the GWR integrates spatial attribute 

to regression and generates indicators, it is difficult to 

interpret the results for practical applications. On the other 

hand, fragility curves are also used for vulnerability 

analysis which expresses the probability of failure of the 

system’s components for a specific disaster scenario. For 

transportation and stormwater networks, the fragility curve 

is not explicitly defined in the literature, yet some modeling 

approaches estimate the failure probability of infrastructure 

components based on the influencing factors. Mazumder et 

al. used 14 such factors to estimate the economic, 

operational, environmental, and social consequences of 

water and road segment failures. The study used fuzzy 

hierarchical interface which only utilized the joint 

probability of failure (39). For systemwide aggregate 

analysis, this type of econometric modeling is a good fit. 

However, unlike microscopic level analysis, aggregate 

modeling frameworks cannot identify the critical 

components which are vulnerable to disruption and might 

initiate cascading failure between systems. Graph-based 

network modeling is more appropriate for this kind of 

analysis. 

Based on the review above, there is a literature gap in 

the area of an interdependency modeling framework for 

transportation and stormwater networks that supports the 

integration of spatial and functional indicators and 

application of network metrics to model the combined 

systems’ performance. This paper presents an in-depth 

analysis to overcome these challenges. 

Review of Graph Metrics 

The concept of graph (G) developed from the connectivity of 

components in different systems, which include physical, 

biological, virtual, and social systems. In graph, system 

components are expressed with two terms: nodes (n) and links 

or edges (e). For decades, many graph tools have been utilized 

to explain the connectivity between components. Most real-

world networks do not exhibit either discrete or random 

patterns of connections, long tail in degree distribution, high 

clustering coefficient, assortativity, and so forth, which makes 

them complex networks (40). In general, a single layer of a 

network is represented by nodes and edges explaining the same 

type properties G[n,e]; for example, in a transportation 

network, nodes and edges can be defined as intersections and 

road segments respectively (39, 56, 57). Also, graphs can be 

directed or undirected. When the edges of a graph have the 

property to express the direction of information flow, it is 

defined as directed graph (e.g., the direction of traffic flow in a 

road segment); on the contrary, if the edges represent both-way 

information flow, it is defined as undirected graph (e.g., both-

way traffic in a road segment). But this representation 

sometimes misleads analysis when it presents more than one 

property of any connection; so the concept of multilayer 

representation of networks came to light that can represent 

different properties of the same entity in different layers. For 

example, between two intersections there can be transit and 

drive routes. Two separate networks are necessary to represent 

these two systems where the nodes (intersections) are same. 

In a multiplex network, the nodes remain the same but the 

edges (representing connections based on a specific property) 

between them are different. There can be more than one 

different edges between nodes in a multiplex network; for 

example, in a social network, the connection between two 

persons can be friendship as well as business partnership. For 

a multilayer network, two or more networks are connected by 

interlayer edges (different than individual networks). For 

example, a road network and a stormwater network can be 

represented as a multilayer network where these networks can 

be connected by interlayer edges (which may represent 

interdependent network vulnerability or reliability) (41). 

Because of computational challenges, sometimes a multilayer 

network is aggregated for easier tensor representation. But this 

technique does not always represent the correct topology of the 
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networks. For example, an aggregated network sometimes 

creates hypothetical nodes and edges which makes all the 

networks’ topology uniform (Figure 2). This approach may 

generate misleading insights. Although developing and 

analyzing a multilayer network is computationally expensive, 

it is a more realistic representation of real systems (19). 

Moreover, this approach is further enhanced by facilitating 

spatially embedded network analysis (42). Given such 

advantages, this study considers the multilayer network 

approach. 

Significant research efforts have been made to explore the 

structures, topology, and nature of networks with innovative 

tools, theories, and metrics; yet this is still an open research 

area for real-world application (43). Some of the graph metrics 

used in this study that exhibit the properties of single and 

multilayer networks are discussed below. 

Degree 
The degree of a node is the number of edges that are connected 

to it. For a directed graph, degree is expressed as the summation 

of in-degree (number of edges coming to the node) and out-

degree (number of edges going out from the node). For 

adjacency matrix Aij (the structure of the graph in the matrix), 

degree (Di) is: 

Xn 

Di = Aij ð1Þ j=1 

For a multilayer scenario, the definition of degree is the 

same but represents with adjacency tensor M and decomposing 

multidimensional tensor as (44): 

 i 

 Di = B Mj U ð2Þ 

where B is binary function and U is multidimensional rank-2 

tensor. 

Degree Distribution 
In real networks, degree distribution follows power law with 

long right skewed tail distribution. This represents the presence 

of higher degree nodes, but they are few in number; on the other 

hand, higher number and lower degree nodes are connected to 

the hubs and make the network dynamics. This attribute 

validates the scale free property of the network (45). The same 

behavior is observed for single- and multi-layer networks (46). 

