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Abstract: Sugarcane croplands account for ~70% of global sugar production and ~60% of global ethanol
production. Monitoring and predicting gross primary production (GPP) and transpiration (T) in these fields is
crucial to improve crop yield estimation and management. While moderatespatial-resolution (MSR, hundreds
of meters) satellite images have been employed in several models to estimate GPP and T, the potential of
high-spatial-resolution (HSR, tens of meters) imagery has been considered in only a few publications, and it
is underexplored in sugarcane fields. Our study evaluated the efficacy of MSR and HSR satellite images in
predicting daily GPP and T for sugarcane plantations at two sites equipped with eddy flux towers: Louisiana,
USA (subtropical climate) and Sao Paulo, Brazil (tropical climate). We employed the Vegetation Photosynthesis
Model (VPM) and

Vegetation Transpiration Model (VTM) with C4 photosynthesis pathway, integrating vegetation index data
derived from satellite images and on-ground weather data, to calculate daily GPP and T. The seasonal
dynamics of vegetation indices from both MSR images (MODIS sensor, 500 m) and HSR images (Landsat, 30
m; Sentinel-2, 10 m) tracked well with the GPP seasonality from the EC flux towers. The enhanced vegetation
index (EVI) from the HSR images had a stronger correlation with the tower-based GPP. Our findings
underscored the potential of HSR imagery for estimating GPP and T in smaller sugarcane plantations.
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attention in the crop production community. GPP has been used to calculate net primary
production (NPP), aboveground biomass, and crop yield [10-13]. GPP is used to monitor crop
growing conditions and improve crop management practices and crop production estimates [13—
16]. GPP has previously been utilized to improve crop yield assessments,

1 Introduction

Sugarcane (Saccharum spp.) croplands supply cane feedstock for biofuel (ethanol) and sugar production [1].
Sugarcane represents nearly 70% of the sugar production worldwide and approximately 60% of the global bioethanol
production [2—4]. Brazil and the United States of America (USA) rank first and ninth among the global sugarcane-
producing countries [5]. Brazil produced an average of 538 million metric tons (mmt) of sugar from 1994 to 2019 [6],
and through the Renovabio policy it aims to produce 50 billion liters of ethanol per year by 2030 by improving production
and investment infrastructure [7]. The USA produced an average of 29 mmt of sugar from 1994 to 2019 [6].

Sugarcane crop growth monitoring and assessment provide necessary information for crop management and
sustainable production, as the changes in crop variety, field size and rotation, management, and climate may affect crop
growth, water use efficiency, and yield prediction [8]. Among the many metrics of crop growth, gross primary production
(GPP), which is the amount of CO: fixed by vegetation photosynthesis, representing the largest carbon flux in the
terrestrial ecosystem [9], is one useful metric, but it has received less
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which are important for agricultural resiliency and food security [17-19].

There is no method for directly measuring GPP at the ecosystem and landscape scales [20,21].
The eddy covariance (EC) method is widely applied to measure the net ecosystem exchange (NEE)
between the atmosphere and the land surface [22], and the half-hourly NEE data are then
partitioned into ecosystem respiration (ER) and GPP [23,24]. Several algorithms have been used
for the partitioning of the NEE into ER and GPP [25,26]. The resultant GPP (hereafter GPPec) is
utilized as the standard data to evaluate vegetation phenology, as well as GPP estimates derived
from process-based models and data-driven models over multiple spatial and temporal resolutions
[27-29] (p. 200). However, because of the high cost and complexity associated with the operation
of EC sites, to date, the carbon and water fluxes of sugarcane plantations have only been measured
at a few sites worldwide [30—35]. Time-series data of the carbon and water fluxes from these sites
provide information on sugarcane crop phenology, GPP, and evapotranspiration.

