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ABSTRACT: Kohn−Sham Density Functional Theory (KSDFT) is the most widely used
electronic structure method in chemistry, physics, and materials science, with thousands of
calculations cited annually. This ubiquity is rooted in the favorable accuracy vs cost balance
of KSDFT. Nonetheless, the ambitions and expectations of researchers for use of KSDFT in
predictive simulations of large, complicated molecular systems are confronted with an
intrinsic computational cost-scaling challenge. Particularly evident in the context of first-
principles molecular dynamics, the challenge is the high cost-scaling associated with the
computation of the Kohn−Sham orbitals. Orbital-free DFT (OFDFT), as the name
suggests, circumvents entirely the explicit use of those orbitals. Without them, the structural
and algorithmic complexity of KSDFT simplifies dramatically and near-linear scaling with
system size irrespective of system state is achievable. Thus, much larger system sizes and
longer simulation time scales (compared to conventional KSDFT) become accessible;
hence, new chemical phenomena and new materials can be explored. In this review, we
introduce the historical contexts of OFDFT, its theoretical basis, and the challenge of realizing its promise via approximate kinetic
energy density functionals (KEDFs). We review recent progress on that challenge for an array of KEDFs, such as one-point, two-
point, and machine-learnt, as well as some less explored forms. We emphasize use of exact constraints and the inevitability of design
choices. Then, we survey the associated numerical techniques and implemented algorithms specific to OFDFT. We conclude with an
illustrative sample of applications to showcase the power of OFDFT in materials science, chemistry, and physics.
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1. INTRODUCTION

1.1. Motivation

The extraordinarily widespread use of density functional theory
(DFT) in its conventional computational form via Kohn−
Sham (KS) orbitals and their eigenvalues1 masks a remarkable
fact: those orbitals are not essential to Kohn−Sham DFT
(KSDFT). This review focuses on exploitation of that fact in
the electronic structure method known as orbital-free density
functional theory (OFDFT). In a very real sense it is the more
fundamental form of KSDFT. OFDFT literally puts the density
back into centrality in DFT, both formally and in practice.
The immediate motivation is plain. Given the need to

consider only the electron density as the main ingredient of the
method, OFDFT can have a computational cost scaling
linearly with system size irrespective of system state. Therefore,
OFDFT is on the verge of becoming the alternative to
conventional KSDFT in at least two limiting categories: (1)
systems for which the size is too large or the number of
simulations is too large to be tackled by conventional KSDFT
and (2) systems with temperature and/or density too large to
be tractable with conventional KSDFT. These two categories,
especially the first, are becoming increasingly relevant as
chemistry and materials physics push into systems of high
molecular and structural complexity.
We say OFDFT “is on the verge” because it involves a

problem analogous with one familiar in conventional KSDFT,
namely construction of accurate approximate density func-
tionals. The difference is that OFDFT needs kinetic energy
density functionals (KEDFs) as well as the exchange-
correlation (XC) functionals familiar in conventional KSDFT.2

The reader may have noticed the terminology “conventional
KSDFT”. Perhaps this seems an unmotivated complication.
But the reasons for making the distinction are deep and will
become clear soon. The essential point is simple. OFDFT is a
way of doing KSDFT. But it does not use the KS orbitals
explicitly. Instead it uses KEDFs. KEDFs connect the theory to
the earliest days of quantum mechanics. It is perhaps
underappreciated that the earliest forms of OFDFT preceded

the Hohenberg−Kohn theorems3 of modern DFT. That earlier
work provided the intellectual foundations and ample
precedent for treating many-electron problems via a suitably
constructed effective non-interacting system. We do not
pretend to be historians of science. Nonetheless, the centrality
of that non-interacting system concept motivates our
historically oriented account of those pre-Hohenberg−Kohn
roots. In it we try to do justice to the great effort of many
researchers. That effort built the context that distinguishes
conventional KSDFT in its ubiquitous practical form and
KSDFT in its most basic form, namely OFDFT. We then lay
out the relevant parts of formal DFT and use that to clarify the
distinctive differences between conventional KSDFT and
OFDFT. There follows a survey of modern KEDFs, with
pointers to earlier ones via prior reviews. We devote a section
to the software implementations of OFDFT in its various
flavors and another to some of the most notable contemporary
applications.
In all, we attempt to give a clear, candid account of the state

of the art in OFDFT functional development and its
algorithmic realizations in advanced electronic structure
software, describing both the limitations and the opportunities
for applications in chemistry and materials science.
1.2. Curse of Computational Scaling

In recent years, some chemists, materials scientists, and
physicists have speculated upon “lab 2.0”.4 It is conceived as
a scientific inquiry mode in which computer simulations
replace experiments for tasks such as materials design and
combinatorial search of chemical space. Even though computa-
tionally aided materials design and chemical discovery via tools
such as high-throughput workflows now are daily occur-
rences,5,6 the computational cost scaling of adequately accurate
quantum-mechanical methods hinders progress severely. “lab
2.0” thus still largely belongs to the future.
Disparity between desired computational approaches and

available computational resources is not a new problem. At
each stage of computational resource development, from pen
and paper to abacus, slide rule, rotary calculator,7,8 desk
calculator, analog machine, ENIAC,9 ..., it has been easy to
define calculations intractable on currently available resources.
More profoundly, nature imposes some computational

scaling lower bounds.10,11 The focus issue is electronic
structure. It underlies the periodic table, which is normative
for the chemistry of materials and their molecular constituents.
In the simplest case, the nuclei are fixed and the electrons are
treated by some model that makes them independent in a
mean-field of the others, e.g. Hartree−Fock (HF)12 or
KSDFT.1 In both, the straightforward implementation, in
terms of a determinant (HF or conventional KSDFT) and
standard XC approximants, causes the number of operations to
grow as the cube of the number of electrons (i.e., N( )e

3 or
simply N( )3 hereafter) because of the orthogonalization of
the one-electron orbitals. In addition, the straightforward
approach of expanding in a basis of local orbitals can lead to
large additional costs caused by quadratic scaling for building
the needed matrices. Scaling of this sort can be mitigated by
employing techniques such as distance-based screening
coupled with sparse linear algebra13−15 and/or fast Fourier
transforms16 to recover almost linear scaling algorithms for
matrix build and Hamiltonian-wave function operations, albeit
with a large prefactor11,17 and restriction to systems wherein
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sparsity is physically realistic. More complicated explicit wave
function methods simply worsen the scaling.18−21

The curse of computational scaling in quantum mechanics
has been known since its inception. Dirac’s oft-quoted 1929
remark raises the problem at the end:

“The underlying physical laws necessary for the mathemat-
ical theory of a large part of physics and the whole of
chemistry are thus completely known, and the difficulty is
only that the exact application of these laws leads to
equations much too complicated to be soluble. It therefore
becomes desirable that approximate practical methods of
applying quantum mechanics should be developed, which
can lead to an explanation of the main features of complex
atomic systems without too much computation.”92

Back then researchers addressed computational scaling
barriers by making clever but drastic simplifications to the
quantum mechanical approach. Only much later, in the mid-
1940s, did the first Turing complete computer (i.e., a digital
computer in the modern sense) surface, the ENIAC project.28

In anticipation of the main focus of this review, we note that
Dirac’s ambition, to give “···an explanation of the main
features···”, was modest compared to today’s ambition to
achieve predictive calculations.
In any event, the late 1920s and the 1930s were replete with

pen-and-paper calculations of atoms93 and materials26 which
avoided the use of any computationally challenging manipu-
lations such as diagonalization of large matrices. Heroic
numerical solutions on manual calculators7,94−96 also were
achieved.

It was in this environment that Thomas23 and Fermi22

independently proposed a method that required no diagonal-
izations. Instead, their approach focuses on a single, central
quantum-mechanical quantity, the electron number density,
and results in a single differential equation. This is the justly
famous Thomas−Fermi theory (TF hereafter). It is the
primordial version of OFDFT. Table 1 provides an overview
of OFDFT development milestones from then until today.
Because its clear analytical structure incorporates the basic

features of many-Fermion systems generally, TF theory has
been the subject of intense mathematical scrutiny; hence,
much is known about its content and properties. See reviews
by March,30 Lieb and Simon,97 Spruch,98 March,99 and
Solovej100 as well as the book by Englert,101 among many
resources. Basic development of TF theory is treated in many
books, e.g. by Parr and Yang,102 Slater,103,104 Giuliani and
Vignale,105 and Engel and Dreizler,106 so we sketch only the
idea and display relevant bits here.
The foundational insight in TF theory is that a set of

electrons in a neutral system can be idealized as behaving
much like a non-interacting, uniform gas. That is, one assumes
that the real system of interest is nearly indistinguishable from
a homogeneous electron gas (HEG). The HEG in turn is
assumed to occupy a volume V uniformly with number density
n N

V
e= . (Remark: We adopt the notation prevalent in the

physics literature, n. In the chemistry literature, often ρ is
used.) The hard-walled volume forces quantization into
discrete energy levels. The electrons must satisfy the Pauli
exclusion principle; thus, at most two of them can occupy a
given level. This leads to a maximum occupied energy level

Table 1. Chronology of Orbital-Free Density Functional Theorya

Year Milestone Method

1927 Thomas and Fermi present their approximate method that satisfies the
Pauli principle while avoiding the Schrödinger equation

TF22,23

1930 TF is applied to atoms such as Fe yielding qualitative agreement with
experimental sequential ionization energies24

1930 Dirac extends TF to include exchange effects TFD25

1935 Slater extends TF to the condensed phase and applies it to metals, but no
binding is found26

1935 von Weizsac̈ker proposes the first gradient correction TFvW, TFvWD27

1945 The ENIAC computer is built; patent filed in 19489

1949 Reitz implements TFD on ENIAC for computation of electronic properties
of atoms28

1949 Feynman, Metropolis, and Teller extend the finite-temperature Thomas−
Fermi theory29

1957−1982 Extensions of TFvWD and the gradient expansion approximation GEA30−34 and TFλvW35−38

1962 Teller proves that TF cannot lead to molecular bonding39

1964 Formal footing of DFT Hohenberg−Kohn theorems3

1965 Mapping to a non-interacting electron system and employment of the exact
non-interacting KEDF

KSDFT1

1964−1965 Introduction of polarizability in the construction of the KEDF Nonlocal KEDF3,40

1981−1983 Computational proof that a gradient correction to TF (e.g., TFvWD) leads
to molecular binding41,42

1985−ongoing Nonlocal (two-point) KEDFs for condensed phases CAT,43 WT,44 WGC,45 SM,46 Perrot,47 Chai−Weeks,48 XWM49

KEDFs, real space,50−53 and reciprocal space54,55

1986 Generalized gradient approximation for the exchange and correlation
energy functional

GGA XC56,57

1991 Conjointness conjecture58 GGA KEDFs58−63,63−76

2010−ongoing Nonlocal (two-point) KEDF for semiconductors HC,77 WGCD,78 EvW-WGC,79 KGAP,80 MGP81

2012−ongoing Machine-learnt KEDFs82−84

2013−ongoing General-purpose semilocal (one-point) KEDFs VT84F,85 LKT,86 PGSL87

2019−ongoing Nonlocal (two-point) KEDF for finite systems and subsystem DFT LMGP,88,89 LDAK90 and revHC91

aKEDF stands for kinetic energy density functional.
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related to the charge density. In turn, there is a total kinetic
energy (there is no interaction energy) given by

T n c n
3

10
(3 ) TF

2 2/3 5/3 5/3=
(1)

Note that here and henceforth, unless stated otherwise, we are
using Hartree atomic units, ℏ = me = qe = 1 with me and qe the
electron mass and charge magnitude, respectively.
The key conceptual leap then is to make the local density

approximation, namely that locally a physical system behaves
like an HEG of the density locally. The resulting generalization
to inhomogeneous systems is

T n c d n dr r r r( ) ( )TF TF TF
5/3

3 3
[ ] =

(2)

Along with this, one can associate an electrostatic potential
that is as deep as the maximum energy (a simple shift of energy
zero) and gives, via Poisson’s equation, the proper charge
density. This is the prescription for the TF atom, for example.
For details not needed here, we refer the reader to Appendix
17 of ref 103.
It often has been remarked that TF theory is the ancestor of

DFT (see Table 1). Early interest in TF theory arose, in fact,
from its computational feasibility for treating many-electron
atoms. When spherical symmetry is present, the TF equations
are pseudo-one-dimensional and their solution can be
approached with pen and paper. Among the early applications
of TF theory is the work of Baker24 aimed at predicting
multiple atomic ionizations. This was an important topic that
also was pursued by Hartree12,107 as an application of the HF
method. It, unfortunately, is intractable for pen-and-paper
calculation. Using TF theory, Baker24 predicted semiquantita-
tive agreement with experimental ionization potentials (IPs)
for atoms such as O and Fe. See Figure 1.

Dirac became interested in finding commonality between
the HF ansatz and TF theory. In 1930 he showed25 that
application of the HF approach to an HEG produces a
stabilizing exchange term proportional to the maximum
momentum attainable by the HEG. It follows that the
exchange energy density is proportional to n4/3 and thus the
associated exchange potential is proportional to n1/3.

Dirac’s analysis yielded two achievements. First, it justified
TF theory (for which there was only a heuristic grounding
until then) by constructing the quasi-classical counterpart of
the HF problem for a nearly uniform density system. [Remark:
Dirac25 achieved the quasi-classical counterpart of the HF
approach in a way that nowadays is standard practice.108,109 He
took what we now call the Wigner transform (introduced in
1927 by Weyl110 and formally only two years later by
Wigner111) of a dynamical variable to transform the exchange
and Coulomb operators into classical phase space functions
(i.e., p and q). That led to an expression for the Hamiltonian
also as a function of only p and q. Then he evaluated the
Poisson bracket with the electron density matrix, which was
also assumed to be Wigner-transformed to a function of p and
q, and approximated by ρ(p, q) = 2 if p < P and zero otherwise
(P here is a maximum momentum attainable in the
infinitesimal volume of phase space, (2πℏ)3, at point p, q).
As the energy is conserved, the Poisson brackets need to be
zero, {H, ρ} = 0. This procedure led him to find the Thomas−
Fermi equation (i.e., the functional derivative of eq 2 with
respect to the electron density) for atoms, augmented by an
additional term stemming from the exchange operator and
proportional to the maximum momentum P.] Second, Dirac
showed that an exchange term should be added to the TF
energy and potential.
However, already in the 1930s there were indications that

the TF approximation did not support chemical bonds. Slater
extended TF to treat metals by constructing the bulk as a sum
of locally spherical atomic fragments.26 Disappointingly, the
result was repulsive energy curves. Thus it appeared that, at
least for metals, TF theory could not predict binding. Years
later Teller (who was a good friend of Fermi112) confirmed the
difficulty rigorously39 with the demonstration that molecular
binding cannot happen in the TF model.
But in 1935 that problem was tackled by von Weiszac̈ker.27

He contrived a correction to the TF model which involved the
use of an ad-hoc orbital proportional to the square-root of the
electron density. The kinetic energy from such an orbital
certainly contains a density gradient term and, thus, introduces
explicit treatment of inhomogeneity. The derivation itself is
incorrect,113 but the idea is consequential.
Let us revisit the von Weiszac̈ker idea via an alternative

development. Note that there are several other derivations, for
example refs 114 and 115, that follow a density matrix-centric
route. We anticipate OFDFT and suppose that one orbital is
enough in some sense to capture the essential information in
the wave function of the system. Such a “collective orbital” can
take the form

a b er r( ) ( ( )) ip r= + · (3)

with a a real constant such that a exp(ip·r) represents the part
of the system most similar to the HEG, b(r) is a real function
that represents the deviation from uniformity, and p is an
average momentum associated with the collective orbital. The
kinetic energy of the system can be evaluated as

Figure 1. First computation of ionization potentials using Thomas−
Fermi theory (full curve). Calculated values for Fe compared to
experiment (dashed curve and data points). Reprinted with
permission from ref 24. Copyright (1930) American Physical Society.
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T

d i a b ib

i a b ib

d p a b b

d p n n

r p r r p

p r r p

r r r

r r r

1
2
1
2

( ( ) ( ) )

( ( ) ( ) )

1
2

( ( ) ( ) )

1
2

( ( ) ( ) )

2 2 2

2 2

[ ] = |

= +

+ +

= [ + ] + | |

= + | |

(4)

We recognize the first term, ∫ p2n(r)dr, as the TF functional
by comparison with eq 1 and the realization that for the
uniform system we can identify

p n
3
5

(3 )2 2/3 2/3=
(5)

Insertion of eq 5 in eq 4 leads to the Thomas−Fermi−von
Weiszac̈ker (TFvW) functional,

T n c d n d n n

T n T n

r r r r r( )
1
2

( ) ( )TFvW TF

TF vW

5/3[ ] = +

= [ ] + [ ] (6)

We remark that TF and TFvW can be combined with Dirac’s
exchange,25 to lead to TFD and TFvWD, respectively. For later
reference, we note

T n d n d
n
n

d n

r r r
r
r

r r

:
1
2

( )
1
8

( )
( )

( )

vW

vW

1/2 2
2

[ ] = | | | |

[ ] (7)

At least so far as sophistication of formulation is concerned,
TFvW clearly is superior to TF. But the differential equations
involved are not amenable to analytical solution.30 Widespread
use began only decades after von Weizsa ̈cker’s original
conception. Building from the work of Kirzhnitz,31 whose
derivations led him to compute the first gradient expansion
approximation (GEA) to the TF model, the first thorough
probe of TFvW on realistic physical systems seems to be
application to atoms by Yonei and Tomishima.38,116 They
found that the TFλvW functional

T n T n T nTF vW TF vw[ ] = [ ] + [ ] (8)

with λ = 0.2 (rather than the GEA value of 1
9

= ) yielded
closest agreement with their quantum mechanical data, which
were from the HF method with hydrogenic atomic orbitals (by
the same authors).
Benguria et al.41 and later Berk42 did a mathematical analysis

of the TFvW method and found that the von Weizsac̈ker
correction must lead to binding between atoms. Thus, it is not
surprising that investigations using TFvW theory ap-
peared117,118 and have continued for decades.119−122

Although more inclusive of quantum mechanical effects than
TF, TFλvW has major drawbacks. As Figure 2 shows, no
TFλvW variant reproduces atomic shell structure. As will
become clearer below, this is a consequence of a more general
limitation of TFλvW, namely that it contains no information
about the polarizability of the electronic system.40 Similarly,
Friedel oscillations123 (density oscillations around an impurity
in a metal) are among the so-called quantum oscillations that

TF and TFvW miss completely. The ability of some TFvW-
type functionals to reproduce, at least semiquantitatively, the
kinetic energy of atoms has been ascribed to major error
cancellation.124,125 As we will explain in Section 2, TFλvW
with λ < 1 are non-N-representable functionals and, therefore,
are not expected to be generally accurate. Nevertheless, there
have been interesting applications of TFλvW to metal
clusters.119,126−128 In them, TFλvW was found to produce
converged Carr−Parrinello or Born−Oppenheimer molecular
dynamics and provide useful predictions related to melting and
alloying; see Section 4.
1.3. Connecting the Early TF and TFvWD Functionals with
Modern OFDFT
TF and TFvW, as already remarked, are density functionals.
Given an electron density, each one gives back an energy. But
the demonstration that the exact many-electron system ground
state is expressible variationally as a density functional came
only in 1964 with the famous Hohenberg−Kohn theorems,3

though there had been suggestive antecedents in the
1950s.129,130

Only the barest essentials of DFT are needed at this point to
connect TF and TFvW to modern advances. More details are
in Section 2. The Hohenberg−Kohn existence theorems state
that for a system of Ne electrons in an external potential vext(r),
there exists a functional of the density n[ ] that gives the total
ground-state energy E0 variationally by

E n n E n

n T n U n

min

:
n

ext

ee

0 0[ ] = { [ ] + [ ]}

[ ] = [ ] + [ ] (9)

Here T[n] is the total many-electron kinetic energy, Uee is the
total many-electron Coulomb interaction energy (Hartree,
exchange, and correlation), and n0 is the ground-state electron
density. To make connection with the non-interacting electron
concept of the TF and TFvW schemes, we insert the non-
interacting kinetic energy (denoted, for reasons lost in history,
as Ts[n]) and make a trivial addition and subtraction
rearrangement

n T n U n T n T ns ee s[ ] = [ ] + { [ ] + [ ] [ ]} (10)

Figure 2. First probe of the TFλvW functional on realistic systems.
Shown is the radial electron density for the Ar atom. “Quantum
Mechanical” results are Hartree−Fock. Reprinted with permission
from ref 38. Copyright (1965) The Physical Society of Japan.
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Structurally, this is the same as TFD or TFvWD: a non-
interacting kinetic energy and some Coulombic (and other)
corrections, all density functionals. Obviously the formal
grounding and content are very different. The HK theorems
prove that the TFvW, TFvWD concept is correct, even though
the functionals themselves are not.
Because one-electron states (“Kohn−Sham orbitals”)

commonly are introduced to make the DFT variational
problem tractable by giving an explicit, calculable form for
Ts, we emphasize that the form just given is “orbital-free”,
OFDFT. (Remark: Shortly it will be apparent that “one
orbital” would be more precise, in the same spirit as our
summary of TFvW, eq 3 above. But by now “orbital-free” is
standard.) The crucial distinction is that KSDFT1 in the
conventional orbital form has become the pre-eminent many-
electron formulation for calculations on materials and their
molecular constituents. Annual citation counts in the
thousands in both quantum chemistry and materials physics131

attest to this point, as does the 1998 Nobel Prize in Chemistry.
It was shared by Walter Kohn, for DFT itself,132 and John
Pople for quantum chemical methods.133 Conventional
KSDFT with semilocal approximate XC functionals can
produce remarkably accurate and useful results, despite
known drawbacks.2

The dominant position of conventional KSDFT means that
overcoming computational scaling barriers while simultane-
ously building more accurate XC density functional approx-
imations (DFAs) are two critically important tasks. The KS
orbitals put these two in tension. Interestingly, Pople was a late
convert to DFT who focused on the explicit use of the KS
orbitals in XC DFAs.134 Conversion of the majority chemistry
community soon occurred,135 followed by a proliferation of
orbital-dependent exchange-correlation DFAs. From the
perspective of computational cost scaling, that proliferation is
a retrograde step. Though introduction of the KS orbitals1 was
crucial because it meant that early band structure and
molecular orbital codes could be adapted quite readily to
DFT, the unintended consequence was the N( )3 cost scaling
noted at the outset.
We fill out needed details of conventional and OFDFT

forms of KSDFT in Section 2. Also there we catalog relevant
exact properties of Ts[n]. For perspective, however, suppose
again, for the moment, that one could construct all the terms in
Uee (the familiar challenge of XC DFAs). The remaining
challenge would be to construct reliable, orbital-free
approximations for Ts[n] (KEDFs). That is the subject at
hand. The remainder of this section is both a brief guide to the
kinds of approximations that have been contrived as well as a
guide to the subsequent sections of this review.
Both TF and TvW are what are called one-point functionals.

Their origins in the HEG and inhomogeneity, respectively,
suggest the generic form

T n c d n F n n nr r r r r( ) ( ( ), ( ), ( ), ...)s TF t,1
5/3 2[ ] = (11)

TF (Ft = 1) is strictly local. Adding spatial derivative
dependence is said to make a functional “semi-local”. The
sense of that phrase is that while the mathematics is strictly
local (one-point), the derivative dependence provides some
indication of nearby density behavior. (Remark: We caution
that some of the older DFT literature uses “non-local” rather
than “semi-local” to describe gradient dependence. Mathemati-
cally it is strictly local.) KEDFs in which Ft depends only on n

and ∇n are called generalized gradient approximations (GGAs
or also GEAs if the Kirzhnitz gradient expansion approx-
imation31 is adopted; see eq 8) in correspondence with
terminology already established for XC DFAs with the same
dependencies. Those that depend upon ∇2n and higher order
derivatives as well as n and ∇n are called “meta-GGAs”. As the
names imply, development of these KEDFs is influenced
strongly by the gradient expansion for the weakly inhomoge-
neous electron gas.117,125,136−139

Nonlocal functionals go back to Hohenberg and Kohn,3 who
proposed a solution to the inability of TF and TFvW to
describe quantum oscillations by employing the Lindhard
response function140 for the HEG as an approximation to the
electronic dielectric function. This function gives the response
of the electrons at an arbitrary point to the introduction of a
charge at some other point. Somewhat later, this line of
thinking gave rise to investigation of nonlocal KEDFs. Most
generally they would have the form

T n d d d d n n n

n n

r r r r r r r

r r r r r

... ( ) ( ) ( )

... ( ) ( , , , ... )

s m
m m m

m
m m

nl
1 2 3

5/3
1

5/3
2

5/3
3

5/3
1 2 3

[ ] =

× [ ] (12)

where ω(r1...rm) is an m-body kernel to be determined. This
form appears in the original Hohenberg−Kohn paper3 as a
formal expansion of the exact density functional. After a brief
discussion of the two-body term, they dismiss the rest: “The
higher order terms will not be further discussed here.” In that
same vein, so far as we are aware, the form has not been used
for m > 3 and only once for m = 3.44 In that case, the three-
point structure was induced by a tour de force perturbation
approach that strongly resembles the iterative form of the
Dyson equation141 for the two-particle Green function.
Since the two-particle reduced density matrix (2-rdm)

determines all the ground-state properties of a Coulombic
fermion system,142 it similarly is appropriate to focus efforts at
direct (nonperturbative) construction of KEDFs upon the two-
point case. For reasons of physical clarity and constraint
satisfaction (see Section 2), it is convenient to write two-point
KEDFs in the generic form

T n T n T n d d n nr r r r r r( ), ( ); ,s vW TF,2[ ] = [ ] + [ ] + [ ]
(13)

[Remark: For simplicity, here we introduce nonlocal func-
tionals through eq 13. We acknowledge that there are other
formulations that preserve the structure of the TTF functional
(e.g., the Chacoń−Alvarellos−Tarazona (CAT) family of
functionals43,143) and the structure of the TvW functional
(e.g., ref 144). These functionals are well-reviewed in refs 145
and 146. See further discussion in Section 2.] This form
incorporates the exactness of TTF in the uniform limit and of
TvW in the one-electron or two-electron singlet limit (see
Section 2). The explicitly nonlocal contribution then is a
sophisticated interpolation between those two extreme cases.
Typically it has the structure of a density-weighted kernel

n n n n nr r r r r r r r( ), ( ), , ( ) ( , ) ( )[ ] = [ ] (14)

with α and β constants. Even though eq 13 is formally an
approximation, it can be made exact (as can be seen by
integration of eq 12 of all coordinates except two) using the
general form of the kernel given on the rhs of eq 14. In
practice, the kernel is determined, for example, by calibration
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to linear response of the HEG (Lindhard response)105 and the
resulting KEDF is approximate. We return to this in detail
below.
Two-point KEDFs generally are expected to be more

accurate than one-point KEDFs simply because the two-
pointers probe and encode information about a larger spatial
region than is possible with one-point functionals. Figure 3

provides a simple pictorial comparison. That is, from local one-
point, to semilocal one-point (GGA, metaGGA, ...), to two-
point functionals, the kinetic energy potential, defined as
v r( )s

T n
n r( )

s= [ ] , is informed by a larger and larger neighborhood

of the spatial point r. TF and TFvW are extreme examples of
awareness of only the point r. Their forms are inadequate for
diverse reasons which will be discussed in Section 2. Note,
however, that the curse of computational scaling intrudes
because two-point KEDFs depend on the density−density
response function of the system; see Sections 2 and 3.
Machine-learnt (ML) KEDFs are the most recent type. They

are discussed in Subsection 2.5. Because their explicit form
typically is not known, they do not fit easily into the one-point,
two-point categorization, though some are built specifically to
have a certain maximum order of density gradients. Just as
machine learning itself is relatively recent, so also the literature
of ML KEDFs is comparatively recent and small.83,84,147−160

The imperative for access to the full periodic table with high-
quality KEDFs also has motivated efforts such as angular
momentum-dependent161 and projector augmented wave
(PAW) implementations120 of OFDFT. We discuss those
briefly at the end of Section 2, along with information-
theoretical and other KE approaches. We conclude Section 2
with a brief discussion of some pitfalls of KEDF testing.
Implementation, algorithms, and associated issues are the

subject of Section 3. For two-point functionals, implementa-
tion is simplified greatly by the employment of regular grids at
any reasonable spacing, reciprocal space methods, and Fast
Fourier Transforms (FFTs).53,55 FFT grids also can be used to
encode one-point KEDFs, including free-energy versions.162

Irrespective of KEDF type, however, regular grids are unable to
resolve the singular Coulomb potentials originating from point
nuclear charges. Thus, several pseudopotentials have been
developed.48,163−165 Those are, of necessity, local in the sense
of pseudopotential terminology, that is, orbital-independent.
This issue is crucial for expanded applicability of OFDFT,
whatever the type of KEDF. We address it in Subsection 3.1.
In Section 4, we discuss a nonexhaustive selection of

illustrative applications. Here we simply note that recent
applications with one- and two-point KEDFs include warm
dense matter166−168 and molten and zero-temperature metals
and semiconductors (bulk,86,169−172 surfaces and other low-
dimensional systems,173 and clusters88,126,174).
We conclude this section with a note on computational

scaling of OFDFT versus conventional KSDFT. It is critical to
remember that both use the KS decomposition, eq 10, to
invoke a specific non-interacting reference system that
generates the density. Conventional KSDFT uses the explicit
kinetic energy expression for that system, Ts[{φi[n]}], in terms
of the Ne orbitals in the KS determinant, φi[n](r). Obtaining
those orthogonal orbitals when using semilocal XC functionals
requires a formal N( )e

3 computational cost (from diagonal-
izing the KS Hamiltonian matrix) and a N( )e

2 memory
requirement (from storing the wave functions and matrices
involved). Therefore, several approaches attempt to evade the
cubic scaling of standard implementations of conventional
KSDFT by avoiding the diagonalization of the KS Hamiltonian
and leveraging sparsity in a variety of different ways.
Other than OFDFT, several propositions have been put

forth for achieving sub-cubic scaling (i.e., N( )e or N( )e
2 ) of

Figure 3. Conceptual depiction of the dependence on the electron
density of local, semilocal, and two-point functionals. The
corresponding potentials are depicted in the figure. Nonlocal or
two-point functionals of n(r) depend on an arbitrary neighborhood of
r whereas semilocal functionals only sample infinitesimally nearby and
local functionals sample the single point, r.

Figure 4. Estimation of the computational scaling of OFDFT (left panel) and conventional KSDFT (right panel) employing both cubic-scaling
diagonalization and different sub-cubic-scaling approaches. Conventional KSDFT data from Moussa and Baczewski 2019.17
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conventional KSDFT by combining algorithmic advances with
efficient utilization of modern high-performance computer
architectures.10,11,13,17,175−183 Underlying all such schemes,
however, is exploitation of nearsightedness in the electronic
structure184−186 to achieve sparse matrices (e.g., by screening
certain one- and two-electron integrals or by effective cutoffs
applied to the off-diagonal elements of the one-body reduced
density matrix, 1-rdm), coupled with efficient solutions to the
Poisson equation.
Sub-cubic-scaling approaches to conventional KSDFT are

dependent on temperature and on the energy gap of the
material. For example, for systems with gap, the 1-rdm decays
exponentially, thus sub-cubic-scaling methods are very effective
for these systems. Instead, for metals at zero and low
temperatures, the 1-rdm decays slowly (algebraically, see eqs
117−119). Thus, sub-cubic-scaling methods are less effective
in this regime. However, because at higher temperature the
density matrix of metals decays exponentially,187,188 methods
exploiting the sparsity properties of the 1-rdm can be useful
and applicable also to metals.
We give an example of the performance of sub-cubic-scaling

methods on the right-hand side of Figure 4, where we
reproduce data from ref 17. On the left-hand side of the figure,
we depict the expected timings for OFDFT compared with
linear-scaling KSDFT and its straightforward implementations.
The figure shows that both OFDFT and linear-scaling KSDFT
are expected to yield linear timings with system size but with
very different prefactors.
Given the advantages of OFDFT, the patient reader rightly

may ask why it has not supplanted conventional KSDFT. The
answer is that, until recently, adequately accurate KEDFs have
not been constructed. As we show below, that situation is
changing, we believe, rapidly. It is the purpose of this review to
report that progress and outlook for achieving the promise of
OFDFT in chemical and materials modeling. Additionally,
recent years have witnessed the emergence of several schemes
that combine conventional KSDFT and OFDFT. Subsystem
DFT180,181,189−191 is one such scheme that is proving to be
promising for several classes of systems.
For context, we note several prior OFDFT reviews (in

addition to the Thomas−Fermi literature already cited): refs
115, 145, and 192−194 and a book.195 A convenient listing of
one-point KEDFs is in Chapter 16 of that book. Also see the
University of Florida online listing.196 To have some control
on the scope of this article, we do not review free-energy (finite
temperature) OFDFT except for a bit on successful computa-
tional use.168 For that topic, see refs 194 and 197. Nor do we
consider time-dependent OFDFT198−209 or OFDFT on a
lattice.210

2. KINETIC ENERGY FUNCTIONALS
This section sets forth DFT in pertinent form, with emphasis
on known constraints, limits, and conditions relevant to
constructing approximate KEDFs. Then we survey the specific
approximations of various kinds (one-point, two-point,
machine-learnt) and some of their strong and weak points.
There follow some observations on testing, followed by a
survey of various “road-less-taken” approaches to recognize
angular momentum dependence, apply information theory,
and convert to potential functional theory. We conclude the
section with a look at OFDFT in the context of embedding
schemes (subsystem DFT).