Density 
Network density is the ratio of actual connection to all potential 

connections. This metric gives an idea of having options for 

potential connection between nodes. For a single layer 

network, density of graph G[n,e] is expressed as in Malek et al. 

(47): 

2e 

Density= , for undirected network ð3Þ n nð 1Þ e 

Density= , for directed network ð4Þ n 1 

Peintralayer + Peinterlayer 

Density= P ni 3nj + Pintralayer ni +ð2ni1Þ i, j=layers 

 ðFor multilayer networkÞ ð5Þ 

Diameter 
The diameter of a network is expressed as the size of 

longest shortest path between nodes. It represents the linear 

size of the network; a larger diameter represents longer 

connectivity to access nodes (48). 

Eigenvector Centrality 
The eigenvector centrality (EC) of a node measures its 

relative influence in the network. This estimation is based 

on the importance of neighboring nodes and their influence 

(49). Calculation of EC is based on finding the leading 

eigenvector and expressed as: 

 1X ð6Þ 

 EC = k1 j Aijej 

where k1 is the largest eigenvalue of adjacency matrix A. Aij 

is the adjacency matrix and for multilayer network it is the 

higher rank adjacency tensor. The advantage of EC is that 

the value depends on the summation of neighboring values; 

large EC value indicates that the node is surrounded by 

many important neighbors. 

Betweenness Centrality 
Betweenness centrality (BC) of nodes is defined as the 

number of shortest paths in the network that pass through 

that node. The node that more frequently sits on the shortest 

paths has a higher BC value. BC is a path based metric that 

evaluates the amount of influence of a node in the network 

(47). The BC of a node in graph G is expressed as: 

 X gij ð Þn 

BC = wij  ð7Þ i,j gij 

where wij is the weight of the path between nodes i and j, gij 

is the number of shortest paths between nodes i and j, and 
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gij ð Þv is the number of shortest paths that pass through 

node v (not the v as end point). The same concept and 

equation are applicable for estimating the BC value of 

edges. 
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Figure 3. Road and stormwater networks inside the analysis boundary. 

Data Description 

The road and stormwater networks of Norman, 

Cleveland County, Oklahoma are selected for this study for 

the following reasons: (i) the topology of the networks is 

known and (ii) high resolution network information is 

available. Figure 3 shows the map of road and stormwater 

networks within the analysis boundary (50). The data were 

collected from various sources, including state level 

organizations like Oklahoma Department of Transportation 

and Norman City open GIS portal websites (50, 51). The 

road network data includes high resolution network 

information, average annual daily traffic (AADT) data, 15-

minute traffic count data, and clearly distinguishable 

intersections. However, this study considered only auto-

based trips (AADT) while other modes including 

pedestrian, active transportation, transit, and so forth also 

contribute to traffic operations. Heavy rainfall leading to 

flash flooding in a road network tends to limit pedestrian 

activities, thus the functional aspects of a road network in 

this context are better understood by auto-based trips (52). 

Because of discontinuities in the GIS data, the 

construction of a stormwater network requires additional 

filtration processes. Some of the local stormwater 

structures, such as culverts, were isolated from the original 

database and posed difficulties when all the components 

were combined. Additionally, some local pipelines and 

culverts provide immediate drainage of water from roads 

but are not a part of the stormwater network. Consideration 

of these isolated components would create incorrect 

mathematical formulation of the network. Such noise was 

thus removed from the GIS data for better representation of 

the network. This filtration process required careful 

observations and, out of 6,374 nodes, 1,637 (25.68%) 

nodes were removed. Moreover, the stormwater network 

consists of a network of pipes at primary level that carries 

water to natural creeks and subsequently the water flows 

maintaining the hierarchy of channels. The GIS data 

considers the pipe network and natural systems separately, 

however, for this paper, both natural and pipe networks are 

combined into one shape file (Figure 3). Moreover, some 

of the links in the stormwater network were missing; these 

were difficult to see because they are buried underground. 

Based on a reconnaissance survey, some of the missing 

stormwater links were reconstructed. Finally, the pipe 

diameter was integrated in the hydrologic modeling 

(discussed in a later section) to obtain the direction and 

volume of water flow for a specific rainfall scenario. 

Network analysis is performed later to integrate these two 

vital pieces of information. 

Methods and Results Network 

Representation 

To evaluate the topological credentials of the road and 

stormwater systems, the GIS data is converted to a network or 

graph. Moreover, recent progress in computational power 

makes it possible to embed geographic coordinates information 

inside the graphs. For this paper, the shape files were converted 

to georeferenced graph files using relational database in R (53). 

Figures 4 and 5 illustrate the graph representation of the road 

(G1) and stormwater networks (G2), respectively. All the nodes 

and the edges are geotagged to keep the spatial reference 

embedded in the network. 
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Figure 4. Graph representation of road network. 