Satellite-based remote-sensing data are widely available and are often used to monitor crop
growth [36—39] and estimate carbon fluxes [40-42]. Light use efficiency (LUE) models, first
applied in agriculture [43,44], can be fed with vegetation indices from remote-sensing data
(surface reflectance) and climate data to calculate GPP [17,45-47]. These LUE models gained
popularity thanks to their simplicity and data availability [47]. The Vegetation Photosynthesis
Model (VPM) [29,48] calculates daily GPP (hereafter GPPvrm) as the product of light absorption by
chlorophyll in the canopy (APARcni) and LUE [29,47,48]. The GPP estimates from the VPM have
been widely evaluated among multiple vegetation types and across various spatial scales (local,
regional, and global) [17,19,29,49,50]. To date, only a few studies have presented information on
GPP estimates of sugarcane plantations from data-driven models with satellite images [35,51].

Multiple global GPP data products from LUE models are now available to the public [52],
driven by climate data and satellite images at a moderate spatial resolution (MSR)—for example,
the Moderate Resolution Imaging Spectroradiometer (MODIS) at a 500 m spatial resolution. These
GPP data products at an MSR are useful. Note that most cropland fields are small in size [53], so
the monitoring and assessment of agriculture at the field scale (tens of meters) would need
satellite images at a high spatial resolution (tens of meters). Furthermore, agricultural
management practices [54-56] and land use changes have driven large spatial variation in the GPP
in sugarcane plantations [32,57,58]. The uncertainty of GPP estimates could increase when the
GPP is calculated from MSR images [51,59,60]. Therefore, there is a need to generate GPP data
products at a high spatial resolution (HSR, tens of meters) as, to date, no global GPP data products
derived from HSR images are available.

Transpiration (T) is a pivotal component of evapotranspiration (ET) in agricultural fields,
playing a crucial role in assessing crop growth performance [61]. Data products that partition ET
into T and E (evaporation) offer valuable insights into water use efficiency. However, the practical
application of T and ET data at the field level faces multiple challenges, including the course spatial
resolution of current remote-sensing products [59,62], the high costs associated with field-scale
ground T data, and the intricacies of ET partitioning methods [63]. Multiple models have
successfully integrated the Penman—Monteith (PM) method [64,65] with successful results [66],
but the scalability limitations and structural uncertainties in the vegetation phenology complicate
its application in commercial crops [67,68].

Satellite-derived ET products, like MOD16 [69], are popular for agricultural studies over large
regions due the coarse spatial resolution but face challenges in water-rich crops (e.g., sugarcane
and rice) and more extensively irrigated fields [70,71]. Newer products
(e.g., ECOSTRESS, [72]) offer finer resolutions but have strong limitations, including infrequent data
capture and validation issues [73]. Several studies have pinpointed inaccuracies in ECOSTRESS data
across various ecosystems [74,75]. Such inconsistencies compromise the data’s reliability for
precise water management and crop yield forecasting. Given these challenges, there is a pressing
need for a straightforward, accurate, and adaptable method to derive field-level T estimates in
water-rich crops like sugarcane.

The performance of the VPM in estimating the GPP of sugarcane plantations has only been
evaluated at a moderate spatial resolution (MSR) [35]. Therefore, its performance at a high spatial
resolution (HSR) for individual sugarcane plantations still needs to be assessed and better
understood. On the other hand, the vegetation transpiration model (VTM) has not been tested on
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sugarcane croplands, and this study evaluated VTM'’s potential as a tool to estimate water use
efficiency in this crop system. The study employed an integrated approach utilizing both MSR 8-
day MODIS optical data and a combined time series of HSR data from Landsat and Sentinel-2. This
methodology was specifically designed to derive vegetation indices at both the MSR and HSR
levels. The vegetation indices used in our analysis included the enhanced vegetation index (EVI)
and the land surface water index (LSWI), which served as critical inputs for our modeling efforts.
The primary focus was on leveraging these indices to comprehensively analyze the seasonal
dynamics of the sugarcane crop. By systematically collecting and processing these timeseries data,
we were able to effectively utilize them as an input for predicting the temporal dynamics of GPP
and T in sugarcane plantations over two different sites. This approach underscores the significance
of time-series analysis in agricultural studies, where HSR data availability is limited and an MSR
does not represent field patterns well [76], particularly for understanding and modeling the
phenological and physiological changes in crop systems over time.