2.1. DFT Basics
For clarity about kinetic energy contributions and notation, we
summarize the basic Hohenberg−Kohn (HK) DFT theorems3

and the KS construction1 for spin-unpolarized systems. Details
are in refs 102, 106, and 211. Nonrelativistic spin-polarization
follows easily.212 For simplicity of presentation and notation
therefore, the presentation is spin-unpolarized unless remarked
to the contrary. Though DFT is general, chemical and
materials interest is in the electronic structure. To that we
specialize.
The Hamiltonian for Ne electrons in a fixed external field

vext(r) is

H v r
r r

:
1
2

( )
1
2

1

i

N

i ext i
i j

N

i j

2
e e

= + +
| |

Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑ (15)

in Hartree atomic units. For much of chemistry and materials
physics, vext(r) is the Coulomb potential of a fixed array of
nuclei; hence

E n d n v Z d
n

r r r r
r

r R
( ) ( )

( )
ext ext[ ] =

| | (16)

with nuclear charges Zα and positions Rα. (Remark: Harmonic
confinement potentials also have been useful for studying
approximate functionals. See for example refs 213−221, among
others.)
As already noted at eq 9, the HK theorems prove the

existence and key properties of a functional of the electron
number density n(r),

n T n U nee[ ] = [ ] + [ ] (17)

Recall, from Section 1, that T[n] and Uee[n] are the total many-
electron kinetic energy (KE) and Coulomb interaction energy,
respectively. The number density integrates to the total
electron number

d n Nr r( ) e= (18)

Because n[ ] is independent of the external potential vext(r),
the functional is said to be “universal”. The Rayleigh−Ritz
variational principle gives the ground-state energy E0 and
density n0 as

n E n E nminn ext 0 0{ [ ] + [ ]} = [ ] (19)

(Remark: A mathematically careful description of the
minimization involves differently defined functionals and
their extrema. Formally there are three functionals, with
different variational properties and different functional
derivatives. For most chemistry and physics applications, the
subtle mathematical differences among them do not matter
enough to be distracted by them here. In this we follow the
precedent of Engel and Dreizler,106 p 36: “As a matter of
principle, the subsequent development of the DFT formalism
should therefore be based explicitly on the Lieb functional. We
will nevertheless ignore the issue...and not distinguish between
the various flavors...”.)
The HK theorems prove the existence of n[ ] but do not

supply an explicit constructive route to it. That fact motivates
the connection to non-interacting systems already sketched in
Section 1 at eq 10. The connection is made via the insight of
Kohn and Sham,1 namely that the HK theorems apply equally
well to non-interacting systems.106,222 Thus, for most physical
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systems, it is possible to invoke a special one-electron
potential, the Kohn−Sham potential vKS(r), that causes a
non-interacting electron system to have exactly the same
electron density as the interacting physical system. Those
systems for which vKS(r) exists are designated as non-
interacting v-representable or simply vKS-representable.

106

Because the KS system is a non-interacting many-electron
system, its variational wave function is a single determinant
with orbitals generated by1

h n r r( ) ( )s i i i[ ] = (20)

h n v H hr r r( ) :
1
2

( ) ( )s KS s
i

N

s i
2

e

[ ] = + =
(21)

n fr r( ) ( )
i

i i
2= | |

(22)

where Ĥs is the many-Fermion KS Hamiltonian. At zero
temperature the occupation numbers f i ordinarily are integers
(0, 1, or 2). An exception is the case in which the highest
occupied level is degenerate.211,223 For fixed density, n(r), the
minimization of the KS energy (i.e., EKS = ⟨Φ|Ĥs|Φ⟩) is with
respect to all single-determinant wave functions, Φ(r1...rNde

),
that give n(r) = ⟨Φ |n̂(r)|Φ⟩, with n̂(r) = ∑ i

Neδ(ri − r). The
minimizing one that yields the ground-state density n0(r) is the
KS determinant ΦKS(r1...rN de

). Note that the minimization is
solely that of the KE expectation value, since the KE is the only
many-body operator in the non-interacting Hamiltonian and
the density is fixed.
The KS determinant therefore gives an explicit expression

for the non-interacting kinetic energy Ts[{φi[n]}]:

T n f d n d n

T n

r r r r:
1
2

( ) ( )s i
i

i i s

s

2[{ [ ]}] = | [ ] | [ ]

[ ] (23)

This object is the center of attention in OFDFT. (Remark:
Notice that we use the positive definite form of the KS KE
integrand, not the more commonly encountered
T n f dr r r( ) ( )s i i i i

1
2

2[ ] = * . The two differ by a surface
term that integrates to zero in virtually all cases.)
The KS determinant also def ines the DFT exchange energy

Ex[n] (for spin unpolarized systems):

E n f f
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It also is a density functional via the fact that the KS orbitals
are density functionals.
The remaining step is to connect the physical and KS

systems explicitly. In the expression for the total energy of the
physical system, it is conventional to identify the classical
Coulomb repulsion contribution (the Hartree energy) to the
total Coulomb energy

E n d d
n n

r r
r r

r r
:
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[ ] =

| | (25)

The universal density functional eq 17 for the physical system
then can be rearranged to expose the non-interacting and
classical pieces as

n T n E n E n
U n E n E n T n T n

T n E n E n E n

(26)

: (27)

s H x

ee H x s

s H x c

[ ] = [ ] + [ ] + [ ]
+ { [ ] [ ] [ ] + [ ] [ ]}

= [ ] + [ ] + [ ] + [ ]

This equation is the KS version of eq 10. The last term in eq
27 def ines the KSDFT correlation energy as the sum of the
final five terms of eq 26. In particular, the difference T[n] −
Ts[n] is lumped into Ec along with the Coulomb correlation.
Though exchange and correlation are defined separately, they
can be obtained (formally and operationally) together via the
adiabatic connection.212,224 It also is common to develop an
approximate exchange functional paired with an approximate
correlation functional in order to achieve useful cancellation.
See, for one much-used example, the PBE approximation.225

Sometimes exchange and correlation are approximated
together in nonseparable form Exc = Ex + Ec.

226

Regardless of whether the functionals are expressed in terms
of the KS orbitals or directly in terms of n(r), the variational
minimization of n[ ] must be done over electron densities that
integrate to Ne. That is equivalent to minimizing the
Lagrangian

n n d n v d n Nr r r r r( ) ( ) ( )ext e[ ] = [ ] +
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ÅÅÅÅÅÅÅ
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(28)

The Euler−Lagrange equation follows after taking the
functional derivative with respect n(r) and requiring that it
be null at all r, namely,
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Here μ is the electron chemical potential. The last equality
comes from the fact that the physical and KS systems have the
same chemical potential. That always holds because the
potential vKS is determined only up to a constant.
Thus the Kohn−Sham potential in eq 21 is

v v v v

v d
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(30)

For a fixed set of nuclei (ions, e.g. at each step in ab initio
molecular dynamics, AIMD227−229), vext is as in eq 16
and the electronic force on a given nucleus α is

n E n E( )ext NNR 0 0[ ] + [ ] + . Here ENN({R}) is the inter-
nuclear (ion−ion) repulsion energy.
2.2. DFT Context Issues

Before proceeding, some context regarding present-day use of
DFT, particularly in chemistry, is relevant. The vast majority of
applications use conventional KSDFT, hence Ts[n] in its
explicitly orbital-dependent form, eq 23. The only approximate
functionals of interest in that case are Exc[n] = Ex[n] + Ec[n].
That is why much of the DFT literature uses the phrase
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“density functional approximations” to mean XC approxima-
tions.
In contrast, OFDFT focuses on approximate expressions for

Ts[n] that do not rely on explicit evaluation of the orbital-
dependent expression, Ts[{φi[n]}], in eq 23. A consequence is
clear. If OFDFT is to grow in utility, there must be sustained,
concurrent development of improved orbital-free Exc DFAs.
Present-day materials physics practice and priorities illustrate
the point. In that arena, the GGA rung of the Perdew−
Schmidt230 ladder of XC DFA complexity dominates, with the
PBE225 functional most widely used. A GGA XC functional has
the generic, orbital-free form

E n d n sr re ( ),xc
GGA

xc[ ] = [ ] (31)

where exc[n(r), s] is an XC energy density, the details of which
are irrelevant here, except that it depends on both n and the
dimensionless reduced density gradient

s
n

n
r

r
r

( ) :
( )

(3 ) ( )2 1/3 4/3= | |
(32)

(Remark: Beware! In the chemistry literature for XC DFAs it is
fairly common to define this variable without the constants.
Occasionally that form shows up in the OFDFT literature as
well.)
The contextual challenge that we do not address in this

review is the explicit use of KS orbitals in Exc[n]
approximations that are on higher rungs of the Perdew−
Schmidt complexity ladder than GGAs. In the case of meta-
GGA XC functionals, for example, explicit orbital dependence
enters via the KS KE density τs[n(r)] as an ingredient. Recent
popular examples include the SCAN Exc[n] DFA231 and its
successor, r2SCAN.232 With certain exceptions, those two are
broadly applicable to both molecules and extended systems.
Some progress has been made in removing the τs[n(r)]
dependence from both SCAN and r2SCAN.233−235 In stark
contrast, the quantum chemistry community has sought
accuracy improvements largely by moving to yet higher
rungs on the Perdew−Schmidt ladder, specifically with hybrid
Exc DFAs, i.e. those that include a single-determinant exchange,
eq 24, contribution.
Recall our earlier remark about Pople’s coming to DFT via

interest in a hybrid XC functional. Inclusion of some single-
determinant exchange introduces explicit orbital dependence
in Exc[n]. That orbital dependency seems to be completely at
odds with the OFDFT objective of eliminating such depend-
ence from Ts[n]. Conceptually the use of orbital-dependent Exc
DFAs poses no issues in conventional KSDFT, as the
optimized effective potential (OEP) procedure236,237 can be
used to retrieve the multiplicative KS potential. In practice,
however, OEP requires considerable extra computation, so it is
little used with orbital-dependent XC DFAs. The generalized
KS Euler equation is used instead (i.e., in a short-hand
notation, replacing E

n
nxc

i
by Exc

i
). Observe that the KS and

generalized KS equations are not equivalent.238,239 Anyway,
OEP is irrelevant here except to illustrate the potential payoff
of OFDFT in an almost sardonic way. Because there is no
orbital manifold in OFDFT, there is no generalized KS
equation and, hence, no need for the elaborate machinery of
OEP.
The irony of emphasis on orbital-dependent XC DFAs not

withstanding, from here forward we assume that the Exc[n]

DFA is orbital-free. The OFDFT task then is to eliminate the
explicit orbital dependence of Ts[n] by constructing approx-
imations to it that depend purely on the electron density, n.
Note also that the kinetic energy approximations discussed

here are for Ts[n], not for T[n]. Formally the focus upon Ts[n]
is to exploit the power of the KS logic of connection to non-
interacting systems. Doing so avoids the formidable problem
that an attempt to approximate T[n] would amount to an
attempt to approximate the entire n[ ] by virtue of the
Coulomb virial theorem. (This argument is not original; it was
pointed out to SBT by So Hirata in a University of Florida
seminar.) Practically, the reason for addressing Ts[n] is that
modern Exc[n] DFAs all have been developed in the KS
context, i.e., the decomposition in eq 27.
With both Ts[n] and Exc[n] approximations orbital-free, the

constrained minimization can be carried out directly via the
single variational quantity n(r). See eq 29. This is the
justification of the remark at the outset of Section 1 that
OFDFT restores the centrality of the density in DFT.
2.3. Constraints

Because there are no mechanical procedures (e.g., order-by-
order perturbation expansion) provided by the basic DFT
theorems to develop approximate KEDFs, it is important to
catalog provable properties of the exact functional Ts[n]. Such
rigorous results are useful as constraints on KEDF develop-
ment. An example is the concise list of constraints in ref 240.
The simplest relation is between the full KE T[n] and the

non-interacting Ts[n]. Because Ts[n] is defined to be the
minimum fermion expectation value of the many-fermion KE
operator for specified n (recall above), it follows that

T n T ns[ ] [ ] (33)

Constraints often are expressed in terms of TTF[n],
22,23,241

eq 2, and TvW[n],
27 eq 6. Though TTF[n] does not support

bound systems (recall Section 1 and ref 39), its simplicity and
its exactness for the HEG have made it popular as a plausible
initial approximation against which to make corrections. From
the perspective of rigorous constraints, that is not, however,
the optimal approach. The reason is clear from consideration
of TvW[n]. It is exact for a fermion system of one orbital (one
electron or two electrons in a singlet state). Therefore, TTF[n]
is simply wrong for the H atom and for the density associated
with the tail region of any isolated molecule or atom.
TvW[n] also is exact for the ground state of any many-boson

system, which leads to the observation that fermion anti-
symmetrization must raise the non-interacting KE over the
corresponding bosonic case; hence

T n T nvW s[ ] [ ] (34)

This lower bound can be proven simply.242−245 We return to
the point in the discussion of information-theoretic KEDFs
below.
The TvW lower-bound property motivates the so-called

Pauli-term decomposition

T n T n T n T n, 0s vW[ ] = [ ] + [ ] [ ] (35)

as a route to approximate KE functionals. The rigorous non-
negativity246−249 of Tθ[n] is a powerful constraint on any
approximate KEDF, either one- or two-point. Moreover, the
functional derivative of Tθ[n] must be positive semidefinite249
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v
T n
n

r
r

r( ) :
( )

0,= [ ]
(36)

Because this is a pointwise requirement, it is a particularly
stringent constraint on approximate KEDF development.
The Pauli term decomposition enables the rewriting of the

DFT Euler−Lagrange equation (eq 29) in a particularly useful
way. Substitution of (35) in (29) and recognition that

T n
n

n n
r

r r
( )

1
2

( ) ( )vW 1/2 2 1/2[ ] =
(37)

gives

v v n nr r r r
1
2

( ) ( ) ( ) ( )KS
2 1/2 1/2{ }+ + =

(38)

This one-orbital expression is the OFDFT Kohn−Sham
equation. It differs from the conventional KS equation (eq
22) by only a local potential, an advantage unattainable if one
were to start from TF and add corrections.
A third, closely related constraint comes into play, namely

v
n

r
r
r

r( )
( )
( )

,
(39)

: s vW= (40)

In this expression, the pointwise positive semi-definiteness of
the Pauli term, τθ ≥ 0 everywhere makes the constraint on vθ
more stringent than the constraint of its basic semi-definiteness
(eq 36).
A related constraint is on the limiting behavior of the Pauli

energy density. In terms of the dimensionless reduced density
gradient s, eq 32, the constraint is

lim 0
s

=
(41)

This requirement arises from the fact that the density tail of an
isolated many-electron atom is dominated by a single orbital
that decays exponentially; hence, s → ∞. For a single-orbital
system, the von Weizsac̈ker functional is exact and eq 41
follows.
An upper-bound constraint to Ts that has been conjectured

but apparently never proved250,251 also is useful. It is

T n T n T ns TF vW[ ] [ ] + [ ] (42)

This inequality can be rationalized252 by taking the Ne →∞
limit of the finite-system inequality due to Gaźquez and
Robles.36 Note, however, that their inequality involves a local
density approximation and hence is not an exact result.
Violations of eq 42 have been discussed recently.253

Uniform density scaling254 is a property that any proper
KEDF must have. For the scaled density nλ(r) := λ3n(λr) with
λ a real, positive constant, the KS KE satisfies

T n T ns s
2[ ] = [ ] (43)

The TF KE satisfies the scaling relation, which motivates the
formulation of other KEDFs in terms of dimensionless factors
multiplying τTF. A remarkably early example, prior to the well-
known ref 254, is the explicit discussion of uniform density
scaling in a KEDF by Alonso and Girifalco.255 Somewhat after
ref 254, there is mention of this scaling in ref 44 in the context
of the second kind of kernel they proposed (see their eq 3.39).
A different kind of constraint is associated with the large-Z

limit of the neutral atom energy.256 (Z is the atomic number;

recall eq 16). Asymptotically in Z, the KS KE has the
expansion

T b Z b Z b Z ...s 0
7/3

1
2

2
5/3= + + + (44)

with b0 = 0.768745, b1 = −1/2, and b2 = 0.269900. Reference
256 gives a procedure by which to extract the asymptotic
behavior of a given candidate KEDF from atomic calculations.
Comparison with the exact coefficients then provides a route
to evaluate or refine the parameters in the candidate KEDF.
An important condition that often is ignored is the N-

representability of a KEDF. Regarding N-representability, it is
helpful to start with the density itself. The definition of what
qualifies as a density257 is any smooth, differentiable function
f(r) > 0 ∀r (subject to boundary conditions) that integrates to
Ne on the volume of interest and has finite von Weizac̈ker KE
on that volume. All such candidate densities are themselves N-
representable; that is, for each such candidate there is an Ne
fermion wave function that yields the specified density.244,258

N-representability of functionals is a bit different. The
concept is made precise in ref 259, theorem 4. It proves that if
a KEDF delivers a KE below the conventional KSDFT value
(obtained with the exact orbital-dependent Ts functional) for
any system, that KEDF is not N-representable because there
are no N-representable two-body density matrices (hence, no
Ne fermion wave functions) that could yield that energy when
traced with the Coulomb Hamiltonian plus vext.
The risk in use of a non-N-representable KEDF is that it can

yield energies below, even grossly so, the correct conventional
KSDFT value. Ayers and Liu point out,259 for example, that
TvW is non-N-representable for electron densities integrating to
3 or more electrons because TvW is a lower bound to Ts for
those systems (recall above). Further, the TF plus scaled von
Weizsac̈ker functional, TFλvW, eq 8, is non-N-representable
for λ < 1. They illustrate with the ground-state electron density
of the xenon atom. For λ = 1/9 the result is “...far below the
true answer: TTF(1/9) = 7083, ...Taccurate = 7232 hartree”. Note
also that, unhappily for developers of KEDFs, N-represent-
ability of a KEDF does not guarantee accuracy. An
approximate KEDF could be N-representable simply by
being a loose upper bound to Ts.
In contrast to that somewhat gloomy observation, we make

two points. While it may not be straightforward to impose N-
representability as a constraint in the course of constructing a
KEDF, it is straightforward to test N-representability after the
fact. Failures on simple systems should, at the least, be viewed
as a warning. The other point is that constraints from N-
representability have been developed for weighted-density
approximation KEDFs based on model 1-rdms. See Chakra-
borty et al.260,261 and the discussion below.
Useful constraints on KEDFs also can come from known

properties of the densities associated with certain classes of vext.
For vext from a set of point nuclei, the density is known to
satisfy the Kato cusp condition262 at each nuclear site. For
GGA and meta-GGA KEDFs, that has immediate, specific
consequences for the form of the KS potential,
vKS(r).

249,263−267 Systems in which the physical (i.e., ionic)
external potential has been replaced by a pseudopotential have,
by construction, no cusp at each nuclear site but typically zero
gradient instead. That has different consequences for KEDF
construction.86,265,268 Observe that exploiting these distinc-
tions introduces non-universality, in the sense already
mentioned. In principle, the density functional is indifferent
to the vext and, hence, universal. In practice, an effective
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strategy is to design a KEDF particularized to a specific class of
vext.
A less severe form of non-universality arises in another way.

OFDFT calculations require the specification of both an
approximation for Ts and an approximation for the XC
functional Exc. Another constraint ensues. Those two func-
tionals are connected by the virial relationship254

T d n vr r r r
1
2

( ) ( )s KS= ·
(45)

Here vKS is the full KS potential, eq 30, which, of course,
includes vxc. The implication is that if vxc is from an XC DFA,
as virtually always is the case, then the KEDF to be used on the
left-hand side should be constructed paired with that specific
XC DFA. Otherwise, there is no guarantee that substitution of
n0 would satisfy that equation. One sees that pairing in the
Kohn−Sham equation in fact. In it, up to a constant, the
functional derivative of Ts evaluated at the equilibrium density
n0 is the negative of vKS[n0]. See also the related discussion in
ref 269.
So far as we are aware, this pairing or matching requirement

has been imposed strictly on KEDF development only once.
The KEDF in ref 255 was developed from their XC
approximation. A closely related, converse procedure, deorbi-
talization of a τs-dependent XC functional, was tried first by
Perdew and Constantin270 and pursued more thoroughly by
Mejıá-Rodrıǵuez and Trickey,233−235 but neither used the
matching as a constraint.
There are several reasons for not using the virial form (but

see below about potential functionals). The integrand on the
right-hand side of eq 45 is not translationally invariant,271 so
one cannot identify the KE density τs with that integrand. For
testing a candidate KEDF, the expression can be used directly
with atoms (and probably should be). The invariance problem
can be evaded via a translationally invariant KE density that
integrates to the same value as the original translation-
dependent form.272 But a basic gauge problem remains.
Anything that integrates to zero can be added to the integrand
on the rhs of eq 45 without changing the functional
relationship, so extraction of a KE density is ambiguous.271,272

2.4. Orbital-Free Ts Approximations

In Section 1, we distinguished the three main KEDF types of
contemporary interest, semilocal or one-point functionals,
Ts,1[n], two-point functionals, Ts,2[n], and machine-learnt,
Ts,ML[n]. As noted just after eq 13, one-point functionals
generically are

T n d n nr r r( ), ( ), ...s s,1[ ] = [ ] (46)

Recall from Section 1 that two-point functionals typically are
written as interpolations between TTF and TvW in order to
incorporate their exactness properties explicitly. Specifically,

T n T n T n d d n nr r r r r r( ), ( ), ,s vW TF,2[ ] = [ ] + [ ] + [ ]
(47)

with as in eq 14 of Section 1.
Machine-learnt functionals may combine both one-point

and two-point contributions in ways that are not expressible in
simple analytical form. As such, they may have characteristics
that are not easy to analyze in the context of the conventional
one-point and two-point formulation.

We consider each type in turn. At the end of the section we
consider briefly some other variants.
Before proceeding, a remark on “empirical” functionals is in

order. In the development of XC DFAs, it is customary to
designate functionals that have multiple parameters fitted to
substantial databases (experimental or calculated data or both)
as “empirical”. In contrast, those DFAs that have parameters
constrained by values calculated for small sets of atomic
systems (“appropriate norms” per ref 231) are categorized as
“nonempirical”. We follow that terminology here. Akin with
DFA development, however, the construction of a KEDF
involves a considerable element of design choice. There simply
are not enough known constraints to determine a KEDF
completely, so building in desirable physics or conceding some
nonuniversality or choosing from a range of allowed parameter
values are choices the constructor must address. One might
argue whether this genuinely is “nonempirical”. We choose not
to spend effort on that question and use the conceptual
framework and vocabulary consistent with XC DFA develop-
ment.

2.4.1. One-Point Functionals. Begin with an observation
from experience. One-point Ts[n] approximations in principle
can depend upon n(r) and all of its spatial derivatives, ∇n(r),
∇2n(r), .... In practice, the Euler equation that follows even
from ∇2n(r) dependence is sufficiently complicated (fourth-
order spatial derivatives) that there has been comparatively
little consideration of a Ts approximation with higher than ∇2n
dependence. Third-order spatial derivatives have been used in
machine-learnt KEDFs,83,150,152,153 as we discuss in Section
2.5. While the sixth-order gradient expansion has a fourth-
order spatial derivative contribution,139 the expansion is
divergent.136,139 Thus it is useless as a KEDF in itself. So far
as we are aware, there have been no other candidate KEDFs
with fourth-derivative dependence.
Recall from Section 1 that the implicit assumption in the

one-point approach is that such functionals can probe nonlocal
contributions adequately by selective exploitation of features of
the gradient expansion. Because of the just-mentioned
divergence, efforts began very early in DFT to formulate
useful gradient contributions. Motivated by TFλvW eq 8 and a
suggestion by Tomashima and Yonei,116 Plumer and Stott273

generalized the λ parameter to a density gradient dependence.
A variation on the idea was put forth by Mazin in 1988274 but
in an obscure journal and, hence, was not known in the
OFDFT community until posted recently to arXiv. The idea
reappeared in ref 69, where the specific form used is attributed
to Pearson’s 1982 Ph.D. thesis. March and Santamaria275

presented yet a different type of gradient dependence, based on
reasoning from the KS 1-rdm and recognition that exact
exchange in KSDFT has the same form as HF.
Neither of those two schemes seems to have been pursued

further. Instead, the strategy followed was adapted from
density-gradient-dependent XC DFAs.57,276−278 Analogously
with eq 31, generalized gradient approximation (GGA) KEDFs
are constructed in the form

T n c d n F sr r r( ) ( ( ))s TF
GGA 5/3[ ] = (48)

Fτ(s), a function of the dimensionless reduced density gradient
s introduced at eq 32, is the “enhancement factor” with respect
to TF. It is dimensionless by construction so that the proper
KE uniform scaling behavior (mentioned already254) provided
by the Thomas−Fermi contribution is preserved. From eq 6, it
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follows that the von Weizsac̈ker KEDF written as a GGA has
the enhancement factor (5/3)s2 and the Pauli term for a GGA
KEDF Tθ

GGA has

F s F s s( ) ( )
5
3

2=
(49)

as its enhancement factor. The GGA Pauli KE thus is

T n d n
n
n

r r: ( ),
1
8s

2
[ ] = [ ] = | |

(50)

The essence of GGA design strategy is to recover KE
gradient expansion behavior for small s but modify it elsewhere
so as to avoid the aforementioned31,136,139 divergent behavior.
(Remark: The expressions for the fourth- and sixth-order
gradient expansion terms are complicated and not of particular
use here. See ref 195.) Thus, the small-s behavior of Fθ should
have the form

F c s s1 ( )2
2 4= + (51)

In the gradient expansion itself, the quadratic coefficient is c2 =
40/27 ≈ 1.482.31

One way to develop GGA KEDFs is via rational
construction, e.g. Pade ́ approximants calibrated against such
gradient expansion terms.61 Another is by extensive fitting72 to
atomic data. Yet another is to exploit the “conjointness
conjecture”58 to rationalize use of the enhancement factor from
a GGA exchange functional, Ex

GGA, in a GGA KEDF. That
allows more than three decades of work on GGA XC DFAs to
be exploited. While known not to be correct (see, for example,
ref 268 or consider the fact that a GGA exchange DFA cannot
satisfy all known constraints on it), the conjecture is instructive
and, in fact, it fueled development of the first few GGA
KEDFs.58,67,69,71

However, none of those conjointness KEDFs would produce
binding in test molecules even from post-SCF calculation with
the correct conventional KSDFT densities63 as input. (Here,
“correct” is with respect, of course, to the XC DFA used.) The
first GGA KEDFs that actually reproduced molecular binding
from post-SCF calculation with KSDFT densities were the
“modified conjoint” PBEn (n = 2, 3, 4) and exp4 functionals of
Karasiev et al.63,73 The modification with respect to strict
conjointness consisted of enforcement of the Pauli term
positivity constraint, eq 35. Those modified conjoint KEDFs
were not, however, purely nonempirical but were parametrized
on very small training sets (a few molecules).
Recently therefore, three strategies have characterized efforts

to construct GGA KEDFs: (1) satisfy as many known exact
constraints as possible, the approach used to contrive the
VT84F,85 LKT,86 and RATIONAL240 KEDFs; (2) devise an
enhancement factor that yields as closely as possible the HEG
linear response, the method used to obtain the PGint
functional;279 (3) reproduce known semiclassical expansions
for neutral atoms, leading to the APBEK and revAPBEK
functionals.59 All three involve, to varying extents, matching of
the gradient expansion for small s. In the case of revAPBEK
there also is an empirically adjusted parameter.
The APBEK, revAPBEK,59 APBEKint, and revAPBEKint60

KEDFs are worth examining a bit more. The PBE XC
enhancement factor225 can be written compactly as

F s
s

s
( ) 1pbe

2

2= +
+ (52)

with κ and μ constants in the original XC GGA and in the
simpler conjoint or conjoint-like KEDF cases. Thus, in APBEK
and revAPBEK, μ = μMGE2 = 0.23899 from the modified
second-order gradient expansion, while κAPBEK = 0.804 and
κrevAPBEK = 1.245. The modification in MGE2 is to match the
asymptotic KE expansion (in Z) for neutral atoms. Though
there is evidence of good performance on a small set of
molecules, it is demonstrable that both APBEK and revAPBEK
violate vθ(r) > 0, eq 35, near the nucleus for Kato-cusped
densities.280

A further refinement was to generalize the coefficient of the
s2 dependence (conventionally denoted μ) into an s depend-
ence, leading to APBEKint and revAPBEKint.60 The specific
approach was to use an interpolation:

s
s
s

( )
3 5

3 5
int

GE MGE2 2 2

2= +
+ (53)

with μGE2 = 5/27 from the KE second-order gradient
expansion. It appears that both these KEDFs also violate vθ
positivity for Kato-cusped densities however.
Of these various GGAs, so far as we know, VT84F was the

first nonempirical GGA KEDF to yield bound systems from
solution of the OFDFT Euler equation.85 Its Pauli enhance-
ment factor reads

F s
s e

s
e s( ) 1

1
(1 )( 1)VT F

s
s n84

2

2
/2m

2
/2

=
+

+

(54)

With m = 8 and n = 4, the functional has two parameters (μ
and α) that are related by the gradient expansion at small s. For
cusped densities, that relation can be satisfied while
maintaining the vθ > 0 constraint, eq 36, only for a small
range of parameter values. An Occam’s razor argument was
used to choose among them.
The LKT86 functional, in contrast, is specifically adapted to

pseudodensities. It has the very simple Pauli enhancement
factor

F s as( ) 1/cosh( )LKT = (55)

with the single parameter a set to 1.3 by enforcing vθ > 0 for
low-Z atomic pseudodensities. Subsequently, the PGμ family87

F s s( ) exp( )PG 2= (56)

was parametrized to come close to reproducing Fθ
LKT by

choosing μ = 0.75.172 (Remark: μ here and in eq 57 is a
parameter defining the specific Pauli enhancement factor and is
not to be confused with the chemical potential.)
In Figure 5 we compare the Pauli enhancement factors of

LKT, PG0.75, and VT84F. Because LKT and VT84F are
adapted to specific near-nucleus behavior (zero density
gradient or Kato cusp, respectively), they are nonuniversal.
The effects of adaptation to nonuniversality are visible in the
bump in the VT84F enhancement factor in the vicinity of s =
1. It provides vθ positivity for Kato-cusped densities. Cuspless
densities do not require the bump, as illustrated by LKT.
Numerical results illustrate the difference as well. Values

from LKT and VT84F on simple metals and semiconductors
are given in Table 2. Three metals, Li, Mg, and Al, each in
simple cubic (sc), body-centered cubic (bcc), face-centered
cubic (fcc), and hexagonal close-packed (hcp) structures, were
treated. Nine zinc-blende structured III−V semiconductors
also were treated, AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP,
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InAs, and InSb. Mean absolute relative errors (MAREs)
referenced to the conventional KS values are reported in that
table for equilibrium cell volume V0, total energy per cell E0,
and bulk modulus B0. The Perdew−Zunger LDA XC DFA281

was used. (For other technical details see ref 86 and its
Supporting Information.)
All the OFDFT calculations were done with bulk-derived

local pseudopotentials (see Subsection 3.1). LKT is adapted to
such potentials. VT84F, in contrast, was built with constraint
satisfaction for Kato-cusped densities. Table 2 shows
substantial improvement when pseudodensities are adopted
in all but one case, E0 for the metals. Even that is an example of
a big shift in a small number; the LKT MARE is 0.2%,
The PGint KEDF279 is interesting because of the unusual

way in which it was parametrized. It takes the PGμ form, eq 56,
and gives μ an s dependence, the same concept as in the “int”
KEDFs just discussed. But instead of eq 53, PGint uses

s s
s

( ) ( )
11 2 1

2

2= +
+ (57)

The parameters are μ1 = 40/27, μ2 = 20/9, and α = 10. These
values were chosen so that PGint recovers the second-order
gradient expansion for s → 0 and is close to PGμ with μ = 20/
9 for s > 0.2. The motivation for these design choices is to
retain second-order gradient linear response in PGint. Though
it gives some interesting results for atoms and jellium clusters,
so far as we are aware, PGint has not been tested against
thermochemical properties of molecules or solids nor does it
seem to have been used to drive AIMD.
Two basic difficulties with any GGA KEDF motivate moving

to inclusion of ∇2n dependence. First, for the case of a Kato-
cusped density (the density from the physical vext in the
electronic structure problem), vθ(r) is singular at the nuclear
site,264 limr→0 vθ(r) = aθ/r for any Pauli enhancement factor

that for small s goes as Fθ
GGA = 1 + aθs2. Though the singularity

is unphysical, the only GGA design choice is to make sure that
the constant aθ > 0. That at least satisfies the vθ > 0 constraint.
Many GGA KEDFs violate that constraint, for example APBEK
and revAPBEK (recall above).
This dilemma motivated Karasiev et al.264 to consider

reduced density derivative combinations of s and the
dimensionless reduced density Laplacian defined as

q
n

n
:

4(3 )

2

2 2/3 5/3=
(58)

(Remark: Beware of notational overload. The variable q should
not be confused with the canonical position variable of classical
phase space mentioned in Section 1 and with the Fourier space
variable conjugate with |r − r′| discussed later.) Then they
rewrote the gradient expansion through fourth-order

T n d n n nr r r r( ) ( ) ( ) ...(0) (2) (4)[ ] = [ [ ] + [ ] + [ ] + ]
(59)

with

n n F s qr r( ) ( ) ( , , ...)i
TF

i(2 ) (2 )[ ] = [ ] (60)

The corresponding enhancement factors are

F F a s

F a s b q c s q

1(0) (2)
2

2

(4)
4

4
2

2
21

2

+ = +

= + + (61)

Instead of using the gradient expansion coefficients, however,
they determined coefficients such that the vθ for a cusped
density would be nonsingular at the origin. That led to, for
example, the reduced density derivative combinations which
are to be used as arguments of novel enhancement factors,
such as Fθ(κ4).
Reference 264 presented limited consideration of one KEDF

constructed with the latter two variables but relied on
determination of the parameters by fitting to conventional
KSDFT results for two molecules and two atoms. The results
were mixed, with some constraint violations but remarkably

s q s q

s b q b

s b q

:
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: (64)
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2

2
2

1

= +

= + >

= +

good performance in post-SCF calculations of Ts for 14
molecules, superior to that of the Perdew−Constantin meta-
GGA KEDF270 that we discuss below. Post-SCF intra-
molecular forces (evaluated by finite differences) from the
two were about equally good (or bad) in that some were rather
accurate and some were quite off. Investigation of that ref 264
KEDF was not pursued. In retrospect, it may have been too
complicated a form for initial exploration. Moreover, there was
no compelling way to pick among possible reduced density
derivatives nor to decide the form of the enhancement factor.
What the exercise did show was the important role of ∇2n in
getting rid of the unphysical vθ singularities of GGA KEDFs.
A few years later, Xia and Carter282 pointed out the

importance of ∇2n contributions in a different way. In our
notation, they observe that the Pauli KE (be it approximate or
exact) always can be written as

Figure 5. Comparison of the Pauli enhancement factors of LKT,
VT84F, and PG0.75. By choice, PG0.75 is close to LKT up to s ≈ 1.

