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Abstract: Sugarcane croplands account for ~70% of global sugar production and ~60% of global ethanol 

production. Monitoring and predicting gross primary production (GPP) and transpiration (T) in these fields is 

crucial to improve crop yield estimation and management. While moderatespatial-resolution (MSR, hundreds 

of meters) satellite images have been employed in several models to estimate GPP and T, the potential of 

high-spatial-resolution (HSR, tens of meters) imagery has been considered in only a few publications, and it 

is underexplored in sugarcane fields. Our study evaluated the efficacy of MSR and HSR satellite images in 

predicting daily GPP and T for sugarcane plantations at two sites equipped with eddy flux towers: Louisiana, 

USA (subtropical climate) and Sao Paulo, Brazil (tropical climate). We employed the Vegetation Photosynthesis 

Model (VPM) and 
Vegetation Transpiration Model (VTM) with C4 photosynthesis pathway, integrating vegetation index data 

derived from satellite images and on-ground weather data, to calculate daily GPP and T. The seasonal 

dynamics of vegetation indices from both MSR images (MODIS sensor, 500 m) and HSR images (Landsat, 30 

m; Sentinel-2, 10 m) tracked well with the GPP seasonality from the EC flux towers. The enhanced vegetation 

index (EVI) from the HSR images had a stronger correlation with the tower-based GPP. Our findings 

underscored the potential of HSR imagery for estimating GPP and T in smaller sugarcane plantations. 

Keywords: crop; photosynthesis; remote sensing; model; precision farming 
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attention in the crop production community. GPP has been used to calculate net primary 

production (NPP), aboveground biomass, and crop yield [10–13]. GPP is used to monitor crop 

growing conditions and improve crop management practices and crop production estimates [13–

16]. GPP has previously been utilized to improve crop yield assessments, 

 
1 . Introduction 

Sugarcane (Saccharum spp.) croplands supply cane feedstock for biofuel (ethanol) and sugar production [1]. 

Sugarcane represents nearly 70% of the sugar production worldwide and approximately 60% of the global bioethanol 

production [2–4]. Brazil and the United States of America (USA) rank first and ninth among the global sugarcane-

producing countries [5]. Brazil produced an average of 538 million metric tons (mmt) of sugar from 1994 to 2019 [6], 

and through the Renovabio policy it aims to produce 50 billion liters of ethanol per year by 2030 by improving production 

and investment infrastructure [7]. The USA produced an average of 29 mmt of sugar from 1994 to 2019 [6]. 

Sugarcane crop growth monitoring and assessment provide necessary information for crop management and 

sustainable production, as the changes in crop variety, field size and rotation, management, and climate may affect crop 

growth, water use efficiency, and yield prediction [8]. Among the many metrics of crop growth, gross primary production 

(GPP), which is the amount of CO2 fixed by vegetation photosynthesis, representing the largest carbon flux in the 

terrestrial ecosystem [9], is one useful metric, but it has received less 
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which are important for agricultural resiliency and food security [17–19]. 
There is no method for directly measuring GPP at the ecosystem and landscape scales [20,21]. 

The eddy covariance (EC) method is widely applied to measure the net ecosystem exchange (NEE) 

between the atmosphere and the land surface [22], and the half-hourly NEE data are then 

partitioned into ecosystem respiration (ER) and GPP [23,24]. Several algorithms have been used 

for the partitioning of the NEE into ER and GPP [25,26]. The resultant GPP (hereafter GPPEC) is 

utilized as the standard data to evaluate vegetation phenology, as well as GPP estimates derived 

from process-based models and data-driven models over multiple spatial and temporal resolutions 

[27–29] (p. 200). However, because of the high cost and complexity associated with the operation 

of EC sites, to date, the carbon and water fluxes of sugarcane plantations have only been measured 

at a few sites worldwide [30–35]. Time-series data of the carbon and water fluxes from these sites 

provide information on sugarcane crop phenology, GPP, and evapotranspiration. 
Satellite-based remote-sensing data are widely available and are often used to monitor crop 

growth [36–39] and estimate carbon fluxes [40–42]. Light use efficiency (LUE) models, first 

applied in agriculture [43,44], can be fed with vegetation indices from remote-sensing data 

(surface reflectance) and climate data to calculate GPP [17,45–47]. These LUE models gained 

popularity thanks to their simplicity and data availability [47]. The Vegetation Photosynthesis 

Model (VPM) [29,48] calculates daily GPP (hereafter GPPVPM) as the product of light absorption by 

chlorophyll in the canopy (APARchl) and LUE [29,47,48]. The GPP estimates from the VPM have 

been widely evaluated among multiple vegetation types and across various spatial scales (local, 

regional, and global) [17,19,29,49,50]. To date, only a few studies have presented information on 

GPP estimates of sugarcane plantations from data-driven models with satellite images [35,51]. 
Multiple global GPP data products from LUE models are now available to the public [52], 

driven by climate data and satellite images at a moderate spatial resolution (MSR)–for example, 

the Moderate Resolution Imaging Spectroradiometer (MODIS) at a 500 m spatial resolution. These 

GPP data products at an MSR are useful. Note that most cropland fields are small in size [53], so 

the monitoring and assessment of agriculture at the field scale (tens of meters) would need 

satellite images at a high spatial resolution (tens of meters). Furthermore, agricultural 

management practices [54–56] and land use changes have driven large spatial variation in the GPP 

in sugarcane plantations [32,57,58]. The uncertainty of GPP estimates could increase when the 

GPP is calculated from MSR images [51,59,60]. Therefore, there is a need to generate GPP data 

products at a high spatial resolution (HSR, tens of meters) as, to date, no global GPP data products 

derived from HSR images are available. 
Transpiration (T) is a pivotal component of evapotranspiration (ET) in agricultural fields, 

playing a crucial role in assessing crop growth performance [61]. Data products that partition ET 

into T and E (evaporation) offer valuable insights into water use efficiency. However, the practical 

application of T and ET data at the field level faces multiple challenges, including the course spatial 

resolution of current remote-sensing products [59,62], the high costs associated with field-scale 

ground T data, and the intricacies of ET partitioning methods [63]. Multiple models have 

successfully integrated the Penman–Monteith (PM) method [64,65] with successful results [66], 

but the scalability limitations and structural uncertainties in the vegetation phenology complicate 

its application in commercial crops [67,68]. 
Satellite-derived ET products, like MOD16 [69], are popular for agricultural studies over large 

regions due the coarse spatial resolution but face challenges in water-rich crops (e.g., sugarcane 

and rice) and more extensively irrigated fields [70,71]. Newer products 
(e.g., ECOSTRESS, [72]) offer finer resolutions but have strong limitations, including infrequent data 

capture and validation issues [73]. Several studies have pinpointed inaccuracies in ECOSTRESS data 

across various ecosystems [74,75]. Such inconsistencies compromise the data’s reliability for 

precise water management and crop yield forecasting. Given these challenges, there is a pressing 

need for a straightforward, accurate, and adaptable method to derive field-level T estimates in 

water-rich crops like sugarcane. 
The performance of the VPM in estimating the GPP of sugarcane plantations has only been 

evaluated at a moderate spatial resolution (MSR) [35]. Therefore, its performance at a high spatial 

resolution (HSR) for individual sugarcane plantations still needs to be assessed and better 

understood. On the other hand, the vegetation transpiration model (VTM) has not been tested on 



Remote Sens. 2024, 16, 46 3 of 23 

sugarcane croplands, and this study evaluated VTM’s potential as a tool to estimate water use 

efficiency in this crop system. The study employed an integrated approach utilizing both MSR 8-

day MODIS optical data and a combined time series of HSR data from Landsat and Sentinel-2. This 

methodology was specifically designed to derive vegetation indices at both the MSR and HSR 

levels. The vegetation indices used in our analysis included the enhanced vegetation index (EVI) 

and the land surface water index (LSWI), which served as critical inputs for our modeling efforts. 