Moreover, given the 2030 objectives to increase sugarcane production, there is a need to
assess and compare the VPM performance at distinct sugarcane plantations using MSR and HSR
images before it can be applied to perform GPP estimations with HSR images at the regional,
continental, and global scales. The core objectives of our investigation were: (1) to evaluate the
consistency of satellite-derived vegetation indices (EVI and LSWI) from MSR (MODIS) and HSR
(Landsat and Sentinel-2) images in tracking the vegetation phenology and sugarcane crop
physiology at two distinct sites; (2) to assess the performance of the VPM in estimating the daily
site-level vegetation carbon uptake of sugarcane croplands with different management practices
when MSR and HSR images are used, which would shed new light on the advantages of estimating
GPP with HSR images; and (3) to analyze the capabilities of the VTM in estimating the daily
transpiration of sugarcane croplands.

2. Materials and Methods
2.1. Study Sites

Two sugarcane sites were selected for this study, based on EC flux data availability and quality:
one sugarcane site at Pirassununga, State of Sao Paulo, Southeastern Brazil [31] and the other in
Schriever, Louisiana, USA at the Ardoyne farm [77] (Figure 1). The Louisiana site is under the
management of the USDA-ARS Sugarcane Research Unit, and the Sao Paulo site is under the
management of Embrapa Meio Ambiente.

The Louisiana EC flux tower site (Chacahoula) (29.6341 ° N, 90.8349 * W) had an annual mean
temperature of 23.6 * C and an annual precipitation of 1200 mm. The site had Cancienne silty clay
loam (Fluvaquentic Epiaquepts) type soil. The fields were graded with a 0.2% slope towards the
south, and the elevation of the fields ranged between 2.40 m and 0.61 m over 700-900 m.
Sugarcane cultivation in Louisiana dates back to 1850 [78], and the study site had experienced
more than 50 years of continuous sugarcane production. The field was cultivated with sugarcane
variety HoCP 04-838/, reg. no. CV-181, PI 687221, and the sugarcane plants were spaced at 1.83 m
intervals for single-planted rows and 2.44 m for double-planted rows (<1% total field area).
Sugarcane crop green up typically occurs in April, while it is harvested between October and
December. The EC tower on the site was in a 60 m? unplanted area surrounded by commercial
sugarcane crops. The sugarcane annually received 89 kg ha-! of nitrogen fertilizer in April.
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Figure 1. The two sugarcane locations with EC flux tower sites (red doted polygons; (a) USA and (b) Brazil)
displaying the pixel size of the optical data utilized in the study: 10 m (red polygon, Sentinel-2), 30 m (blue
polygon, Landsat), and 500 m (green polygon, MODIS).

The Sao Paulo EC flux tower site (FAYS) (21.9506°S, 47.3394°W) had an annual mean
temperature of 21.4 *C, annual precipitation of 1410 mm, and gentle slope of <2%. Sugarcane new
stem cutting (IAC-5000 variety) was completed on 10/2015 (DOY 275), and the distance between
the plotting rows was 1.5 m, with a canopy height of ~5 m during the growing season. The soil type
was clay (65% clay, 21% sand, silt 14%), and the site was managed under regular tillage, receiving
superphosphate (28% P,0s) and 100 Mg ha-! dry matter of filter cake (sugar production residue)
[31]. The flux tower at this site was installed 24 days after planting. Sugarcane is a multi-year ratoon
crop; typically, in Brazil, the crop cycle includes one plant crop and four ratoon crops [30]. The first
harvest took place in late October 2016, and the ground trash was left on the soil; nitrogen fertilizer
(80 kg N ha1) and potassium (180 Kg K.0 ha-1) were applied two days later [31].