Table 2. Effect of Nonuniversality Adaptation on KEDF
Performance for Solid Metals and Semiconductors: MARE
of Equilibrium Volumes, V0, Energies, E0, and Bulk Moduli,
B0, as Percentages

a

Metals Semiconductors

KEDF V0 E0 B0 V0 E0 B0

LKT 4.0 0.2 7.7 2.1 2.8 4.3
VT84F 6.0 0.1 11.6 10.5 3.6 56.4

aSee text for notation. Adapted from ref 86.
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T n c d n G nr r r( ) ( )TF
5/3[ ] = [ ] (65)

(Remark: Beware that they use the form of the s variable
without the constants, as we warned earlier.) For fcc Al, they
calculated the KS KE density augmented with a bare Laplacian,

n x n xq( ; ) : s= [ ] + (66)

with a constant mixing coefficient −1 ≤ x ≤ 1. (The
calculations used PBE XC and a bulk-derived local
pseudopotential, but neither choice affects the outcome.)
Then they extracted G[n;x]. Plotted as a function of s for
various values of x, complicated double-valuedness in G
immediately is evident. Not only is G(n;x) ≠ G(s;x) but the
double-valued behavior depends strongly on the q admixture
coefficient x. The Xia−Carter results show that removal (or, at
least, substantial suppression) of the double-valuedness would
require the mixing to be a function of s, i.e. x(s) at least. Since
G is not solely a function of n and s, they concluded that the
multivaluedness made the validity of GGA KEDFs question-
able.
In a subsequent exchange of comments,252,283 Trickey,

Karasiev, and Chakraborty argued that local imposition of the
upper bound, eq 42, essentially cuts off the multivaluedness at
least to the extent that a GGA KEDF is able to reproduce the
most important features of G[n] on the most important density
range. In reply, Xia and Carter pointed out that local upper
bound imposition does not remove what may be some critical
regions of double-valuedness and that fundamentally such local
imposition is not a rigorous constraint because it converts a
sufficient condition into a necessary one. They did, however,
agree that improved GGA KEDFs merited study.
The reduced density derivative and the G[n] studies just

discussed provide solid analytical and numerical motivation for
considering Laplacian-dependent KEDFs. The investigation of
such KEDFs has a long history because, among other things, of
the gradient expansion. Recall from Section 1 that the simplest
Laplacian-level functionals were explored in the mid-
1980s124,284 to treat the known failure of GEA functionals to
reproduce atomic shell structure in the KE density. A bare
Laplacian, as in the Xia and Carter282 study, has no effect on
the kinetic energy potential, vs(r), delivered by a KEDF but
changes the KE density (the gauge issue mentioned above).
Empirically it was found that an appropriate admixture of a
bare Laplacian term could describe atomic shell structure but
at the cost of degrading the description of the near-nucleus
kinetic energy density.124,284 Some recent studies also have
included functionals with a bare multiplicative Laplacian term
in an enhancement factor,270,285 as well as more complicated,
constraint-based functions of s and q.
All of these can be subsumed in the Laplacian meta-GGA

form268,270,285 already introduced, eq 60,

T n c d n F s qr r r r( ) ( ( ), ( ))s
mGGA L

TF
L5/3 2[ ] = (67)

The Perdew−Constantin (PC) meta-GGA has been among
the more influential of these.270 It is designed to recover the
fourth-order gradient expansion in the slowly varying case and
TvW in the rapidly varying one. Moreover, it is constrained to
satisfy eq 34 locally. The form of the PC enhancement factor
thus is another example of interpolation between limiting
behaviors,
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Here, Fτ
mGE4 is a modification of the fourth-order gradient

expansion
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The interpolating function is

f z z

f z e
e e

z a

f z z a

( ) 0, 0

( )
1

, 0

( ) 1,

ab

ab

a a z

a z a a z

b

ab

/( )

/ /( )

=

= +
+

< <

=

l
moo
noo

|
}oo
~oo

(70)

with two parameters 0 < a ≤ 1 and b > 0. They were fitted to
minimize the mean absolute relative error of the KS KE for a
suite of neutral atoms, ions, neutral spherical jellium clusters,
and liquid-drop model jellium spheres to yield a = 0.5389 and
b = 3. Most of the testing was done on comparatively abstract
systems, but the atomization kinetic energy, Ts[separated-
atoms] − Ts[molecule], was reported for post-SCF calculations
on a set of 12 small molecules. Compared to the TF, GE2, and
GE4, oddly the PC meta-GGA MAE was second best. TF was
a bit better. However, TF got the sign of the difference wrong
in four cases, whereas the PC meta-GGA had only two wrong.
This illustrates a difficulty in testing. Seemingly innocent
protocols can give misleading results.
A peculiarity in the PC meta-GGA was discovered and

analyzed by Cancio and co-workers in the context of meta-
GGA X functionals. In those functionals, it is typical to use an
indicator function conventionally denoted as α := (τs − τvW)/
τTF ≡ τθ/τTF. They found mishandling of the behavior for ∇2n
< 0 and associated difficulties in regions of strong electron
localization. Negative ∇2n values are typical of covalent bond
formation and for pseudodensities. To deal with these
problems, they proposed a smoother enhancement factor268,286

F s z z H z

z q s
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CSK CSK CSK
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2

2
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(71)

Here H(z) is the Heaviside unit step function and “CSK”
denotes the authors (Cancio, Stewart, and Kuna). Results
against the AE6 molecular data set287 (picked because of its
diversity of bonding types) were illuminating. Post-SCF
(density from PBE XC DFA in conventional KS) results are
shown in Table 3. It compares atomization energy MAEs and
KE MAREs. For scale, the MAE against experiment of the
conventional KS calculation is 23.0 kcal/mol. Based on the
atomization energies, VT84F is best. Thus, the table may seem
to present a victory for GGA or a loss for meta-GGA KEDFs,
depending on viewpoint. But the reality is more subtle. The
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actual KE values are very different. For those, VT84F actually
was the worst. The design priority for VT84F was to get good
ionic forces in AIMD simulations while respecting as many
constraints as attainable. The cost was a functional that
generates KE values that are too large. Remember, however,
that the table compares post-SCF values, not the results of
solving eq 29 self-consistently with these KEDFs.
Other single-point functionals based on recovery of the

fourth-order gradient expansion are found in refs 83 and
288−291. What is confirmed very convincingly by Golub and
Manzhos83 is that the fourth-order gradient expansion itself is
not viable as a KEDF. Its KE density is notably worse than
those from the second-order approximation in significant
spatial regimes even for Si and Al. With coefficients adjusted
for each system separately (hence, a nontransferable KEDF),
agreement is much better for metals but not for covalently
bonded systems. Those authors turned to machine-learning
methods to seek further improvements; see Subsection 2.5.
Reference 291 also attempted to overcome limitations in the

Perdew−Constantin KEDF.270 In our notation, those authors
wrote

F s q s q s: 1
5

27
20
9

GEmod 4 2 2 4= + + +
(72)

The constants γ = 0.2608 and ν = 0.1826 were determined by
jellium surface energy and semiclassical neutral atom fitting.
Unfortunately, it is difficult to set the recorded performance of
this functional in the context of the rest of the literature.
Though those authors did calculations on a test set of 21
molecules, they reported results on total KE and atomization
KE differences only in terms of a “relative performance
indicator” they devised. Ordinary MARE, MAE, etc.
information was not provided nor were test results on periodic
solids.
More recent investigation of Laplacian dependence has

relied on devising an enhancement factor that reproduces as
closely as possible the HEG linear response, for example to
obtain the PGSL,87 PGSLr,172 and GSE2 functionals.279 PGSL
(“Pauli Gaussian supplemented with Laplacian”) has the Pauli
term enhancement factor

F s q: exp (40/27)
1
4

PGSL 2 2= { } +
(73)

The gradient expansion coefficient of q2 would be 8/81. The
value of 1/4 came from optimization against simple metals.
PGSLr retains the good linear response of PGSL by modifying
the Pauli term enhancement factor to be

F F s q s:PGSLr PGSL 2 4= + (74)

The empirical parameters, λ = 0.4 and σ = 0.2, were obtained
from fitting to equilibrium volume, V0, total energy, E0, bulk

modulus, B0, and density errors for a set of 9 metals and 9
semiconductors. The authors noted that optimum values
would be λ2 ≈ σ but that numerical instability attendant with
that choice prevented its adoption.
It is already clear that the best recent meta-GGA functionals

provide some significant improvements relative to earlier GGA
KEDFs but that the improvements are not systematic
compared to the best current GGAs. Equally interestingly,
however, the best of these GGAs and meta-GGAs are
competitive with two-point functionals for calculations on
bulk solids,86,172 on atomic systems,60 and in subsystem DFT
simulations.60,285,292−296 There is however a problem with
Laplacians. High-order spatial derivatives in the Euler equation
can cause numerical stability issues. We return to that in
Section 3.
Table 4 gives a brief comparison (adapted from ref 172) of

GGA and meta-GGA KEDF performance on a slightly larger

set of simple metals and semiconductors than was used in the
studies just discussed. Four metals, Li, Mg, Al, and Si, each in
sc, bcc, fcc, and hcp structures were included. (Elemental Si is
metallic in those structures.) Ten semiconductors, cubic
diamond Si plus the nine III-Vs in the preceding data set,
were used. For stringency, the table compares the performance
of one- and two-point KEDFs. Details of the latter class are in
the next subsection. Here note only that the two-pointers are
the very early Smargiassi−Madden (SM)46 and more recent
Huang−Carter (HC).77 Observe that HC is parametrized to
semiconductors. Again, the OFDFT calculations were done
with bulk-derived local pseudopotentials (see Subsection 3.1)
but in this case with the PBE GGA XC DFA.225 Table 4 omits
results from the WGC two-point functional297 because it was
parametrized on metals and is known to perform poorly on
semiconductors. Results from TFλvW are omitted because it is
non-N-representable for the values λ < 1 ordinarily used.
The table shows, somewhat surprisingly perhaps, that the

best current GGA KEDFs, LKT and its closely related PG0.75,
are rather good at yielding E0 and V0 in comparison with the
more complicated two-point KEDFs. We do not have an
explanation for the seemingly large increase in B0 MARE for
those two from the data set used to generate Table 2 to the
data set used in Table 4. The independently calculated B0
MAREs for LKT reported in refs 86 and 240 are much smaller
and agree closely. The data set used in ref 172 differs from that
used in the latter two references in having the Si systems. The
calculations differ in the XC DFA. But all three studies find
nearly the same results for LKT V0 and E0 MAREs, so it seems
implausible that either of those differences (data set or XC
DFA) would cause such a discrepancy in the B0 MAREs. There

Table 3. Post-SCF Atomization Energy MAEs and KE
MAREs against the AE6 Data Set Compared for Several
mGGA KEDFsa

KEDF Atomization MAE (kcal/mol) KE MARE

VT84F 182.1 0.2
mGGA-CSK 246.8 0.087
mGGA-PC 595.5 0.139
GE2 560.7 0.112
TF 671.1 0.162

aAdapted from ref 286.

Table 4. KEDF Performance on Solid Metals and
Semiconductors: MARE of Equilibrium Volumes, V0,
Energies, E0, and Bulk Moduli, B0, as Percentages

a

Metals Semiconductors

KEDF V0 E0 B0 V0 E0 B0

SM (2-pt) 3.82 0.19 4.68 10.6 0.76 42.9
HC (2-pt) 5.84 0.43 11.7 1.98 0.51 11.67
LKT (GGA) 3.61 0.18 23.9 1.33 2.82 13.5
PG0.75 (GGA) 3.72 0.16 25.7 1.16 2.57 9.58
PGSLr (mGGA) 3.68 0.23 12.3 1.11 1.48 7.14

aSee text for notation about KEDFs. Adapted from Ref 172.
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may be influences from different fitting procedures (energy vs
volume), but we simply do not know.
This situation illustrates, however, a long-standing challenge

for KEDFs. Bulk moduli often are a problem. One sees that
here in the comparative performance of the PGSLr meta-GGA.
Added Laplacian dependence (q dependence) and para-
metrization to a substantial data set do not make PGSLr any
better than LKT for V0 in either metals or semiconductors nor
for metal E0, but it does improve for semiconductor E0. The
big improvement achieved by PGSLr, at least on this small data
set, is for B0. The step to a meta-GGA makes a major
difference, roughly a factor of 2 MARE reduction.
Figure 6 gives a graphical view of the performance of several

of the GGA and meta-GGA functionals treated in this section.

The so-called global performance indicator η was defined in ref
172 as a weighted average of MAREs for five properties, V0; E0;
B0; density error, D0 := ∫ dr|nKS(r) − nOFDFT(r)|; and the error
K0 in the non-SCF non-interacting KE per cell. The weights
were set on the basis of arguments for the relative importance
of the five quantities. The indicator η was evaluated for both
LDA and GGA (PBE) XC functionals and their associated
pseudopotentials. A notable feature is that the one-point
functionals do as well on metals as the HC two-point
functional. Of course, HC was developed with semiconductors
in mind, not metals, another example of the benefits and
limitations of nonuniversality. An important observation also is
that parametrized functionals, such as PGSLr, improve
performance compared to the nonempirical LKT, hinting

that improvement of nonempirical one-point KEDFs can, and
should be achieved.
We note that at least in the simple meta-GGA KEDFs

contrived thus far, Laplacian dependence cannot generate
density oscillations from the OFDFT Euler equation, even
though such KEDFs give reasonable calculated energies and,
often, quite good forces (energy gradients).
As an aside about GGA KEDFs, we remark that, although

not shown here, among other somewhat recent ones, the
LC9467 and revAPBEK60 functionals have been reasonably
successful in the context of subsystem DFT simula-
tions.180,181,190 Recall, however, the comments above about
the lack of vθ positivity in revAPBEK. Another recent
development is the WPBEK KEDF,298 a different example of
a modified conjoint GGA. It violates positivity constraints
dramatically. That behavior led the authors to an interesting
kind of dual representation, with a proper Fθ constructed so as
to give the same non-interacting KE as the improper Fθ

WPBEK.
We return to this idea in Subsection 2.4.3.

2.4.2. Two-Point Functionals. In Section 1 we remarked
that interest in the nonlocality provided by two-point
functionals originated in the first Hohenberg−Kohn DFT
paper.3 There is a subtlety about that. The HK paper showed
that effective approximate treatment of atomic density
oscillations involves inclusion in the KE of excitations from
occupied to virtual (above Fermi level) orbitals.40 Because
those orbitals are themselves density functionals (albeit
implicit), the derived functional is still a density functional.
The HK approach did not catch on until 1985 with the first

application of the scheme in materials physics43 (jellium
surfaces and atoms). That paved the way to several subsequent
generations of two-point functionals, such as those of Wang−
Teter,44 Smargiassi−Madden46 (already mentioned), Perrot,47

Wang−Govind−Carter,45 Huang−Carter77 (already men-
tioned), and, recently, Mi−Genova−Pavanello81 and its
density-dependent kernel version, LMGP,88 as well as
others.49,80,90

Two-point KEDFs generally are expected to be more
accurate than one-point KEDFs simply because the two-
pointers probe and encode information about a larger spatial
region than is possible with one-point functionals. Recall the
discussion in Section 1 and Figure 3, but keep in mind the
recent comparative success of one-pointers just surveyed.
Various of the earlier practical two-point KEDFs used

somewhat near-sighted kernels44 with Coulomb-like correc-
tions for semiconductors.77,81,88 (Several45,77,80 also depended
on parametrization beyond the level of isolated atoms and,
hence, are semiempirical.) In that context it is informative to
consider Ts[n] in eq 23 from the perspective of probing an
infinitesimal neighborhood of a sample point r. Ts[n] is derived
explicitly as a one-electron operator acting on the KS orbitals.
By virtue of orthogonality, those orbitals interfere, which gives
rise to atomic shell structure. Thus, a proper KEDF must
incorporate information about those shell−structure effects.
That information is nonlocal because the nodal structure of
low-lying orbitals forces the nodal structure of higher ones.
This is one rationalization of the oft-stated claim that two-
point functionals are essential for incorporation of shell
structure.299 Note, however, that not all nonlocal KEDF
formulations will yield good shell structure descriptions.300

(Remark: Even if one suspects that a a one-point functional
with sufficiently high-order spatial derivative contributions
could give shell structure, the practical problem of numerical

Figure 6. Global performance indicator, η, defined as a weighted
average of deviations against benchmark values for metallic systems
and semiconductor systems computed with LDA and PBE XC
functionals and their associated local pseudopotentials (BLPS; see
Section 3.1 for details on the pseudopotentials used in OFDFT
simulations). Arrows connect results for LDA and PBE XC
functionals for the same KEDF. Reprinted with permission from ref
172. Copyright (2011) American Chemical Society.
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instabilities so far seems formidable.) The Friedel oscillation
argument (remarks just above and in Section 1) also is rooted
in interference with states lying above the Fermi level.40,115

This line of reasoning motivates two-point KEDFs
developed from consideration of the perturbed electron
gas.115,145,301 Suppose it to have nonzero average density
navg. Then the weakly varying density is
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The kernel of this integral, T
n n

n
r r( ) ( )

s

avg

2

1 2
, has a simple, explicit

dependence on the average density, navg, and on spatial points
r1 and r2, thereby displaying the two-point structure. Recall the
general expression for two-point functionals, eqs 13 and 14.
Note, however, a significant difference. In general the kernel
ω[n](r, r′) has a more complicated and explicit density
dependence than the simple navg in eq 76.
After eq 13 we noted that such nonlocal functionals are exact

in principle. Here we provide an alternative route to realize
this. It starts from recognition of the strict relationships among
the derivatives of a functional and the functional itself.
Included is the virial relation of eq 45.254,302 It is more
instructive to consider functional integration rela-
tions.199,303,304 With them, the functional can be recovered
from its first functional derivative, and the first functional
derivative from the second. For a simple line integral with nt(r)
:= f(t)n(r), Ts is
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where C is a smooth curve in parametrized by f(t). For the
simple case nt(r) = tn(r) with 0 ≤ t ≤ 1, we have81,304
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(This relationship has been exploited to compute KEDF
energy corrections due to a nonlocal contribution to the
potential.48)
The procedure can be iterated to generate δTs/δnt for

insertion on the right-hand side of eq 78 to yield
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and therefore the kernel in eq 14 can be expressed exactly as
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Practical utilization of this result thus involves finding a
suitable approximation to the second functional derivative of
Ts.
Hohenberg and Kohn3 established the connection between

the KEDF kernel and the linear response function of the HEG.
Defined as

n d vr r r r r( ) ( , ) ( )s KS= (81)

the connection of that response function with the KEDF
usually is made by considering an additional functional
derivative of the KS Euler equation (eq 29). Commonly it is
written as115
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The relationship was exploited and justified in several
studies44,47,305 and also discussed in ref 115.
But care is needed because the KS Euler equation is not a

general density functional. It is a ground-state expression. By
virtue of the first Hohenberg−Kohn theorem, eq 29 establishes
a one-to-one relationship between an external potential and its
ground-state density; hence, vext[n0] ↔ n0[vext]. Thus, eq 29
should be written
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Assuming ground-state v-representability and suitable restric-
tion of differentiation to ground-state densities, the second
functional derivative of Ts at n0 is
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Note the lack of explicit coordinate dependence in the μ[n].
For each n0, the corresponding μ[n0] is a spatial constant. This
is crucial. The usual assumption (often unstated) is that μ is a
constant from the original Lagrangian; therefore, its functional
derivative is zero, and eq 82 follows. In general, however,
different ground-state densities (and associated vext) at the
same Ne have different μ. Consider, for example, the first
ionization potential for a neutral atom and for the isoelectronic
cation, e.g. Li and Be+. Thus, the usual claim about δμ/δn must
be proved. So far as we are aware, the following argument is
original.
The essential point is that because of Hohenberg−Kohn

bijectivity, the first functional derivative of vKS is symmetric in
spatial arguments306
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The same symmetry does not hold for the first functional
derivative of μ[n0]. This follows from proof by contradiction.
At fixed Ne, the presence of the proper μ[n0] for each n0
guarantees that
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d nr r( ) 0= (86)

Now multiply eq 84 by δn(r) and integrate over the system
volume:
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Invoke the presumed symmetry of r and r′ in μ and the actual
symmetry in vks to get the second version of eq 87:
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The difference is
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Since this must hold at n0 for arbitrary δn that integrates to

zero, the conclusion is that 0n
n nr( )

0

=[ ] .

It follows therefore that
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2
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[ ]
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and eq 82 follows.
Approximations must be considered for use of eq 82 because

knowledge of the KS response function itself would require
solution of the KS equations (eq 20), exactly what OFDFT is
meant to avoid. Computation of the response function via
density functional perturbation theory307 or directly through
the sum-over-states expressions also would be necessary. Since
the formulation is a linear response, however, the obvious
reference system is the HEG. Then the Fourier transform of
the second-functional derivative is the inverse of the Lindhard
linear response function.140 The HEG is an advantageous
reference because its response function depends only on |r −
r′| and, hence, its Fourier transform depends only upon a single
reciprocal space variable, q. (Remark: Once again, consistency
with the conventional literature notation forces us into symbol
overload. But just to be sure, this q is not the reduced density
Laplacian of the preceding subsection.) This makes inversion
of the response function a simple “one-over” calculation rather
than a general operator inverse as shown in eq 82. That may
not always be defined.237

Common practice therefore is to constrain the two-point
kernel ω in eq 13 to recover the HEG linear response in eq 82

evaluated at the equilibrium density. The consensus physical
reasoning is that imposing that limit is beneficial, as the
electronic structure of solids often resembles that of free
electrons. That kind of behavior should be captured by the
Lindhard function. A major challenge, however, is capturing
the inverse response beyond Lindhard. To our knowledge there
have been only two attempts at that. One, by Della Sala et al.,
aimed at encoding band gap behavior in a modified Lindhard
function. The approach traces to Rey and Savin.308 The result
was one GGA KEDF309 and one nonlocal KEDF with a
density-independent kernel.80 The other is by Takaha-
shi.310−312 It is based on direct employment of the inverted
KS response functions computed by a post conventional KS-
DFT calculation of the KS response function. Initial results
provide accurate but nontransferable functionals. Further work
along either or both of these lines would improve the state of
the art.
In any event, some implications of constraints immediately

are apparent.
• The entire two-point term must vanish for uniform

density.
• To obey the conjectured Lieb upper bound, eq 42,

requires

n r r( , ) 0[ ] (91)

• To obey Pauli term positivity, eq 35, requires

T n d d n n nr r r r r r( ) ( , ) ( ) 0TF[ ] + [ ] (92)

That suggests the kernel ω[n](r, r′) should tend to a
Dirac delta multiplied by a weight that goes like n5/3−α−β

for one-electron densities (i.e., when the kinetic energy
density is that for von Weizsac̈ker, τs(r) = τvW(r)), such
as in the hydrogen atom or in the tail region of isolated
atoms.

• Kernels must be dependent explicitly upon n(r) and not
solely on its average. Observe the notation, eq 14,
repeated here:

n n n n nr r r r r r r r( ), ( ), , ( ) ( , ) ( )[ ] = [ ] (93)

It is provable that density-independent kernels ω(r, r′)
yield KEDFs that are variationally unstable313 whenever
they are of the form given by Wang and Teter44 (which
is the most commonly used form). See discussion below.

• Uniform density scaling relations must be satisfied, so α
+ β = 8/3 for functionals with density-dependent
kernels, ω, which should be functions of dimensionless
variables such as reduced density derivatives, kF(r)|r −
r′|, etc. so that they are homogeneous of degree zero
under scaling. The local Fermi wave vector is

k nr r( ) : 3 ( )F
2 1/3= [ ] (94)

In principle, another constraint is that the entire two-point
integrand should be symmetric with respect to interchange of r
and r′ 314 but there are counterexample violations among
practical approximations, e.g. ref 77.
Note also that two-point KEDFs with density-independent

kernels depend on a reference uniform density, n0, which is an
ill-defined quantity for any unenclosed system, e.g., an atom or
molecule.297,299

A significant deficiency of the Wang−Teter-like two-point
KEDFs with density-independent kernels is the finding by
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Blanc and Cances̀313 that such KEDFs are variationally
unstable except with respect to near-uniform densities. There
are many such functionals (Smargiassi−Madden,46 Perrot,47

Wang−Govind−Carter 98,45 Mi−Genova−Pavanello,81 sim-
plified versions of CAT-like functionals315,316) which have
been applied successfully to close-to-uniform systems (e.g.,
simple metals). The problematic variational instability does not
seem to occur frequently in practical calculations of bulk
systems. However, a recent study by Witt et al.317 reports
instabilities especially from the Perrot functional. The
application of WT to warm dense matter also uncovered
instabilities.318

The issue was identified by Witt et al. as stemming from the
violation of condition eq 92 by the Perrot functional as well as
(even though infrequently) by the other two-point, density-
independent kernel functionals. One can impose strict
satisfaction of the positivity condition by applying an
exponential stabilization scheme as follows. Rewrite the Pauli
term in eq 92 as

T n d d n n n T n xr r r r r r( ) ( , ) ( ) (1 )TF TF[ ] + [ ] = [ ] +
(95)

Here x
d d n n n

T n

r r r r r r( ) ( , ) ( )

TF
= [ ]

[ ] . Whenever x < −1, Pauli-term

positivity is violated. An elegant way to avoid this problem is to
replace the (1 + x) term by ex. This substitution ensures the
positivity condition always is satisfied and, in fact, no
instabilities were observed once it was implemented.317

The reader might be concerned that two-point functionals
would be computationally expensive because a double spatial
integral (six dimensions) must be evaluated. While true that
direct evaluation would be unhelpfully costly, use of the HEG
inverse response function in the formulation of ω in eq 80
reduces the evaluation cost to quasi-linear, N N( ln ). This
matter is discussed in Subsection 3.4, about related computa-
tional aspects. The quasi-linear-scaling also is maintained for
density-dependent kernels implemented by aid of spline
techniques.77,88

The first formulations of a nonlocal KEDF with density-
dependent kernels resulted in the so-called average density
approximation (ADA) and weighted density approximation
(WDA),43,143,144,255,299,319−323 and later the WGC99 (WGC,
hereafter) functional.297 (Remark: There is a section in ref 44
devoted to extending the Wang−Teter functional to a density-
dependent kernel by discretizing the original one, wWT(r1, r2),
over the distance |r1 − r2| into segments, evaluating the local
Fermi wavevector on each segment, and then using that in a
Gaussian basis expansion (Gaussians centered on each
segment) of the original kernel. Structurally the scheme is
reminiscent of the Trotter decomposition.324 To our knowl-
edge, that WT scheme never has been used again.) In all of
those kernels, except those of refs 43 and 255, explicit density
dependence is introduced through an effective Fermi wave-
vector, ξ,

n r r r r r r( , ) ( , ) ( , )1 2 1 2 1 2[ ] = [ ] (96)

with

k k
r r

r r
( , )

( ) ( )
2

F F
1 2

1 2
1/

= +i
k
jjjj

y
{
zzzz (97)

where γ > 0.

Beware that WDA/ADA KEDFs such as the symmetrized
CAT functional299 are written in a somewhat different form
than what we have used as canonical, to wit,

T n T n T n

T n c d n n T n

n d n

r r r

r r r r r r r r r
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( ) ( )
3
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( ) : ( ) 2 ( , ) (2 ( , ) )

s
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vW NL
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NL
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TF TF
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2 2 1 2
3

1 2 1 2

[ ] = [ ] + [ ]

[ ] = [ ]

= [ ] | |
(98)

with γ = −1/2 in eq 97 chosen as a result of numerical
experimentation. Ω has the role of a kernel. Note in particular
that the “non-local” term in fact has a subtractive local (scaled
TF) contribution.
The remarkable advance of the CAT functional was that it

gave rather good atomic radial densities from SCF solutions of
its Euler equation. From the perspective of 35 years later, CAT
posed two difficulties. First, for two of the nine closed-shell
atoms treated and one of the group V atoms, CAT gave lower
total energies than the reference conventional KS (LDA XC)
calculation, a sign of non-N-representability. The other
difficulty was the explicit use of double spatial integrals.
However, the original formulation of the CAT functional43 did
not feature a symmetrical integrand in the definition of ñ(r)
because it had a one-point effective Fermi wavevector. As we
discuss in Subsection 3.4, use of one-point effective Fermi
wavevectors enables techniques to avoid the double integra-
tion. There are simplified versions of CAT-like func-
tionals315,316 in which a Fermi wavevector corresponding to
an average electron density, kF0, is used in place of ξ of eq 97.
Simulations of liquid metals were successful with this strategy;
see Section 4.3.
The WGC paper297 unified the formulation of two-point

KEDFs in a single structure with the canonical form we have
used here. For bulk Al lattice constants and energies per atom
as test cases (sc, bcc, fcc, and hcp lattices), they explored the
powers α and β from ( 05

6
± ) to ( 5 /65

6
± ). The best

results with respect to conventional KS calculations with LDA
XC were for (α, β) = ( 5 /65

6
+ , 5 /65

6
), hence,

breaking spatial inversion symmetry (r1 ↔ r2). For eq 97 they
found γ values from 1.9 to 2.7 were best. From that calibration,
they calculated Al vacancy formation energies with success.
However, Al surface energies were not as accurate, unless the
reference average density used was the bulk value. Technically,
the WGC formulation provided a clear step forward, namely
reduction of the computational scaling by avoiding the double
integral through the use of a Taylor expansion of the kernel
around the reference constant density. As already mentioned,
the reliance of WGC and its predecessors44,46,47 on such a
reference density limits transferability and applicability of such
KEDFs.
Several advances in the past decade have resolved the issue.

The state of the art two-point functional (at least for bulk
systems) is the Huang−Carter (HC) KEDF77 mentioned
already. Instead of the local Fermi-vector average ξ(r1, r2) used
in the WGC functional, the HC KEDF has a fully density-
dependent kernel that has no HEG uniform density reference.
Written in terms of eq 14, it is

n n n n nr r r r r r r r( ), ( ), , ( ) ( , ) ( )HC HC
1 2 1 2

8/3
1 1 2 2[ ] = [ ]

(99)
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with

n k sr r r r r r r( ) ( , ) ( ( ) 1 ( ) )HC
F1 1 2 1

2
1 1 2[ ] = [ + ]| | (100)

Use of a one-point Fermi wavevector is explicit. In the
foregoing equation, the s variable is the reduced density
gradient defined in eq 32 (but without the constants) and β
and λ are parameters determined empirically to be β = 0.7143
and λ = 0.01177 for III−V semiconductors. They are averages
of optimal values over the set for the equilibrium volume,
cohesive energy, and bulk modulus relative to conventional
KSDFT results from calculations with the same local
pseudopotentials (BLPS; see Subsection 3.1 for details on
the pseudopotentials used in OFDFT simulations). The
simplified two-point dependence in the HC KEDF is
important computationally, as we discuss in Subsection 3.4.
Above we remarked (in the discussion of constraints) that this
kernel also is not symmetric in r1 and r2. Despite that, the
calculational success of the HC KEDF on systems for which it
was developed (discussed below) suggests, at least, that the
symmetry violation does not have severe consequences for
those systems.
The explicit nonlocality in ωHC via the λs2(r1)|r1 − r2|

dependence is important. Nonzero even when the density is
small (e.g., s → ∞ in the tail of an isolated system), the
dependence is included to approach the proper limit of the
second functional derivative of the KEDF for |r1 − r2| → ∞
(equivalently, q → 0 in Fourier space; again beware of
notational overload). This follows from exact properties of the
response function325,326 given the relationship in eq 82.
In the HEG limit that is the Lindhard function

k
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where q
k2 F

= for spin-compensated systems. (In the HEG, kF
= (3π2n0)1/3 is a constant of course.) (Remark: For sake of
clarity, the variable q in the definition of η is to be considered q
= |G|, the absolute value of the reciprocal space variable, G. For
reference, the allowed G vectors satisfy the relation ei2πr·G = 1.)
Imposition of eq 82 leads to a first-order differential equation
for the ωHC that defines the kernel as a function of η. That ωHC

then is used in eq 100 by appropriate change of the kernel
variable and consideration of the Fourier transform with
respect to the |r1 − r2| scalar variable.
The HC functional provided a major step forward for

OFDFT applied to materials science. For example, for the first
time an OFDFT functional could reproduce, at least nearly
quantitatively, conventional KSDFT results for bulk semi-
conductors. See Figure 7.
From the figure, it is clear that OFDFT can approach

quantitative treatment of such semiconducting systems. Of
course, optimism generated by that good HC KEDF
performance is modulated by the reality that the tested
semiconductor systems were part of the training set used to
parametrize the functional. Subsequent application of the HC
KEDF to systems outside the training set showed that HC is
nevertheless a quality KEDF.327

However, that good performance is restricted to bulk
systems. That limitation motivated a modification of HC to
extend its applicability to highly inhomogeneous systems.91

The modification addressed a numerically difficult aspect of
the functional, namely the s2(r) dependence in the kernel eq

100. Simply replacing the 1 + λs2 dependence with a PBE-like

enhancement factor, 1 as
bs1

2

2+
+ with a = 0.45 and b = 0.1 (note

that the dependence on λ disappears), delivered accurate
surface energies and predicted surface morphologies for metals
and selected semiconductors. The resulting KEDF is called
revised HC (revHC). An important achievement was that
revHC reproduced reasonably well the reconstructed Si(111)
surface morphology predicted by conventional KSDFT.
What about isolated systems, i.e., gas phase chemistry? The

CAT family of functionals43,299,319−321 gave a clear hint that if
nonlocality is taken into account, isolated systems also could
be approached by OFDFT in close-to-quantitative accuracy
similar to what HC and revHC deliver for bulk systems and
surfaces.
To understand recent progress on that issue, it is useful to

take a step back historically. Harking back to functional
integration, e.g. eq 77, Chai and Weeks48 went to the potential
(in essence vθ) as the key. They developed a nonlocal
functional that reduced properly to the TF and vW forms and
had proper low-q or high-q linear response for weakly
inhomogeneous systems. (Remark: We remark that q here is
used in a way consistent with the literature. A more sensitive
variable to use would be q

k2 F
= because of its dependence on

the local Fermi wavevector.) Both forms have the Pauli
potential328

v c n c n

d f k n

r r

r r r r r
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3

( )
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( )

( ; ( )) ( )

CW
TF TF

F

2 2/3= +

| | (102)

with α and β constants related by β = 2/3 − α. The value for
the version that satisfies low-q constraints (“LQ”) is 1

2
= ,

while large-q constraint satisfaction (“HQ”) requires α = 2/3.
The Fourier transform of f(|r − r′|; kF(r′)) with respect to |r −
r′| for a fixed r′ is known explicitly, f(̂η(r′)) = FL(η(r′)) −
3η(r′)2 − 1 with FL(η) the inverse of the Lindhard response,
eq 101.