Figure 5. Graph representation of stormwater network. 

Nodes and Edges. For the road network (G1), the intersections 

are defined as nodes and the road segments as edges. Using 

these criteria, the total number of nodes and edges in the road 

network were found to be 1,716 and 2,476, respectively. In the 

stormwater network (G2), inlets, manholes, and junctions of the 

pipelines are defined as nodes and the connections (conduits 

and creeks carrying stormwater) between the associated nodes 

as edges. The total number of nodes and edges were found to 

be 4,737 and 5,455, respectively. 

Directionality. For this study, G1 and G2 are defined as 

undirected and weighted graphs and G1’ and G2’ are defined as 

directed and weighted graphs. Network analysis is performed 

for both directed and undirected graphs. Moreover, Gm and Gm’ 

are defined as undirected and directed multilayer networks 

accordingly. In all cases the edges between G1 and G2 are 

bidirectional. 
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Graph Weight. Different aspects, properties, or attributes of 

real-world systems can be integrated into a network with 

proper distribution of weight and thus treated as important 

consideration for network analysis. For example, this study 

used traffic volume (AADT) as a weighting factor for the 

road network analysis. This is logical because some local 

roads may have good connectivity but, from an operational 

point of view, may have less AADT. Weight based on 

AADT can capture this functional importance of a 

particular road segment (edge). Moreover, AADT 

represents an average yearly variable that is more reliable 

at representing this importance than other metrics like flow 

or speed. To capture the functional behavior of the road 

network, AADT based weight (normalized between 0 and 

1) is assigned to the road edges. For the stormwater 

network, weight (normalized between 0 and 1) is assigned 

to edges based on the volume of water flow for a particular 

precipitation scenario (detailed discussion is added in 

‘‘Hydrologic Modeling’’ below). However, integration of 

real-time stormwater flow will make the study more 

realistic which is compromised by unavailability of data. 

Moreover, there is a complexity in calculating the capacity 

of natural channels, especially when they are considered in 

combination with pipelines. Therefore, the simulated water 

flow volume better represents the approaching flash 

flooding scenario. In a multilayer network (Gm), the 

interlayer edge weight is assigned based on spatial 

autocorrelation (local Moran’s I scores). The reasoning is 

discussed in the next section. 

 

Figure 6. Multilayer network representation with georeferenced nodes and edges. 



Kays et al 11 

 

Multilayer Graph. The multilayer graph (Gm) representation 

combines the stormwater and road networks and is developed 

based on spatial colocation between these networks (Figure 6). 

This relationship is established from spatial correlation 

analysis using global and local Moran’s I values. Moreover, 

stormwater from highways drains to storm sewers through side 

drains, inlets, manholes, and so forth. Failure in stormwater 

conduits’ capacity or other structural components results in 

standing water on the roadways which has an impact on traffic 

operations. Therefore, these two systems have functional 

interdependency. The multilayer network is developed in a way 

that captures both relationships between these systems. For 

identifying the connectivity between G1 and G2, it is assumed 

that nodes from the road and stormwater network within a 

sphere of 100 ft radius have a connection between them, and 

the interlayer edges are created based on this assumption 

(Figure 6). In our study area, most of the inlets are found to be 

near or at road intersections. As such, the study went through a 

rigorous trial-and-error method to obtain 100 ft radius distance 

that provides an optimal area where most water inlets at an 

intersection are included. Moreover, any radius greater than 

100 ft resulted in problematic links or edges for the 

multilayered system, that is, water inlets located at one road 

intersection may end up connecting with another intersection. 

Instead of circles, spheres are used to capture the relationships 

that overcome the challenge of connecting nodes at different 

elevations. Using ArcGIS Desktop (V10.8) (54) the spatial 

analyses are performed and the node indexes that satisfy the 

above criteria are identified. Finally, the inter- and intra-layer 

nodes and connectivity information are structured in the R 

environment using ‘‘tidygraph,’’ ‘‘igraph,’’ and ‘‘tidyverse’’ 

libraries and coded into the software muxViz (55– 57). This 

state-of-the-art software is developed in R library and has the 

capability to represent interdependent and connected 

multilayer networks. 

After coding the G1, G2, G1
’, G2

’, Gm, and Gm
’ along with 

their weight, the graph properties are estimated, which are 

summarized in Table 1. After considering weight, the diameter 

of the graph is reduced, meaning more connectivity is 

observed. This is because the algorithm assigns 1 as the weight 

to all edges in unweighted analysis; however, an appropriate 

edge weight (normalized between 0 and 1) is assigned in 

weighted analysis which is less than 1 in most cases. 