The primary focus was on leveraging these indices to comprehensively analyze the seasonal 

dynamics of the sugarcane crop. By systematically collecting and processing these timeseries data, 

we were able to effectively utilize them as an input for predicting the temporal dynamics of GPP 

and T in sugarcane plantations over two different sites. This approach underscores the significance 

of time-series analysis in agricultural studies, where HSR data availability is limited and an MSR 

does not represent field patterns well [76], particularly for understanding and modeling the 

phenological and physiological changes in crop systems over time. 
Moreover, given the 2030 objectives to increase sugarcane production, there is a need to 

assess and compare the VPM performance at distinct sugarcane plantations using MSR and HSR 

images before it can be applied to perform GPP estimations with HSR images at the regional, 

continental, and global scales. The core objectives of our investigation were: (1) to evaluate the 

consistency of satellite-derived vegetation indices (EVI and LSWI) from MSR (MODIS) and HSR 

(Landsat and Sentinel-2) images in tracking the vegetation phenology and sugarcane crop 

physiology at two distinct sites; (2) to assess the performance of the VPM in estimating the daily 

site-level vegetation carbon uptake of sugarcane croplands with different management practices 

when MSR and HSR images are used, which would shed new light on the advantages of estimating 

GPP with HSR images; and (3) to analyze the capabilities of the VTM in estimating the daily 

transpiration of sugarcane croplands. 

2. Materials and Methods 

2.1. Study Sites 

Two sugarcane sites were selected for this study, based on EC flux data availability and quality: 

one sugarcane site at Pirassununga, State of Sao Paulo, Southeastern Brazil [31] and the other in 

Schriever, Louisiana, USA at the Ardoyne farm [77] (Figure 1). The Louisiana site is under the 

management of the USDA-ARS Sugarcane Research Unit, and the Sao Paulo site is under the 

management of Embrapa Meio Ambiente. 
The Louisiana EC flux tower site (Chacahoula) (29.6341◦N, 90.8349◦W) had an annual mean 

temperature of 23.6 ◦C and an annual precipitation of 1200 mm. The site had Cancienne silty clay 

loam (Fluvaquentic Epiaquepts) type soil. The fields were graded with a 0.2% slope towards the 

south, and the elevation of the fields ranged between 2.40 m and 0.61 m over 700–900 m. 

Sugarcane cultivation in Louisiana dates back to 1850 [78], and the study site had experienced 

more than 50 years of continuous sugarcane production. The field was cultivated with sugarcane 

variety HoCP 04-838′, reg. no. CV-181, PI 687221, and the sugarcane plants were spaced at 1.83 m 

intervals for single-planted rows and 2.44 m for double-planted rows (<1% total field area). 

Sugarcane crop green up typically occurs in April, while it is harvested between October and 

December. The EC tower on the site was in a 60 m2 unplanted area surrounded by commercial 

sugarcane crops. The sugarcane annually received 89 kg ha−1 of nitrogen fertilizer in April. 
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Figure 1. The two sugarcane locations with EC flux tower sites (red doted polygons; (a) USA and (b) Brazil) 

displaying the pixel size of the optical data utilized in the study: 10 m (red polygon, Sentinel-2), 30 m (blue 

polygon, Landsat), and 500 m (green polygon, MODIS). 

The Sao Paulo EC flux tower site (FAYS) (21.9506◦S, 47.3394◦W) had an annual mean 

temperature of 21.4 ◦C, annual precipitation of 1410 mm, and gentle slope of <2%. Sugarcane new 

stem cutting (IAC-5000 variety) was completed on 10/2015 (DOY 275), and the distance between 

the plotting rows was 1.5 m, with a canopy height of ~5 m during the growing season. The soil type 

was clay (65% clay, 21% sand, silt 14%), and the site was managed under regular tillage, receiving 

superphosphate (28% P2O5) and 100 Mg ha−1 dry matter of filter cake (sugar production residue) 

[31]. The flux tower at this site was installed 24 days after planting. Sugarcane is a multi-year ratoon 

crop; typically, in Brazil, the crop cycle includes one plant crop and four ratoon crops [30]. The first 

harvest took place in late October 2016, and the ground trash was left on the soil; nitrogen fertilizer 

(80 kg N ha−1) and potassium (180 Kg K2O ha−1) were applied two days later [31]. 

2.2. Weather and CO2 Flux Data for the Sugarcane Plantations 

2.2.1. Louisiana, USA Site 

The 10 m tower had an integrated open-path infrared gas analyzer, and climate and CO2 flux 

data outputs were produced at a 30 min temporal resolution (Irgason, Campbell Scientific, Logan, 

UT, USA). The ecosystem carbon uptake was estimated using the difference between the measured 

net ecosystem exchange (NEE) and daytime ecosystem respiration (R); daytime and night-time R 

were calculated based on fitted exponential equations [25,79]. The data covered three growing 

seasons at the sugarcane plantation (01/2018–12/2020). Multiple sensors at the Chacahoula site 

were recalibrated in the month of April in 2018 and 2019, resulting in major flags in the CO2 flux 

data during the subsequent months; for this reason, some of the data were removed from the 

study. 
2.2.2. Sao Paulo, Brazil Site 

The tower had an incorporated open-path infrared gas analyzer. Weather and CO2 flux data 

were obtained at a 30 min temporal resolution, and the height of the tower was 9 m. Gross 

primary production (GPP) and Ra were calculated at the EC tower based on the NEE observations 

using the flux-partitioning REddyProc package [80]. The data covered two growing seasons for 

the Sao Paulo site (October 2015–August 2017). 

2.2.3. Pre-Processing of CO2 Flux and Climate Data 
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GPP at both the sites was estimated from the partitioning of the half-hourly NEE data using 

the algorithms in [25,26]. The estimated half-hour GPP (GPPEC) and photosynthetically active 

radiation (PAR) data were recalculated into 1-day and 8-day data using the method presented in 

[35]. PAR data were estimated as 0.48 of the total incoming shortwave radiation and converted 

into photosynthetic photon flux density (PPFD) using the approximation 1 W m−2 ≈ 4.57 µmol m−2 

s−1 [81]. 