Figure 7. Energy differences (per primitive cell) between the
diamond silicon and zinc blende phases of III−V semiconductors.
OFDFT was carried out with the HC functional with parameters as in
the text. Conventional KSDFT (denoted as “KS”) calculations used
the same local pseudopotentials for even-handed comparison.
Reprinted with permission from ref 77. Copyright (2010) American
Physical Society.
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Whether to use the LQ or HQ version would seem to be
another example of design choice, but the advantage of
hindsight, specifically the development of the N-represent-
ability criteria already discussed,259 enables a clear conclusion.
For all but two of the 13 atoms they treated, self-consistent
solution and use of the Herring path245 with the LQ version
gave Etot

LQ < Etot
KS. In contrast Etot

HQ > Etot
KS for all 13 atoms. At least

on that set, the HQ functional imputed from the HQ kinetic
potential is N-representable. The LQ one is not. Encourag-
ingly, the MARE for the HQ functional on those 13 atomic
total energies was only about twice that of the much more
complicated CAT functional (discussed above).43,299,319−321

The atomic densities at the nucleus n(0) from HQ are much
worse than from CAT however. Such differences led Chai and
Weeks to discuss nonuniversality of KEDFs and KE potentials
with respect to pseudopotentials (recall discussion of LKT
above), apparently the first to do so.48

For application to solids with near linear-scaling, N N( ln )
with N the grid count, the HQ weight function was expanded
in a Taylor series around a reference density328 in a way similar
to WGC and XWM two-point functionals.49,297 (We remark
that such a Taylor expansion is not strictly needed because of
the simple dependence of the Chai−Weeks kernel on the local
Fermi wavevector. Thus, spline techniques, such as those
discussed next for LMGP and HC, would be applicable to this
functional. Those techniques were not in common use at the
time the Chai−Weeks functionals were proposed.) For
crystalline Al, both the lattice parameters and the energetic
sequence of phases (fcc lowest, then bcc, sc, diamond) came
out correctly with HQ. For Si, though the lattice parameters
were reasonable, the order of crystalline phases was completely
wrong, sc, fcc, bcc, dia (most to least bound), vs the proper
order of dia, bcc, sc, fcc.
We return to the Chai−Weeks scheme below. Here, we

focus on the next use of the functional integration approach,
the recent development of the LMGP two-point functional
with a density-dependent kernel.88 Based on the Mi−Genova−
Pavanello (MGP) KEDF,81 LMGP targets isolated systems by
proposing a model second functional derivative of Ts. It is used
in a manner similar to eq 79 (but limited to a single t
integration) to yield a potential. The model second functional
derivative is crafted so that it (1) reduces to the inverse
Lindhard function for uniform densities; (2) is augmented by a
term that imposes correct 1/q2 limiting behavior when q → 0;
(3) is symmetrized with respect to the interchange n(r) ↔
n(r′); and finally, (4) is fully density dependent, like HC and
CAT. Full density dependence is computationally achieved in
the LMGP family by a numerical scheme that is described in
detail in Subsection 3.4.
The LMGP form for the second-functional derivative of the

nonlocal part of the KEDF is

T
n n

n G n n

n

r r
r r r

r r r

( ) ( ) (3 )
( ( )) ( ), ( )

( )( ( ))

NL
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2 2

2 1/3
1/6

1/6

= [ ]

| | (103)

Following eq 82, the Fourier transform of GNL[n(r), n(r′)](|r
− r′|) evaluated at the uniform density n(r) = n(r′) = n0 is
related to the inverse Lindhard function:

G n
k

( ) ( ) 3 1NL
F

0 2 Lind
1 2[ ] =

(104)

with η defined as previously with a constant kF = (3π2n0)1/3.
Fourier transformation of GNL[n0](η) leads to GNL[n0](|r −
r′|). This makes χLind effectively a function of n0. The
dependence of GNL[n0](|r − r′|) (shorthand notation GNL
below) on n(r) and n(r′) then is included approximately as
follows

G n n G n nr r r( ), ( ) ( )LMGP NL 0[ ] = [ = ] (105)

The LMGP KEDFs include the correct q → 0 limit by
adding a term to eq 103 designed to mimic q−2 limiting
behavior. Finally, an integration procedure brings the second
derivative in eq 103 to the corresponding potential. The
outcome is

T
n

v d n dt
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where nt(r′) is defined as eq 78. Equivalently, eq 79 gives the
energy.
When computing the t-path integral, whether numerically or

analytically, we note that because of eq 105, the LMGP kernel
imposes t = t′ in the integral eq 106. To ameliorate this
approximation, kernels of imposed symmetrization were
considered. For example, arithmetic symmetrization leads to
the LMGPA functional

G n t n t G n t G n t,
1
2LMGPA NL NL0 0 0 0[ ] [ [ ] + [ ]]

(107)

That provides an improved t-path integration compared to
LMGP because in obtaining the potential one needs to impose
t′ = 1. A geometric symmetrization also was considered: see
the Supporting Information document of ref 81 for more
details.
The kernel resulting from the integration then depends on

n0 and is used in a similar way to eq 100 to obtain the potential

v n n nr r r G r G r( ) ( ) ( ) ( ( )) ( ) ( ) ( )NL
1/6 1 5/6= [ [ ] | | [ ] ]

(108)

Here n r G( ) ( ( ))[ ] | | = dt T
n n

n n tn tn
r r

r r0
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É
Ö
ÑÑÑÑÑÑÑ, G is

the reciprocal space variable, as before,
n

G
2(3 )2

0
1/3= | | , and is

the Fourier transform operator. It is important to remark that
while the model second functional derivatives have been
symmetrized with respect to the t-path integration variable, the
underlying approximation n(r), n(r′) → n0 remains. Thus, in
eq 108 above, the potential and the density in the kernel are
evaluated at point r, effectively imposing n0 = n(r) in the
definition of the kernel. Such an approximate algorithm is
dictated by computational scaling, which is kept at N ln(N). It
would be much steeper and computationally prohibitive for the
kernel to be formulated as a function of both n(r) and n(r′).
The performance of LMGP is more than satisfactory for

metal clusters and III−V semiconductor quantum dots; see the
discussion in Section 4. As we discuss later in this section,
LMGP also has been employed successfully in subsystem DFT
simulations.89

The development of HC and LMGP has motivated
formulation of at least two further KEDFs, LDAK-X90 and
XWM.49 “X” in LDAK-X gives the name of a parent functional
from which the kernel is borrowed. For example, when X =
MGP, the MGP kernel81 is used. For X = WT, the WT kernel
is used. LDAK-X, in essence, exploits the same underlying
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formalism as LMGP. However, it differs from LMGP in the
definition of the energy. It avoids the potential-to-energy
integration of eq 79 and instead defines an ad-hoc energy
expression from which the corresponding potential is obtained
by functional differentiation.90 LDAK-MGP was shown to
improve upon LMGP considerably for an array of clusters and
other isolated systems.90

The XWM KEDF49 handles the Fermi wavevector in a way
similar to that in symmetrized CAT and WGC (see text after
eq 96). Also similarly to WGC, a computationally amenable
algorithm arises from Taylor expansion of the kernel around a
reference constant density, n0. As noted with other two-point
functionals, that prescription makes XWM primarily suitable
for bulk systems unless a recipe for n0 is invoked (recall what is
done with the WGC KEDF). A desirable alternative would be
an algorithm or approximation that could evaluate WGC and
XWM without explicit double integration or being tied to a
reference density. However, as of now, such an algorithm has
yet to be proposed.
A different approach has been pursued by the Della Sala

group. They proposed two new types of nonlocal KEDFs with
density-dependent kernels which are entirely defined in real
space and do not rely solely on the Lindhard function:
yGGA329 and uGE4m.291 These KEDFs extend meta-GGA
functionals with the inclusion of nonlocal ingredients. Their
energy expressions are based on enhancement factors
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The enhancement factors were developed to satisfy a
number of conditions. For example, uGE4m recovers the
semiclassical expansion of neutral atoms for Z → ∞.291

Instead, yGGA focuses on reproducing the Lindhard response
for uniform densities in the low q region. To achieve this,
several enhancement factors were proposed, such as (we use a
short-hand notation for the functions involved with all of the
following being functions of r: s, q, u, yα, ηu, νu, n, x1, and x2),
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For FsuGE4m the values are ν = 0.1826, f1 = (1 + a νu1/2)−1/2, f 2 =
(1 + νu1/2 + b νu)−1, and u

1
1 u

= + , where u
u

n3(3 / )1/3 1/3= .

The parameters defining f1 and f 2 are a = 450 and b = 240. For
FsyGGA, i.e., the yuk4 functional from ref 329, the G function is

defined as G(s2, q) = T3.3(x1)T2(x2), where x s1
40
27

2= ,

x q2
40
27

= , and T x
e

e( )
4

1
2x

x= +
+

.
Although the uGE4m KEDF is applicable solely to finite

systems (the u function is undetermined for periodic systems
due to its divergence, which is canceled by charge neutrality in
those systems), in application to a variety of isolated systems
(jellium clusters, atoms, and molecules) it delivered good
results. The yGGA KEDFs were benchmarked against jellium
clusters and their ground-state response to external perturba-
tions as well as atoms (non-self-consistently) and showed
promising results. An implementation of yGGA functionals for
nonspherical systems is not yet available. The recent
introduction of these functionals suggests the need and
opportunity for further assessment of them.
Another interesting approach310−312 develops two strategies

to obtain inverse KS response functions to be used to define
KEDFs and their functional derivatives. The strategies differ in
the way the response functions are represented. In the first
case,310,311 the response functions are mapped on an ad-hoc
1D coordinate. The map applied to the electron density is
given by ne(ε) = ∫ drn(r)δ(ε − vext(r)), which is valid only for
isolated atoms and pure elemental crystalline solids. The KS
response function therefore is transformed as χs(r, r′) → χs(ε,
ε′), a form which can be handled more efficiently for inversion.
In ref 312, the inversion is handled instead by a spectral
representation of the response function. Once χs−1 is obtained,
approximations for the non-interacting kinetic energy and its
derivative are formulated as an expansion around a reference
density, n0(r). Following eq 76

T n T n d v n

d d n n

r r r

r r r r r r

( ) ( )

1
2

( ) ( , ) ( )

s s T

s

0

1

s
[ ] [ ] +
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where δn = n − n0. Even though the results in refs 310−312
seem encouraging, the approach needs further exploration and
the underlying approximations need to be characterized and
delineated more clearly before it can be considered viable for
broad applicability.
Another interesting and potentially promising real-space

route to construct KEDFs is to define a model 1-rdm that
depends purely on the electron density. This was attempted by
Chakraborty et al.260,261 Given a 1-rdm, γ(r, r′), the kinetic
energy associated with it is

T n d d nr r r r r r
1
2

( )( ; , )s r
2[ ] = [ ]

(116)

Chakraborty et al. proposed model 1-rdms of the form

n n n g kr r r r r r; , ( ) ( ) ( )F[ ] = | | (117)

This form is motivated by DFA development for the exchange
energy, as well as having some resemblance to two-point
functional ingredients already encountered. The effective
wavevector, kF, however, is a function to be defined. It can
be either local or nonlocal. In principle eq 117 is exact, as it is
derived directly from the formal definition of the exchange
energy in terms of the exchange hole.102 Substitution of eq 117
in eq 116 gives

T n d
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where the double prime means second derivative.
Even though the function g(x) should satisfy several known

conditions (e.g., g(0) = 1, g′(0) = 0, g″(0) < 0, and −1 < g(x)
≤ 1 for the case of x ≤ 0), those are not sufficient to determine
the function fully. In ref 260, the g(x) for the HEG was chosen
to ensure that the constructed KEDFs are exact for uniform
densities, i.e.,

g x x x x
x

( ) 3
sin cos

HEG 3= i
k
jjj y

{
zzz (119)

The remaining important step to generate a KEDF in this
approach is to construct the effective Fermi wavevector, kF,
that appears in the argument of g in eq 117. A straightforward
option is LDA in eq 94. That choice simply yields TFvW.
Another option is the symmetrized two-point form defined in
eq 97. In principle there are others. What Chakraborty et al.
did was to impose the diagonal idempotency condition

d nr r r r r r( , ) ( , ) ( )= (120)

That leads to nonlinear integral equations that correspond
either to the weighted density approximation (WDA) in the
one-point case (1WDA) or the two-point WDA (2WDA) for
kF.
Benchmarks for the kinetic energies of H-Ar atoms and

some small molecules showed that those functionals do not
deliver quantitative accuracy. However, both the 1WDA and
2WDA improve considerably on the LDA results (i.e., kF(r) =
(3π2n(r))1/3). Table 1 of ref 260 shows that the 2WDA KEDF
gives kinetic energies lower than the reference for atoms larger
than Si, an indication of non-N-representability. Figure 8

(taken from the paper) shows the eigenvalues of the model 1-
rdms to have Pauli principle violations (i.e., eigenvalues larger
than 1) for Ar, one of the atoms for which the KEDF gave a
value below the exact Ts from conventional KSDFT.
Interestingly, the figure also hints that the violations occur
mostly for core orbitals. That suggests that non-N-represent-

ability might be more problematic for all-electron calculations
than for pseudopotential-based OFDFT calculations.
Another interesting observation is the fact that, at least for

Ar, the various approximations for the effective kF function
(LDA, 1WDA, 2WDA) lead to at most ensemble-N-
representable densities with occupations smeared across
several natural orbitals.
To recapitulate, though there is no two-point KEDF yet that

works equally well for both isolated and bulk systems,
substantial progress has been made. Density-dependent kernels
are essential, both formally and practically. The double-integral
computational burden can be avoided by a combination of
splines and convolutions; see Subsection 3.4. At present, the
HC and revHC functionals are perhaps still the best two-point
functionals for bulk systems and surfaces. Encouragingly, as
shown in Table 4 and Figure 6, there also are one-point
KEDFs such as LKT86 that exhibit comparable (or nearly so)
accuracy. This suggests judicious use of both forms together as
a possible way forward, as exemplified by the uGE4 and yGGA
KEDFs we discussed. For isolated systems, the most advanced
two-pointers are LDAK-MGP and LMGP. However, a better
and more physical approach to the density dependence of the
kernel is given by the CAT, WGC, and XWM functionals. The
unresolved challenge to a full implementation of those
functionals is to avoid double integrations or Taylor
expansions.

2.4.3. Other Explicit KEDFs. Improvement of one- and
two-point KEDFs of the types we have described thus far
comprises the great majority of effort. We treat machine-learnt
functionals separately below. But there are other lines of
exploration of analytical forms. This section therefore provides
a brief survey of those other lines of which we are aware, with a
crucial caveat. Given the significance of DFT and of Ts in its
utilization, it is essentially inevitable that we will have failed to
notice some of those logic roads less-traveled. The reader thus
cautioned, we press on.
Sporadically in DFT development since the publication of

the HK theorems, the relationship of Ts to information theory
concepts has drawn interest.330 Such investigations date to
Sears, Parr, and Dinur243 in 1980. The part of their discussion
that has remained relevant to OFDFT goes as follows.192

Factor the number density n(r) out of the squared-modulus of
some Ne-body wave function of interest to get a conditional Ne
− 1 electron density:
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The expectation value of the Ne body KE operator then is
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The von Weizsac̈ker term is identified with the Fisher
information entropy, a measure of localization. If the state
Ψ(r1...rN de

) of interest is the full many-fermion ground state, the
nonlocal term beyond TvW has been called the correlation
part65,66,331,332 and is discussed in terms of the Shannon

Figure 8. Natural orbital occupation numbers for the model 1-rdms
for three choices of the effective Fermi wavevector to be used as the
argument of the g(x) function in eq 117: LDA, 1WDA (1 pt norm),
and 2WDA (2 pt norm) for the argon atom. Calculations are spin
polarized, and p corresponds to the value of the exponent γ (not to be
confused with the 1-rdm which bears the same symbol) defined in eq
97), which is a parameter used in the symmetrization procedure of the
model 1-rdms. Reprinted with permission from ref 260. Copyright
(2017) Springer.
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information entropy. (Note that this is not the correlation KE
as defined in KS DFT; recall above.)
Of more direct relevance for OFDFT, if the state Ψ(r1...rNde

)
is chosen to be the KS determinant, ΦKS(r1...rNde

), then eq 122
yields
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Manifestly, the second term is Tθ[n], eq 35. Since
f KS(r1...rNde

∥r1) ≥ 0, this decomposition is a direct demon-
stration of Pauli term positivity and, hence, also of the lower-
bound property of TvW.
The same factorization route in fact was taken by Levy,

Perdew, and Sahni333 to demonstrate the existence, independ-
ent of the HK formulation of DFT, of a density eigenvalue
equation akin to eq 38,

v n nr r r
1
2

( ) ( ) ( )2
effective

1/2 1/2{ }+ =
(124)

but with detailed contributions directly from the Ne-electron
wave function and Ne − 1 conditional factor. Equivalent routes
have been explored334,335 in specific applications of the exact
factorization approach.336

A different way to exploit the decomposition is to do a
Levy−Lieb constrained search on the conditional factor
f(r2...rNde

∥r1) via Monte Carlo calculations.65,337 The approach
is to use a model form for f(r2...rN de

) constructed by considering
necessary conditions on the Ne-fermion wave function in
conjunction with Monte Carlo sampling on the HEG over a
finite range of comparatively high densities 0.55 ≤ rs ≤ 1.81.
The result was a proposed KE functional which, in our
notation, is

T n T n d n A B nr r r( ) ln ( )GDS W08 1 1[ ] = [ ] + [ + ] (125)

with A1 = 0.860 ± 0.022 and B1 = 0.224 ± 0.012. Later another
version66 led to what was denoted as GHDS10,

T n T T d n A B nr r r( ) ln ( )GHDS W TF10 2 2[ ] = + + [ + ]
(126)

with A2 = 1.02 and B2 = 0.163.
Both functionals have an evident information-theoretic

structure and, as well, the same structure as the intrinsic free
energy of the classical ideal gas; see ref 338, Secttion 3.1. That
illustrates a problem discussed in ref 339. Both functionals
violate the positivity constraint eq 35 except for certain density
ranges. The analysis led to a proposed modified information-
theoretical form that also is positive definite. How to
implement that modified form is not obvious, since it relies
on the use of a maximal bounding function for the density. The
examples given in ref 339 suffice for the purposes of analysis
but do not seem practical.
The GDS08 and CHDS10 KEDFs also violate uniform

scaling requirements, a difficulty addressed by Delle Site340

with an exponential ansatz for the conditional factor. That
paper also connected the conditional factor to a classical
partition function. Additional analysis in the broader context of

information theory is in ref 341. More recently, Seshaditya et
al.342 have used the same approach to discuss changes in
approximate functionals associated with changes in system
dimensionality.
Two other connections deserve mention. There is a version

of DFT formulated as a local thermodynamics which Nagy
recently has shown to be connected with information theory.
See ref 330 and citations therein. A version of the conditional
probability factorization as an approach to the XC energy has
appeared very recently.343 In it, a classical approximation for
the effect of the selected electron is exploited. So far as we
know, the approach has not been applied to the KEDF
problem.
An alternative route to constructing an approximate KEDF

is one we have mentioned already, namely to approximate vs :=
vvW + vθ directly. Given that, one could solve eq 38 self-
consistently for n(r). Then the total energy could be evaluated
by either the virial relation, eq 45, or the line integral, eq 77,
already mentioned. The approach via the virial relation (or
similar “bi-functional”; see below) is particularly well adapted
to single-point approximations. Such schemes are examples of
potential functional theory.344−347 They exemplify the
observation that “An energy functional of the density is often
useful even though the density is obtained by a separate
method.”348

Regarding OFDFT specifically, the potential functional
approach in the one-point context seems to have been taken
up first in earnest by Chai and Weeks48,349 (their two-point
scheme, discussed already, came later). In a way it was a
confirmation of earlier study by Herring.245 He had concluded
that it seemed formidably difficult to devise a vs approximation
that satisfied the counterpart to the nonlocal spatial symmetry
differentiation requirement, eq 85. Chai and Weeks argued, on
the other hand, that the nonlocality of τs is substantially more
complicated than that of vs because the integral of τs over all
space is required (recall the two-point argument) whereas vs is
local. In ref 349 therefore, they contrived a one-point scheme
for the kinetic potential that, in our notation, has the Pauli part

v c n n
n

n
n
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3 8

1
4

MTF
TF

2/3
2

2

2
= | | +
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(“MTF” means modified Thomas−Fermi, Chai and Weeks’
term.) The value α = 1 gives the correct Kato cusp condition
behavior of n(r) at atomic nuclei but poor n(r = 0) values, a
result that is unsurprising since the ∇2n contribution is
removed from vθ

MTF for that α. For the H atom for example,
vθ
C−W < 0 for r > 1.12 au. To keep vθ

MTF from going negative
asymptotically for an exponential density requires 1

2
. Chai

and Weeks chose 1
2

= for further investigation of MTF
because that value gave the correct asymptotic behavior for n.
That choice sacrifices the nuclear cusp condition, because vθ

MTF

has a negative singularity at the origin.
The bare density Laplacian in vθ

MTF does not contribute to
the linear response, so the MTF linear response is the same as
from TFλvW with 1

2
= . Atomic total energies obtained from

vθ
MTF by the line integral method are below the KS values, so if
vθ
MTF corresponds to the functional derivative of some
(unknown) Tθ

MTF, that putative KEDF is not N-representable.
As MTF is strictly local, Chai and Weeks addressed its

deficiencies by constructing the nonlocal kinetic potential48

that we discussed above; see eq 102 and text therewith.
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Construction of explicit potential functionals for OFDFT via
exploitation of virial-type relations seems to have lain fallow
until taken up again by Finzel and co-workers.350−355 To
summarize an extensive series of papers, introduction of
explicit atomic shell structure is undertaken by exploitation of
expressions akin to the virial relation, eq 45. Critically,
however, they take it as a “bi-functional” of both n(r) and
some generating potential vg,

T d n vr r r r
1
2

( ) ( )g= ·
(128)

See Lemma 2, corollary in the Appendix of ref 35 for
justification. If vg were to be vθ, the resulting Tθ value would be
exact for the exact density. Instead what Finzel and co-workers
consider is the construction of physically and chemically
sensible approximations to vg that may in fact not be the
functional derivative of anything but nevertheless give Tθ
estimates of useful accuracy.
Perhaps the starkest example is to use a stepped potential.350

Here we give a slight generalization of that in the bifunctional
setting to get to the proper result for a central-field atom of
Nshell shells. Assume that the Ne-electron density is entirely
inside a radius Rshell. Then

N drr n r4 ( )e
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(129)
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and positive constants ki such that

k r R k r r r i N( / ) : ; ; 1, ...,shell i i i shells1= < =
(131)

with ki+1 > ki to mimic mean shell energies, r0 = 0, and the
other ri spaced in some chemically sensible way. Observe that
the only character this vg shares self-evidently with a proper
atomic vθ is that it is everywhere positive and decreases
radially. For candidate density, eq 128 then gives
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Ergo, one can get a sensible numerical value for the Pauli KE
with a step-structured potential vg that has no obvious
relationship (indeed, may have none other than generic
character) to the functional derivative δTθ/δn.
Much more realistic generating potentials can be con-

structed from atomic constituents or fragments of molecules or
prototype molecules (“pro-molecules”) assembled from atomic
arrays. See refs 352−354. The challenge of this approach is, of
course, that precisely because vg does not have a known
connection with some δTθ/δn, development of better vg
models requires very detailed and inventive analysis of the
shell structure and bonding regions of highly diverse types of
densities. The other issue is the candidate density itself. Again,
pro-molecules are promising candidates.
Direct solution for the Pauli potential also has been

considered via a differential equation. For that line, see refs

356 and 357. The essential idea is that the OFDFT Euler
equation for n1/2(r), eq 38, and the differential equation for
vθ(r) can be solved self-consistently by cycling between solving
for the density for a given vθ(r) and then updating vθ(r) with
the new density. As actually implemented in the proof-of-
concept calculation on the Be atom in ref 357, the differential
equation for vθ had contributions from the known solution to
the ordinary KS problem. The argument in favor of pursuing
the approach without such knowledge is that it may be easier
to construct functions of r that approximate those contribu-
tions than it is to construct KEDFs, which are functionals of n.
A different kind of decoupling of the Pauli KE and the Pauli

potential appeared very recently. Recall mention, at the end of
Section 2.4.1, of the WPBEK GGA KEDF.298 To cope with its
positivity violations, those authors proposed a remedy that
does not, in fact, depend on the details of Fθ

WPBEK but can be
presented usefully for any GGA Fθ

approx.
As a first step, ref 298 introduces two reference enhance-

ment factors [their eq 43],

F s
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b s
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2

4 2=
+

= (133)

They set α = μT − (5/3) with μT = 5/27 (from the gradient
expansion) or 0.23889 (from the semiclassical neutral atom).
The parameters bi were determined by calculating

I d Fr r r( ) ( )i TF i,= (134)

with the HF Li atom density for i = 1 and the HF Rn density
for i = 2 and requiring that the results satisfy

T T

T T
Li

Rn

,1 ,

,2 ,

<

> (135)

The reference values on the RHS come directly from the
atomic calculation by simple subtraction of the von Weizsac̈ker
KE. The result is b1 = 50 and b2 = 0.5.
With the parameters set, the next step is to impose the

condition
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r r r r
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(1 ) ( ( ))
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TF

approx

approx
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2
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1 2

= =
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(136)

One therefore has a different Pauli enhancement factor that is
properly positive but yields the same KE as the original Fθ

approx,
namely

F A F A F: (1 )mix
,1 ,2= + (137)

It is this Fθ
mix that would form the vθ = δTθ/δn in the OFDFT

Euler equation. Though ref 298 obtained numerical results
solely post-SCF with HF atomic densities, a reasonably
obvious next step would be to evaluate Aθ on a pro-molecule
(to avoid having to calculate δAθ/δn at each SCF cycle) and
use the result as a GGA KEDF for the physical system for
which the pro-molecule is the counterpart.
We conclude this section with pointers to three other

elements of the literature. First, there is a relatively recent
effort to formulate corrections to the TF density without the
conventional gradient expansion.358 The essential idea359 is to
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“trotterize” the density written in terms of the time evolution
given by the KS Hamiltonian

n H dt
it

q p( ( , )) :
2

eKS
C

iH tq p( , )KS=
(138)

The contour is the real axis from −∞ to ∞ with the exclusion
of a small circle in the lower half-plane centered on the origin.
Expressed in terms of the quantum mechanical position and
momentum operators, the KS Hamiltonian is

H
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v nq p q q( , )
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( )KS KS KS

2 2

= + | + |
(139)

With these expressions, one can construct approximate
factorizations of the exponential. For example, the first
correction past TF given in ref 358 is

U t e e( ) e e eiy t p ix t n iy t p ix t n iy t p mq q
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2
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(140)

with parameters x1, x2, y0, y1, and y2 determined by analysis of
the requirement ∇∇μKS = 0. Whether the various approx-
imations that result from this procedure can be used to
construct or constrain better KEDFs remains to be seen.
Second, semiclassical corrections to the TF model also have

been attempted25,40 and still are an active avenue of
research.360 For the sake of a contained presentation, we do
not discuss these schemes further.
Third, though there has been considerable effort on local-

scaling approaches to KEDFs, little seems to have occurred
recently. Therefore, we refer the reader to refs 192 and 217
and references therein.
2.5. Machine-Learnt KEDFs
In recent years, machine learning (ML) methods have
permeated most fields of science, including electronic structure
theory.361−365 The main focus has been to accelerate the
computationally intensive parts of an atomistic model, from
e l e c t r o n i c s t r u c t u r e w i t h c o r r e l a t e d w a v e
function methods,366−369 to the fitting of potential
energy surfaces,370,371 to the prediction of quantities specific
to KSDFT.82,83,147−154,372−381

When fitting energy surfaces (either for small molecular
systems or for condensed phases) the total electronic energy or
potential energy surface is learned using an appropriate
representation of the nuclear positions

Z R E Z R, ( , )
ML

{ } { } (141)

In the present context, this section focuses on ML techniques
that can be used to predict electron densities, KEDFs, and
other pure functionals of the density. The learning procedure
therefore is centered on the founding theorems of DFT. Recall
that they establish the bijective maps

n n
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r r
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The map eq 142 has been exploited to learn XC DFAs in
recent years with encouraging results for model systems376 and
molecules.375,377,380 A general purpose double-hybrid XC DFA
also has been optimized with supervised learning techni-
ques.382 Perhaps the most impressive achievement is the
DeepMind21 (DM21) DFA.381 It derives completely from a
ML model trained on molecular data as well as fictitious

systems carrying a fractional number of electrons. DM21 is
found to treat systems successfully that are problematic for
physics-based XC functionals (i.e., over-delocalization of the
spin density and the treatment of electronic strong
correlation). In a follow-up analysis,383 DM21 was found to
overestimate the hydrogen bond strength in water systemati-
cally, thereby pointing to the need for further improvement of
the functional in order for predictive chemistry and materials
science simulations to be undertaken with confidence.
Moving closer to the subject of this review, several works

have focused on either the non-interacting kinetic energy or
the general case,82,83,147−150,152−154,360,373,374,378 eq 17, of the
universal functional. As of now, ML KEDFs have not
supplanted those developed from physical and mathematical
reasoning as discussed in the preceding subsections. However,
the general trend is that ML functionals improve as ML
techniques also improve.154

An interesting and important hurdle that developers of ML-
based functionals need to overcome is the inability, so far, of
such functionals to provide accurate functional derivatives.
Specifically, learning the energy functional does not guarantee
the generation of an accurate functional derivative (the
associated potential). Without that, the calculation of the
density by direct minimization methods would be extremely
challenging. Instead, the issue was tackled first by nonlinear
denoising techniques.373 Meyer et al.155 as well as Ryczko et
al.160 showed that a neural network trained concurrently on the
functional and its derivative achieved excellent results for both
one-dimensional and complex three-dimensional systems.
Ryczko et al.160 also showed that it is possible to increase
the number of training data points by utilizing density-KEDF
pairs for non-self-consistent vKS potentials. They could train a
neural network with data extracted from only two single-point
conventional KSDFT simulations.
In a recent study, Imoto et al. reported158 encouraging

results for selected bulk materials, ranging from metals to
semiconductors and rock salt. The electron densities obtained
from a ML model (neural network) improve upon the
densities resulting from modern GGA KEDFs (such as
PGSL172 and LKT86). However, bulk properties derived
from the model still are not competitive with physics-based
KEDFs.
A fresh approach is simply to learn both the density-to-

energy map and the external potential-to-density map as in eq
143.148 It is worthwhile to sketch how the map in eq 143 was
learned in ref 148 by use of kernel ridge regression. The
density, n(r), is given as a functional of the external potential,
n[vext](r), using a regression with a Gaussian kernel,

n v k v vr r( ) ( ) ,ext
i

N

i ext i

s

[ ] = [ ]
(144)

Observe that the kernel function depends on the external
potential vext as well as the external potentials considered in the
training set, {vi}, whose number of samples is Ns. The chosen
Gaussian kernel has the form

k v v
v v d

r
r r r

, ( ) exp
( ( ) ( ))

2ext i
ext i

2

2[ ] =
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ (145)

where σ is a hyperparameter of the regression. (Remark:
Hyperparameters are adjustable parameters to fine tune the
regression.) The electron density and the unknown functions,

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.2c00758
Chem. Rev. 2023, 123, 12039−12104

12065

pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.2c00758?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


βi(r), were expanded in a plane wave basis. With that, eq 144 is
cast as a linear system which is solved with order O(Ns

3)
operations. The scaling of the algorithm is deceptive because
the linear system needs to be solved only once. Once the
solution is found, the map in eq 143 has been learnt and can be
evaluated with order O(Ns) complexity through eq 144.
Once the map of eq 143 is known, it is natural to use the

map in eq 142 to learn the electronic energy. This also was
done in refs 84 and 148, which showed that the resulting
method could be employed in an AIMD simulation of a
medium-sized organic molecule recovering known dynamical
processes. The regression in eq 144 naturally recovers the
potential-to-density map for potentials close to the training set.
Reference 84 further dwelled on this issue and showed that it is
possible to learn a single map for a small set of chemically
similar molecules (resorcinol, phenol, and benzene were
tested).
The same research groups showed that the ML procedure

can be improved further by relating high-level total energies
(e.g., computed by coupled cluster methods) with the electron
density from conventional KSDFT calculations with a GGA
DFA (termed Δ learning). The outcome was results very close
to those of the CCSD(T) reference. Those are much improved
compared even to the conventional KSDFT values.84