Spatial Interdependency 

To investigate the spatial interdependency of G1 and G2, 

spatial autocorrelation with Moran’s I statistics is used 

(58). Compared with other methods, Moran’s I statistic is 

powerful because it can capture both global and local 

Table 1. Network Properties 

 

 Unweighted and Undirected Weighted and Undirected 

 Road 

network 

Stormwater 

network 

Multilayer 

network 

Road Stormwater network

 network 

Multilayer 

network 

Graph properties Nodes 1,716 4,737 6,454 Same as for unweighted graph 

 

Edges 2,476 5,455 9,952 Same as for unweighted graph  

Diameter 68 232 72 10.64 92.53 15 

Density 0.00168 0.00040 0.00048 Same as for weighted graph  

Mean path length 25.54 87.6 25.24 3.38 33.95 3.78 

Node properties 

Average degree 2.89 1.92 4.33 2.89 1.92 4.33 

Eigenvector centrality 

(number of nodes within 

the threshold [.0.5/1]*) 

11 17 4 20 20 28 

Node betweenness centrality 

(number of nodes within 

the threshold [.0.5/1]*) 

51 156 41 33 116 23 

Link property 

Edge betweenness centrality 

(number of nodes within 

the threshold [.0.5/1]*) 

64 145 36 55 115 29 

*Note: Values are normalized between 0 to 1, where 0.5 is the threshold value and 1 is the highest value. 
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spatial autocorrelation, and so it has become the 

wellestablished model for expressing spatial 

autocorrelation (59, 60). In this analysis, both local and 

global Moran’s I values are reported for identifying 

neighbors in different spaces (61). The global Moran’s I 

represents the overall clustering of any variable in the space 

using spatial weighting (rook/queen contiguity and orders) 

and averaged variables, expressed as: 

P P wijðxi xÞ(xj x) 

 N i j 

Iglobal = Pi ðxi xÞ2

 ð8Þ W 

where N is the number of observations, x is the mean of the 

variable, w is spatial weight, and W is the sum of all spatial 

weights. The inference of Moran’s I statistics is based on 

the null hypothesis of complete randomness in space, that 

is, no pattern of autocorrelation. The value of I ranges from 

21 to 1, where 1 means perfect cluster together, 0 is 

complete randomness of clusters, and 21 

Figure 7. Spatial autocorrelation between G1 and G2. 

means perfectly dispersed. However, global I value gives 

one statistic for both networks considering the global 

homogeneity of nodes whereas some local clusters may be 

present in space. The concept of local Moran’s I statistic is 

useful to capture this scenario. The local Moran’s I statistic 

calculates individual spatial units separately and identifies 

the significance over space, expressed as: 

x x XN 

N 

where the symbols represent the same meaning as in 

Equation 8. The global measure of Moran’s I for the roads 

and stormwater networks is +0.3362, this means that the 

nodes of the road and stormwater networks are clustered in 

space. The recorded Z-score is 44.276 which shows that the 

result is significant. Figure 7 shows Moran’s I scatter plot 

with high–high (top-right quadrant), low–low (bottom-left 

quadrant) clustering regions, which is visualized in the 

local cluster map. The global Moran’s I value and the Z-

score provide evidence of spatial clustering of nodes from 

transportation and stormwater networks which affirm the 

presence of spatial interdependency between them. 

Ilocal = i wijðxi xÞ a
 j=1 

ð9Þ 

PN 2 i=1ðxi xÞ 

a=  ð10Þ 
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Likewise local Moran’s I values indicate local clustering 

and, based on this spatial correlation between nodes from 

the said networks, a multilayer network is constructed. 

Moreover, the local Moran’s I gives a spatial context to 

assign weight to spatially interdependent edges of Gm. This 

study considers local Moran’s I value (normalized) as a 

spatial weight for multilayer network analysis. 

Complex Network Analysis 

Degree and Degree Distribution. The degrees of G1, G2, and Gm 

are estimated using Equations 1 and 2. For this analysis, an 

undirected network is considered, which means the degrees 

shown in Figures 8 and 9 are the sum of all in-degree and out-

degree. After the analysis, the highest degrees for G1, G2, and 

Gm are found to be 5, 7, and 28, respectively. This means that 

some of the nodes in the multilayer network are highly 

connected compared with the individual networks. The 

distribution of node degree is presented in Figure 8, which 

shows a long tail right skewed power law distribution for all 

three networks. 

 

Figure 8. Degree distribution of G1, G2, and Gm. 

This implies the presence of nodes with very high degree 

values, meaning the presence of hubs with high connectivity. 