Air temperature was averaged into daily daytime mean air temperature (TDT) and daily mean 

air temperature (TDA). We calculated TDT as the average temperature over the half-hour periods 

that had more than 10 µmol m−2 s−1 PAR within a day. We calculated the 

8-day averages of TDT and TDA. There are notable differences between TDA and TDT, and we used TDT 

for the photosynthesis–temperature relationship in our previous studies [35,49]. 

2.3. Land Surface Reflectance and Vegetation Index Data 

We used the surface reflectance data from MODIS (MOD09A1), Landsat (7 ETM+ and 8 

OLI/TIRS), and Sentinel-2/A-2/B, which are accessible on the Google Earth Engine (GEE) platform 

[82]. For each flux tower site, we selected one MODIS pixel, one Landsat pixel, and one Sentinel-2 

pixel centered on the tower coordinates. 
The MOD09A1 Collection 6 product [83] provides surface reflectance at a 500 m spatial 

resolution and 8-day temporal resolution. We employed the Google Earth Engine (GEE) platform 

[82] to calculate the enhanced vegetation index (EVI) [84] and land surface water index (LSWI) 

[85] using the surface reflectance data (see Equations (1) and (2)) and assessed the quality of 

individual observations via the quality band. 

EVI = 2.5 × (NIR − Red)/(NIR + 6 × Red−7.5 × Blue + 1) (1) 

LSWI = (NIR − SWIR)/(NIR + SWIR) (2) 
For Landsat 7 ETM+ and Landsat 8 OLI sensors, atmospherically corrected surface reflectance 

data at a 30 m spatial resolution were used to calculate the EVI and LSWI. We assessed the 

individual observations’ data quality using cloud, shadow, water, and snow masks [86]. The blue 

band was used for an additional quality check by detecting the observations with cloudy and water 

pixels [87]. 
Sentinel-2 provides optical data at high spatial resolutions (10 m, 20 m, 60 m) and a 10-day 

temporal resolution [88]. S2-A (launched June 2015) and S2-B (launched March 2017) have 13 

spectral bands, including visible and NIR bands at a 10 m spatial resolution and red-edge and SWIR 

bands at a 20 m spatial resolution [89]. We used the 10 m S2 orthorectified atmospherically 

corrected surface reflectance available on GEE. We assessed the quality of individual observations 

using the cloud bit mask, cirrus bit mask, and blue band [87]. 
For each eddy flux tower site, the time-series Landsat and Sentinel-2 observations were 

combined to form one time series of collated data. Both systems provide a 12-bit radiometric 

resolution with similar reflective wavelengths [88,90,91] and information sensed over the same 

areas. The similarities between the Landsat and Sentinel-2 spectral resolutions facilitates the 

combined use of their datasets in several different ways, including data fusion, as reported in 

previous studies [92]. Landsat and Sentinel-2 were combined without resampling the Landsat 30 

m data into 10 m data, since the pixel chosen was within the tower’s footprint and there were no 

changes in the crop management landcover type within the 30 m Landsat pixel. In our analysis, we 

integrated various vegetation indices derived from different optical datasets and, in cases where 

there were observations with overlapping dates, we selected a single observation for each date. 

This selection was based on the data quality (maximum NDVI), as in past studies [90,92,93]. 

Ultimately, the gaps in the combined Landsat/Sentinel time-series data were filled in, but the data 

were not subjected to smoothing. This decision was possible as there was at least one good-quality 

observation per week, and we ran the model at weekly intervals. 
We analyzed the time-series data of the EVI, LSWI, and GPP at the sugarcane sites to identify 

the start, end, and length of the sugarcane growing season (SOS, EOS, GSL). This information was 

determined using the VI data with the thresholds of EVI > 0.1 and LSWI > 0 for the SOS and EVI < 

0.1 and LSWI < 0 for the EOS. The VI-based GSL was compared with a GPP-based GSL that used SOS 

> 1 g C m−2 day−1 and EOS < 1 g C m−2 day−1 over three consecutive 8-day periods as thresholds. 
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2.4. Vegetation Photosynthesis Model (VPM) 

The vegetation photosynthesis model (VPM) produces daily estimates of GPP [29]. 
The VPM calculates the amount of solar energy absorbed by chlorophyll in the canopy (APARchl) 

and the light use efficiency (LUEg). The EVI is used as a proxy for FPARchl (5). 

GPP = APARchl × LUEg (3) 

APARchl = FPARchl × PAR (4) 

FPARchl = 1.25 × (EVI − 0.1) (5) 

LUEg = LUE0 × Tscalar × Wscalar (6) 

LUE0 is the apparent quantum yield or maximum light use efficiency (µmol CO2/µmol 

PPFD), and it has different values for C3 and C4 plants in the VPM. The LUE0 value for C4 plants 

(e.g., sugarcane) is 0.075 mol of CO2 mol−1 PPFD (0.9 g C mol−1 PPFD) according to earlier works on 

the vegetation carbon uptake and quantum yield of photosynthesis for sugarcane [35,94]. The LUE0 

for C3 plants ranges between 0.42 and 0.65 g CO2 mol−1 PPFD (5.0–7.8 g C mol−1 PPFD) [47,95,96]. 

The VPM accounts for the presence of C3 and 

C4 plants in areas that have both by including the fractions of C3 plants (C3F) and C4 plants (C4F). 

 LUE0 = LUE0-C3 × C3F + LUE0-C4 × C4F (7) 

The effects of temperature and water on GPP [49,97] are introduced by Tscalar and 

Wscalar, respectively. The LSWI is used to calculate Wscalar. Tscalar is based on the Terrestrial Ecosystem 

Model (TEM) [98]. 

1 + LSWI 

 Wscalar =  (8) 
1 + LSWImax 

 Tscalar 

 (9) 
[( T − Tmin)( T − Tmax)] − ( T − Topt)ˆ2 

◦T is the air temperature, and Tmin, Topt, and Tmax are the minimum, optimum, and maximum 

temperatures for photosynthetic activity, respectively. We defined Tmin as −1 ◦C and Tmax as 48 ◦C 

using the same cropland biome parameter values as in [47]. Topt was set as 28 ◦C, following [35], 

which estimated Topt from the relationship between the daily average daytime temperature (TDT) 

and either the GPPEC or vegetation index (EVI). 

For comparison, we carried out two sets of VPM simulations to estimate daily GPP using site 

climate data alongside (1) time-series EVI and LSWI data from Landsat and Sentinel images 

(GPPVPM-LS) and (2) time-series EVI and LSWI data from MODIS images (GPPVPM-MOD). 
2.5. Vegetation Transpiration Model (VTM) 

In a crop field, evapotranspiration comprises evaporation (E) from the soil and intercepted 

canopy water and transpiration (T) from plants [66,99]. During the crop growing season, 

transpiration usually exceeds evaporation [100–102]. At the foliar level, there is a strong linkage 

between photosynthesis (gross primary production, GPP) and transpiration. This often results in 

the calculation of the leaf-level water use efficiency as the ratio between these two (i.e., WUELeaf = 

GPP/T, expressed in mol CO2/mol H2O). The Vegetation Transpiration Model (VTM) predicts daily 

transpiration as an outcome of GPP and WUELeaf, and it was first tested in grassland ecosystems 

[103]. Literature data indicate that the WUELeaf_C3 for C3 plants is 500 µmol CO2/µmol H2O, while 

for C4 plants, the WUELeaf_C4 is 250 µmol CO2/µmol H2O [104]. 