2.2. Weather and CO: Flux Data for the Sugarcane Plantations
2.2.1. Louisiana, USA Site

The 10 m tower had an integrated open-path infrared gas analyzer, and climate and CO2 flux
data outputs were produced at a 30 min temporal resolution (Irgason, Campbell Scientific, Logan,
UT, USA). The ecosystem carbon uptake was estimated using the difference between the measured
net ecosystem exchange (NEE) and daytime ecosystem respiration (R); daytime and night-time R
were calculated based on fitted exponential equations [25,79]. The data covered three growing
seasons at the sugarcane plantation (01/2018-12/2020). Multiple sensors at the Chacahoula site
were recalibrated in the month of April in 2018 and 2019, resulting in major flags in the CO2 flux
data during the subsequent months; for this reason, some of the data were removed from the
study.

2.2.2. Sao Paulo, Brazil Site

The tower had an incorporated open-path infrared gas analyzer. Weather and CO2 flux data
were obtained at a 30 min temporal resolution, and the height of the tower was 9 m. Gross
primary production (GPP) and Rawere calculated at the EC tower based on the NEE observations
using the flux-partitioning REddyProc package [80]. The data covered two growing seasons for
the Sao Paulo site (October 2015—-August 2017).

2.2.3. Pre-Processing of CO2 Flux and Climate Data
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GPP at both the sites was estimated from the partitioning of the half-hourly NEE data using
the algorithms in [25,26]. The estimated half-hour GPP (GPPec) and photosynthetically active
radiation (PAR) data were recalculated into 1-day and 8-day data using the method presented in
[35]. PAR data were estimated as 0.48 of the total incoming shortwave radiation and converted
into photosynthetic photon flux density (PPFD) using the approximation 1 W m~2x 4.57 umol m-2
s1[81].

Air temperature was averaged into daily daytime mean air temperature (Tor) and daily mean
air temperature (Toa). We calculated Tor as the average temperature over the half-hour periods
that had more than 10 umol m-2s- PAR within a day. We calculated the

8-day averages of Torand Toa. There are notable differences between Tpoaand Tor, and we used Tor
for the photosynthesis—temperature relationship in our previous studies [35,49].

2.3. Land Surface Reflectance and Vegetation Index Data

We used the surface reflectance data from MODIS (MOD09A1), Landsat (7 ETM+ and 8
OLI/TIRS), and Sentinel-2/A-2/B, which are accessible on the Google Earth Engine (GEE) platform
[82]. For each flux tower site, we selected one MODIS pixel, one Landsat pixel, and one Sentinel-2
pixel centered on the tower coordinates.

The MODO09A1 Collection 6 product [83] provides surface reflectance at a 500 m spatial
resolution and 8-day temporal resolution. We employed the Google Earth Engine (GEE) platform
[82] to calculate the enhanced vegetation index (EVI) [84] and land surface water index (LSWI)
[85] using the surface reflectance data (see Equations (1) and (2)) and assessed the quality of
individual observations via the quality band.

EVI = 2.5 x (NIR — Red)/(NIR + 6 x Red=7.5 x Blue + 1) (1)

LSWI = (NIR = SWIR)/(NIR + SWIR) (2)

For Landsat 7 ETM+ and Landsat 8 OLI sensors, atmospherically corrected surface reflectance
data at a 30 m spatial resolution were used to calculate the EVI and LSWI. We assessed the
individual observations’ data quality using cloud, shadow, water, and snow masks [86]. The blue
band was used for an additional quality check by detecting the observations with cloudy and water
pixels [87].