This power distribution is the property of realworld networks 

and the graph developed for the three networks resembles this 

property (62). In addition, Gm has nodes with higher degree 

compared with G1 and G2 as it connects both layers with 

hypothetical interlayer edges. These interlayer edges represent 

the spatial dependency attribute between the two layers; the 

development and definition of these edges are significant 

contributions of this study. Table 1 shows that the average 

degree of Gm is 4.33, which is significantly higher than G1 

(2.89) and G2 (1.92). The nodes with degree values of G1, G2, 

and Gm are illustrated in the map (Figure 9, a–c). Most of the 

nodes (intersections) in the road network with higher degrees 

are identified around the local roads (‘‘Alameda St’’ at the 

roundabout [degree = 5], ‘‘Santa Fe Ave,’’ ‘‘Miller Ave,’’ 

‘‘Main St,’’ and ‘‘24th Ave’’). For the stormwater network, the 

nodes with highest degree values are found near the residential 

areas (near ‘‘Boyed St’’ and ‘‘Flood Ave,’’ ‘‘Main St’’ and 

‘‘Ponca Ave,’’ ‘‘Classen Blvd’’ and ‘‘Lindsey St’’). For the 

multilayer network, the nodes with higher degree values are 

found near the residential areas while some of them are close 

to creeks (‘‘Cater Ave’’ and ‘‘Apache St,’’ ‘‘Robinson St’’ and 

‘‘Fay Ave,’’ ‘‘Iowa St’’ and ‘‘Berry Ave,’’ ‘‘Boyed St’’ and 

‘‘Jenkins Ave’’). The degree of a node represents varied 

fundamental properties in a network. Other network properties, 

for example, centrality, are highly dependent on the degree of 

a node. The changing pattern of topological credentials based 

on node degree identifies the significant influence of the built 

environment, as higher degree nodes are found near residential 

areas. 

Eigenvector Centrality (EC). Equation 7 is used to estimate the 

weighted EC for undirected networks G1, G2, and Gm 

(normalized between 0 and 1). For this analysis G1 and G2 are 

assigned AADT and conduit capacity as weight, respectively. 

In addition, Moran’s I significance value is assigned as weight 

to the nodes with interlayer connectivity. It is found that both 

G1 and G2 have 20 nodes with EC values above the threshold 

(.0.5/1), (where 0.5 is the threshold value and 1 the largest 

value, denoted as 0.5/1). Similarly, Gm has 28 nodes with the 

highest EC value within same threshold (0.5/1). As the node 

degree distributions of all three networks are right skewed long 

tail power distribution, the EC values are also expected to 

follow the same property trend. This result shows the presence 

of very few nodes with high EC values (1.2% for G1, 0.4% for 

G2, and 0.4% for Gm), which follows the same characteristics 

as degree. The nodes with highest EC values are also found to 

be spatially clustered for all three networks (Figure 10, a–c) but 

the clusters are not in the same places. For G1 the nodes are 

clustered near ‘‘Cleveland Elementary School’’; for G2 the 

nodes are clustered between ‘‘Main St’’ and ‘‘Porter Ave’’; but 

for Gm the nodes are near ‘‘Carter Ave’’ and ‘‘Comanche St.’’ 

This seems logical since many of the stormwater nodes are 

located in neighboring locations and connect to ‘‘Bishop 

Creek.’’ EC in Gm is also estimated based on the combination 

of G1, G2, and their interlayer connections, so the influential 

nodes have shifted to some other places. In other words, highly 

influential nodes in a multilayer network that dictate the intra- 

and inter-connectivity are not the same as in individual 

systems, rather the properties are changed and new central 

locations identified. Figure 10, a–c, shows the classification of 

nodes based on EC values for G1, G2, and Gm. 

Node Betweenness Centrality (BC). Weighted BCs 

(normalized between 0 and 1) of nodes for undirected 
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networks G1, G2, and Gm are estimated using Equation 7 

where the weights are considered same as in the previous 

analysis. The result reveals that G1 has 33 nodes and G2 has 

116 nodes within the threshold of [.0.5/1]. The same 

analysis is performed on the Gm and only 23 nodes were 

found within the higher BC value threshold [.0.5/1]. This 

means that BC value changes significantly from individual 

network to multilayer network. The nodes with classified 

BC values of networks G1, G2, and Gm are shown in Figure 

11, a–c. It is identified that the most central nodes in the 

road network are found near ‘‘Eufaula St’’ and ‘‘Jones 

Ave’’; some are scattered near ‘‘College Ave,’’ ‘‘Elm Ave,’’ 

and ‘‘Barley St.’’ Since intersections in local roads provide 

connectivity to roads with higher AADT, the local roads are 

more central in the analysis area. On the contrary, the 

highest central nodes in G2 are found near ‘‘Main St’’ and 

‘‘Legacy Trails,’’ which is logical as many stormwater 

conduits connect in this location. For Gm, the locations are 

close to that of G1 and G2 (‘‘Eufaula St’’ and ‘‘Main St’’) 

and this seems rational since nodes with higher BC values 

in individual networks are located nearby. In general, BC 

is an important shortest path 



 Kays et al 15 

 

 

Figure 9. Degrees of nodes in: (a) road network (G1), (b) stormwater network (G2), and (c) multilayer network (Gm). 
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Figure 10. Different aspects of eigenvector centrality (EC) of nodes in: (a) road network (G1), (b) stormwater network (G2), and (c) 

multilayer network (Gm). 
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Figure 11. Locations of central nodes of: (a) road network (G1), (b) stormwater network (G2), and (c) multilayer network (Gm), based on 

betweenness centrality (BC) value. 
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Figure 12. Hydrologic analysis of the study area. 

based metric used for network traffic pattern analysis (63) and 

water distribution system analysis (64), and the same metric 

makes an important contribution to multilayer network 

analysis (64). 