Besides the work in refs 84 and 148, other lines of research
for generating ML KEDFs have been to construct density-
based descriptors (such as n(r), |∇ n(r)|, ∇2 n(r)) to be used
as a basis to train neural networks (NN). In principle, however,
only the electron density should be needed as its derivatives
are purely dependent on the density itself. Meyer et al.,155 for
example, employed only n(r) as the main descriptor.
There are studies that seek to learn the kinetic energy

density,83,150,153,154 an approach that implicates the gauge
problem discussed previously. Interestingly, the ML focus in
that context so far has been on the nonpositive definite KS KE
density, i.e., r( )s = r r( ) ( )i i i

1
2

occ 2 . However, because it
differs from the positive-definite form (see eq 23) only in a
surface term that depends solely on the density, n r( )1

4
2 , the

learning procedure can be carried out on either form of the KS
KE density.
An alternative to that approach proposed recently159 is to

learn a quantity that carries information about the Pauli
potential, defined in eq 36, rather than the KE density.
Reference 159 proposes to use the source of the Pauli
potential, defined as ρc(r) = 4π ∇2vθ(r), rather than vθ itself.
Though the results seem encouraging for predicting the
electronic structure of atomic systems, the concept is fairly
unusual and needs additional exploration and validation.
In the studies mentioned above, once the descriptors and

the KS KE density, τs(r), and/or potential, vs(r), are generated
by a conventional KSDFT calculation of the electron density,
the NN can be trained against τs(r). There are various options
for approximating energy and potentials by regression.
However, it appears that convolutional NNs provide superior
representation of both potential and energy155 in comparison
to kernel ridge regression because of their ability to capture
nonlocal correlations (i.e., the ones that are captured by two-
point functionals).
Another important line of research related to ML and DFT

has been the quest to predict molecular and periodic system
electron densities directly. The challenge addressed is this:
given atom-centered descriptors, is it possible to predict the

electron density of molecules and periodic systems? For
example, in refs 384−387 the electron density is the target of
various ML approaches. Virtually all methods surveyed utilize
atom-centered basis functions to represent the electron density
around each atom. The functions range from Gaussians
multiplied by spherical harmonics to numerical functions.
These produce electron densities with surprising trans-
ferability,385 even though the deviation of the predicted
densities from the parent KSDFT method averages a few
percent (or a few tens of meV/atom when energies are
considered384,387). While such accuracy can be regarded as
already quite impressive, it still does not reach chemical
accuracy.
It is clear that ML is making important contributions to

KEDF development. They are almost certain to increase in
number and impact, in parallel with ML development of XC
functionals.381,388 It also is clear that the same exact conditions
that constrain the development of physics-based KEDFs
should play an increasingly important role in ML-based
KEDFs to guide the training toward accurate and transferable
KEDFs.149,372,389 See, for example, refs 381, 390, and 391.
2.6. Testing

From early on, KEDFs were tested for accuracy of their KE
values calculated on HF densities. Though reasonably
motivated in the sense of historical context, in our opinion
there is little value to that procedure now (except perhaps for
comparison with earlier literature). More than 15 years ago, ref
63 showed that a more meaningful post-SCF screening of
KEDFs is to evaluate whether they give molecular binding
when evaluated on the correct KS density (for a prescribed XC
DFA of course). The argument is plain. A perfect KEDF would
reproduce the binding energy and electron density (both as a
function of geometric parameters) from the ordinary KS
solution with a prescribed XC DFA. Evaluation of a candidate
KEDF on the conventional KS density therefore tests whether
that KEDF can deliver the right energy for the right density. If,
at that stage, the deviations are larger than the target accuracy
for the KEDF, then it is not worthwhile to test the vθ for that
KEDF in the OFDFT Euler equation. This is precisely the
identification of functional-driven errors as distinct from
density-driven errors as done for XC potentials in the
conventional KS context, except that here the reference
density is, of course, that from the conventional KS
treatment.392,393

Reference 63 also made an explicit choice of criteria for
testing. The limitations of simple GGA KEDFs led them to a
design choice: “... we are compelled to refocus on the original
objective: an OF-KE functional parametrization solely for
reproducing the KS forces, irrespective of the resulting total
energy.” Because the forces on the atoms depend solely on the
electron density, the requirement to match the forces
determined by OFDFT with an approximate KEDF with the
conventional KSDFT forces is equivalent to requiring
matching of the electron densities of the two methods.
It is not uncommon to study results from a KEDF for which

the errors may be below the conventional (orbital) Ts. Such
cases are clear violations of N-representability. Therefore, it
would seem to be more appropriate to emphasize those energy
deviations that are below the conventional (orbital) Ts
compared to those that lie above. Doing so would bias
construction of KEDFs to minimize the likelihood of non-N-
representability.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.2c00758
Chem. Rev. 2023, 123, 12039−12104

12066

pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.2c00758?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


As an example of retrospective testing, note that the non-N-
representability of TFλvW with λ < 1 also means that both the
HCD-1 and HCD-2122 KEDFs also are not N-representable,
since THCDi[n] ≤ TTF(1/5)V W[n].
The gauge ambiguity of the KE density discussed above

should be taken into consideration when devising measures for
assessment of a KEDF. Garciá-Aldea and Alvarellos146

introduced what they called a quality factor, defined as

d

T

r r r
:

( ) ( )
GAA

s approx

s
=

| |
(146)

This measure tends to favor TF compared to many other one-
point functionals. Considering the Teller nonbinding theo-
rem,39 that is not good. (Note that testing based on the mean
absolute relative error, or MARE, also can favor TF, for
example, with the Perdew−Constantin KEDF; recall the
discussion just after eq 70 above.) However, the Garciá-
Aldea−Alvarellos measure does discriminate very clearly
between Laplacian-dependent KEDFs and GGAs; see Table
1 in ref 233. This reinforces focus on the objective of the
testing. The σGAA tests the approximate KE density, not the
electron density or the possible non-N-representability of the
functional.
Above we noted that other quality measures have been

introduced and used sparingly, e.g. the “relative performance
indicator”291 and “global performance indicator”.172

This summary illustrates that the OFDFT community is
lacking an agreed-upon and comprehensive set of indicators of
the quality of proposed KEDFs. Also missing are data sets of
molecules, solids, and model systems on which to benchmark
KEDFs. The contrast with quantum chemistry validation of
XC DFAs via widely accepted data sets, for example refs 287,
394−398, is striking and needs to be addressed to expedite
development and at the same time weed out unpromising
avenues of research.
2.7. Going beyond Typical KEDF and Local
Pseudopotentials
As already mentioned and as is discussed in detail in Section 3,
current OFDFT simulation implementations for materials
chemistry and physics applications rely on local pseudopoten-
tials (LPPs). That effectively limits OFDFT simulations at
present to that portion of the periodic table for which LPP-
based KSDFT calculations reproduce the results of nonlocal
pseudopotential conventional KSDFT calculations. We defer
detailed discussion of LPPs to Section 3. Here we consider
ways to avoid or reduce the challenge.
In addition to the LPP hurdle, as we have seen in the

previous discussion, several of the currently best-available
KEDFs are not broadly transferable. Recall, for example, the
limitations from parametrization of the HC and WGC KEDFs.
Given these obstacles to wider use of OFDFT, it is

unsurprising that approaches aimed at going beyond the
basic OFDFT scheme have turned up. Some exploit a density
decomposition approach in which n(r) is split into regions that
are treated individually with a suitably adapted KEDF. Others
attempt to recognize orbital angular momentum locally in the
KEDF and pseudopotentials. A third scheme is an approximate
all-electron treatment via the projector augmented wave
(PAW) scheme.399 We review these approaches in what
follows.
2.7.1. Density Decomposition-Based OFDFT. The

insight behind the density decomposition approach78,400 is

that it is possible to distinguish regions wherein the local
density variations dominate contributions to τs from those
regions wherein nonlocal (delocalized) variations dominate.
(The conceptualization resembles the cellular decomposition
into spherical and interstitial regions of the augmented plane
wave method.401,402) An early one-point version of the idea
was put forth by Tal and Bader.246 They wrote the density as
the sum of an atomic-core-like part n1(r) and a more diffuse
remainder n2(r) and wrote the KE density as τvW[n1] + τvW[n2]
+ τTF[n2]. We do not know of any subsequent exploration of
this scheme. The present-day versions of density decom-
position take the perspective that a one-point KEDF, Ts

(1),
should be adequate in the regions of localized densities while a
two-point KEDF, Ts

(2), would be used in the delocalized
(“interstitial”) type regions. As we have seen before, nonlocal
KEDF kernels must have different limiting behaviors for q → 0
for metallic or insulating systems. A density decomposition
approach attempts to exploit this fact via the hope that the
decomposed densities correspond closely enough to either
metallic or insulating systems to be described by corresponding
KEDFs.
A critical ingredient of any density decomposition scheme is

a scale (or switching) function F(r) which distinguishes the
sought-after density regions, localized nloc and delocalized ndel.
Typically78,403 F(r) is chosen as a simple function of n(r).
Thus, the delocalized density is

n n Fr r r( ) ( ) ( )del = (147)

and the localized density is nloc = n − ndel. The KS KE becomes

T n T n T n T n( )s s s s
(1) (1)

del
(2)

del[ ] = [ ] [ ] + [ ] (148)

The accuracy of the approach depends on the choices for Ts
(1)

and Ts
(2) (eq 148) and F(r). A physically reasonable choice is

to employ a semilocal functional for Ts
(1) and either HC403 or

WGC78 for Ts
(2). When the WGC KEDF is adopted, the

functional is named WGCD.
Such a decomposition scheme can be cast in a subsystem

DFT framework,78
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However, as distinct from subsystem DFT190 (see subsection
below), the variational parameter is still the total electron
density, n, not the decomposed densities. The variations in the
localized and delocalized densities are propagated through eq
147, with the resulting contribution to the Euler equation
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The switching function must be chosen judiciously to avoid
overcomplicated structure that makes implementation itself
overly complicated.169 One issue of complication is whether to
make F(r) a function independent of the electron density. In
ref 78 that was not the case. Instead, the density-dependence of
F[n(r)] was determined from an extra self-consistent loop on
the density; see Figure 4 of that paper and the attendant

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.2c00758
Chem. Rev. 2023, 123, 12039−12104

12067

pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.2c00758?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


discussion. Such a loop amounts to approximating the F
n

contribution to eq 150. A simple numerical example404 shows
that the functional derivative has a change in sign with respect
to n/ndel, behavior not found in the double-loop implementa-
tion of ref 78. To our knowledge, the effects of that
discrepancy have not been studied.
The Carter group applied the density decomposition scheme

to transition metals,403 amorphous Li−Si alloys,169 and
covalently bonded molecules and materials.78 The results,
however, indicated that while the decomposition scheme can
improve on the conventional OFDFT methodology (i.e., use of
a single KEDF), it does not lead to a substantive, quantitative
improvement. Renewed investigation may be an opportunity.
2.7.2. Angular-Momentum-Dependent OFDFT. Anoth-

er spatial decomposition scheme to get around the limitations
of LPPs for OFDFT applications was proposed by Ke et
al.161,405 Angular-momentum-dependent OFDFT (AMD-
OFDFT; almost a misnomer) is a local hybrid approach in
which an orbital-angular-momentum-dependent KE for each
atom is constructed by way of auxiliary atom-centered 1-rdms.
They connect an interstitial density (with no orbital depend-
ence) with ionic cores that are represented by both nonlocal
(NLPPs) and local pseudopotentials. The cores are treated
solely with the auxiliary 1-rdms. Thus, the KS KE is partitioned
into core contributions and an interstitial contribution. The
partitioning is achieved by the KE density ansatz

r r r r r( ) ( ) ( ) (1 ( )) ( )sAMD KEDF= + (151)

where σ(r) is a switching function and τs and τKEDF are the KE
densities from the auxiliary 1-rdms and the approximate KEDF
chosen for the interstitial region, respectively. Clearly there are
some similarities with the decomposition methods just
discussed, but both the regional treatment and manner of
switching are different.
The auxiliary 1-rdms are generated starting from a muffin tin

(MT) geometry401,402 wherein atom-centered spheres are
constructed, with the remaining volume being the interstitial
region. Then the electron density is expanded in atomic-
centered basis functions ΨR(r) combined with the on-site
density matrix elements, NR, and the interstitial density, nI(r).
Putting all this together

n n Nr r r r( ) ( ) ( ) ( )I
R

R R R= + *
(152)

In doing so, the angular-momentum-dependent parts of the
NLPPs can be accounted for though the use of the
nondiagonal parts of the auxiliary 1-rdms. Note that the
switching encoded by σ(r) takes place at a radius greater than
or equal to the cutoff radius of the NLPP.
In this way, the energy functional can be expressed in the

general form
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(The subscript “i−e” denotes ion−electron.)
The key part of this scheme is the nonlocal correction term

which accounts for errors from the approximation of Ts
KEDF in

the near-ion core region and includes the NLPP contributions.
Ideally, ENL would be precisely the difference between the
conventional KSDFT and ordinary OFDFT total energies,
namely

E E T Ti e s s
NL NLPS KEDF= + (154)

AMD-OFDFT reproduces the bulk properties of titanium405

(a transition metal, thus outside of the applicability of OFDFT
with LPPs, at least so far). However, since its introduction, to
our knowledge there has been no follow-up work to
demonstrate applicability to the broader periodic table.

2.7.3. OFDFT with Nonlocal Pseudopotentials. To
employ a NLPP in OFDFT, one can use a model 1-rdm.
Recalling the subject of the work by Chakraborty et al.,260,261

several approaches have been proposed for formulating a
model 1-rdm. Xu et al.406 exploited a prescription in which a
Gaussian decaying 1-rdm is linked to a local KEDF energy
density as follows,
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This model 1-rdm, evaluated with approximate KEDF
energy densities was employed to determine the nonlocal
part of pseudopotentials by tracing the 1-rdm with the
nonlocal pseudopotential operator,

E v d d vr r r r r r, ( , ) ( , )NL NL NL[ ] = (156)

Results reproducing the structure of molten simple metal alloys
were presented. In addition, and most importantly, encourag-
ing results for bulk Be and Cd were presented.406

2.7.4. OFDFT with the PAW Method. Another
interesting development along somewhat similar lines as the
AMD-OFDFT scheme is the work by Lehtomak̈i et al.120 It
provides an implementation of semilocal OFDFT within the
PAW scheme. The PAW method399 is nowadays among the
most widely used computational approaches to conventional
KSDFT because of the clear advantage it provides over typical
pseudopotentials. Specifically, PAW provides a way to
reconstruct (approximately in practice) the total KS orbitals
rather than just the pseudo-orbitals. This is an interesting
advantage also in OFDFT because functionals can be evaluated
on all-electron densities.
However, the PAW implementation of OFDFT is still in a

relatively early stage. Thus far, it can support only semilocal
KEDFs, thereby limiting its applicability and delivered
accuracy. Comparison with two-point KEDFs (which only
have implementations in more traditional pseudopotential
schemes) also obviously is limited.120,407

2.7.5. Subsystem DFT: A Distinct Form of OFDFT
Challenge. Quantum embedding is a divide-and-conquer
strategy to partition a system (the “full system”, hereafter) into
interacting fragments with the aim of avoiding the calculation
of full-system quantities408,409 while maintaining an accurate
quantum-mechanical description at least in the neighborhood
of a subsystem of interest and, perhaps, globally as well. Several
methods of this type have been developed, e.g., subsystem
DFT,180,181,189−191,410 density matrix embedding,411−414 and
Greens function embedding.415−418 The quantum embedding
methods differ mainly in two aspects. First is the way in which
they define subsystems (using the electron density, the Greens
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function, or other quantities). Second is the way in which they
describe the interactions between subsystems. This review
focuses on OFDFT; thus, we concentrate our discussion on
subsystem DFT.
Subsystem DFT is an appealing approach for large-scale

simulations because it defines subsystems based on a partition
of the electron density. Specifically, it uses a sum of subsystem
electron densities

n nr r( ) ( )
I

I=
(157)

Those replace the density of the full system, n, as the
variational functions. In the same spirit as ordinary OFDFT,
subsystem DFT exploits this decomposition via a reformula-
tion of the non-interacting kinetic energy functional. It does so
with an ansatz similar to eq 149, to wit
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This decomposed form provides an important opportunity.
The subsystem-additive part of Ts can be evaluated with KS
orbitals specific to each subsystem. Those subsystem KS
orbitals are not the same as the full system KS orbitals. For one
thing, they are not required to be orthogonal with orbitals of
other subsystems. The subsystem nonadditive part of Ts can be
evaluated in practice with pure density functionals. Therefore,
the ansatz in eq 158 provides a route for combining
conventional KSDFT with OFDFT in a way that benefits
the speedy calculation of molecular condensed phases.
The full energy given as a functional of n = ∑InI is found by

substituting eq 158 in eq 27 and including the interaction with
the external potential,
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Note the explicit replacement of the full system density in the
arguments of the functionals by the sum of subsystem
densities.
We acknowledge that the first use of eqs 157−159 (as well

as the derived functional derivatives and KS-like equations
which are presented below in eqs 160−161) is credited to the
works of Senatore and Subbaswamy191 and later, provided a
formal footing, by Cortona.410

We remark that the energy functional in eq 159 is formally
equivalent to E[n]. Therefore, it can be used in a variational
minimization equivalent to eq 19 achieved by searching over
particle-conserving variations of each of the subsystem
densities, I0,E

nI
= . Doing so yields the so-called KS

equations with constrained electron density,
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In this expression, the KS-like potential, vKS, is defined in eq 30
and is evaluated with the external potential vextI (r) associated
with subsystem I, and ϕi

I(r) and vembI (r) are the KS orbitals and
embedding potential of subsystem I, respectively. Equation 160
has the same structure as the KS equations for the isolated
subsystem I. The crucial observation is that in eq 160 the
effective external potential is not the external potential of the
isolated subsystem but rather the sum of that external potential
and the embedding potential, vextI (r) + vembI (r), which leads to a
subsystem electron density, nI, that generally differs from the
electron density of the isolated subsystem. The embedding
potential contains the functional derivative of the nonadditive
KEDF given in eq 158. Specifically,
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with {vextJ } being the external potentials associated with each
fragment relating to the total external potential as vext(r) = ∑I
vextI (r). We also have introduced the nonadditive XC
functional, Exc

nad[{nI}] = Exc[n] − ∑IExc[nI]. We remark that
the decomposition of the external potential into subsystem
contributions is not a necessary step.
Clearly, the accuracy of practical implementations of

subsystem DFT is determined by the quality of the
nonadditive KEDF employed as well as by the accuracy of
the XC DFAs used to solve the KSDFT problems for the
fragments. To control computational costs, semilocal non-
additive KEDFs typically are employed,419 at most at the
Laplacian level of complexity.285 However, it is now common
knowledge that semilocal nonadditive KEDFs do not provide a
proper description of a regime in which the fragment electron
densities overlap strongly.180,181,420 As originally indicated by
Wesolowski and Weber,421 subsystem DFT carried out with
approximate nonadditive functionals should target weakly
interacting subsystems.
Mi et al.89 adopted new-generation nonlocal nonadditive

KEDFs in subsystem DFT calculations and showed that they
improve the computed interaction energies and electron
densities considerably compared to commonly employed
GGA nonadditive KEDFs. This is especially the case when
interfragment electron density overlap is non-negligible. In
Section 3 we discuss that application in more depth.
An interesting line of research exploits a “bottom-up”

approach rather than a “top-down” approach. That is, what are
called the nondecomposable, nonadditive potentials (most
commonly for the kinetic energy) rely on an ad-hoc ansatz for
the nonadditive potential in an effort to obtain accurate
densities and to impose known conditions on the potential422

comparatively easily. Lastra et al. proposed the first non-
decomposable, nonadditive kinetic energy potential,423 fol-
lowed by others.424,425 We refer to ref 422 for additional details
and a review of the relevant literature. We also note that error
cancellation benefiting the value of KEDF approximants does
not necessarily translate to advantageous error cancellation for
the derived nonadditive functionals and nonadditive potentials
(and thus electron densities).189,426,427 Therefore, the bottom-
up approach emerges as a viable alternative foregoing the
definition of a parent KEDF and aiming to exploit beneficial
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error cancellation tailored specifically for nonadditive poten-
tials.
Though our survey is not a complete overview of subsystem

DFT, we point out some theoretical and practical complica-
tions about this method of which the reader should be aware.
Gritsenko428 showed that for subsystem DFT to have a
properly defined minimum of the energy functional, eq 159,
with respect to variations of each of the nI, it is not enough to
impose the requirement that nI be vKS-representable

106 (see
discussion above eq 22). This is because at most one can
define an inf imum of the functional. A simple mathematical
counterpart problem is one in which a function of a single
variable, f(x), is expressed as a function of two variables, e.g.,
f(x) → f(y + z). While f(x) may have a well-defined minimum
at x = xmin, the same cannot be said about f(y + z) because the
equation y + z = xmin has infinitely many solutions. Though this
nonuniqueness problem is severe in principle, convergence
problems related to it (or traced to it) never have been
reported to our knowledge for practical calculations that used
finite basis set expansions of the subsystem KS orbitals and
approximate nonadditive KEDFs.180,181,429

The formal framework of subsystem DFT requires that the
subsystem densities be non-negative. That is, assuming a
system is split into two subsystems with one having density
n1(r) and the other n2(r), then the formal definition, from eq
157, requires n1(r) = n(r) − n2(r). Therefore, if n1 is chosen
such that at some spatial points n(r) − n2(r) < 0, the
subsystem DFT procedure breaks down because of the non-N-
representability of n1(r).

430 Such violation of the non-
negativity condition is a critical problem for frozen-density
embedding simulations.431 In those, the environment density,
n2, typically is the one kept frozen. The violation is
circumvented by subsystem DFT because the subsystem
densities always are maintained as N-representable throughout
the variational minimization by construction. We must remark
that frozen-density embedding does not suffer from the
nonuniqueness problem mentioned above,428 as the energy
density functional admits a unique minimum for a given choice
of the frozen-density environment. (We note that the unique
solution does not guarantee that the total density, given by the
sum of subsystem and frozen densities, yields the true ground-
state density; see ref 432.)
Beyond non-negativity, it is useful to consider cases in which

a subsystem density vanishes. While that is unexpected in
practical calculations, the implications nonetheless must be
considered.433 A clear limitation of the definition of the
nonadditive functionals in eq 159 is that the functionals should
share the same domain of functional differentiation. However,
that can be the case only if all subsystem densities are nonzero
everywhere in space. If one subsystem density goes precisely to
zero inside a Lebesgue measurable volume element, then such
a density is not vKS-representable in a space that includes that
volume. Therefore, the existence of the functional derivatives
(and therefore the existence of the embedding potential in eq
161) on the entire space is subject to a positive definite
condition for all subsystem densities.
Returning to the formal nonuniqueness of the partitioning in

eq 158, it motivated the development of a number of
embedding methods that provide a unique embedding
potential. For example, partition DFT (PDFT)434 and density
functional embedding theory435,436 partition the electron
density in a way that reproduces the total density of a
reference KSDFT calculation (even though the conventional

KSDFT calculation is avoided437). There are approximate
formulations of PDFT that exploit nonadditive KEDFs in a
fashion akin to subsystem DFT.437 When applied to PDFT,
semilocal nonadditive KEDFs seem to yield comparatively
better results than in subsystem DFT.294 For example,
preliminary results show that covalent bonds could be tackled
by this method when a parametrized GGA nonadditive KEDF
is employed.293

3. OFDFT IN PRACTICE
Along with construction of accurate KEDFs, it is critical to
have appropriate OFDFT algorithms implemented in reliable,
highly efficient codes. Unsurprisingly, for achievement of quasi-
linear scaling, N N( ln ), the devil is in the details, with each
of the total energy terms needing attention to obtain a fast
codebase. Particular issues include construction of appropriate
pseudopotentials for OFDFT (which, as already pointed out,
differ from those for conventional KSDFT), approaches for
optimization of the electron density, choices of basis sets for
representing the density and potentials, and efficient
algorithms for system sizes up to and beyond millions of
atoms.
3.1. The Need for Local Pseudopotentials

In conventional KS calculations, treatment of the sharp cusps
in the KS orbitals induced by nuclear attraction often is
avoided by use of pseudopotentials (PPs) or effective core
potentials. The reasons are twofold: (1) in periodic systems,
PPs generate pseudo-orbitals that are smooth and, thus, can be
expanded in a modest number of plane waves, and (2)
elimination of explicit core electrons reduces the number of KS
states to be computed, be they in a molecule or periodic
system.
In OFDFT, PPs are needed for related reasons. First, use of

a rather smooth pseudodensity allows evaluation of con-
volutions [an important class of integrals as will appear later,
e.g., in eq 171] with numerical, discrete Fourier transforms.
Second, as described in the preceding section, many modern
KEDFs are calibrated in some way to the HEG and, thus, can
be expected to yield best results for systems with comparatively
smooth electron densities. In parallel, therefore, with many
implementations of conventional KSDFT,178,438−441 accurate
and transferable electron−ion PPs are crucial ingredients for
OFDFT simulations.121,163−165,442

In the context of conventional KSDFT, PPs have a local part
and a nonlocal part and, hence, are nonlocal PPs, or NLPPs.
To reproduce the effect of orthogonality between the valence
and core orbitals, they use spherical harmonic projectors
centered on the atoms. Those give rise to the so-called angular
momentum channels of an NLPP. Observe that the meaning of
“nonlocal” in connection with NLPPs is quite distinct from the
meaning for nonlocal KEDFs. For NLPPs, the term signifies
the explicit orbital dependence of the potential, not the spatial
separation dependence of two-point functionals.
The typical approach is motivated by the plain fact that since

the KS orbitals do not appear explicitly in OFDFT, any PP
employed for OFDFT must not include angular momentum
dependence and, hence, must be “local”. These are denoted
(recall above) as LPPs. However, it is possible, in principle, to
use orbital-free prescriptions for the 1-rdm, for example eqs
118−120 as developed in ref 260 as well as prescriptions
developed recently by Xu et al.406 (see Subsection 2.7.3).
Given the novelty of those approaches, they have not seen
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wide usage yet. Therefore, this section focuses on LPP
development.
3.1.1. Early OFDFT Pseudopotential Prescriptions.

Various LPPs proposed early on for OFDFT can be put into
three broad categories.
Empirical or model LPPs443−450 typically are comparatively

simple analytic functions with parameters adjusted so that
several physical properties (e.g., electron density, equilibrium
volume, bulk modulus) calculated with the LPP fit
experimental results or values from other (presumably reliable)
electronic structure calculation such as conventional KSDFT.
Empirical LPPs played an important role in early KEDF
development, though they were derived mostly for metallic
systems.46,305,451−453 Empirical LPPs can be adapted success-
fully to complex simulations whenever the fitting procedure is
successful.450,454 However, fitting limits their transferability.
That, no doubt, is a major reason why such PPs no longer see
wide use.
An LPP can be contrived by selecting one of the angular

momentum channels of an extant NLPP. Such a simplified
local pseudopotential cannot describe correctly the energetic
properties of solid phases, even for simple alkali metal solids
(bcc Cs and Rb).455 Therefore, these no longer are used.
Atomic LPPs (ALPs) are derived by inverting the Kohn−

Sham equations to reproduce the pseudodensity from a NLPP
KSDFT calculation.163,456 For group-IV elements, conven-
tional KSDFT simulations with such potentials yield good
results for bond lengths and lattice constants, but not for total
energies and KS orbital energies.456 Additionally, ALPs have
been found to lack sufficient transferability and accuracy to be
applicable to simple semiconductors such as Si.163

3.1.2. LPPs Currently Available for OFDFT. To obtain
transferable LPPs, approaches have been devised to account
for the specific chemical environment of an ion. Among them
the bulk-derived LPP [BLP] type is perhaps the most widely
used.163,164,457 (Remark: In this section and beyond we use
BLP, and the more frequently used acronym in the literature,
BLPS or BLPSs, to indicate bulk-derived LPPs.) Compared
with ALPs, BLPSs are obtained by inversion of the KSDFT
electron pseudodensity from one or more bulk crystal systems
instead of from atom densities. The first BLPSs, proposed by
Watson et al.,457 used OFDFT with a selected KEDF to
reproduce, exactly, the reference density from a conventional
KSDFT calculation with NLPP. The resulting LPP therefore
was KEDF-dependent. Those LPPs gave good results for
metallic systems, e.g., Li, Na, and Al, but had limited
transferability beyond that range. To improve transferability,
Carter’s group proposed KEDF-independent BLPSs based upon
inversion of the conventional KSDFT equations rather than
the OFDFT equation.163,164,458 The main algorithmic steps
involved are

1. Obtain the target bulk crystal electron pseudodensity
from conventional KSDFT calculations with a norm-
conserving NLPP.

2. Obtain the effective conventional KSDFT potential,
vef f(r), for the entire crystal from that target pseudoden-
sity via the inverse approach459

3. Obtain the corresponding LPP for the bulk crystal,
vloc(r), from that vef f(r), by removing the Hartree and XC
potentials,

v v v vr r r r( ) ( ) ( ) ( )loc eff H xc= (162)

4. Obtain the atomic pseudopotential, vatom(g) (where g = |
G| and G is a reciprocal space vector), by dividing the
Fourier transform of vloc(r), v vG r( ) ( )loc loc= [ ], by the
structure factor S(G) (which is the Fourier transform of
the density of nuclear point charges (see Section 3.5.1):

v g
N

v
S

G
G

( )
1 ( )

( )
atom

g g

loc

G

=
| |= (163)

Here Ng is the number of G vectors satisfying |G| = g.
To gain transferability of the BLPSs, multiple bulk structures

are considered in the process so as to include a large, varied
sample of G points in eq 163. (The number of allowed G
points is dictated by the specific crystal lattice.) Thus, the
utility of vatom(g) depends strongly on the sampling of vatom(G)
for the low-G vectors which, unfortunately, are not plentiful.
Moreover, the inversion scheme to obtain vloc(r) typically does
not yield the correct Coulombic tail decay. Therefore,
additional fitting schemes are needed to obtain reliable
BLPSs. Here, we do not review those technical details. The
main principles are to try to obtain as closely as possible the
correct Coulombic tail of the PP, while reproducing the bulk
properties as well as possible. See refs 163, 164, and 442, 456.
BLPSs have been applied successfully to various bulk

materials,163,164 including the elemental Li, Mg, Al, Si, Ag,
Ga, In, P, As, and Sb crystals and various III−V semi-
conductors;77−79 liquid Li,460 and to the melting temperature
of Li.461 In sum, KEDF-independent BLPSs seem to be the
most accurate, transferable LPPs available presently for bulk
systems.462

There have been attempts to improve BLPSs for liquid
phases, leading to a strategy to construct “globally optimized”
LPPs (goLPSs).442 In that approach, BLPSs are modified by
adding Gaussians with parameters fitted to minimize the
difference between OFDFT and conventional KSDFT for
calculated bulk properties and for forces on individual atoms in
liquid phases. The goLPSs have been constructed for elements
such as, Li, Ge, and Ga but are not available yet for other atom
types. We remark that the procedure to obtain goLPSs does
not rest on a formally justifiable footing and should, in our
view, be considered to be a semiempirical parametrization of
the OFDFT procedure.
Another constructive approach is the neutral pseudoatom

(NPA) method.463−465 It constructs LPPs referenced to an
atom immersed in an approximate environment. Specifically,
the atom is centered in a spherical cavity, subject to a uniform
positive background of density equal to the mean valence
electron density of the system under consideration. Often that
reference is a liquid metal.316,466,467 The cavity radius is
determined by equalizing the positive charge removed from the
hole with the total number of atomic valence electrons, hence
the NPA name.468 Anta and Madden469 used such a reference
system to develop KEDF-dependent ab initio LPPs, which
were applied to liquid metal studies.470 See also ref 471.
Essentially the same approach has been used for many years in
high-temperature systems, both as NPA and in “average
atoms”. The topic has become a specialty in its own right that
no longer is strongly connected to OFDFT, so we leave it to
refs 472−475 for leads to that literature.
Returning to explicit LPPs, the fitted normalized linear

combination (FNLC) potentials are quite different. Karasiev
and Trickey121 proposed that alternative scheme. It uses
information from each of the angular momentum channels,
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v r( )NL , of a reference NLPP in the form of a normalized
average, to wit,

v
c

c vr r( )
1

( )FNLC
0 0

NL
max

max

=
= = (164)

The weight of the contribution of each angular momentum
channel, c , is adjusted so that conventional KSDFT calculation
with the FNLC yields a good fit to selected equilibrium bulk
material properties calculated with the original NLPP.
Benchmark studies of Li and Al indicated that this approach
can yield very good LPPs for Li and Al. However, those
authors recognized the issue in their approach: “A remaining
challenge for the OFDFT agenda is to construct a good LPP
from an existing non-LPP without appeal to any bulk or
aggregate system KS calculations”.121

Mi et al.165 took up that challenge with their proposal of
optimal effective LPPs (OEPP). Inspired by the importance of
the norm-conserving conditions satisfied by NLPPs for
conventional KSDFT, they uncovered a fundamental relation
between a norm-conserving PP and what could be construed as
the ideal norm-conserving LPP, vNCLPP(r),

d v v nr r r r( ( ) ( )) ( ) 0 ,NCLPP NL =
(165)

Here v r( )NL , n r( ), and Ω are, respectively, the -th angular
momentum channel of a norm-conserving NLPP, the
pseudodensity of the -th atomic orbital, and the region inside
the core radius. By combining this relation with the optimized
effective potential (OEP) concept already men-
tioned,236,237,476−479 they showed that an optimized LPP
should be constructed via a Slater-type pseudodensity-
weighted average of the orbital-dependent norm-conserving
PPs subject to preservation of the norm-conserving condition,

v
n

v f nr
r

r r( )
1
( )

( ) ( )OEPP
0

NL

max

=
= (166)

In the foregoing expression, f is the occupation number and

n(r) = 0
max

=
= f n r( ).