T = (C3F × 1/WUELeaf_c3 + C4F ∗ 1/WUELeaf_C4) × GPP, (10) 

If C3F = 1.0, T (mm H2O/day) = 0.33 (mm H2O/g C/m2/day) × GPP (g C/m2/day) (11) 

If C4F = 1.0, T (mm H2O/day) = 0.165 (mm H2O/g C/m2/day) × GPP (g C/m2/day) (12) 
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2.6. Statistical Analysis 

We assessed the biophysical performance of the EVI in terms of GPP changes and seasonal 

behavior at the sugarcane plantations. We analyzed data from two growing seasons for the Brazil 

site and three growing seasons for the USA site. 
GPPVPM data were assessed with GPPEC data at daily and 8-day scales. In a similar way, the TVTM 

estimates were compared against the ETEC. In addition, 8-day ET estimates from the MOD16 

product were included in the comparison with the ETEC to provide a reference for the performance 

of one of the most common data products for this variable. The metrics for assessment included 

the coefficient of determination (R-squared, R2), the Pearson correlation coefficient (p), the mean 

absolute error (MAE), and the normalized root mean squared error (NRMSE). Finally, we compared 

the ETEC:P and TVTM:ETEC ratios for the periods with data available to better explore the interannual 

changes and performance of the model capturing this variability. 

3. Results 

3.1. Seasonal Dynamics of Climate, Vegetation Indices, and Carbon Fluxes (NEE, GPP) 

3.1.1. Seasonal Dynamics of Climate 

The Brazil site (Figure 2a) had a tropical climate, characterized by a dry and a wet season, 

which is typical in tropical regions, with January being the wettest month (247 mm) and July the 

driest month (27 mm) [30,31]. The annual rainfall was higher during the first crop cycle (1651 mm) 

than during the second crop cycle (1446 mm). The seasonal dynamics of the daily mean air 

temperature (TDA) ranged between 14 ◦C and 26 ◦C. The mean daily PAR in a year was 39.9 mol 

m−2 day−1, varying from the lowest in June (19.18 mol m−2 day−1) to the highest in February (55.7 

mol m−2 day−1) (Figure 2a). 

The USA site had a sub-tropical climate, characterized by four seasons and a moderately cold 

winter. On average, March was the driest month (48 mm) and August the wettest month (188 mm) 

at this site. The second crop cycle was the wettest (1720 mm), and the third cycle was the driest 

(1477 mm). The air temperature ranged between 5 ◦C TDA in the winter and 30 ◦C TDA in the 

summer. The daily daytime mean air temperature (TDT) was 2–3 degrees higher than the daily mean 

air temperature (TDA). The average daily PAR in a year was 18.19 (mol m−2 day−1) for the three crop 

cycles, varying from the lowest in the winter (1.8 mol m−2 day−1 in January) to the highest in the 

summer (34 mol m−2 day−1 in June) (Figure 2b). 

  
Figure 2. Seasonal variation in daily temperature, daily mean daytime temperature, 8-day average 

photosynthetically active radiation (PAR), and accumulated rainfall (8-day interval) of the sugarcane EC flux 

tower sites. (a) FAYS-Brazil site 2015–2017. (b) Chacahoula, USA site 2018–2020. 

3.1.2. Seasonal Dynamics of Vegetation Indices 

At the Brazil site (Figure 3c), the EVI and LSWI rose rapidly in December, reaching the 

maximum value in May 2015. The EVI and LSWI gradually decreased, and by October the EVI 

reached below 0.1 and the LSWI below 0. The field was harvested in October 2016. The 
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VI-based start of the sugarcane growing season (SOS) at this site was November 2015 for the first 

cycle and early December 2016 for the second cycle. The end of the growing season (EOS) was in 

late October 2016, according to the thresholds used in our previous study [35], which were EVI < 

0.1 and LSWI < 0. The results indicated a ~12 month sugarcane growing season length (GSL). 

  
Figure 3. Seasonal variation in estimated GPPEC and measured NEEEC at 8-day intervals over the study period. 

Seasonal variation in vegetation indices (land surface water index (LSWI) and enhanced vegetation index 

(EVI)) derived from 8-day MODIS data. (a,c) FAYS Brazil site, 2015–2017. (b,d) Chacahoula, USA site (2018–

2020). 

At the USA site (Figure 3d), the EVI and LSWI started to rise in late April and early May and 

reached their highest values between July and August. The EVI and LSWI gradually dropped, 

reaching LSWI < 0 and EVI < 0.1 by early November. The VI-based start and end of the sugarcane 

growing season (SOS and EOS) at this site were May and November, respectively, with a growing 

season length of 7 months. 

3.1.3. Seasonal Dynamics of Carbon Fluxes (NEE and GPP) 

At the Brazil site (Figure 3a), the GPPEC rose steadily in November 2015 to higher than 1 g C 

m−2 day−1, reached the top levels in March, and dropped to 1 g C m−2 day−1 in October 2016. The 

GPPEC rose again in November 2016, which indicated the start of a new sugarcane growing cycle 

(Figure 3a). Following the GPP > 1 g C m−2 day−1 criterion, the GPP-based start and end of the 

growing season (SOS and EOS) at the Brazil site were in November 2015 and October 2016, 

respectively, which adequately matched the SOS metrics outlined by the vegetation indices (Figure 

3a). 
At the USA site (Figure 3b), the GPPEC began to increase in late April, was high in the summer, 

and decreased below 1 g C m−2 day−1 by September in 2018 and November in 2019 and 2020, due 

to sugarcane harvesting. Following the GPP >= 1 g C m−2 day−1 condition, the GPP-based GSL of 

sugarcane oscillated between April and November (Figure 3b), which fit sufficiently with the 

growing season metrics based on the vegetation indices (Figure 3d). 

3.2. The Relationships between GPPEC and Vegetation Indices from MODIS, Landsat, and 
Sentinel-2 Images 

For both sugarcane plantations, we assessed in terms of GPP dynamics the biophysical 

response of the vegetation indices. Figures 4 and 5 show the agreement during the cane growing 

seasons between the GPPEC and EVI at both plantations. 
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Figure 4. (Left panel): The relationships between gross primary production (GPPEC) and the enhanced 

vegetation index (EVI) derived from moderate-spatial-resolution images (MSR, MODIS) and high-spatial-

resolution images (HSR, Landsat and Sentinel-2) within the growing season. (Right panel): 3 m 4-band planet 

Scope and 5 m RapidEye Ortho tile surface reflectance true-color images of vegetation cover in the FAYS Brazil 

study area. The red circle represents the area used to obtain the time-series of HSR data. 