Hydrologic Analysis. Hydrologic analysis of the storm water 

system is performed to reveal the direction and the volume of 

the water flow in the study area, which provides information 

about direction of edges in the stormwater network. The edge 

BC of the directed stormwater network in the following 

section utilizes such information to perform and obtain 

realistic results. The stormwater in the study area flows by 

gravity, firstly from the roads to the storm sewers and finally 

inside the storm sewer network. To perform the hydrologic 

analysis, the area is divided into several sub-catchment zones 

and a sample precipitation (minimum 2.5in. per hour to 

maximum 7.5in. per hour) is assigned to observe the direction 

of the water flow. The elevations of junctions, inlets, and 

manholes are estimated from the digital elevation map of 

Norman, Oklahoma (65). Additionally, the creeks in the study 

area are treated as part of the stormwater pipe network. The 

overall outfalls for water to go out of the area are considered 

as the end points of the creeks (Figure 12). The hydrologic 

simulation performed in the Storm Water Management 

Model (SWMM), software from the U.S. Environmental 

Protection Agency, gives the direction and volume of water 

flow in the pipe network (66). Based on this, the directed 

stormwater network (G2’) is defined and the volume of water 

flow in the pipes is considered as a weighting factor for 

network analysis. 

Edge Betweenness Centrality (BC). Edge BC is another 

important shortest path based network measure that identifies 

how central an edge is in the network. For this analysis, 

Equation 7 is used to estimate the weighted and undirected 

BC (normalized between 0 and 1) of G1, G2, and Gm. The 

weights used for this analysis are the same as in the previous 

analysis; the only difference is that weights are assigned to 

the edges instead of nodes. Individual layer BC values with 

classification are shown in Figure 13, a, d. For G1 the most 

central edges are located near ‘‘College Ave,’’ ‘‘Lindsey St,’’ 

and ‘‘Eufaula St.’’ Being parts of local roads, these central 

road segments provide more connectivity than arterial roads. 

Similarly, some central edges of G2 follow parts of the creeks 

and others are in the pipe network. To be more specific, for 

G1 and G2 a total of 55 and 115 edges, respectively, are found 

within the BC threshold above 0.5 in a scale of 0 to 1. 

Similarly, 29 edges are found to be central for Gm for the same 

BC threshold [0.5/1]. This result exhibits the changed 

topology of the multilayer network and identifies edges that 

are important for the combined network as opposed to results 

from analysis of individual networks. This means that 

multilayer network indicates to locations where road and 

stormwater networks are mutually central (critical). Any 

disruption in these central locations may create cascading 

failures that propagate from one network to another. Figure 

13, a, c, and e, show the locations of edges with centrality 

values (darker and thicker lines have higher centrality) for G1, 

G2, and Gm. It is also identified that all the edges with high 

BC are close to locations which are vulnerable to cascading 

failure (for G1‘‘Eufaula St’’ and ‘‘Barkley St,’’ for G2 near 

‘‘Main St’’ and ‘‘Legacy Trail,’’ and for Gm around ‘‘Eufaula 

St,’’ ‘‘Main St,’’ and ‘‘Legacy trail’’). 

Directed Network Analysis. For analysis of the directed 

networks, edges of the road, stormwater, and multilayer 

networks are expressed with direction and introduced as G1’, 

G2’, and Gm’. For the road network (G1’), traffic flow 

direction is considered as the direction of flow in the edges. 

In the study area, most of the roads are bidirectional except 

for a few links, so the network is cyclic, that is, there are more 

than one path to navigate between nodes. For the stormwater 

network, the direction of edges is considered based on 

direction of water flow, which is identified from hydrologic 

analysis. This network has acyclic tree structure, that is, the 

presence of hierarchy of edges, and water flows from lower 

to higher ranked elements based on gravity. This is a more 

realistic representation of the physical system, as water 

cannot flow backward in the directed network. 