The corresponding algorithmic steps are simple. For a given
electronic configuration and a given set of core radii rc in the
selected NLPP,

1. Obtain the LPP by calculating the density-weighted
average as in eq 166;

2. For a single atom, compute the norm-conserving
conditions and the deviations of the eigenvalues and
pseudo-orbitals from a conventional KSDFT calculation
with the OEPP versus those from the original NLPP;

3. Repeat the process by adjusting the rc and electron
configuration to optimize the OEPP.

We should clarify that there is a certain freedom in choosing
rellc when constructing NLPPs as long as their transferability
and accuracy are maintained. However, OEPP depends on the
parent NLPP through eq 166. Thus, rellc can be used within that
range to fine-tune the accuracy of the OEPP.
Benchmark tests demonstrated that high-quality OEPPs

indeed can be constructed from a given norm-conserving PP
without empirical fits for several atom types (e.g., most s/p-
block elements except for the second row). Unfortunately, for
second-row and 3−5d metals, a valid LPP with high

transferability cannot be constructed because the NLPP
potentials for different ’s differ greatly and the norm-
conserving condition of eq 165 for the LPP in eq 166 cannot
be satisfied. Figure 9 provides a pictorial view of the

effectiveness of the OEPP method for each element of the
periodic table. The metric used is the preservation of
pseudodensity from NLPP to OEPP. Observe that the
foregoing remark about the second row and the challenge of
the 3d, 4d, and 5d metals is quite apparent.
In summary, there are two important comments to be made

regarding pseudopotentials use in OFDFT. First, even though
reasonably accurate and transferable LPPs are available for
most light metallic elements and some main group elements,
for most transition metals and second-row elements, the
construction of LPPs with high transferability has proven
difficult and may be essentially intractable. Second, our
discussion makes clear that developing LPPs for OFDFT is a
daunting exercise. Several guiding principles and procedures
are available for their construction, but a clear winning strategy
has yet to emerge. Thus, the requirement for LPPs is still very
much an open problem for OFDFT and perhaps may be its
Achilles’ heel. New approaches, such as the one based on
model 1-rdms summarized in Subsection 2.7, and very recent
efforts involving machine-learning pseudopotentials480 might
prove to be breakthroughs for extending the applicability of
OFDFT to a wide selection of elements in the periodic table.
3.2. Variational Optimization
Determination of the OFDFT variational minimum obviously
is an optimization problem. The function to minimize is the
number-conserving total energy Lagrangian, n[ ], eq 28,

n n n n d

E n n

rargmin ; 0, (167)

; (168)

n0
1/2 2

0 0 0

{ }= [ ] | | < +

[ ] = [ ]

The second line reproduces eq 19. Recall that the Lagrangian
includes the chemical potential μ to enforce electron number

Figure 9. Color map representing the accuracy of OEPP
pseudopotentials. The accuracy is assessed by the ability of the
OEPP to reproduce the atomic pseudodensity of the parent NLPP as
quantified by δn := ∫ dr4πr2|nOEPPps (r) − nNLPPps (r)|. Here nOEPPps (r) and
nNLPPps (r) are the corresponding OEPP and NLPP radial pseudoden-
sities, both computed with conventional KSDFT. The LDA XC
functional was adopted. Reprinted with permission from ref 165.
Copyright (2016) American Institute of Physics.
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conservation. The system volume for the integrations, Ω, can
be the simulation cell for the case of periodic boundary
conditions or the entirety of 3 for isolated systems.
As with conventional KSDFT, at least superficially there

would seem to be two main approaches for carrying out the
optimization. An “indirect” approach converts the minimiza-
tion into a nonlinear self-consistent field (SCF) problem, while
a “direct” approach proceeds as a constrained minimization
problem.481,482 We summarize key aspects of both.
3.2.1. Solution of the Euler Equation: The SCF and

OE-SCF Methods. The indirect approach begins with the
one-orbital, OFDFT Euler equation, eq 38, for the square root
of the density,

v n v nr r r r
1
2

( ) ( ) ( ) ( )2
KS{ }+ [ ] + [ ] =

(169)

where n(r) = |ψ(r)|2.
Because of the kinship of this equation to the conventional

KS equation, one might expect that efficient basis-set methods
developed for solution of that equation could be applicable
straightforwardly to the OFDFT problem. There are state-
ments to that effect in the literature.333 The idea is that a
conventional KSDFT SCF code could be converted to SCF
solution of eq 169 simply by adding vθ to vKS, changing the
normalization (from 1 to Ne

1/2), and selecting the lowest
eigenvalue. What Chan et al.119 found is that the prescription
does not work in practice and, hence, that more robust
minimization techniques were needed.119 Subsequently,
Karasiev and Trickey121 confirmed that finding for both
atoms and diatomic molecules and for both a Gaussian-type
and numerical orbital basis. Note that both papers reported all-
electron calculations. Quoting from ref 121, “... use of standard
KS codes to solve the OFDFT Euler equation as a modified KS
eigenvalue problem is problematic at best. At least for the all-
electron case, it seems implausible as a productive route to
routine OFDFT calculations.”
Shao et al.462 explored this issue with the pseudopotential

code DFTpy and showed that the main reason for the failure of
customary SCF techniques in the OFDFT context is HOMO−
LUMO orbital swapping that arises quite commonly in nearly
degenerate systems. As system sizes increase, the HOMO−
LUMO gap computed from the OFDFT Hamiltonian with eq
169 decreases; see Figure 10.
To resolve that near-degeneracy problem in conventional

KSDFT calculations, it suffices to level shift or to open the
minimization to the set of ensemble N-representable densities
computed from several states above the HOMO level and then
to smear the occupations483 (typically with the Fermi−Dirac
distribution). Doing so for the OFDFT one-orbital equation
would defeat the purpose, since it would involve solving the
eigenvalue problem for several levels, hence a regression to a

N( )3 scaling method.
A modified SCF procedure, termed the one-orbital ensemble

SCF (OE-SCF), solves that problem.462,484 To consider
ensemble N-representable densities in OFDFT, OE-SCF
begins by direct minimization of TvW[n] + EH[n] + Exc[n].
The Pauli potential is fixed for that minimization and then
updated and a new optimization done. These steps are cycled
until self-consistency (hence the name OE-SCF, even though
no diagonalization ever occurs). Tests show that OE-SCF
converges as well as the commonly adopted direct energy
minimization of the full energy functional (see next section)

with one important additional benefit. The Pauli potential
needs to be evaluated only a handful of times during the
minimization (i.e., once per SCF cycle). For complicated two-
point KEDFs, that can yield a large reduction in computational
cost, as much as by orders of magnitude.462 In Section 4, we
report how OE-SCF enables large-scale simulations of complex
systems to be done with otherwise computationally expensive
nonlocal functionals with a density-dependent kernel, such as
LMGP.
OE-SCF currently is implemented in the DFTpy54 and

ATLAS53 codes. As OE-SCF is rather new, most OFDFT
codes still exploit direct energy minimization, to which we turn
next.

3.2.2. Optimization by Direct Minimization. There is
an immense literature on generic direct optimization, so we
note only the aspects directly pertinent to OFDFT
implementation here.
Algorithms for direct address of eq 167 must explore

variations of a single function of three-dimensional space. To
do so typically requires parametrization of the argument
function, n, either by expansion in a basis set or by direct
discretization of space (which logically is a basis set of delta
functions). Thus, the problem becomes the minimization of a
function of many variables (proportional to the number of
discrete points or basis functions). That can be a simple task
for atomic systems rendered in an atom-centered basis. But
even in modeling of clusters, the number of variational
parameters becomes large enough to require the development
of ad-hoc optimizers.119,485 When bulk materials are
considered, discretization of space with regular grids is the
usual choice. That allows use of discrete Fourier transforms to
represent the electron density and the potentials and for
solving the Poisson equation associated with the classical
Coulomb energy (see next section).
Energy minimization algorithms typically include the

following steps to obtain the quasi-orbital, ψ, see eq 169:
1. Obtain the optimization direction vector in the space of

the variational parameters, pk.
2. Find a reasonable step size λk along the vector pk.

Figure 10. Energy gap between the lowest two energy levels
associated with the eigenvalues of the OFDFT Hamiltonian in eq
169 for supercells of Al and Si bulk systems. The plot, in log scale,
displays a monotonically decreasing gap with system size. The LMGP
KEDF and LDA XC functionals were used. Reprinted with permission
from ref 462. Copyright (2021) American Chemical Society.
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3. Generate an improved quasi-orbital, ψk+1(r), updating
the one from the previous optimization step, ψk(r), with
pk and λk.

4. Iterate until convergence criteria are satisfied.
Many algorithms from the optimization literature can be

employed for step (1). Some of those provided in the available
OFDFT software53,54,486 include steepest-descent (SD), non-
linear conjugate gradient (CG),487−493 limited memory
Broyden−Fletcher−Goldfarb−Shanno (L-BFGS),494 and trun-
cated Newton (TN) methods.495 Because of efficiency
limitations on SD and storage limitations for L-BFGS, CG is
the most widely used of these. It is possible to improve its
computational efficiency by adopting a precondition proce-
dure, an option that has been explored for OFDFT by Hung et
al.496

We note that L-BFGS stands out for its stability, with several
available options for updating the search direction, pk. Because,
however, it requires the storage of prior ψk(r) and gradients, its
memory cost is larger than that of any of the other methods
mentioned.
For step (2), the step size, λk could be determined by direct

approximation485 (as in the SD method) or by line
search.53,54,486 Determination by direct approximation, how-
ever, causes the stability of the optimization to be quite system
dependent. In contrast, line search is numerically stable, so it is
used rather generally in OFDFT codes. Line search stability
arises from imposition of the so-called Wolfe conditions; see
ref 497.
The most direct way to accomplish the third step, update of

ψk+1, would be ψk+1 = ψk + λkpk, followed by normalization of
the total density to Ne. That procedure is not always stable.
The problem has an elegant solution in the form of a scheme
that makes the pk contribution orthogonal to ψk. Thus, the
update becomes485

pcos( ) sin( )k k k k k1 = ++ (170)

which maintains the normalization of electron density at every
step.
The Trust-Region Image Method (TRIM)498 is another

elegant solution to the problem of energy minimization subject
to the constraint ∫ dr n(r) = Ne. In short, TRIM exploits a
grand canonical formulation of OFDFT, finding that the
minimum problem with respect to n(r) is actually a saddle
point minimax optimization with respect to n and the chemical
potential, μ. The energy functional is found to be convex with
respect to n and concave with respect to μ. Ryley et al.498

derive expressions for the gradient and the Hessian with
respect to variation of the chemical potential and the electron
density (which they parametrize in terms of Gaussian-type
orbitals). That provides a density optimization method that is
robust and requires fewer iteration to convergence than the
method of Chan et al.119 Unfortunately, no comparisons to the
method of Jiang and Yang485 have been reported. Therefore, it
is difficult to assess the relative robustness of TRIM compared
to the density optimization methods exploiting eq 170 as
commonly implemented in pseudopotential codes such as
PROFESS and DFTpy.54,486

3.3. Basis Sets
As just surveyed, whether the energy minimization is direct or
indirect, it is always necessary to express functions in terms of a
basis. Though any complete set would do in principle, in
practice the choice of basis is critical to determining the range

of applicability of the software. Basis sets employed currently
include plane waves (PWs),481,482,499 atomic orbitals (AOs)
(e.g., Gaussian-type-orbitals (GTOs)500), finite differences
(FDs),501,502 finite elements (FEs),501 and wavelets.503−505

The majority of OFDFT software to date is targeted at
materials problems (hence, periodic boundary conditions);
thus, a discretization of space well-adapted to that periodicity is
used. Therefore, in this section we discuss the PW, FE, and FD
approaches and refer the reader to the references above
regarding the other ones.

3.3.1. Plane Wave Basis. Plane waves (PWs) are the most
widely used basis functions in electronic structure calculations
for materials science.481,482,499,506 Generally, PWs confer the
following advantages:481,482,499

1. Independence from nuclear (ionic) positions avoids Pulay
forces507 and provides a uniform resolution description in all
space;
2. Calculation of derivatives of n(r) requires only algebraic

operations in reciprocal space. [Remark: The derivative of any
real-space function, f(r), is straightforward in reciprocal space,

f d i f er G G G( ) ( ) iG r1
(2 )3= · , where f (G) is the Fourier

transform of f(r).] Depending on the pseudopotential used,
derivatives of the total energy with respect to geometrical
parameters (e.g., force and stress) are simple;
3. Imposition of periodic boundary conditions is straightfor-

ward;
4. Systematic improvement of the basis set is provided

simply by setting the wave vector cutoff;
5. Quantities expressed in real space can be transformed

efficiently to reciprocal space by use of Fast Fourier
Transforms (FFTs), with a computational effort that is almost
linear scaling, N N( ln ).
Even though recent progress on one-point KEDFs86,87 has

resulted in functionals capable of describing condensed phase
systems (recall Section 2), two-point functionals continue to
dominate in materials science applications.145 For them, the
basis set employed must permit efficient KEDF evaluation to
retain the quasi-linear scalability of OFDFT. PWs are well
suited for that because the double-integration formula in eq 13
can be simplified greatly when a homogeneous system is
considered. In that case, the kernel ω(r, r′) ≡ ω(|r − r′|) and
the convolution theorem can be exploited to turn eq 13 into

T n T n T n d n n nG G G G( ) ( ) ( )s TF vW
nl[ ] = [ ] + [ ] + [ ] | |

(171)

Because n(r) is a real function, the integral can be simplified
further by exploiting ñ(−G) = ñ(G). Overall, the N N( ln )
scaling is retained.
The quasi-linear scaling is maintained roughly even when

more complicated nonlocal functionals are considered, such as
those with density-dependent kernels, ω(n(r), |r − r′|) as in
HC,77 LMGP88 and LDAK;90 or ω(ξ(r, r′)|r − r′|), as in
WGC297 and XWM.49 Recall the discussion in Subsection
2.4.2. At first glance, the computational cost for such
functionals would seem to scale quadratically with the number
of grid points. In Subsection 3.4, we discuss the details of the
evaluation in a PW basis set for functionals of this type such
that linear scaling with system size is maintained with a
moderate prefactor.
PW basis sets are not without drawbacks. Probably the most

significant is the one we have discussed already, the necessity

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.2c00758
Chem. Rev. 2023, 123, 12039−12104

12074

pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.2c00758?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


of pseudopotentials.481,482,499,506,508 Recall Subsection 3.1.
That removes all-electron calculations from the picture.
(There is KSDFT software for the all-electron linearized
augmented plane wave basis (LAPW).402,509−512 However,
that basis is atom-centered and muffin-tin-based and, hence,
quite ill-suited to AIMD.) An excellent compromise for the
PW basis is provided by the PAW method.120,399 In
conventional KSDFT calculations, PAWs seem largely to
have supplanted NLPPs. As we noted in Subsection 2.7.4, the
PAW ansatz needs substantial further exploration in con-
nection with OFDFT.
Another drawback of the PW basis is the inherently three-

dimensional periodicity in the computation of the classical
electrostatic potential. This is introduced by use of the periodic
Coulomb kernel, f G( )h G

4
2= for reciprocal space vector G,

yielding a Hartree potential in reciprocal space

v
G

nG G( )
4

( )H 2=
(172)

Unfortunately, for intrinsic system periodicity lower than three
dimensions, the common algorithm is not ideal.513 Correc-
tions, however, exist, both at the level of the energy
functional514 and for the electrostatic potential.515−517 Those
typically only add a small prefactor to the simulations.
Alternatively, real-space Poisson solvers can be em-
ployed.501,502,517 Note that this problem occurs in both
OFDFT and conventional KSDFT.
A potential drawback for massively parallel implementations

is the need for “all-to-all” communication among the
processors needed by the FFT.502,518 Though this problem
cannot be circumvented entirely, currently available paralleliza-
tion schemes are robust and have been shown to maintain
linear scalability of the algorithm.519,520 We discuss this aspect
further in Subsection 3.5.2. Again, we point out that parallel
limitations for FFTs are not specific to OFDFT. Conventional
PW-basis KSDFT codes have the same problem.
3.3.2. Real-Space Representations. Among real-space

basis sets, perhaps the most direct and easy approach is FD.521

In it, the values of both n(r) and the potentials are given on a
discrete grid of real-space points.522 Accordingly, the
Hamiltonian also must be discretized. Thus, the key aspects
of the FD method are the discretization of the Laplacian
operator for the evaluation of the von Weizsac̈ker kinetic
potential and solution of the Poisson equation for the
electrostatic potential. Denoting the grid point positions as
(xi, yi, zi), the expansion of the Laplacian operator acting on ψ
for coordinate x is

x
C x nh y z O h

r( )
( , , ) ( )

n N

N

n i j k
N

2

2
2 2

f

f

= + +
=

+

(173)

where h and Nf are the grid spacing and order of the FD
expansion, respectively, and Cn are Taylor expansion
coefficients. Algorithmic details and results are found in refs
501 and 502.
The truncation error O(h2N+2) introduced by the Taylor

expansion can be controlled by tuning the expansion order and
grid spacing. For low-order FD expansions, sparse linear
algebra leads to further computational efficiency. Note that
when ψ(r) is used to evaluate physical quantities such as the
Hartree energy, the error originating from the series truncation
can be of either sign and cannot be controlled systematically.

Thus, the FD approximation may lead to nonpositive definite
Hamiltonian approximations that could result in variational
breakdown.501

For a non-Cartesian grid, an additional important detail is
that a direct discretization of the Laplacian operator contains

N( )f
2 terms in the summation because of the need to include

off-diagonal neighboring points in a square of size (2Nf + 1)2
around any given point. That would impose a high
computational scaling prefactor. To solve the problem, Tiago
et al.523 presented a generalized high-order FD method that
bypasses the evaluation of mixed-derivative terms by employ-
ing a weighted combination of derivatives along the three
original directions and three additional nearest-neighboring
directions. That reduces computational cost significantly. The
approach has been adopted in the ATLAS code.53 To improve
FD computational efficiency further, it is possible to define
grids of different resolution depending on the spatial
region.502,524 Though double-grid and multigrid meth-
ods501,525 have been deployed in ordinary KSDFT solvers,
their usefulness in OFDFT implementations has yet to be
assessed.
FD provides some advantages over PW for the evaluation of

semilocal functionals. From Figure 11 it is clear that for large

systems FD outperforms PW for the von Weizsa ̈cker
functional. FD, however, is not well-suited to evaluate nonlocal
functionals. Thus, typically PW and FFTs are favored for them.
However, real-space approaches to evaluate nonlocal func-
tionals exist (vide inf ra).
Lastly, because FD methods represent the electron density

in real space, they are well-suited to aid AIMD accelerators.
This was described in detail in ref 526, where a simple FD
method was employed to track the electron density and its
associated potential with free-space (open) boundary con-
ditions in adaptively restrained particle simulations (ARPSs).
An ARPS decomposes the system into slow- and fast-moving
particles. An ARPS527 accelerates AIMD by freezing some of
the slow-moving particles along a molecular dynamics

Figure 11. Timings for the computation of the von Weizsac̈ker
potential in different numbers of grid points. The FD basis set
implemented with efficient computation of the Laplacian outperforms
the PW basis set formulation implemented with FFTs. Reprinted with
permission from ref 53. Copyright (2016) Elsevier.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.2c00758
Chem. Rev. 2023, 123, 12039−12104

12075

https://pubs.acs.org/doi/10.1021/acs.chemrev.2c00758?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.2c00758?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.2c00758?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.2c00758?fig=fig11&ref=pdf
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.2c00758?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


trajectory. Coupling ARPSs with an FD solver for OF-DFT
provides the possibility to compute good initial guesses for the
electron densities and their associated Hartree potential during
the AIMD easily. That is, because of the real-space
representation of the density, the frozen ions remain fixed
also during the OF-DFT density optimization, thereby
achieving a computational saving. Even though such schemes
could be implemented in a PW basis (as PW basis methods
have access to a real-space representation of the electron
densities on the FFT grid), to our knowledge such PW
counterparts have not appeared so far in the literature.
Moving on to the finite element method (FE), generically it

uses sets of strictly local piecewise polynomials as basis
functions. Those functions only overlap with immediate
neighbors.528−530 Various choices for those basis functions
involve their dimensionality, polynomial order, and continu-
ities (preservation of value and derivatives across interelement
boundaries).528,529,531 The two main steps needed to construct
a FE basis set are

1. Partitioning of the domain Ω into subdomains
(elements).

2. Definition of the local basis function within each
element and piecing them together to obtain the final
piecewise polynomial basis {ϕj}. Generally, any function
ψ defined in the domain Ω can be expanded with

ur r( ) ( )
j

j j=
(174)

In step 1, the elements are chosen to optimize computa-
tional efficiency. For example, triangles and quadrilaterals
commonly are used as two-dimensional elements, while
tetrahedra, parallelopipeds, and wedges are common in
three-dimensional systems.528,529,531

In step 2, interpolation nodes are set in each element for the
selected piecewise polynomial functions. The basis functions
typically are chosen such that ϕj is 1 on the j-th FE
interpolation node while it is 0 on all the other nodes.
Typically only function continuity is imposed. First- and
higher-order derivative continuity typically is not. Thus,
differential equations for solution of the electronic structure
problem need to be reformulated into integral equations. Once
this is accomplished, such problems as the real-space
Laplacian, Poisson equation, Poisson−Boltzmann equation,
and eigenvalue equation can be transformed to a correspond-
ing sparse matrix problem, which can be solved in various
efficient and scalable approaches. Details of these techniques
can be found in refs 530 and 532.
A general drawback of FE methods is that typically they

require more memory than FD-based approaches and are more
difficult to implement as well. Until now, they have proven
advantageous primarily for very large system sizes.
A specific issue arises in the context of density-independent

two-point KEDFs. Equation 171 shows how the PW basis and
the convolution theorem combine to form an elegant
reduction of the 6-dimensional integrals. In real-space basis
set schemes an alternative is needed. It has two requirements,
handling of the long-range Coulomb interaction and of
nonlocal functionals (two-point KEDF and, sometimes, XC).
Choley and Kaxiras50 proposed a method with scaling close to

N( ). They noted that the kernel of a density-independent
two-point KEDF can be fitted with reasonable accuracy by

rational functions. Further, its Fourier transform can be
approximated as a sum of subkernels

g
Pg

g Q
( )

j

m
j

j1

2

2=
+= (175)

where Pj and Qj are complex numbers determined by fit to the
original Fourier transformed kernel. With this expression, the
convolution of a function f(r) with a kernel ω(|r − r′|)

v d fr r r r r( ) ( ) ( )= | | (176)

becomes

v vG G( ) ( )
j

m

j
1

=
= (177)

where

v
P g

g Q
fG G( ) ( )j

j

j

2

2=
+ (178)

Then, the vi(r) can be obtained efficiently by solving the
corresponding Helmholtz equation.

k
Q v

P

k
fr r

1
(2 )

( )
(2 )

( )
F

j j
j

F
2

2
2

2+ =
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ (179)

Benchmarks for the WGC297 functional (which, by Taylor
expansion of the kernel around a reference constant density,
requires the evaluation of integrals involving only density-
independent kernels; see below) indicated that the error
introduced by the approximation is negligible. The scheme also
was adopted to simulate tens of thousands of atoms with full
atomic resolution and millions of atoms using coarse-graining
techniques.533

3.4. Computationally Efficient Evaluation of Nonlocal
Functionals
For nonlocal KEDFs with density-dependent kernels, the
convolution integral no longer is directly applicable because
such functionals involve integrals (in both the energy and the
potential) of the type

P d f k

Q d f k

r r r r r r

r r r r r r

( ) ( ) ( ( ), ) (180)

( ) ( ) ( ( ), ) (181)

F

F

=

=

As just noted, the WGC and XWM functionals49,297 bypass
that complication by use of a Taylor expansion of the kernel
(i.e., the function in eqs 180 and 181) around a constant
density, n0 (or equivalently around a constant Fermi
wavevector, kF0 = (3π2n0)1/3). The remaining integrals are
evaluable by simple convolutions. While the technique reduces
computational complexity, it jeopardizes transferability. Specif-
ically, the WGC and XWM KEDFs are applicable only to bulk
systems for which a reference density is well-defined and in
which n(r) does not exhibit large variations. Without a system-
dependent prescription for the reference density, WGC and
XWM are inapplicable to finite systems. In some instances they
also are affected by convergence problems.49,79

The LMGP KEDF provides a way around this difficulty by
defining the potential with an integral equivalent to eq 180. It
can be evaluated by a spline technique based upon use of a
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discrete set of reference densities. For Nk selected density
values {nk}, there is a corresponding set of Fermi wavevectors,
{kFk}. It follows

534 that
1. For each kFk value, the integral eq 180 can be evaluated by

convolutions to generate Nk functions, P P kr r( ) ( , )k F
k= =

d f kr r r r( ) ( , )F
k .

2. The final objective function, P(r) then can be recovered
by spline representation of the Pk(r) functions for each r point.
That is, for each r, the spline identifies kFk points near kF(r), {...,
Pk−1(r), Pk(r), Pk+1(r), ...} and splines them to find the best
estimate for P(r) = P(kF(r), r).
This spline procedure is depicted in Figure 12. For it, a

linear quadrature was chosen for {nk} (i.e., nk = k × Δ, with Δ
a positive real number). In practice, it often is advantageous to
employ a logarithmic quadrature (i.e., nk = αnk−1 with α a
positive real number). The motive is to improve accuracy and
aid convergence for nonperiodic systems (e.g., clusters and
surfaces). In them, the electron density has large variations,
from a maximum to arbitrarily close to zero, in contrast to bulk
systems. For nonperiodic systems, large Nk values are
reported462 to be necessary, so judicious choice of grid
becomes critical to computational performance.
The HC and LDA-K KEDFs define an energy functional of

the kind shown in eq 47. The functional derivative (potential)
involves integrals of both types, eq 180 and eq 181. For HC
and LDA-K, evaluation of the integral eq 181therefore requires
additional steps that typically are done in reciprocal space. For
a periodic system with cell volume Vcell, the Fourier transform
of Q(r) is535

Q
V

d f kG r r r G( )
1

( )e ( ( ), )
cell

i
F

G r= ·

(182)

thus

k d kr G r r r r( ( ), ) ( ( ), )eF F
iG r r( )= ·

(183)

The resulting set of functions, k G( , )F
k{ }, then is used to

approximate the integral in eq 182 by Riemann summation.
Inverse Fourier transform to real space then recovers Q(r) of
eq 181.
It worth mentioning that it is more computationally

demanding to evaluate eq 181 than eq 180 because all Nk

points need to be considered for all r values in eq 181
compared to the spline for eq 180. That typically requires only
the kFk points in the neighborhood of the kF(r) of interest. In
conclusion, the computational evaluation of both integrals
scales quasi-linearly because the FFTs involved scale like

N N( log( )) and at most the algorithm requires Nk such FFT
evaluations, independent of system size.
3.5. Algorithms for Million-Atom Simulations
Application of the increasingly accurate one- and two-point
KEDFs we have described to simulation of extremely large
systems (106 atoms or more) exposes some further algorithmic
challenges. That also is true for exploitation of modern high-
performance computing architectures. Issues of interest relate
to the cost of evaluating the ion−ion and electron−ion
interaction contributions and, hence, the structure factor.
Related to that is solution of the Poisson problem (needed for
the electrostatic potential). In what follows we summarize
advances regarding both as embodied in contemporary
OFDFT software. We also describe common strategies for
distributing data and work in the most computationally
intensive steps of the OFDFT simulation.

3.5.1. Structure Factors. Use of FFTs (and splining) gives
N N( ln ) computational cost scaling for evaluating two-point

KEDFs. But the electrostatic interaction terms (Hartree, ion−
ion, and electron−ion) involve a computational cost that at
first sight is quadratic scaling. Though the separate electrostatic
sums are divergent in periodic systems,536−540 the divergences
cancel for neutral cells.541 The Hartree term can be evaluated
by using FFT to achieve N N( ln ) scaling; see eq 172. But if
the ion−ion interaction is evaluated by standard Ewald
summation,541 the quadratic computational cost with the
number of atoms in the simulation cellM, M( )2 , becomes the
bottleneck at system sizes of a few thousand atoms. The
problematic term is the ionic structure factor. To simplify, here
we consider only the ion−electron interaction Eext, but a
similar treatment applies to the ion−ion interaction. Also for
simplicity we give the argument for the bare Coulomb
interaction. Use of pseudopotentials changes only the details,
not the essence.
Equation 16 can be re-expressed as

E n d d n
n

r r r
r

r r
( )

( )
ext

a[ ] =
| | (184)

Figure 12. Depiction of the procedure to compute the integral, P(r), in eq 180. On the left, the electron density is sampled by Nk values, {nk}. On
the right, the function P(r) is approximated at every point by splining the values for each of the Pk(r) functions.
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where

n Z Z Sr r R r( ) ( ): ( )a
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k
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Here Na is the number of atomic species (or atom types), Rk is
the position of the k-th atom of type α, nα is the number of
atoms of type α, and Zα is their ionic charge. Sα(r) is the
structure factor. Fourier transformation and application of the
convolution theorem then gives
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S̃α(G) is simply the Fourier transform of Sα(r) in eq 185.
As there are Ng grid points for G, the direct evaluation of eq

187 scales as n N( )g· .53,486,542 This is effectively quadratic
scaling with system size. For system size nα ≈ 1, 000, the
structure factor calculation begins to dominate the computa-
tional time relative to other terms in the OFDFT energy
functional. That degrades the total computational cost to
quadratic scaling.53,486,542,543 This crossover seldom is
encountered in conventional KSDFT simulations, as their
inherent N( )3 scaling dominates, with the result that system
sizes greater than a few thousand atoms rarely are treated by
conventional KSDFT.
To address the problem, Darden et al. proposed the particle-

mesh Ewald (PME) method.544 In it, Lagrangian interpolation
is used to evaluate the reciprocal space Ewald sums and the
resulting convolution is evaluated via FFT. The approach
reduces the cost to N N( ln ). The Lagrangian interpolation
is effectively an approximation of the real-space structure factor
in which the Dirac delta functions in eq 185 are approximated
by spline basis functions with compact support (i.e., they decay
exactly to zero within a finite number of grid points). Cardinal
B-splines typically are chosen for this.545 The compact support
is important, as it assures the locality of the functions around
the ions that is the cause of the linear scalability of the method.
Typically only a handful of grid points in each direction from
the ion is needed. (Note that the ion position may not coincide
with a grid point.)
Choley et al. apparently were the first to use the B-spline

plus FFT convolution PME scheme for evaluating the structure
factor in electronic structure calculations. The first implemen-
tation in OFDFT software was by Hung et al.542

It also is possible to avoid the computation of the structure
factor altogether by representing the atomic local pseudopo-
tential (LPP) through its source pseudocharge density. The
pseudocharge is localized and can be represented fully on a
small subset of grid points (a crucial property also shared by
the cardinal B-spline function). After summing all the
pseudocharges, followed by multiplication by the Coulomb
kernel (

q
4

2 ), a single FFT operation recovers the full LPP. The

scheme has been implemented in the ATLAS software package
and benchmarked on large-scale simulations.543

3.5.2. Parallelizing FFT for Large Systems: Small Box
FFT and 2D-FFT. It should be abundantly clear by now that
an important component of the computational cost in OFDFT

with two-point KEDFs is the ubiquitous use of FFTs. Though
they provide favorable N N( ln ) scaling (N total number of
grid points), exploitation of that fact is hampered by the need
for all-to-all communications among the CPUs involved. Jiang
et al.546 proposed an efficient “small-box” FFT (SBFFT)
algorithm to address this problem for the Hartree term and, in
fact, for any convolution integral with a radially decaying
kernel. The kernel is presumed to be decomposable into long-
and short-ranged parts. As depicted in Figure 13 (in cubic

symmetry for simplicity), SBFFT is a divide-and-conquer
strategy. The simulation cell volume is subdivided into small
boxes. Each small box has an internal structure consisting of a
cube decorated by a buffer region. In the small box, the
Poisson equation for the short-range kernel is solved on a
dense FFT grid. Then a long-range (but smooth) kernel is
used in a Poisson equation solver over the entire simulation
cell on a coarse FFT grid. The Hartree potential thus is the
sum of localized potentials over the small boxes and a long-
range potential represented on a coarse grid which provides
efficient evaluation. SBFFT yielded a speed-up of 8.6 for a 10-
fold increase in the number of CPUs, which is quite good for a
parallel algorithm for massive systems. In addition, the relative
error was estimated to be 4 × 10−5 (or 0.1 meV maximum
error in the potential) for a massive simulation using 24,000
processors with a large FFT grid of 2, 4003 points.546

Following the same strategy, SBFFT can be used to evaluate
two-point KEDFs by introducing a real-space truncation of the
nonlocal KEDF kernel. Chen et al.519 performed an
optimization of 1,024,000 Li atoms by distributing the work
on 65,536 processes. That is a striking improvement over a
“vanilla” FFT parallelization.
Two additional methods for implementing parallel FFTs,

slab and pencil decompositions,547,548 have been introduced
recently to OFDFT by Shao et al.520 in the ATLAS package.
In the slab decomposition, slices of the simulation cell along

one axis are distributed evenly among all processes, while in
the pencil decomposition the spatial partitions are done along
two axes. As a result, the theoretical limit on the number of
processors is larger in the pencil decomposition. The limits can
be estimated from the mesh grid. With an N = Nx × Ny × Nz
point grid, the maximum number of processes is max(Nx, Ny,

Figure 13. Small-box FFT algorithm distributes work and data for the
computation of Coulomb and KEDF terms in the OFDFT energy
functional. The large simulation cell is divided into small boxes. Each
is composed of a physical small box and a buffer region which is
introduced for evaluating the derivative of the density function
needed for the evaluation of KEDFs. Reprinted with permission from
ref 519. Copyright (2016) American Chemical Society.
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Nz) and N/min(Nx, Ny, Nz) for the slab and pencil
decompositions, respectively. As illustrated in Figure 14(c)
and (d), an additional buffer region is needed to store
information for the points near a domain boundary. That
region is used to perform finite difference schemes for each
processor and can reduce the massive communication
frequency.
In the form implemented in the ATLAS code, these

approaches were benchmarked by comparison of total (wall
clock) time for density optimization of Al with a 32,000 atom
supercell. Both slab and pencil domain decompositions were
used. Those results also are shown in Figure 14(e). Below 200
processors, the performance of the two approaches is
comparable. Above that, the pencil outperforms the slab
decomposition significantly. Shao et al.520 showed that the
parallel efficiency of the pencil decomposition reached 0.92 for
a 2,048,000 atom simulation distributed on up to 4,096
processors.520 Another impressive achievement by those
authors is the recent successful optimization of the electron
density of cubic aluminum using the WT KEDF and LDA XC
functional for a sample of 100,271,632 atoms.549

3.5.3. Real-Space Algorithms for OFDFT Simulations
of Million-Atom Systems. The FE and FD real-space
representations introduced in Subsection 3.3.2 are generally
efficient and scalable. However, when multimillion-atom
systems are considered, real-space methods have the
opportunity to use a lower spatial resolution for the space far
away from notable features (e.g., vacancies in bulk systems and
clusters in vacuum) and reduce computational complexity
thereby.518,530,550 A realization of this idea has been
implemented by Gavini et al., who proposed the quasi-
continuum OFDFT scheme.533,550 In it, three feature-centered
grids of different resolutions are adopted. We refer the
interested reader to refs 518, 530, and 550 for additional
information about the quasi-continuum approach as well as
other FE methods. We also refer the reader to additional
references describing other scalable real-space methods that
have found success in DFT codes, namely refs 11 and
551−557.
3.6. Software for OFDFT Simulations of Materials

As discussed in Section 1, the TF and TFD approximations
applied to atoms yield one-dimensional differential equations
that have analytical solutions. They attracted interest in no

small measure because of the extremely limited computational
capacity of that era. To our knowledge, the first computational
solution to the TFD equations was reported in 1950 by
Reitz.28 Other numerical solutions followed.37,38,116,558−561

Given limitations of both the KEDFs and the available
computational resources back then, those efforts targeted small
systems, e.g. single atoms or small molecules.
Beginning in the 1980s, OFDFT software became more

general and capable of treating wider system classes, including
condensed phases,43,44,451 surfaces,562 and metal clusters563 It
seems fair to say, however, that those calculations were largely
proof-of-principle efforts with limited impact outside the
OFDFT method development community.
With the development of more accurate KEDFs and,

concurrently, the betterment of pseudopotentials, since 2007
several groups have developed general-purpose codes, aimed at
large-scale (up to hundreds of millions of atoms549) OFDFT
simulations.53−55,162,486,520,533,564 A summary of available and
recently reported OFDFT software follows.