At the Brazil site, the GPPEC had a sturdier linear relationship with EVILS-S2 from the Landsat 

and Sentinel-2 images (R2 = 0.74) than with EVIMODIS from the MODIS image (R2 = 0.67). The 

difference between Landsat/Sentinel-2 and MODIS can be attributed to the MODIS pixel containing 

information from neighboring fields with different planting and harvesting dates. Figure 4 

illustrates the differences in the crop management of sugarcane fields around the EC site. In 

February 2016 and August 2016 (Figure 4a,b), within the 500 m MODIS pixel, the south field 

(February) and the plantation west of the EC tower (August) had bare soil landcover, while the 

study field had green vegetation. In addition, the effects of radiation changes and cloud cover on 

the relationship between the GPPEC and the vegetation index are supported by Figure 4d, where 

green vegetation is visible, but the estimated GPPEC was below 5 g C/m2. 

  

Figure 5. (Left panel): The relationship between the estimated gross primary production (GPPEC) and 

enhanced vegetation index derived from moderate-spatial-resolution images (MSR, MODIS) and high-

spatial-resolution images (HSR, Landsat and Sentinel-2) within the growing season. (Right panel): 3 m 4-

band planet Scope and 5 m RapidEye Ortho tile surface reflectance true-color images of vegetation cover in 

the Chacahoula, USA study area. The red circle represents the area used to obtain the time-series of HSR 

data. 

At the USA site, GPPEC also had a stronger correlation with EVILS-S2 (R2 = 0.76) than EVIMODIS (R2 

= 0.71) (Figure 5). The sugarcane fields around the EC study field had different planting and harvest 
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dates (Figure 5a–d), which affected the data analysis of the relationship between GPPEC and EVIMOD. 

Wind conditions influenced the tower’s fetch footprint and varied depending on the season and 

the landcover type [105,106]. May and June 2018 had high EVI values (0.628) (Figure 3d), and the 

field was green in June (Figure 5a), but there was no vegetation cover on some of the fallowed 

sugarcane fields nearby, resulting in a low GPPEC of 3.7 g C/m2. Similar situations were observed on 

22 September 2018 

(Figure 5b), the date with the highest EVI of 2018 (0.72); October 2019 (Figure 5c); and 
September 2020 (Figure 5d), for which there were high EVI values (>0.5), relatively low GPPEC 

values (<5.45 g C/m2), and a harvested field contiguous with the green sugarcane plantation EC 

site. The sugarcane fields adjacent to the EC site were managed differently and could introduce 

uncertainty in the MSR data products (i.e., EVIMOD) as some of the fields were within the 500 m 

MODIS pixel centered on the EC tower. 
The slightly lower R2 values at the Brazil site when compared to the USA site were partly 

attributed to the effect of cloud coverage, increase in shadow during the rainy season, fetch 

footprint changes throughout the seasons, and influence of the crop management (rotation and 

harvest) of neighboring sugarcane fields, as evinced by the moderate differences in the vegetation 

indices (Figure 3a,c). 

3.3. Relationships between Air Temperature and GPP and Enhanced Vegetation Index (EVI) 

Given the importance of the optimal temperature in multiple biophysical processes and the 

limited availability of these data, we assessed the relationships between the GPPEC and air 

temperature (TDT, TDA) during the growing seasons (Figure 6), as this is one of the most reliable 

methods to estimate Topt. For the site in Brazil, tGPPEC increased as the TDT and TDA rose and 

reached its plateau at ~25 ◦C and 23 ◦C, respectively (Figure 6a,c). In the USA plantation, the 

GPPEC increased when the TDT and TDA rose and found its plateau at 28 ◦C and 26 ◦C, respectively 

(Figure 6b,d). 

  

Figure 6. Relationships between estimated gross primary production (GPP_EC), mean daily temperature, 

and mean daily daytime temperature within the sugarcane growing seasons. (a,c) FAYS Brazil site, 2015–

2017. (b,d) Chacahoula, USA site (2018–2020). 

We also studied the relationships between the vegetation index (EVILS-S2, EVIMODIS) and air 

temperature (TDT and TDA) (Figure 7) as a potential method to calculate Topt. At the Brazil site, both 

EVILS-S2 and EVIMOD had weak but similar relationships with air temperature (TDT and TDA) (Figure 

7a,b). For the TDT, the EVI rose and peaked at 20 ◦C with a greater density of high values at 26 ◦C; 

the EVI reached its plateau at a TDA of 23 ◦C. The results at the USA location (Figure 7c,d) displayed 

high EVI values at 28 ◦C TDT and 

25 ◦C TDA. The results were consistent for both sites and similar for HSR EVILS-S2 and MSR EVIMOD. 

EVILS-S2 reached a plateau at slightly warmer temperatures at both sites, but remained overall close 

to the EVIMOD (~0.15 ◦C). Following these results, the optimum air temperature (Topt) for modeling 
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purposes was established as 25 ◦C (GPP-based) or 26 ◦C (EVI-based) for Brazil and 28 ◦C (GPP-

based and EVI-based) for the USA. 

 

Figure 7. Relationship between enhanced vegetation index derived from MODIS (EVI 500 m) and 

Landsat/Sentinel-2 (EVI 10 m) with mean daily air temperature and mean daily daytime temperature during 

the growing seasons. (a,b) FAYS Brazil site, 2015–2017. (c,d) Chacahoula, USA site (2018–2020). 
3.4. Comparison between GPP from VPM Simulations (GPPVPM) and GPP Estimates from the 
Eddy Flux Sites (GPPEC) 

At the Brazil site, the seasonal dynamics of the GPPEC and GPPVPM agreed reasonably well 

(Figure 8a). The Pearson correlation coefficients and R2 values indicated that there was a stronger 

relationship between the GPPEC and GPPVPM_LS-S2 (r = 0.86, R2 = 0.74) than between the GPPEC and 

GPPVPM-MOD (r = 0.78, R2 = 0.62) (Figure 8c, Table 1). The seasonal sums of the GPPEC and GPPVPM 

within the sugarcane growing season differed noticeably (Table 2). 

  
Figure 8. GPP estimate time series from the EC flux sites (black line) and the VPM (HSR GPP in blue and MSR 

GPP in red). (a) FAYS Brazil site GPP time series estimates (2015–2017). (b) Chacahoula, USA site GPP time 

series estimates (2018–2020). Relationship between GPPEC and the VPM (HSR GPP in blue and MSR GPP in 

red) (c) FAYS Brazil. (d) Chacahoula, USA site. 

Table 1. A comparison of statistical metrics from the correlation analyses between GPPEC (g C m−2 day−1) and 

GPPVPM (g C m−2 day−1) for the Brazil and USA sites. 
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Metric 

Brazil  USA 

GPPEC vs. GPPVPM-

MOD 
GPPEC vs. 

GPPVPM_LS-S2 
GPPEC vs. 

GPPVPM-MOD 
GPPEC vs. 