The interdependent multilayer (Gm’) network is also 

considered as a directed network, where the individual layers’ 

edge direction remains the same as before and interlayer links 

are represented as bidirectional edges. This is rational 

representation of the direction as failures (or vulnerability) 

between the two systems is assumed to cascade through the 
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interlayer edges. Being interdependent, failures may 

propagate between road 

 

Figure 13. (Continued) 
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Figure 13. Locations of central edges of: (a) undirected road network (G1), (b) directed road network (G1’), (c) undirected stormwater 

network (G2), (d) directed stormwater network (G2’), (e) undirected multilayer network (Gm), and (f) directed multilayer network (Gm’) 

based on betweenness centrality (BC) value. 
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and stormwater networks. Other than direction of flow, all 

weights of the network components are considered same as 

Gm. 

The road network is analyzed for both directed and 

undirected cases, but no significant difference in BC of 

edges is observed because the network structure is cyclic 

and almost all the roads are bidirectional (Figure 13, a and 

b). This study considers both local and arterial streets, 

where a small part of ‘‘West Main St’’ (an arterial road) has 

one-directional flow. Additionally, a few of the local roads 

are in one-way operation, so the network analysis shows 

similar results for both networks (G1 and G1’). Parts of 

‘‘Brks St’’ and ‘‘Eufaula St’’ are identified as central in the 

road network. It is also observed that edges having similar 

BC exhibit high spatial correlation (clustering) which is a 

good predictor of traffic patterns (63). 

On the other hand, water flow in the stormwater network 

is different than traffic flow, in that water flows in one 

direction in each edge. The flow starts from inlets, then 

follows conduits based on elevation and finally reaches the 

creeks. A hierarchy of components is observed in this 

network. This observation leads to significantly different 

results in unidirectional and directional analysis. While the 

pipes connected to secondary stormwater conduits and a 

small part of natural creeks are found to be central in 

undirected analysis, the natural creeks are identified as 

central in directed network analysis (Figure 13, c and d). In 

practice, this is the expected result. By interpreting the 

flood hazard map of Norman, Oklahoma (data collected 

from FEMA), the creeks are identified as potential flood 

hazard zones too (67). Therefore, the directional analysis of 

edge BC can express the criticality of stormwater 

components for flooding in the study area. 

The central edges based on edge BC values in the 

multilayer network (Gm’) are illustrated in (Figures 13, e 

and f). Compared with analysis of undirected networks, 

more specific spatial clusters of central locations are 

observed in the multilayer network when directed network 

analysis is performed. This phenomenon is observed in real 

networks, as discussed earlier (63). The multilayer network 

(Gm’) identifies the edges with high centrality as near 

‘‘Brks St,’’ ‘‘Elm Ave,’’ and ‘‘Eufaula St,’’ which are also 

close to those identified by individual road and stormwater 

network analysis. 

Conclusions 

The analytical framework developed in this study uncovers 

a unique approach to represent two physical systems, that 

is, the road and the stormwater networks in a multilayer 

network structure. In addition to that, global Moran’s I is 

used as an indicator to quantify the spatial interdependency 

between the two networks. Moreover, weight is assigned to 

networks (i.e., AADT as functional weight of road network, 

conduit capacity as weight of the stormwater network, and 

local Moran’s I significance value as spatial weight to 

interlayer edges) to capture the functional and spatial 

relationships. The topological credentials of road, 

stormwater, and multilayer networks are thus estimated. 

Finally, the analysis framework captures the metrics for 

interdependency study. Overall, this analytical approach to 

investigate two systems gives an understanding about the 

applicability of multilayer approach for spatial and 

functional relationships in addition to connectivity between 

networks. Additionally, the critical locations and 

components identified by multilayer network and 

individual networks spatially coincide with actual flood 

hazard zones, which shows the credibility of network 

metrics to identify critical locations. The detailed analysis 

in this paper provides the following key insights: 

 Spatial autocorrelation estimated by global Moran’s I 

is a good indicator of spatial interdependence. 

Moreover, spatial weight (assigned to links or edges 

between road and stormwater networks) generated 

from local Moran’s I produces logical estimates of 

topological credentials. 

 Most of the central road segments (based on BC) are 

identified as local roads whereas the study includes 

local, collector, and arterial roads. In a city area, local 

roads are more connected and produce higher degree 

nodes and central edges compared with less 

connected arterial roads. 

 Most of the central edges (based on BC) of the 

stormwater network are found along the creeks. The 

directed and weighted network analyses capture the 

real representation of the stormwater network while 

the undirected analysis cannot identify the hierarchy 

of water flow properly. 

 EC estimates the most influential nodes in the 

network and this study found that the nodes with high 

EC are spatially clustered near nodes with high 

degree. The locations are not the same for stormwater, 

road, and multilayer networks, however. EC indicates 

the node’s importance by its neighboring nodes. 

However, EC cannot capture path influence in an 

individual or multilayer network. Therefore, EC can 

be used to capture node influence (intersections/ 

manholes/ junction) for vulnerability analysis. 