1. PROFESS:
The PRinceton Orbital-Free Electronic Structure

Software (PROFESS)55,486,564 package is an open source
code released under a CPC license.565 It appears to be
the most comprehensive OFDFT code currently
available, as it can perform a wide range of simulations
under diverse conditions. It employs a PW basis set;
hence, Coulomb interactions, gradient, and Laplacian
operations are evaluated in reciprocal space by FFT. The
electron density is found by direct minimization of the
total energy functional. Several minimization algorithms
are available (SD, CG, TN, BFGS, and more). Besides
electron density optimization, with use of forces and
stresses, PROFESS can run molecular dynamics and
structure relaxations with most GGA and two-point
KEDFs. In terms of pseudopotentials, PROFESS not
only supports LPP but also supports recent experimental
schemes that go beyond LPP161,169 (see Subsection 2.7).
Recently, libKEDF, a library for the efficient and
accelerated evaluation of local, semilocal, and nonlocal
functionals, was released.566 The library will be
integrated in PROFESS. PROFESS also has been
coupled to Quantum Espresso and augmented with
finite-temperature KEDFs and XC DFAs to provide a

Figure 14. 2D-FFT algorithm. (a) Slab domain decomposition using four processors. (b) Pencil domain decomposition using a 4 × 3 processor
grid. The buffer region (in red) is used to store information for the points near a domain boundary for the center processor in slab (c) and pencil
(d) decompositions. (e) Comparison of wall time for a density optimization of 32,000 atoms of bulk Al with slab and pencil domain
decompositions. Reprinted with permission from ref 520. Copyright (2018) Elsevier.
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general platform for even-handed comparison of
OFDFT-based and conventional KSDFT-based AIMD
calculations.162

2. ATLAS:
Ab-initio orbiTaL-free density functionAl theory

Software (ATLAS) is a FD implementation (both the
Laplacian operator and the Poisson equation) of
OFDFT. PW basis sets and associated FFTs also are
provided for the evaluation of two-point KEDFs and use
as Poisson solvers. The primary electron density
optimization algorithm is direct energy minimization.
It can be used for both periodic and nonperiodic
systems. For two-point functionals with density-depend-
ent kernels, ATLAS uses OE-SCF instead.53,90,462,520

The source code can be obtained from the ATLAS Web
site (atlas-ch.cn549).

3. GPAW:
GPAW51 is released under the GNU Public License

version 3 or any later version.567 In GPAW, there is an
OFDFT implementation120 consisting of a modified
KSDFT solver adapted for tackling indirect solution of
the OFDFT Euler equation via an SCF algorithm (recall
Subsection 3.2.1). The OFDFT implementation in
GPAW features local and semilocal KEDFs. Two-point
KEDFs are yet to be implemented.

4. DFTpy:
DFTpy54 is open source, released under an MIT

license.568 It relies on Fourier space for the treatment of
Coulomb interactions, for the computation of gradient
and Laplacian operations, and for evaluation of two-
point KEDF kernels. Various density optimization
algorithms are provided, including OE-SCF.462 DFTpy
is a flexible, object-oriented OFDFT implementation
with friendly APIs for Jupyter Notebooks. It thus is
adapted to prototyping of new features. It can be used as
a module for computing energy, forces, and stress. It also
provides an API to the Atomic Simulation Environ-
ment569,570 for AIMD and other functionalities. In
addition, it provides a hydrodynamic time-dependent
OFDFT implementation.54

5. CONUNDrum:
CONUNDrum52 is released under the GNU GPL v3

license.567 Both a high-order central FD method and
FFT are used for calculation of various energy and
potential terms. Density optimization is via direct energy
minimization with SD and nonlinear CG algorithms. In
addition to one- and two-point KEDFs, machine-learnt
KEDFs also are available.

Besides the packages just listed, other software implement-
ing real-space OFDFT algorithms has surfaced but apparently
is not publicly available.484,533,571,572 There have been various
materials simulations with these.573−576

We conclude by remarking that OFDFT software currently
is under development in several research groups around the
world. The overall trend seems to favor material science
applications and pseudopotential implementations. As multi-
scale software continues to improve and new multiscale
schemes evolve (such as embedding577−579), the role of
OFDFT software will grow in importance. The future likely
will see OFDFT solvers and conventional KSDFT solvers
being used together in comparatively unconventional multi-
scale computational protocols. To achieve this goal, OFDFT

software seems to be following the trend of other materials
science software, namely, transition from stand-alone codes to
modules and libraries that can be used independently (nearly
“black box”) by other software in flexible ways.

4. APPLICATIONS
In most cases, the prediction of structure−function relation-
ships requires ab initio molecular dynamics (AIMD)
simulations to represent configurational sampling and evaluate
thermodynamic functions. Thus, the complexity of the
requisite simulations can become intractable even for
comparatively computationally efficient methods, such as
semilocal conventional KSDFT. Doing AIMD with OFDFT
is, in contrast, expected to be cost-effective for geometry
optimizations and molecular dynamics of clusters, surfaces, and
bulks. Aside from MD, OFDFT simply allows tackling of much
larger systems than possible with conventional KSDFT,
thereby helping to bridge the divide between few-atom system
results and reality.
Note also that it is possible to accelerate OFDFT-based

AIMD by applying techniques akin to what is done in
conventional KSDFT.580 Even though acceleration methods
such as the extended-Lagrangian Born−Oppenheimer molec-
ular dynamics techniques have been proposed and bench-
marked for model systems,581 they have not yet been
employed in OFDFT simulations. However, we expect they
will be.
Here we give examples of what already has been achieved. In

the subsections that follow, we review several applications of
OFDFT that enabled modeling of systems that clearly would
be outside the applicability range of conventional KSDFT.
These include models of the mechanical properties of bulk
metallic systems (including alloys), metallic clusters, and
nanostructures. Even though OFDFT currently is limited by
the systems it can approach (because of limitations of present-
day approximate KEDFs and local pseudopotentials), the set of
systems benefiting from OFDFT-based modeling is large and
growing as approximate KEDFs become more refined,
transferable, and accurate.
We review bulk solid studies first and then move on to

nanostructures and clusters, liquids and matter under extreme
conditions. Then we survey applications of those subsystem
DFT methods that rely on KEDFs in their formulation.
4.1. Solids

Since the bronze age (3000 BC) human beings have
understood that alloying metals modifies their bulk properties:
mechanical, thermal, and optical. Even today, metallurgy is an
active field of research and engineering. OFDFT has played a
key role in this context, providing accurate models for alloys
and defective metals.
Thematically in this review, we have noted that the N( )3

computational scaling of conventional KSDFT poses a severe
incremental cost barrier regarding treatable system sizes. Yet
system size matters. For example, to control finite-size effects,
predictive models of alloys and defective metals require large
system sizes (hundreds or even millions of atoms in the
simulation cell). Radhakrishnan and Gavini576 found “remark-
able cell-size effects that are present in computational domains
consisting of up to 103−104 atoms, even in simple defects such
as vacancies” either in bulk Al576 or in alloys.572 Strong finite-
size effects required Das et al.572 to use a 879-atom cell to
converge the OFDFT electronic structure of a monovacancy in
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bulk Al. Additionally, Qiu et al.582 reported that vacancy
migration and formation energies display strong finite-size
effects (fcc-Al needed supercells with up to 10,976 atoms).
They employed the WT and WGC KEDFs and LDA and PBE
XC functionals. Validation was carried out against conven-
tional KSDFT for feasible system sizes (up to 256 atoms).
While they found little difference between predictions with
LDA and PBE XC functionals, the WT KEDF overestimated
the vacancy formation energy by about 0.7 eV (out of an
experimental value of 0.61 eV). WGC gave much improved
vacancy formation energies (0.80−0.72 eV depending on the
XC functional employed). Their study shows that practical
implementations of OFDFT are predictive for studying
vacancy formation, such as the collision cascade process in
irradiated materials582 or materials under loading shock
conditions.583

Zhuang et al.171 employed the WT KEDF and PBE XC
functional implemented in PROFESS to investigate the elastic
and thermodynamic properties of complex Mg−Al intermetal-
lic compounds. First they benchmarked the performance of
OFDFT as compared with both conventional KSDFT and
experimental results and found good agreement. For example,
the lattice constant of Mg13Al14 is 10.314, 10.437, and 10.183 Å
from experiment, OFDFT, and conventional KSDFT,
respectively. They also found similarly good agreement for
phonon spectra of hcp Mg and fcc Al. In a second step, they
evaluated the dynamical stability of alloys by computing
phonon spectra on 3 × 3 × 3 supercells for all the compounds
considered, including Mg23Al30. This resulted in a 1431-atom
system. Their computations enabled the determination of
thermodynamic properties, such as the temperature-dependent
formation energy, heat capacity, and thermal expansion
coefficient. The simulation yielded linear thermal expansion
coefficients of 22.8 and 22.6 × 10−6 K−1 at T = 298 K for Mg
and Al, respectively. Those results compare well with the
experimental values, 24.8 and 23.1 × 10−6 K−1, an indication
that OFDFT is quantitatively reliable for computing properties
of Mg−Al intermetallic compounds.
A detailed account regarding various kinds of defects in

metals and metal alloys (such as vacancies and vacancy
clusters, interstitials, dislocations, and grain boundaries) can be
found in the recent review by Witt et al., ref 145. It is worth
highlighting a few specific examples to showcase the usefulness
of OFDFT to materials science. For one, Xia et al. employed
the WGC-decomposition approach (see Section 2.7.1) and
HC KEDFs, the PBE XC functional, and BLPS pseudopoten-
tials implemented in PROFESS to study several Li−Si alloys
(LiSi, Li12Si7, Li7Si3, Li13Si4, Li15Si4, and Li22Si5). They found
that over 80% of the OFDFT results had errors in the
equilibrium lattice constants within 1% of the conventional
KSDFT reference values, with the largest deviation less than
2%. The bulk moduli errors lie within 5 GPa (or approximately
10%) of the conventional KSDFT values.
Atomic-scale characterization and understanding of dis-

locations in bulk systems is another topic of importance for
materials science. Because dislocation formation is difficult to
monitor in situ, theory and modeling potentially are of very
high value. Shin and Carter584 tackled the problem by
employing the WT and WGC KEDFs, the LDA XC functional,
and BLPS pseudopotentials with the PROFESS code. They
benchmarked against conventional KSDFT with the same
pseudopotentials and XC functional. The differences are quite
small, within 25.8 (5.8) meV/atom for the total energy from

the WT (respectively WGC) KEDF, and 5.5 (5.2) GPa for
elastic constants, and 16.3 (28.9) mJ m−2 for stacking fault
energies. The same authors also presented a thorough analysis
of screw and edge dislocations in magnesium. They analyzed
dislocation width and dynamics for the first time with an ab
initio method which is much more accurate than the
embedded-atom force fields585 typically employed in the
engineering community. In another study, Hung and Carter586

analyzed the ductile properties of aluminum and showed that
Al metal is much more resistant to plastic deformation than is
predicted by commonplace engineering methods such as
continuum models.
4.2. Metal Clusters, Quantum Dots, and Nanostructures

As mentioned, OFDFT-based AIMD (OFDFT-AIMD) can be
quite useful for modeling metallic systems, including metal
clusters. Multiple OFDFT-AIMD studies of metal clusters have
been done dating to the early 1990s. We summarize a
representative selection in what follows.
Despite its fundamental flaws (recall Section 2), historically

the TTF + λTvW (TFλvW) KEDF has been used in ways that
encouraged further exploration of OFDFT treatment (with
LDA XC) of clusters. Kanhere et al. treated simple Na and Mg
dimers and trimers587 with the λ = 1/9 version. It also was
used to study the most probable low-energy configurations of
diverse clusters including the ground-state geometries and
energetics of small Li clusters and the LinAlm cluster,588−591 as
well as melting of Al13.

592,593 Despite its deficiencies, the
TFλvW functional yielded bond lengths within 5% of the
conventional KSDFT values,589 an encouraging indication of
the promising nature of OFDFT-AIMD for study of non-
periodic metallic systems. Thus, for example, Blaise et al.594

used OFDFT-AIMD with TFλvW, λ = 1/9 to study the
structural and dynamical properties of neutral and charged Na
clusters up to sizes of several hundred atoms. Their ab initio
calculations confirmed the validity of the so-called “liquid
drop” model (often used in the nuclear physics community) as
a function of the total cluster charge.595 Moreover, the Guo
group562 adopted OFDFT to study the equilibrium structure
and bonding of small silicon clusters.563 They also used
TFλvW KEDF, but with λ = 1/5. Although the values of
cohesive energy they obtained were only semiquantitative, the
bond lengths and angles compared very well to values from
conventional KSDFT.563 The OFDFT-AIMD approach was
exploited by Aguado and coauthors as well in a number of
studies of alkali clusters and alkali metal alloy clus-
ters.126,127,453,596−599

The first application of two-point KEDFs to clusters is
credited to the Carter group.174 They used the WGC297 two-
point KEDF and LDA XC functional to study two-dimensional
arrays of Al quantum dots. The issue investigated was the
induction of a metal−insulator transition by increase of
interdot separation. The only input to their model was a
measure of the electron density decay as a function of
intercluster separation. Their study was important because it
showed that two-point functionals, even if developed for
applications to bulk systems, could be applied to systems with
remarkable inhomogeneity. (Note that the authors of ref 174
were careful to clarify that very low density values are probably
unreliable because the Taylor expansion in WGC, mentioned
in Subsection 2.4.2, may not be able to recover an appropriate
kernel in low-density regions.)
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Applications of OFDFT ventured to investigating tensile
yielding of metal nanowires, behavior that is important for
predicting how the metal behaves under extreme stress. In ref
173, Hung and Carter adopted the WGC KEDF, LDA XC
functional, and BLPS pseudopotentials in the PROFESS code
to model large-sized Al (111) nanowires (up to 20 nm in
length). Interestingly, they found that such nanowires develop
specific slip planes or amorphization of the crystal structure
depending on wire size (see Figure 15). Employing the same

approach, the Carter group went further and studied plastic
properties of body-centered-cubic (bcc) Mg−Li alloys as
potential lightweight metals. In the model, they used
simulation cells containing up to 8640 atoms.454

Aguado et al. adopted a two-point functional developed in
the group of Stott by simplifying the CAT KEDF316 (similar in
spirit to the WT functional44) in conjunction with the LDA
XC functional to study melting of various-sized sodium
clusters.600−604 Quite interestingly, calorimetry experiment
results605 were reproduced quantitatively by the simulations,601

as shown in Figure 16. Detailed information is in the review by
Aguado et al.606,607

Recall from Subsection 2.4.2 that the LMGP KEDF88

recently developed is applicable to quite inhomogeneous

systems, including clusters.

Figure 17 and Table 5 show the results of benchmark studies
for several hundred random-structured metal and semi-
conducting clusters. The LDA XC functional was adopted in
all these OFDFT calculations, which were done with the
ATLAS code. The outcomes indicate that two-point func-
tionals with fully density-dependent kernels (such as LMGP)
improve the performance of OFDFT considerably in modeling
finite metal clusters and quantum dots compared with values
from the semilocal functionals mentioned above. This is true
for both total energy and electron density. The results also
indicate that OFDFT can treat systems with highly
inhomogeneous electron density, such as clusters and quantum
dots, as accurately as conventional KSDFT at a fraction of the
computational cost.
Because of the computational cost, until recently there have

been no applications of two-point functionals with density-
dependent kernels to nanoscale systems79 such as materials
interfaces and nanoparticles. That state of affairs changed with
the introduction of the OE-SCF method (Section 3.2.1). It
requires only ≈15 nonlocal KEDF evaluations for each
geometry (depending weakly on system size and type). As
an example, Figure 18 shows results for a nanoscale metal−
semiconductor interface and a semiconductor nanoparticle,
each containing hundreds of thousands of atoms. Both were
studied with the LMGP KEDF.
We have mentioned already the avoidance of finite-size

effects via OFDFT. For obvious computational cost reasons, it
is rather common for conventional KSDFT calculations to be
done on system sizes that are small compared to the scale of

Figure 15. Aluminum wires under tensile stress. The wires break in
specific ways (slip planes are made visible by the color coding)
predicted by OFDFT with the two-point KEDF WGC. Green atoms
correspond to hcp structure, gray to fcc structure, and white to an
unknown structure. Reprinted with permission from ref 173.
Copyright (2011) American Chemical Society.

Figure 16. Size variation of the volume per atom (top) and melting
temperature (bottom) in Na clusters from OFDFT simulations and
experiment. The dashed line in the upper panel is the best linear fit to
the data. Reprinted with permission from ref 601. Copyright (2005)
American Physical Society.

Figure 17. Energies (eV/atom) of 100 random structures of Ga4As4
and Ga25As25 compared to conventional KSDFT results (on the x
axis) as well those from other KEDFs. LMGP0 is LMGP with the
corrective 1/q2 as the q → 0 term removed. LWT is the result of using
the integrand in eq 106 simply evaluated at t = 1; hence, it is LMGP0
with the kernel terms arising from the functional integration removed.
Adapted with permission from ref 88. Copyright (2019) American
Physical Society.
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experimental samples. That is particularly the case for
modeling of nanoparticles and materials interfaces. For the
latter systems, models often are unable to reproduce the
correct crystal lattices at the interface because resolution of the
differing lattice constants would require excessively large
simulation cell sizes to reach a commensurate length.
Reference 462 showed that with accurate KEDFs it is possible
to overcome this difficulty and use appropriate system sizes.
Shao et al.462 in particular found that LMGP reproduced,
quantitatively, the energy as a trend of nanoparticle radius
(culminating in the largest nanoparticle depicted in the figure).
For the metal−semiconductor interface in Figure 18 (right
panels), the authors showed that the charge rearrangement
across the interface reproduces known trends for passivated
and unpassivated Si surfaces. (The charge rearrangement was
computed by subtracting from the electron density of the
interface the electron densities of the isolated slabs.)
4.3. Liquid Metals and Alloys
We turn next to the applications of OFDFT to liquid metals
(including alloys) and their surfaces. We refer the reader to the
reviews by Aguado et al. in ref 607 and by Witt et al. in ref 145
for additional and complementary details.
OFDFT-AIMD was used with success for studying the

structure of simple liquid metals (such as Li, Na, Mg, Al, and

Cs) beginning in the 1990s.452,469,609,610 Typically that was
with the LDA XC functional. That progress exploited the
relevance of the HEG to such metals as embodied in use of the
linear response formulation of two-point functionals beginning
with WT44 and continuing with SM,46 WGC,297 and other
KEDFs.43,299,320 Recall details in Section 2.4.2. In those
simulations, first-principles LPPs (such as NPA and BLPS; see
Section 3.1.2 for details), as well as empirical or model LPPs
(such as the Topp-Hopfield LPP447 for Na and the Fiolhair
model potential444 for Cs), were used. Note that empirical
LPPs still are useful, as there exist parametrizations for those
ions that are not approachable, so far, by first-principles LPPs,
such as transition metals.611 We also note that the KEDFs
mentioned are broadly useful for simulating complex liquids,
including their surfaces.612

An early success from Madden et al. was calculation of the
dynamic structure factor of liquid Na609 using the LDA XC,
their SM KEDF,46 and the Topp-Hopfield LPPs.447 They
obtained excellent agreement with experimental results for
static and dynamic structure factors.609 In subsequent work
that used first-principles LPPs,457 the liquid phases of Na, Mg,
and Al610 were studied at temperatures close to their melting
points. It was found that the calculated average coordination
numbers and radial distribution functions (RDFs) agreed well

Table 5. Mean Unsigned Error (MUE) for the Total Energy in eV/atom and, in Parentheses, Percentage Mean Unsigned
Relative Error (MURE) for the Electron Densitya

Systems LMGP LMGP0 LWT TF+15vW WT

Mg8 0.18(3.79) 0.63(4.12) 1.19(4.05) 1.09(11.36) 8.79(16.0)
Si8 0.22(4.84) 2.17(4.90) 4.86(4.74) 1.46(8.28) 41.7(17.5)
Ga4As4 0.34(5.40) 2.21(5.43) 6.15(4.89) 1.55(8.94) 51.8(19.3)
Mg50 0.05(3.31) 0.35(3.42) 0.84(2.38) 0.95(9.56) 3.23(10.3)
Si50 0.11(4.59) 0.95(4.65) 3.73(3.60) 1.53(7.24) 16.4(14.2)
Ga25As25 0.13(5.21) 1.06(5.26) 4.29(3.19) 1.67(7.79) 22.7(16.8)
Mg8S 0.28(5.20) 1.16(5.34) 2.66(5.29) 0.27(7.63) 19.4(18.6)
Mg8V S 0.09(3.94) 1.67(4.10) 3.88(4.87) 0.10(5.60) 24.0(17.5)

aMUE is defined as n n dr r r( ) ( )
N

100%
2 OFDFT KSDFT| | ) relative to conventional KSDFT values. Superscripts S and V S stand for “strained” and

“very strained”, where the minimal interatomic distances between atom pairs are 1.2 and 0.8 Å, respectively. Both are much shorter than the
equilibrium bond distance, 2.4 Å. Reproduced from Mi et al.88.

Figure 18. Left: Energy per atom of large icosahedral Si nanoparticles containing up to 102,501 atoms (dashed orange curve with dots is for the
LMGP functional with OE-SCF solver; solid green curve is the empirical formula taken from ref 608). Right: Inset (a): depiction of a 3-layer
interface, Al(111) (top), Si(111) (middle), and Mg(100) (bottom). Slabs of large dimensions were required in order to match the lattices of the
materials at the interfaces. The charge flow across the Si−Al and Mg−Si interfaces (computed as the difference between the electron density of the
3-layer interface and the electron densities of the isolated slabs) is displayed with an isosurface volume plot visible in inset (a). Insets (b) and (c):
Two-dimensional cut of the charge flow across the interface for the Si−Al and Mg−Si interfaces, respectively, which is seen to range between −0.01
and +0.04 electrons. Adapted with permission from ref 462. Copyright (2021) American Chemical Society.
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with both conventional KSDFT and experimental outcomes.
Recently, the same KEDF and XC functional were used with
the PROFESS code to study the dynamic properties of liquid
Sn. The simulations reproduced the experimental results for
the collective fluid dynamic behavior quite well.613

Significant improvements over the SM functional were
introduced with the simplified CAT functional316 (recall
Section 2.4.2). It was developed to study the structure and
dynamics of diverse liquids. In the simulations listed next, the
LDA XC DFA was used and the temperatures were chosen to
be close to experimental values. The studies were as follows:
1. Simple and alkaline earth liquid metals: Cs,452 Li,469

Na,614 Mg,615 and Al316 plus liquid alkaline earth metals (Be,
Ga, and Ba);471

2. Liquid alloys: liquid Na−Cs and Na−Cs alloys,616 Li−Na
alloy,617 Ga, In, and binary alloy Ga−In;618

3. Liquid surfaces and interfaces: surface of liquid Li and
Na,619 liquid−vapor interface in liquid binary alloys,620 and
liquid surface of Sn,621 interface of the liquid metals Al,622

liquid−vapor interfaces of Ga and In,618 liquid−vapor
interfaces of liquid binary alloys (NaK, NaCs, and LiNa),623

and the liquid In surface.612

4. Nonmetals and transition metals: liquid Si at near melting
point624 and high-pressure conditions,625 bulk liquid Ga,626

liquid noble metals,627 transition metals,611 and liquid Zn, Cd,
and Hg divalent metals.628

Most of the studies in the foregoing list employed the
simplified CAT KEDF. The earlier works presented compar-
isons among results obtained with the simplified CAT and the
one-point functional TFλvW with λ = 1. Perhaps unsurpris-
ingly, the simplified CAT KEDF was found to be more
accurate and to provide a better description of the structure of
the liquid metals considered on the basis of comparison with
experimentally determined structure factors.452 An additional
take-home message from the list of studies above is that the
simplified CAT KEDFs in conjunction with pseudopotentials
provide a nearly quantitative description of the structure and
dynamics of bulk as well as liquid metal surfaces without
incurring limitations from the finite-size effects619 which had
plagued conventional KSDFT simulations of similar types of
systems.629

In a related application, the Carter group adopted the two-
point WGC KEDF in conjunction with the PBE XC functional
and BLPS LPPs to study the melting point of Li using the
PROFESS code.461 Figure 19 shows their OFDFT-AIMD
results for both the RDF and static structure factors at ion
temperatures 470 and 725 K as compared with X-ray
diffraction and neutron diffraction data, respectively. The
agreement is evident. These results on liquid metals are
encouraging indicators of the value of OFDFT-AIMD
simulations. Moreover, the OFDFT-AIMD predictions of
structure factors predicted from ab initio dynamics for liquid
Li are in better agreement with experimental data than the
predictions from classical force fields.460

4.4. Matter under Extreme Conditions

Most materials physics is done in the same pressure−
temperature (P, T) domain as the chemistry of the molecular
constituents of those materials, roughly T ≲ 2000 K, P ≲ 1
Kbar. Electronic structure calculations at T = 0 K generally
suffice therefore, so zero-temperature AIMD is used success-
fully to calculate the equation of state (EOS) and various
properties of the condensed systems. Immediately, the

computational cost-scaling advantage of zero-temperature
OFDFT and the KEDFs we have discussed is relevant for
such studies.
However, there are systems in which both the chemistry and

the condensed phase physics occur at much higher T and P.
Especially spectacular examples are found in the interiors of
giant planets and exoplanets.630 Other examples of this so-
called warm dense matter (WDM) regime occur in inertial
confinement fusion.631 For WDM, one can have T ≲ 10−15
eV (with 1 eV = 11,604.5 K) and P ≲ 1 Mbar or even higher.
Systems in the WDM P−T domain have electron

populations that are highly excited. But they are not so
thoroughly excited as to make the system into a two-
component plasma (electrons, ions) with small quantum
corrections. Because quantum mechanics still is dominant, it
has proven efficacious to use finite-T AIMD. (Remark:
Chemists may be surprised (or bemused) to learn that it is
conventional in the physics literature to refer to nonzero T as
“finite T” even though zero is, of course, finite.) Immediately
that implicates free-energy DFT.632 For present purposes, it
suffices to say that free-energy DFT differs from ground-state
DFT in three ways. First, the non-interacting kinetic energy Ts,
eq 23, becomes the non-interacting free energy

T n TS ns s s= [ ] [ ] (where Ss[n] is the non-interacting
entropy). Second, the exchange-correlation energy, eq 27,
becomes the exchange-correlation free energy n T;xc[ ]. And
third, the occupation numbers, eq 22, take on Fermi−Dirac T-
dependence. Observe that the KS equation is unchanged in
form.
The relevance of OFDFT is plain. The simple presence of

another physical parameter, T, means that there are more
simulations to do than at T = 0 K. Moreover, at least in
principle all the KS levels are occupied. In practice, many more
occupation numbers can be numerically significant than at T =

Figure 19. Radial distribution functions (RDFs) of liquid Li at 470
and 725 K. The simulations used 128 independent atoms in the
simulation cell in the canonical ensemble. The results at 725 K are
shifted upward by one unit for ease of viewing. The legend “OF-
FPMD” denotes what we term OFDFT-AIMD. Adapted with
permission from ref 461. Copyright (2013) Taylor & Francis.
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0 K, so the benefit of OFDFT N N( ln ) scaling relative to
conventional KSDFT cubic scaling is amplified compared to
the ground state (T = 0 K).
We do not review free-energy OFDFT here in detail, but

only sketch the key ingredients and give a few examples as a
guide to the recent literature and a connection to the ground-
state OFDFT methods and KEDFs that are our focus. In
parallel with the ground-state case, the critical ingredient is s.
For brevity, we refer to approximations for it as KEDFs, even
though they have an entropic contribution. The most widely
used have been finite-T Thomas−Fermi29 or TFvW. The
finite-T von Weizsac̈ker term was given by Perrot633 more than
40 years ago, while TF-based finite-T AIMD studies first
appeared almost 30 years ago.634,635 Despite the fact that TF
and TFvW obviously are far from satisfactory on fundamental
grounds, they continue to be used.636−639 (Remark: It is a
misleading peculiarity of the literature that many of the finite-T
TF or TFvW-based papers state, incorrectly, that OFDFT is
def ined by the use of those functionals.)
Connection with modern ground-state OFDFT was made in

2012 when Karasiev et al.640 presented a method for
generalizing a ground-state gradient-dependent (GGA)
KEDF into a gradient-dependent s. They demonstrated the
workings and effectiveness of that scheme by use on their
semiempirical PBE2 GGA KEDF (recall discussion in
Subsection 2.4.1 about “modified conjoint” KEDFs). A bit
over a year later, the first nonempirical finite-T GGA KEDF
was presented, namely VT84F.85 Constraint-based, it was
constructed with both proper T = 0 K limiting behavior and
large-T behavior.
As we discussed in Subsection 2.4.1, the constraint

satisfaction in VT84F (as a T = 0 KEDF) is predicated on
physical densities with nuclear-site cusps that satisfy the Kato
condition. That property carries over to T > 0 K. Recall, from
that same discussion, that the LKT KEDF86 was constructed to
satisfy positivity constraints for typical pseudodensities. By
means of the procedure in ref 640. LKT recently also was
extended to being a free-energy KEDF,641 LKTF.
So far as we are aware, those are the only two nonempirical

one-point free-energy KEDFs to date. Two-point s
approximations are equally rare. To our knowledge, there are
only two, both the work of Sjostrom and Daligault.166,318,642

They have the structure of eqs 13 with kernel (eq 14), but of
course with T-dependent densities and kernels. The first of the
Sjostrom−Daligault functionals is straightforwardly the
Wang−Teter kernel44 extended by calibration to the finite-T
Lindhard response. It has a deficiency, namely that for large
wavevectors (small distances), the kernel ω(k, T) goes strongly
negative (see Figure 1 in ref 44). That behavior can yield “...
unphysical densities with infinite negative energy”.318 Refer-
ence 318 cured that problem by changing the TvW term to
scaled two-point form (temperature-dependence suppressed
for clarity),

d d n nr r r r r r

r r

:
1
2

( ) ( ) ( )

( )

vW
1/2 1/2= [ · ][

+ | | ] (188)

The nonlocal scaling function β(|r − r′|) and kernel ω then are
determined by enforcing the Lindhard response in the HEG
limit while requiring that the kernel vanish for large k. In ref
641, this s approximation was denoted “sdβ-vW14F”.

Regarding the XC free energy, ground-state Exc forms
evaluated with finite-T densities often have been used. This
“ground-state approximation” is reasonable up to about T = 1
eV in many but not all cases and certainly is not valid
generally.643−645 Until 2014646 there was no strict xc
counterpart of the Perdew−Zunger LDA Exc.