GPPVPM_LS-S2 

R2 0.62 0.74 0.63 0.82 

CC 0.78 0.86 0.79 0.90 

MAE 2.96 2.03 2.21 1.83 

NRMSE 0.23 0.17 0.16 0.12 

Table 2. Seasonal sums of GPPEC and GPPVPM during the growing the season defined by the GPP-based method 

and VI-based method at the Brazil and USA sites. 

Site 
GPP-Based Growing 

Season 
GPPEC (g C 

m−2 yr−1) 
GPPVPM_LS-S2 (g C 

m−2 yr−1) 
GPPVPM-MOD (g 

C m−2 yr−1) 

Brazil 
11/05/2015–10/31/2016 
11/16/2016–08/26/2017 

2428 
1722 

2688 
1817 

2464 
1974 

USA 
05/09/2018–09/22/2018 
04/01/2019–11/11/2019 

608 
2304 

766 
2704 

1102 
1728 

 04/09/2020–12/02/2020 2976 2688 1432 

Table 2. Cont. 

Site 
VI-Based Growing 

season 
GPPEC (g C 

m−2 yr−1) 
GPPVPM_LS-S2 (g C 

m−2 yr−1) 
GPPVPM-MOD (g 

C m−2 yr−1) 

Brazil 
12/15/2015–10/23/2016 
12/10/2016–08/26/2017 

2263 
1642 

2630 
1794 

2312 
1952 

USA 
05/22/2018–10/29/2018 
05/25/2019–11/17/2019 

599 
1896 

700 
2256 

1287 
1592 

 05/10/2020–11/06/2020 2696 2536 1280 

At the USA site, the seasonal dynamics of the GPPEC and GPPVPM agreed reasonably well 

(Figure 8b). The GPPVPM_LS-S2 values had a stronger relationship with the GPPEC (CC = 0.90, R2 = 0.82) 

than the GPPVPM-MOD values did with the GPPEC (CC = 0.79, R2 = 0.63) (Figure 8d, Table 1). The 

seasonal sums of the GPPEC and GPPVPM throughout the growing season also differed noticeably 

(Table 2). 

3.5. Seasonal Dynamics of ET as Measured at the Tower Site (ETEC) and Transpiration as 
Estimated by VTM Simulations (TVTM) 

At the Brazil site, the seasonal dynamics of the ETEC and TVTM_EC agreed reasonably well (Figure 

9a). The peak ETEC values ranged between 4 and 5 mm/day during December to February, while 

the peak TVTM_EC values varied between 2 and 3 mm/day for the same peak periods. The Pearson 

correlation coefficients and R2 values indicated that there was a moderate relationship between 

the ETEC and TVTM_EC (p = 0.68, R2 = 0.47) at the Brazil site (Table 3). The Brazil site had the worst 

performance of the two sites, as the VTM estimates had weak to moderate relationships with the 

ETEC and TVTM, whereas these relationships at the site in the USA were moderate to strong. The 

TVTM-LS2 in Brazil (p = 0.45, R2 = 0.21) had a stronger linear relationship than the TVTM-MOD, which had 

the weakest correlation across the study (p = 0.09, R2 = 0.009). The ETEC/P ratio was consistently 

~72.5% in Brazil during the study period, while the TVTM:ETEC ratio for 2016 (complete calendar 

year) ranged between 64% and 75%, compared to the range of 78% to 95% for 2017 (only including 

data until August) (Tables 4 and 5). 
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Figure 9. ETEC estimate time series from the EC flux sites (black line) and the TVTM_EC (red line) for (a) the FAYS 

Brazil site and (b) Chacahoula, USA. 

The USA site displayed stronger and clearer seasonal dynamics. It had peaks during the 

summer months, showing ETEC values ranging between 3 and 5 mm/day and TVTM_EC values 

between 2 and 3 mm/day (2018 and 2019), with higher rates in 2020 ranging between 3 mm/day 

and 4 mm/day. The year 2020 was the driest year, with an annual total P of 1438 mm, and 2019 

was the wettest with a value of 1721 mm. This site displayed the strongest Pearson correlation 

coefficients and R2 values of either site. For this site, the strongest relationship was between ETEC 

and TVTM_LS-S2 (p = 0.78, R2 = 0.61), while the relationship between ETEC and TVTM_MOD remained 

moderate (p = 0.72, R2 = 0.52) (Table 3). Tables 4 and 5 display the results of the TVTM estimates 

derived using the GPPEC (TVTM-EC), 
GPPVPM-LS2 (TVTM-LS2), and GPPVPM-MOD09 (TVTM-MOD09). The ETEC:P ratios had a similar magnitude 

over the years (45% to 51%), the TVTM:ETEC ratios varied widely, with a 41% average for 2018, 79% 

average for 2019, and abnormally high average of 91% for 2020. 

Table 3. A comparison of statistical metrics from the correlation analyses between ETEC (mm day−1) and TVTM 

(mm day−1) for the Brazil and USA sites. 

  ETEC vs. Model Estimates (VTM)  

  Brazil USA  

TVTM_EC TVTM_MOD TVTM_LS-S2 TVTM_EC TVTM_MOD TVTM_LS-S2 

R2 0.47  0.009 0.21 0.44 0.52 0.61 

p 0.68  0.09 0.45 0.67 0.72 0.78 

Table 4. A comparison of the seasonal sums of precipitation, evapotranspiration (ETEC) from the tower 

observations, and transpiration (TVTM) from the Vegetation Transpiration Model (VTM) simulations. Daily ETEC 

(mm day−1) and TVTM (mm day−1) from the study sites were aggregated over days with ET observations. 

 

Year 

  Annual Totals (mm)  

P ETEC TVTM-EC TVTM-LS2 TVTM-MOD09 

Brazil 
2016 1492 1098 706 833 724 

2017 909 659 517 559 631 

USA 2018 1597 815 202 319 473 
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2019 1721 786 640 659 565 

2020 1438 718 826 733 418 

Table 5. A comparison of the ratio of transpiration (TVTM) to evapotranspiration (ETEC) according to the 

growing season at the Brazil and USA sites. Daily ETEC (mm day−1) and TVTM (mm day−1) from the study sites 

were aggregated over days with ET observations for the study period within each year. 