 The directed network analyses of road, stormwater, 

and multilayer networks show that edges with high 

BC are spatially close to each other. Undirected 

network analysis cannot capture this 
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phenomenon (i.e., for multilayer network, the edges 

with similar centrality are more scattered). 

 For the multilayer network, most central nodes and edges 

are found in proximity to those of stormwater and road 

networks (BC). 

Topological credentials (degree and BC) also indicate 

the criticality of the similar nodes and edges. One of 

challenges of studying the ‘‘interdependency of 

systems’’ is to identify locations vulnerable to 

cascading failure. This study indicates that the 

topological credentials of a multilayer network have the 

ability to indicate critical components and locations 

vulnerable to cascading failure. For example, if a road 

segment is flooded in the north-western part of the study 

area because of the capacity failure of a stormwater 

pipe, the failure is less severe than if the same 

phenomenon were to happen near ‘‘Elm Ave’’ or 

‘‘Eufaula St.’’ The effect of cascading and escalating of 

failure is higher near the more central edges. 

Based on the results of the analysis, this study offers the 

following recommendations for the future interdependency 

modeling. Networks’ topological credentials have the potential 

to contribute to modeling of systems’ interdependency, 

especially when the systems are physical and have spatial as 

well as operational relationships. Moreover, a network-based 

modeling approach should consider multilayer network 

representation of the combined systems which is more credible 

than single layer network analysis. This study also suggests that 

directed network analysis captures the real physical system 

better than undirected analysis, so future analysis should not 

ignore the directionality aspect of networks. Since spatial 

autocorrelation analysis can capture spatial dependencies 

between systems, vulnerability analysis should include this 

geographical relationship of networks as a metric for better 

understanding of systems. 

This study was limited by some assumptions which were 

made for simplicity of analysis. It was approximated by trial-

and-error method that nodes of road and stormwater networks 

need to be within a 100 ft radius sphere to define the spatial 

interdependency between them. Additionally the scaling effect, 

which is an important property of network analysis (17), is not 

captured in this study For example, some natural creeks close 

to the boundary of the study area have lower ranking (based on 

EC and BC) whereas these channels are an important part of 

the overall stormwater system. This scenario would be captured 

if the analysis were performed on a bigger scale. Moreover, the 

study is conducted for a specific location (i.e., Norman, 

Oklahoma) which limits the validation process. AADT for the 

road network and water flow volume for the stormwater 

network are considered as functional components for the 

analysis framework. Instead of one, a set of functional 

components (e.g., AADT, speed, flow for road network) may 

better represent the overall functionality of the system. 

Moreover, real-time stormwater flow measurement can be 

integrated into the framework as a weighting factor for the 

network analysis. It is not proven if the analysis is free of 

ecological fallacy as the spatial analysis is performed based on 

the data within the boundary. While on a macro scale, there is 

logical interdependency between the road and stormwater 

networks, for example, runoff management, changed land use 

pattern, maintenance and repair works indirectly affect both 

systems, this study was confined to direct special and 

functional relationships only. This study also considered that 

the spatial interdependency of networks is at the node level, 

while the relationship can be edge-to-edge. As the inlets and 

manholes from stormwater networks are mostly found at or 

near road intersections, this consideration simplifies the 

analysis framework by connecting the nodes from these 

networks. Also, this study captures the properties and 

phenomenon at the node, inside edge failures cannot be 

captured until they reach the nodes. However, this limitation 

can be overcome by using dual representation of graph (68). 

To overcome these limitations, as well as based on the 

facts and evidence explored in this study, some future 

directions of research are identified. The analytical 

framework developed in this study will be used to 

investigate cascading failure between the networks using 

real flood scenarios. While the proposed research approach 

provides new insights into the understanding of how 

critically road networks depend on stormwater systems, it 

would benefit future research to utilize the findings of this 

study in testing different disruption scenarios caused by 

flooding (i.e., removing a section of Interstate would have 

less impact than removing an arterial or collector road that 

runs parallel to it, making the situation much more 

catastrophic) at different geographic scales, landscape and 

topography (i.e., rural versus urban; city versus county; 

grid versus radial road patterns; high elevation versus 

elevation differences). Furthermore, the scaling effect can 

be addressed by investigation of the topological credentials 

for multilayer networks of more than two systems. 

Sensitivity and elasticity analysis of graph metrics from 

different case studies will validate the modeling 

framework. While this study analyzed four centralities, 

other metrics, like closeness centrality or PageRank 

centrality can be tested to identify the most important 

topological credentials that capture the interdependency 

between the systems. A timely research need is to develop 

a calibrated and validated modeling framework to address 

the behavior of a ‘‘system of systems’’ using complex 

network science. Finally integrating atop level modeling 

approach, for example, ABM, in the framework may help 

to interpret better the interdependency of systems. 
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