281 A partial
counterpart to the PBE GGA Exc

225 was presented in 2014,647

but a strict counterpart did not appear until 2018.648 While
there is a hybrid xc,

649 that is not relevant to OFDFT, the
history of prior development of xc approximations is
irrelevant here.
With this brief introduction, we turn to a few illustrative

examples of calculations. First are two examples of Thomas−
Fermi-based calculations. The simpler of the two was by
Lambert et al.636 It used simple Thomas-Fermi for s and had
no exchange-correlation free-energy contribution in the
OFDFT-AIMD. Nevertheless, the prediction for the principal
Hugoniot (the locus in P, T of all final states of a material at
density ρ reachable by passage of a single shock wave) for iron
is rather good for T ≳ 100 eV when compared to the SESAME
table EOS 2140.650 See Figure 20. Below that temperature the

deviations with respect to conventional free-energy KSDFT-
AIMD are a clear sign of both the deficiencies of TF and the
lack of a xc term. This diagnosis is confirmed by a more
recent study that includes xc contributions (at the level of the
ground-state approximation); see ref 651.
The second example is the calculation of the EOS and

dynamic structure factor of aluminum by White et al.167 for 0.1
≤ T ≤ 10 eV. The finite-T OFDFT simulations used 864
atoms in the simulation cell, compared to 108 for the
conventional KSDFT finite-T validation calculations, an
illustration of the computational cost scaling advantage of
OFDFT. Figure 21 shows the resulting EOSs. Once again, one

Figure 20. Principal Hugoniot for Fe from free-energy OFDFT with
only finite-T TF and no xc compared to the SESAME library EOS
2140 and, for lower temperatures, conventional free energy KSDFT
AIMD (denoted here as “KSMD”, widely called “QMD”) done with
LDA XC. Reprinted with permission from ref 636. Copyright (2006)
American Physical Society.
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sees the low-temperature deficiency of the TF approximation.
Also obvious is the importance of the inclusion of the XC free
energy.

Figure 22 shows a comparison between the best current one-
and two-point approximations for s, namely LKTF and sdβ-
vW14F. The physical quantity is the RDF. What is apparent is
that the one-point functional is quite competitive at larger T
and ρ but that the two-point functional clearly represents the
low-T, low-ρ regime better. The calculations were done for two
different pseudopotentials, BLPS163,164,458 and Heine−Abar-
enkov.445,652 Reassuringly, the two yield very similar results.
The isothermal EOS also is interesting. Figure 23 shows that

LKTF actually is closest to conventional KSDFT in the region
of low bulk density, unlike the comparison for the RDF.
Finally, Figure 24 shows the scaling of the wall time per AIMD

step as a function of T from about 25 kK to 200 kK for LKTF
and VT84F compared to conventional free-energy KSDFT.
The system is 108 H atoms. The promised OFDFT cost
scaling, independent of thermal occupation, is obvious. Note
that the conventional free-energy KSDFT calculations end at
the temperature shown because they were unaffordable above
that T. A similar plot is given in ref 315 for the sdβ-vW14F s
KEDF as a function of T over 2 orders of magnitude for the
case of 128 H atoms placed randomly.
4.5. Applications with Orbital-Free Embedding Schemes
In Subsection 2.7.5 we discussed the central importance of the
so-called nonadditive KEDF eq 158 in subsystem DFT
(sDFT). A high-fidelity nonadditive KEDF approximation is

Figure 21. Al EOS at ρ = 2.7 g/cm3 from free-energy OFDFT with
finite-T TF and with (and without) LDA xc (ground-state
approximation) compared with conventional free-energy KSDFT
results. The inset shows the pressure ratio between OFDFT and
conventional KS values. Reprinted with permission from ref 167.
Copyright (2013) American Physical Society.

Figure 22. Comparison of calculated RDFs for Al at two state
conditions. Conventional free-energy KSDFT results are the black
solid curves. Free-energy OFDFT results from the one-point LKTF

s are the blue dashed curves; those from the two-point sdβ-vW14F
functional are the red dotted curves. The RDFs for the case T = 5 eV,
ρ = 2.7 g/cm3 are shifted upward by two units for clarity (the caption
in the original is incorrect). Reprinted with permission from ref 641.
Copyright (2020) American Physical Society.

Figure 23. Al EOS at T = 1 eV from various s KEDFs. Top to
bottom curves at lowest ρ are TF (red), Perrot (teal), TF1

5
vW (olive),

VT84F (blue), and LKTF (green). Conventional free energy KSDFT
curve is black. Reprinted with permission from ref 641. Copyright
(2020) American Physical Society.

Figure 24. Wall-clock time per MD step for 108 H atoms for
conventional free-energy KSDFT vs OFDFT with the LKTF and
VT84F KEDFs. Reprinted with permission from ref 641. Copyright
(2020) American Physical Society.
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essential; hence, we provide a brief review of LDA, GGA, and
two-point nonadditive KEDFs with respect to the type of
simulations they can support. This is not a comprehensive
survey; rather our intent is to sketch what sDFT can do
nowadays as it is enabled by progress in KEDF development.
Additional details can be obtained from embedded method
reviews.180,181,190,408,409,430,653 We also remark that, unless
specified differently, all the examples given in this section
regard subsystem DFT simulations wherein all subsystem
densities are driven to self-consistency.
Obviously, the Thomas−Fermi KEDF is the most

rudimentary functional that can be used as a nonadditive
KEDF. As originally determined by Wesolowski and Weber,421

because the nonadditive KEDF magnitude is small for most
weakly interacting subsystems, TF may be a utilitarian choice
in some situations421 even though it generally gives overly
repulsive nonadditive KEDF values and incorrect energy
curves.296,654,655

GGA nonadditive KEDF functionals generally are superior
to TF for reproducing ground-state densities and ener-
gies.181,296,656,657 For those systems in which the interaction
between the constitutive subsystems is weak, GGA nonadditive
KEDFs have been studied thoroughly. Overall, it was found
that GGA nonadditive KEDFs reach sub-5-kcal/mol accuracy
in the prediction of most weak intermolecular interaction
energies as defined by standard test sets such as S22 or
S66.658,659 Systems studied include van der Waals com-
plexes,660,661 hydrogen-bonded complexes,654,656,662,663 and
their combinations.60,425,426,655 In particular, recent work on
partition DFT (related to sDFT but formulated in such a way
that the density partitioning is unique while allowing self-
consistent solutions for all subsystem densities434) shows that
GGA nonadditive KEDFs even can provide a quantitative
description of the energetics and electron density for selected
diatomics connected by a single covalent bond compared to
conventional KSDFT of the full system.293,664

Semilocal nonadditive KEDFs employed in sDFT have
enabled AIMD simulations of liquids such as water,296,665 and
supercritical CO2,

295 as well as solvated systems.666 In them,
GGA nonadditive KEDFs produced accurate results while
providing dramatic computational cost reduction via improved
scaling (from cubic to linear). Interestingly, an intrinsic error
cancellation between the repulsive nonadditive KEDF and the
attractive nonadditive XC led to semilocal sDFT giving
improved results compared to those from semilocal conven-
tional KSDFT.296

OFDFT can play an even greater role in sDFT simulations.
For example, the combination, in a single subsystem DFT
simulation, of conventional KSDFT solvers for molecular
subsystems and OFDFT solvers for metallic surfaces recently
was reported by Shao et al.667 In that work, the binding
energies of molecules at Al(111) surfaces were reported to be
within a few meV of the conventional KSDFT values.
Additionally, thanks to the advantageous computational scaling
of OFDFT, the hybrid OFDFT/KSDFT subsystem DFT
method yielded the electronic structure of large water/Al(111)
interfaces in record wall times.
Perhaps the most spectacular application to date of sDFT

with semilocal nonadditive KEDFs is credited to the
VandeVondele group.668 They tackled a tobacco virus
completely ab initio by combining sDFT with linear-scaling
conventional KSDFT techniques for the subsystems. The virus
is effectively a protein with quaternary structure. It was

geometry optimized in a simulation cell that was filled by water
molecules. In Figure 25 we show the electronic structure of the

tobacco virus computed by them colored by features of the
electrostatic potential. While there is no particular reason for
carrying out the geometry optimization of a virus, the
simulation of ref 668 is a source of excitement and makes
one realize that the all-electron, ab initio description of
biological systems is an achievable goal and not science fiction.
Beside these applications, a vast array of chemical problems,

for instance, solvation free energies,666 solvent effects on
different types of spectroscopies,669,670 magnetic proper-
ties,671−675 charge-transfer states,676−680 open-shell systems,681

and excited states,657,682−687 have been explored by semilocal
sDFT and its time-dependent extension.653,657,684,688 The fact
that research continues to yield improved KEDFs suggests
strongly that nonadditive KEDFs also will improve and, with
that, the applicability of sDFT also will expand.
In addition, ways to expand the applicability of nonadditive

KEDFs arise by coupling them with innovative embedding
schemes. For example, the 3FDE method689,690 handles strong
interactions, for which nonadditive KEDFs would fail, by using
a constraining potential derived from capping groups. That
constraining potential also maintains a correct electron density
in the regions of strong inter-subsystem density overlap. The
recent adoption of sDFT to improve many-body expansions
also is an interesting way to expand the applicability of
sDFT.691,692

Along these lines of thought, Laricchia et al. tested various
Laplacian-level meta-GGA nonadditive KEDFs for sDFT
calculations.285 They found improved sDFT results compared
to GGA nonadditive KEDFs when testing interaction energies
of small diatomics.
A step forward in accuracy and applicability has been

achieved recently by employing two-point KEDFs. The reasons
for the comparatively late employment of two-point KEDFs as
nonadditive KEDFs are twofold. First, most such KEDFs are
primarily suitable for weakly inhomogeneous systems (such as
bulk metals). This limitation is at odds with sDFT. In it, the
subsystem densities decay at the boundaries. Second, while
there exist two-point KEDFs suitable for non-homogeneous
systems, most either suffer from numerical instability, can only
handle weak non-homogeneity,297 or are too expensive to be
employed in large-scale sDFT simulations.77 However, the
LMGP functionals discussed in Subsection 2.4.2 can be used as

Figure 25. Electronic structure of a tobacco virus computed with
sDFT combined with linear-scaling conventional KSDFT for the
monomers making up the protein and the solvent. The figure maps
portions of the virus onto its density matrix as defined by sDFT, with
each diagonal block corresponding to one subsystem. The off-
diagonal blocks are zero because orbitals of different subsystems
belong to different KS systems which have independent Hilbert spaces
and therefore need not be orthogonal. The nonadditive KEDF used is
Lee−Lee−Parr.58 Reprinted with permission from ref 668. Copyright
(2016) American Chemical Society.
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nonadditive KEDFs because they are particularly well suited to
describe finite systems.89 LMGP provides considerable
performance improvement relative to the best GGA func-
tionals in terms of both interaction energies and predicted
electron densities.89 Evaluation of the full significance of two-
point nonadditive KEDFs for sDFT awaits comparable large-
scale sDFT calculations. Note, however, that recently Shao et
al.425 constructed a GGA functional that mimics the behavior
of two-point functionals (i.e., on one hand to cut off the von
Weizsac̈ker functional in high-density regions and on the other
hand to cut off the TF functional in low-density, asymptotic
regions). Their functional improved upon existing GGA
nonadditive KEDF performance by matching the accuracy of
two-point nonadditive KEDFs for interaction energies and
electron densities for the S22-5 and S66658,659 test sets.
Thus far, we have discussed the accuracy of sDFT

simulations by citing their ability to reproduce interaction
energies (and energy curves) between molecules, and the
structure and dynamics of molecular condensed phases (hence,
we inferred also the quality of the computed atomic forces).
There are, however, other properties that can be adjudged,
such as dipole moments, NMR properties, optical spectra, etc.
Clearly, the quality of the predicted molecular properties
depends on the quality of the electron density, which in turn
depends on the quality of the potential employed. In sDFT this
translates to the quality of the embedding potential and, as in
all KS-DFT calculations, the quality of the XC functional.
While we have not dwelled on some of these important details,
we refer the interested reader to excellent and comprehensive
reviews on the subject (see, e.g., pp 335−337 and 345−346 of
ref 181 and sections 5.2−5.6 of ref 190).
For more details on high-efficiency implementations,

parallelization schemes, and other details of sDFT implemen-
tations, we refer the interested reader to refs 577−579, 665,
667, 668, and 693−695.

5. CONCLUSION
With this review, we have attempted to provide the reader with
systematic access to the emerging value and quality of orbital-
free density functional theory (OFDFT), both in advances of
understanding the theory itself and in improved kinetic energy
density functionals (KEDFs). Our claim is that because of
steady and strong advances in the development of approximate
KEDFS, OFDFT has already played a significant role in
understanding materials and cluster chemistry and physics. We
expect that role to grow and expand. That expectation is
rooted in the growing number of investigators of OFDFT and
codes implementing OFDFT. Given promising recent develop-
ments surveyed here, applications to catalysis, for example, as
well as other parts of chemistry and materials science are
expected to surface soon, either with pure OFDFT simulations
or with other, related methods such as embedding and
decomposition schemes.
In the modeling of chemical processes, atom dynamics and

finite-size effects constitute the biggest bottlenecks in current
simulation protocols. As we showed in Section 4, OFDFT
already resolves those issues for a large class of systems. The
challenge now is to widen its applicability to embrace an even
larger set of system types. One of the persistent roadblocks to
universal applicability of OFDFT has been the limited accuracy
of available KEDFs. Another is the lack of local pseudopoten-
tials for second-row elements and transition metals. While such

roadblocks affect pure OFDFT, we have described several
hybrid schemes that are less affected by these shortcomings.
The historical account of the development of OFDFT given

in Section 1 and the theoretical background presentation in
Section 2 show clearly that only by following a rigorous,
constraint-satisfaction strategy can one formulate generally
applicable (transferable) KEDFs. Thus, we hope this review
will help guide OFDFT developers as well as spark interest in
employing OFDFT among those research groups that
customarily have employed only conventional KSDFT in
their research. This is particularly relevant, as OFDFT is now
accessible through several software suites (see Section 3).
Obviously, we are indebted to the OFDFT research

community that came before us and until recently was rather
small. Spanning chemistry, physics, and materials science, that
hardy band has inspired us and our research groups over the
years, with healthy and constructive debate aimed at the goal of
serving the broader scientific community with useful,
predictive, swift, ab initio electronic structure methods.
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(357) Levämäki, H.; Nagy, Á.; Kokko, K.; Vitos, L. Alternative to the
Kohn-Sham Equations: The Pauli Potential Differential Equation.
Phys. Rev. A 2015, 92, 062502.
(358) Chau, T. T.; Hue, J. H.; Trappe, M.-I.; Englert, B.-G.
Systematic corrections to the Thomas-Fermi approximation without a
gradient expansion. New J. Phys. 2018, 20, 073003.
(359) Dufty, J. W.; Wrighton, J. Comments on Corrections to
Thomas-Fermi Approximation. 2022, Unpublished technical note,
University of Florida.
(360) Ribeiro, R. F.; Lee, D.; Cangi, A.; Elliott, P.; Burke, K.
Corrections to Thomas-Fermi Densities at Turning Points and
Beyond. Phys. Rev. Lett. 2015, 114, 050401.
(361) Behler, J.; Parrinello, M. Generalized Neural-network
Representation of High-dimensional Potential-energy Surfaces. Phys.
Rev. Lett. 2007, 98, 146401.
(362) Huang, B.; von Lilienfeld, O. A. Quantum Machine Learning
Using Atom-in-molecule-based Fragments Selected on the Fly. Nat.
Chem. 2020, 12, 945−951.
(363) Zhang, L.; Lin, D.-Y.; Wang, H.; Car, R.; E, W. Active
Learning of Uniformly Accurate Interatomic Potentials for Materials
Simulation. Phys. Rev. Mater. 2019, 3, 023804.
(364) Qiao, Z.; Welborn, M.; Anandkumar, A.; Manby, F. R.; Miller,
T. F. OrbNet: Deep Learning for Quantum Chemistry Using
Symmetry-adapted Atomic-orbital Features. J. Chem. Phys. 2020,
153, 124111.
(365) Fiedler, L.; Shah, K.; Bussmann, M.; Cangi, A. Deep dive into
machine learning density functional theory for materials science and
chemistry. Phys. Rev. Mater. 2022, 6, 040301.
(366) Cheng, L.; Kovachki, N. B.; Welborn, M.; Miller, T. F.
Regression Clustering for Improved Accuracy and Training Costs
with Molecular-orbital-based Machine Learning. J. Chem. Theory
Comput. 2019, 15, 6668−6677.

(367) Nudejima, T.; Ikabata, Y.; Seino, J.; Yoshikawa, T.; Nakai, H.
Machine-learned Electron Correlation Model Based on Correlation
Energy Density at Complete Basis Set Limit. J. Chem. Phys. 2019, 151,
024104.
(368) Ma, J.; Zhang, P.; Tan, Y.; Ghosh, A. W.; Chern, G.-W.
Machine Learning Electron Correlation in a Disordered Medium.
Phys. Rev. B 2019, 99, 085118.
(369) Smith, J. S.; Nebgen, B. T.; Zubatyuk, R.; Lubbers, N.;
Devereux, C.; Barros, K.; Tretiak, S.; Isayev, O.; Roitberg, A. E.
Approaching Coupled Cluster Accuracy with a General-purpose
Neural Network Potential Through Transfer Learning. Nat. Commun.
2019, 10, 2903.
(370) Tuckerman, M. E. Machine Learning Transforms How
Microstates Are Sampled. Science 2019, 365, 982−983.
(371) Zhang, L.; Han, J.; Wang, H.; Car, R.; E, W. Deep Potential
Molecular Dynamics: A Scalable Model with the Accuracy of
Quantum Mechanics. Phys. Rev. Lett. 2018, 120, 143001.
(372) Kalita, B.; Li, L.; McCarty, R. J.; Burke, K. Learning to
Approximate Density Functionals. Acc. Chem. Res. 2021, 54, 818−826.
(373) Snyder, J. C.; Rupp, M.; Müller, K.-R.; Burke, K. Nonlinear
Gradient Denoising: Finding Accurate Extrema from Inaccurate
Functional Derivatives. Int. J. Quantum Chem. 2015, 115, 1102−1114.
(374) Li, L.; Baker, T. E.; White, S. R.; Burke, K. Pure Density
Functional for Strong Correlation and the Thermodynamic Limit
from Machine Learning. Phys. Rev. B 2016, 94, 245129.
(375) Zhou, Y.; Wu, J.; Chen, S.; Chen, G. Toward the Exact
Exchange-correlation Potential: A Three-dimensional Convolutional
Neural Network Construct. J. Phys. Chem. Lett. 2019, 10, 7264−7269.
(376) Schmidt, J.; Benavides-Riveros, C. L.; Marques, M. A. L.
Machine Learning the Physical Nonlocal Exchange-correlation
Functional of Density-functional Theory. J. Phys. Chem. Lett. 2019,
10, 6425−6431.
(377) Lei, X.; Medford, A. J. Design and Analysis of Machine
Learning Exchange-correlation Functionals via Rotationally Invariant
Convolutional Descriptors. Phys. Rev. Mater. 2019, 3, 063801.
(378) Sinitskiy, A. V.; Pande, V. S. Deep neural network computes
electron densities and energies of a large set of organic molecules
faster than density functional theory (DFT). arXiv 2018, 1809.02723.
(379) Ryczko, K.; Strubbe, D. A.; Tamblyn, I. Deep Learning and
Density-functional Theory. Phys. Rev. A 2019, 100, 022512.
(380) Ji, H.; Jung, Y. A Local Environment Descriptor for Machine-
learned Density Functional Theory at the Generalized Gradient
Approximation Level. J. Chem. Phys. 2018, 148, 241742.
(381) Kirkpatrick, J.; et al. Pushing the frontiers of density
functionals by solving the fractional electron problem. Science 2021,
374, 1385−1389.
(382) Mardirossian, N.; Head-Gordon, M. Survival of the Most
Transferable at the Top of Jacob’s Ladder: Defining and Testing the
ωb97m(2) Double Hybrid Density Functional. J. Chem. Phys. 2018,
148, 241736.
(383) Palos, E.; Lambros, E.; Dasgupta, S.; Paesani, F. Density
functional theory of water with the machine-learned DM21
functional. J. Chem. Phys. 2022, 156, 161103.
(384) Lewis, A. M.; Grisafi, A.; Ceriotti, M.; Rossi, M. Learning
electron densities in the condensed phase. J. Chem. Theory Comput.
2021, 17, 7203−7214.
(385) Grisafi, A.; Fabrizio, A.; Meyer, B.; Wilkins, D. M.;
Corminboeuf, C.; Ceriotti, M. Transferable machine-learning model
of the electron density. ACS Cent. Sci. 2019, 5, 57−64.
(386) Cuevas-Zuviría, B.; Pacios, L. F. Machine learning of analytical
electron density in large molecules through message-passing. J. Chem.
Inf. Model. 2021, 61, 2658−2666.
(387) Schmidt, E.; Fowler, A. T.; Elliott, J. A.; Bristowe, P. D.
Learning models for electron densities with Bayesian regression.
Comput. Mater. Sci. 2018, 149, 250−258.
(388) Perdew, J. P. Artificial intelligence “sees” split electrons.
Science 2021, 374, 1322−1323.
(389) Li, L.; Hoyer, S.; Pederson, R.; Sun, R.; Cubuk, E.; Riley, P.;
Burke, K. Kohn-Sham Equations As Regularizer: Building Prior

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.2c00758
Chem. Rev. 2023, 123, 12039−12104

12097

https://doi.org/10.1103/PhysRevLett.125.266401
https://doi.org/10.1103/PhysRevLett.125.266401
https://doi.org/10.1103/PhysRevLett.125.266401
https://doi.org/10.1103/PhysRevLett.92.146404
https://doi.org/10.1103/PhysRevLett.92.146404
https://doi.org/10.1103/PhysRevLett.106.236404
https://doi.org/10.1103/PhysRevA.83.012509
https://doi.org/10.1103/PhysRevA.83.012509
https://doi.org/10.1103/PhysRevA.83.012509
https://doi.org/10.1103/PhysRevA.88.062505
https://doi.org/10.1103/PhysRevA.88.062505
https://doi.org/10.1063/1.454105
https://doi.org/10.1063/1.454105
https://doi.org/10.1021/jp037716b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp037716b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/qua.24986
https://doi.org/10.1002/qua.24986
https://doi.org/10.1002/qua.24986
https://doi.org/10.1007/s00214-015-1711-x
https://doi.org/10.1007/s00214-015-1711-x
https://doi.org/10.1007/s00214-018-2395-9
https://doi.org/10.1007/s00214-018-2395-9
https://doi.org/10.1016/j.comptc.2018.10.004
https://doi.org/10.1063/1.5099217
https://doi.org/10.1063/1.5099217
https://doi.org/10.1002/qua.26212
https://doi.org/10.1002/qua.22497
https://doi.org/10.1002/qua.22497
https://doi.org/10.1103/PhysRevA.92.062502
https://doi.org/10.1103/PhysRevA.92.062502
https://doi.org/10.1088/1367-2630/aacde1
https://doi.org/10.1088/1367-2630/aacde1
https://doi.org/10.1103/PhysRevLett.114.050401
https://doi.org/10.1103/PhysRevLett.114.050401
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1038/s41557-020-0527-z
https://doi.org/10.1038/s41557-020-0527-z
https://doi.org/10.1103/PhysRevMaterials.3.023804
https://doi.org/10.1103/PhysRevMaterials.3.023804
https://doi.org/10.1103/PhysRevMaterials.3.023804
https://doi.org/10.1063/5.0021955
https://doi.org/10.1063/5.0021955
https://doi.org/10.1103/PhysRevMaterials.6.040301
https://doi.org/10.1103/PhysRevMaterials.6.040301
https://doi.org/10.1103/PhysRevMaterials.6.040301
https://doi.org/10.1021/acs.jctc.9b00884?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00884?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.5100165
https://doi.org/10.1063/1.5100165
https://doi.org/10.1103/PhysRevB.99.085118
https://doi.org/10.1038/s41467-019-10827-4
https://doi.org/10.1038/s41467-019-10827-4
https://doi.org/10.1126/science.aay2568
https://doi.org/10.1126/science.aay2568
https://doi.org/10.1103/PhysRevLett.120.143001
https://doi.org/10.1103/PhysRevLett.120.143001
https://doi.org/10.1103/PhysRevLett.120.143001
https://doi.org/10.1021/acs.accounts.0c00742?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.accounts.0c00742?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/qua.24937
https://doi.org/10.1002/qua.24937
https://doi.org/10.1002/qua.24937
https://doi.org/10.1103/PhysRevB.94.245129
https://doi.org/10.1103/PhysRevB.94.245129
https://doi.org/10.1103/PhysRevB.94.245129
https://doi.org/10.1021/acs.jpclett.9b02838?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.9b02838?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.9b02838?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.9b02422?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.9b02422?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevMaterials.3.063801
https://doi.org/10.1103/PhysRevMaterials.3.063801
https://doi.org/10.1103/PhysRevMaterials.3.063801
https://doi.org/10.1103/PhysRevA.100.022512
https://doi.org/10.1103/PhysRevA.100.022512
https://doi.org/10.1063/1.5022839
https://doi.org/10.1063/1.5022839
https://doi.org/10.1063/1.5022839
https://doi.org/10.1126/science.abj6511
https://doi.org/10.1126/science.abj6511
https://doi.org/10.1063/1.5025226
https://doi.org/10.1063/1.5025226
https://doi.org/10.1063/1.5025226
https://doi.org/10.1063/5.0090862
https://doi.org/10.1063/5.0090862
https://doi.org/10.1063/5.0090862
https://doi.org/10.1021/acs.jctc.1c00576?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00576?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscentsci.8b00551?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscentsci.8b00551?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.1c00227?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.1c00227?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.commatsci.2018.03.029
https://doi.org/10.1126/science.abm2445
https://doi.org/10.1103/PhysRevLett.126.036401
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.2c00758?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Knowledge Into Machine-learned Physics. Phys. Rev. Lett. 2021, 126,
036401.
(390) Pokharel, K.; Furness, J. W.; Yao, Y.; Blum, V.; Irons, T. J.;
Teale, A. M.; Sun, J. Exact constraints and appropriate norms in
machine learned exchange-correlation functionals. J. Chem. Phys.
2022, 157, 174106.
(391) Nagai, R.; Akashi, R.; Sugino, O. Machine-learning-based
exchange correlation functional with physical asymptotic constraints.
Phys. Rev. Res. 2022, 4, 013106.
(392) Kim, M.-C.; Sim, E.; Burke, K. Understanding and Reducing
Errors in Density Functional Calculations. Phys. Rev. Lett. 2013, 111,
073003.
(393) Wasserman, A.; Nafziger, J.; Jiang, K.; Kim, M.-C.; Sim, E.;
Burke, K. The importance of being inconsistent. Annu. Rev. Phys.
Chem. 2017, 68, 555−581.
(394) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J.
Assessment of Gaussian-2 and Density Functional Theories for the
Computation of Enthalpies of Formation. J. Chem. Phys. 1997, 106,
1063−1079.
(395) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J.
Assessment of Gaussian-3 and Density Functional Theories for a
Larger Experimental test Set. J. Chem. Phys. 2000, 112, 7374−7383.
(396) Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.; Pople, J. A.
Gaussian-3X (g3x) Theory: Use of Improved Geometries, Zero-point
Energies, and Hartree-Fock Basis Sets. J. Chem. Phys. 2001, 114, 108−
117.
(397) Staroverov, V. N.; Scuseria, G.; Tao, J.; Perdew, J. P.
Comparative Assessment of a New Nonempirical Density Functional:
Molecules and Hydrogen-bonded Complexes. J. Chem. Phys. 2003,
119, 12129−12137. Erratum: J. Chem. Phys. 2004, 121, 11507.
(398) Peverati, R.; Truhlar, D. G. Quest for a Universal Density
Functional: the Accuracy of Density Functionals Across a Broad
Spectrum of Databases in Chemistry and Physics. Philos. Trans. Royal
Soc. A 2014, 372, 20120476.
(399) Blöchl, P. Projector Augmented-wave Method. Phys. Rev. B
1994, 50, 17953−17979.
(400) García-Cervera, C. J.; Lu, J.; E, W. A Sub-linear Scaling
Algorithim for Computing the Electronic Structure of Materials.
Commun. Math. Sci. 2007, 5, 999−1026.
(401) Slater, J. C. Wave Functions in a Periodic Potential. Phys. Rev.
1937, 51, 846−851.
(402) Blaha, P.; Schwarz, K.; Sorantin, P.; Trickey, S. B. Full-
potential, Linearized Augmented Plane Wave Programs for Crystalline
Systems. Comput. Phys. Commun. 1990, 59, 399−415.
(403) Huang, C.; Carter, E. A. Toward an Orbital-free Density
Functional Theory of Transition Metals Based on an Electron Density
Decomposition. Phys. Rev. B 2012, 85, 045126.
(404) Trickey, S. B. Omitted Scale Factor Functional Derivative in
”Density-decomposed orbital-free density functional theory for
covalently bonded molecules and materials”, (Phys. Rev. B 86,
235109 (2012). University of Florida Technical Note; 2013,
unpublished.
(405) Ke, Y.; Libisch, F.; Xia, J.; Carter, E. A. Angular Momentum
Dependent Orbital-free Density Functional Theory: Formulation and
Implementation. Phys. Rev. B 2014, 89, 155112.
(406) Xu, Q.; Ma, C.; Mi, W.; Wang, Y.; Ma, Y. Nonlocal
pseudopotential energy density functional for orbital-free density
functional theory. Nat. Commun. 2022, 13, 1385.
(407) Espinosa Leal, L. E.; Karpenko, A.; Caro, M.; Lopez-Acevedo,
O. Optimizing a Parametrized Thomas−Fermi−Dirac−Weizsac̈ker
Density Functional for Atoms. Phys. Chem. Chem. Phys. 2015, 17,
31463−31471.
(408) Sun, Q.; Chan, G. K.-L. Quantum Embedding Theories. Acc.
Chem. Res. 2016, 49, 2705−2712.
(409) Wasserman, A.; Pavanello, M. Quantum Embedding
Electronic Structure Methods. Int. J. Quantum Chem. 2020, 120,
e26495.
(410) Cortona, P. Self-consistently Determined Properties of Solids
without Band-structure Calculations. Phys. Rev. B 1991, 44, 8454.

(411) Knizia, G.; Chan, G. K.-L. Density Matrix Embedding: A
Simple Alternative to Dynamical Mean-field Theory. Phys. Rev. Lett.
2012, 109, 186404.
(412) Knizia, G.; Chan, G. K.-L. Density Matrix Embedding: A
Strong-coupling Quantum Embedding Theory. J. Chem. Theory
Comput. 2013, 9, 1428−1432.
(413) Bulik, I. W.; Scuseria, G. E.; Dukelsky, J. Density Matrix
Embedding from Broken Symmetry Lattice Mean Fields. Phys. Rev. B
2014, 89, 035140.
(414) Wouters, S.; Jiménez-Hoyos, C. A.; Sun, Q.; Chan, G. K.-L. A
Practical Guide to Density Matrix Embedding Theory in Quantum
Chemistry. J. Chem. Theory Comput. 2016, 12, 2706−2719.
(415) Inglesfield, J. A Method of Embedding. J. Phys. C: Solid State
Phys. 1981, 14, 3795.
(416) Inglesfield, J. E. The Embedding Method for Electronic Structure;
IOP Publishing: Bristol, UK, 2015.
(417) Kotliar, G.; Savrasov, S. Y.; Haule, K.; Oudovenko, V. S.;
Parcollet, O.; Marianetti, C. Electronic Structure Calculations with
Dynamical Mean-field Theory. Rev. Mod. Phys. 2006, 78, 865.
(418) Chibani, W.; Ren, X.; Scheffler, M.; Rinke, P. Self-consistent
Green’s Function Embedding for Advanced Electronic Structure
Methods Based on a Dynamical Mean-field Concept. Phys. Rev. B
2016, 93, 165106.
(419) Gotz, A. W.; Beyhan, S. M.; Visscher, L. Performance of
Kinetic Energy Functionals for Interaction Energies in a Subsystem
Formulation of Density Functional Theory. J. Chem. Theory Comput.
2009, 5, 3161−3174.
(420) Fux, S.; Jacob, C. R.; Neugebauer, J.; Visscher, L.; Reiher, M.
Accurate Frozen-density Embedding Potentials As a First Step
Towards a Subsystem Description of Covalent Bonds. J. Chem.
Phys. 2010, 132, 164101.
(421) Wesolowski, T. A.; Weber, J. Kohn-Sham equations with
constrained electron density: an iterative evaluation of the ground-
state electron density of interacting molecules. Chem. Phys. Lett. 1996,
248, 71−76.
(422) Polak, E.; González-Espinoza, C. E.; Gander, M. J.;
Wesolowski, T. A. A non-decomposable approximation on the
complete density function space for the non-additive kinetic potential.
J. Chem. Phys. 2022, 156, 044103.
(423) Lastra, J. M. G.; Kaminski, J. W.; Wesolowski, T. A. Orbital-
free Effective Embedding Potential at Nuclear Cusps. J. Chem. Phys.
2008, 129, 074107.
(424) Jiang, K.; Nafziger, J.; Wasserman, A. Constructing a non-
additive non-interacting kinetic energy functional approximation for
covalent bonds from exact conditions. J. Chem. Phys. 2018, 149,
164112.
(425) Shao, X.; Mi, W.; Pavanello, M. GGA-Level Subsystem DFT
Achieves Sub-kcal/mol Accuracy Intermolecular Interactions by
Mimicking Nonlocal Functionals. J. Chem. Theory Comput. 2021,
17, 3455−3461.
(426) Wesolowski, T. A.; Chermette, H.; Weber, J. Accuracy of
Approximate Kinetic Energy Functionals in the Model of Kohn-Sham
Equations with Constrained Electron Density: The FH··· NCH
Complex as a Test Case. J. Chem. Phys. 1996, 105, 9182−9190.
(427) Bernard, Y. A.; Dułak, M.; Kaminśki, J. W.; Wesołowski, T. A.
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