 
Year 

 Study Period Water Return Rates (%) 

ETEC:P TVTM-EC:ETEC TVTM-LS2:ETEC TVTM-MOD09:ETEC 

Brazil 
2016 73 65 75 64 

2017 72 78 84 95 

USA 

2018 51 26 40 58 

2019 45 81 84 72 

2020 50 115 102 58 

4. Discussion 

4.1. Biophysical Performance of Vegetations Indices from Landsat and Sentinel-2 at 
Sugarcane Plantations 

The one advantage of MODIS sensors (MSR images) is that they acquire images daily and 

could provide enough good-quality observations to track temporal changes in the vegetation 

canopy. Many studies have demonstrated that time-series VI data derived from MODIS images at 

daily and 8-day temporal resolutions can effectively track the seasonal variation and interannual 

dynamics of vegetation canopies [29,107–110]. In comparison, as Landsat and Sentinel-2 (HSR 

images) acquire images at multi-day intervals (for example, Landsat has a 16-day revisit cycle and 

Sentinel-2 has a 10-day revisit cycle), one sensor often cannot provide enough good-quality 

observations to track temporal changes in the vegetation canopy. A few studies have combined 

Landsat images and Sentinel-2 images to construct VI time series and then used them to track the 

seasonal dynamics of the vegetation canopy [76,111–113]. In comparison to the MODIS time-

series data, our results also showed that a combination of Landsat and Sentinel-2A/B images 

increased the number of good-quality observations, providing sufficient data to track the seasonal 

dynamics and interannual variation of the sugarcane canopy at the Brazil (tropical climate) and 

USA (subtropical climate) sites. Furthermore, our results indicated that despite the limitations of 

HSR data in tropical climates, the combined time series of the Landsat and Sentinel-2A/B images 

provided a better representation of the vegetation carbon uptake, with a linear relationship (R2 = 

0.74) stronger than the linear relationship between EVIMODIS and the EC site vegetation carbon 

uptake data (R2 = 0.67). 
One MODIS pixel (MSR, 500 m) often contains multiple crop fields, which could be cultivated 

with different types of crops or the same type of crop with different management practices, and 

thus reflects the spectral properties of mixed-crop fields and/or crops under various management 

practices [114–116]. For example, within the MODIS pixel for the USA sugarcane site, there were 

seven sugarcane fields at different stages in the crop cycle (e.g., fallow, recently planted cane, and 

ratooning cane) with different management practices, which may have affected the relationship 

between the MODIS-based VI values and the GPPEC. The results from this study showed that the 

relationships between the GPPEC and EVI at the sugarcane plantations were stronger when the EVI 

was calculated from the Landsat/Sentinel-2 (HSR) images than when the EVI was calculated from 

the MODIS (MSR) images. Other studies have found similar results, highlighting the benefits of 

high-spatial-resolution images and their contribution to stronger correlations between carbon flux 

data and vegetation indices on grasslands and croplands [117–119]. This is important for 

estimating crop performance and vegetation health insurance indices over farms with multiple 

types of crops, rotations, and management techniques [119–121]. 
Sugarcane yields are affected by genotype, environmental conditions, and the time of harvest 

[122]. Our results showed that the EVI and LSWI tracked the phenological dynamics of sugarcane 
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plantations well, providing a detailed cultivation history for the sugarcane at both plantations 

[31,77,123]. The LSWI was able to delineate the phenological metrics (SOS, EOS) and identify the 

harvest dates, consistent with previous studies on sugarcane and other crop types [35,124,125]. 

As the sugarcane plants at these two sites were harvested while they were still green, the unique 

phenomenon of the LSWI dropping to <0 reflected the physical system change from green 

sugarcane fields to brown crop residue and bare soils after harvest at both sites. The harvest date, 

or EOS, corresponded with the time of the initial negative LSWI value. Our results showed that the 

harvest dates at the Brazil and USA plantations were accurately recognized by the VI-based 

algorithms. However, these algorithms had limitations in identifying the SOS at the USA site, which 

was detected 2 to 4 weeks later across the three growing seasons. These differences could 

potentially impact the annual total vegetation carbon uptake in the fields. Note that the seasonal 

changes in GPPEC and NEEEC could also be used to track and delineate the surface phenology of 

croplands in terms of physiology. The GPPEC accurately tracked the vegetation carbon fixation 

period using the GPPEC ≥ 1 g C/m2/day criterion. Our results showed that the temporal agreement 

of the land surface phenology metrics derived from the VI-based and GPPEC-based approaches was 

stronger for the USA site when the VI values from Landsat/Sentinel-2 (HSR) images were used, in 

part because the MODIS pixel at the USA site covered several crop fields. Finally, the results agreed 

well with other studies, like that of Zhang (2022) [76], which highlighted the potential of 

Landsat/Sentinel-2 images in representing planting patterns over agroecosystems. Finally, this 

study demonstrated the capabilities and limitations of the VI-based method in determining the 

growing season length. 

4.2. Comparison of GPP Estimates Using Landsat/Sentinel-2 Data and MODIS Data 

In comparison to major grain crops (e.g., maize, soybean, winter wheat, and rice), only a few 

studies have assessed GPP estimates of sugarcane plantations from light use efficiency models with 

MODIS data [35,47,126]. GPPEC estimates are widely used to assess GPP calculations from light use 

efficiency models [47,127,128]. In our study analyzing data from 2015–2017 in Brazil and 2018–

2020 in the USA, the GPP estimates from the VPM simulations with MODIS images and local 

climate data agreed reasonably well with the GPPEC data, being consistent with the results reported 

in Xin et al. 2020 [35], where GPP estimates were evaluated using 2005–2007 data from an eddy 

flux tower site in Brazil and 2017 data from an eddy flux tower site in USA. 
The results of our study showed that the temporal agreement between GPPEC and GPPVPM-LS-

S2 (R2 0.82 and 0.74) was stronger than the temporal agreement between GPPEC and GPPVPM-MOD (R2 

0.63 and 0.62), which could largely be attributed to two factors: 

(1) individual MODIS pixels often included multiple crop fields that have different management 

practices and cultivation calendars (green-up dates and harvest dates), and (2) the footprints of 

the eddy flux tower sites were much smaller than the MODIS pixels (500 m), corresponding well 

with the MODIS limitations reported in other studies [129–131] investigating the vegetation 

carbon uptake in crops. In comparison, vegetation indices from Landsat and Sentinel-2 images, 

which are used to calculate fPARchl and Wscalar, often reflect the vegetation canopy dynamics from 

one crop field within the footprint of the eddy flux tower site [132,133]. 

The stronger correlations between EVILS-S2 and GPPEC highlighted in Section 4.1 underscore 

the influence of vegetation indices on the VPM performance. On the other hand, the EVI values at 

both an MSR and HSR displayed similar results in estimating the site-specific optimal temperature, 

which is a crucial parameter to enhance the accuracy of GPP estimates. These results were 

consistent with other studies, where authors such as Velez (2022) [134] have highlighted the 

potential of HSR (10 m) vegetation index time series in assessing relevant agronomic parameters. 

In our study, the EVI was used as opposed to the NDVI given its limitations in canopies, which can 

become oversaturated, as with sugarcane. The results of our investigation evidenced the potential 

of the VPM fed with Landsat and Sentinel-2 images for estimating the GPP of sugarcane plantations 

under different climate zones, sugarcane varieties, and crop practices. Finally, the results 

underscored the potential of the VPM as a tool for crop growth monitoring in precision agriculture 

that addresses some of the complexity and scalability issues of typical crop models [135,136]. 



Remote Sens. 2024, 16, 46 16 of 23 

4.3. Sources of Uncertainties and Errors in VPM Simulations for Sugarcane Plantations 

The sources of errors and uncertainties in the GPP estimates from light use efficiency models 

comprise the model structure; model parameters; and input datasets, including satellite images 

and climate data. Xin et al. (2020) discussed VPM simulations at two sugarcane sites with a focus 

on the LUE parameter. The maximum LUE affects the vegetation carbon uptake at the ecosystem 

level [48,137–139] and can be estimated through a linear regression between the aboveground 

dry biomass and total amount of radiation captured by the vegetation [140,141] or based on the 

relationship between the PAR and GPP [142]. The LUE values have a large range of variability over 

sugarcane depending on the climate conditions, altitude, and crop management [142–146]. Our 

results suggested a maximum LUE ranging between 0.7 and 0.9 g C mol−1 PPFD for Brazil, similar to 

the ranges reported in other studies in the Brazilian region [147]. Xin et al. (2020) [35] reported 

that the maximum LUE for VPM simulations was set to 0.9 g C mol−1 PPFD for both sugarcane sites. 

Further studies are needed to evaluate the maximum LUE parameter over sugarcane plantation 

sites worldwide, as it could introduce a source of uncertainty for the regional and global GPP 

estimations. 
The comparison of VPM simulations based on MSR images and HSR images illustrates the 

error sources and uncertainty associated with landcover types within one image pixel and the 

spatial mismatch (inconsistency) between image pixels and the footprints of an eddy flux tower 

site [148,149]. One MSR pixel often contains multiple landcover types, often called a mixed pixel, 

while one HSR pixel most likely contains one landcover type, often called a pure pixel 

[117,150,151]. The presence of different landcover types within a single pixel affects the model’s 

representation of the fraction of PAR absorbed by chlorophyll and the vegetation water response, 

both strong drivers of vegetation carbon uptake. Moreover, the number of good-quality 

observations from satellite optical sensors would decrease if frequent clouds occurred. In addition, 

EC flux tower estimates are influenced by the surrounding fields as the footprint changes with the 

season, weather conditions, vegetation height, and vegetation cover [66,106,148]. The sources of 

uncertainty from the EC tower increase the challenges of validating GPP estimates, and the sources 

of error in the system increase based on the condition of the instruments and sensors. In this study, 

we also used the NEE and latent heat flux data from the tower sties to identify additional poor-

quality data in the time series that were not removed by the site’s quality assurance filters. 

4.4. Capabilities and limitations of VTM-Forecasted Transpiration for Sugarcane Plantations 

The correlation between ETEC and TVTM for the Brazil site was moderate for the 

TVTM_EC model (R2 = 0.47) but exhibited lower values for TVTM_MOD (R2 = 0.009) and 

TVTM_LS-S2 (R2 = 0.21), indicating that further improvement and additional variables should be 

considered in sites located in tropical environments like the Brazil site, where elements such as the 

residual straw and Bowen ratio variability can affect the transpiration and evapotranspiration rates 

[152], whereas the more wider spaced rows in Louisiana (1.5 m single row compared to 1.83 m 

single row and 2.4 m double row) could have affected these water rates [153]. Conversely, the USA 

site showed a robust correlation across all VTM estimates, especially for the high-spatial-resolution 

TVTM_LS-S2 (R2 = 0.61), which outperformed the estimates calculated using the GPPEC data as an input 

for the VTM. The observed differences could be attributed to various factors, including the climatic 

conditions, soil properties, row spacing, data quality, and sugarcane varieties. 
The annual total data in Table 4 underscore the inherent variability in precipitation, ETEC, and 

TVTM across the sites. Ref. [154] highlighted the changes in actual evaporation and transpiration 

linked to climate change as one of the leading factors in the interannual yield variability of 

sugarcane in Brazil. The USA site exhibited the largest interannual variation in precipitation, ETEC, 

and transpiration VTM rates. Ref. [155] emphasized the impact of soil water conditions as the main 

driver of the interannual variability in ET and T, partially explaining some the differences observed 

in the TVTM:ETEC ratios over time. Moreover, ref. [156] addressed the significance of row spacing, as 

it increases soil water content and provides more space for the sugarcane to grow, significantly 

increasing transpiration in periods of low rainfall, which could partially explain some of the 

abnormally high TVTM rates at the USA site in 2020 (driest year). In addition, some of the differences 

between the MSR and HSR transpiration estimates can be linked to the fact that the MSR pixel 
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included multiple fields containing different varieties and, in some cases, different management 

practices. 
The VTM showed a strong capacity to capture the seasonal dynamics and some of the 

interannual variability in the transpiration rates. Despite the simplicity of the approach, overall, 

the TVTM results captured the seasonal dynamics of the water flux, underscoring the potential of 

this tool and its applications. However, the variability across different scales in the results suggests 

that for field-level and commercial applications the time-scale dependency should be further 

studied, and additional parameters such as initial water content and row spacing should be 

included to provide a better field representation of the transpiration water flux. 
5. Conclusions 

This study successfully explored the use of Landsat and Sentinel-2 imagery to monitor 

phenology and as an input for gross primary production (GPP) estimation in sugarcane 

plantations in São Paulo, Brazil, and Louisiana, USA. Our findings contribute significantly to the 

field of remote sensing in agriculture, offering new perspectives and methodologies. The key 

conclusions and contributions include: 

• Potential of Landsat and Sentinel-2 over cloudy environments: We demonstrated the 

effective combination of Landsat and Sentinel-2 time-series images for monitoring 

phenology and as an input for GPP estimation in sugarcane plantations. This approach 

proved particularly effective in diverse environmental conditions, including cloudy scenarios 

where HSR images have the greatest limitations, thereby underscoring the robustness of 

these satellite images in capturing agricultural dynamics. Furthermore, HSR data better 

represented field vegetation carbon uptake at both sites compared to MSR data. 
• EVI as a proxy for estimating optimal air temperature: The study revealed a novel 

application of the enhanced vegetation index (EVI) in estimating site-specific optimal air 

temperature (Topt) for photosynthesis. This correlation between the GPPEC, EVI, and air 

temperature variables opens up new avenues for understanding the biophysical 

performance of vegetation indices across different pixels and fields. 
• VPM efficacy: Our research highlighted the VPM’s capabilities for accurately estimating the 

seasonal dynamics of GPP in sugarcane plantations at a high spatial resolution. The model’s 

adaptability to varying environmental conditions was a key finding, showcasing its potential 

for broader application. Nonetheless, the field variability of the ECT footprint introduced 

some uncertainty into the ground data. 
• Transpiration modeling insights: The Vegetation Transpiration Model (VTM) effectively 

captured the seasonal dynamics of transpiration. However, its dependency on high-quality 

GPP data and the need for further research into time-scale dependency and initial water 

content impact were noted. The model showed promise in environments like Louisiana, but 

additional research is needed in settings like Brazil to refine its accuracy and address 

uncertainties. 

Future work will include assessments of the models at additional sugarcane plantations with 

EC flux systems, spatial yield data, and detailed field information including variety type and row 

spacing, as this could increase our knowledge regarding likely sources of uncertainty and the 

prospects of deploying the models as tools for precision agriculture. 
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