Sentinel-2 provides optical data at high spatial resolutions (10 m, 20 m, 60 m) and a 10-day
temporal resolution [88]. S2-A (launched June 2015) and S2-B (launched March 2017) have 13
spectral bands, including visible and NIR bands at a 10 m spatial resolution and red-edge and SWIR
bands at a 20 m spatial resolution [89]. We used the 10 m S2 orthorectified atmospherically
corrected surface reflectance available on GEE. We assessed the quality of individual observations
using the cloud bit mask, cirrus bit mask, and blue band [87].

For each eddy flux tower site, the time-series Landsat and Sentinel-2 observations were
combined to form one time series of collated data. Both systems provide a 12-bit radiometric
resolution with similar reflective wavelengths [88,90,91] and information sensed over the same
areas. The similarities between the Landsat and Sentinel-2 spectral resolutions facilitates the
combined use of their datasets in several different ways, including data fusion, as reported in
previous studies [92]. Landsat and Sentinel-2 were combined without resampling the Landsat 30
m data into 10 m data, since the pixel chosen was within the tower’s footprint and there were no
changes in the crop management landcover type within the 30 m Landsat pixel. In our analysis, we
integrated various vegetation indices derived from different optical datasets and, in cases where
there were observations with overlapping dates, we selected a single observation for each date.
This selection was based on the data quality (maximum NDVI), as in past studies [90,92,93].
Ultimately, the gaps in the combined Landsat/Sentinel time-series data were filled in, but the data
were not subjected to smoothing. This decision was possible as there was at least one good-quality
observation per week, and we ran the model at weekly intervals.

We analyzed the time-series data of the EVI, LSWI, and GPP at the sugarcane sites to identify
the start, end, and length of the sugarcane growing season (SOS, EOS, GSL). This information was
determined using the VI data with the thresholds of EVI > 0.1 and LSW!I > 0 for the SOS and EVI <
0.1 and LSWI < 0 for the EOS. The VI-based GSL was compared with a GPP-based GSL that used SOS
>1gCm-2daytand EOS < 1 g C m-2day-'over three consecutive 8-day periods as thresholds.
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2.4. Vegetation Photosynthesis Model (VPM)
The vegetation photosynthesis model (VPM) produces daily estimates of GPP [29].

The VPM calculates the amount of solar energy absorbed by chlorophyll in the canopy (APARchi)
and the light use efficiency (LUEg). The EVI is used as a proxy for FPARchi (5).

GPP = APARcn x LUE, (3)
APARch = FPARchi x PAR (4)
FPARchi = 1.25 x (EVI - 0.1) (5)
LUEg = LUEO X Tscalar X Wiscalar (6)

LUEois the apparent quantum yield or maximum light use efficiency (umol CO2/pumol
PPFD), and it has different values for C3 and C4 plants in the VPM. The LUEo value for C4 plants
(e.g., sugarcane) is 0.075 mol of CO> mol-*PPFD (0.9 g C mol-! PPFD) according to earlier works on
the vegetation carbon uptake and quantum yield of photosynthesis for sugarcane [35,94]. The LUEo
for C3 plants ranges between 0.42 and 0.65 g CO> mol-1PPFD (5.0-7.8 g C mol-! PPFD) [47,95,96].
The VPM accounts for the presence of C3 and
C4 plants in areas that have both by including the fractions of C3 plants (C3F) and C4 plants (C4F).

LUEo= LUEo-c3 x C3F + LUEo-ca x C4F (7)

The effects of temperature and water on GPP [49,97] are introduced by Tscalarand

Wscalar, respectively. The LSWI is used to calculate Wscalar. Tscalaris based on the Terrestrial Ecosystem
Model (TEM) [98].

1+ LSwWi
Wscalar= (8)
1+ LSWimax

(°T — Tmin)(°T — Tmax)
Tscalar = o o o

9)
[(T=Tmin)( T-Tmax)] - (T - Topt)"2

*Tis the air temperature, and Tmin, Topt, and Tmaxare the minimum, optimum, and maximum
temperatures for photosynthetic activity, respectively. We defined Tminas =1 *Cand Tmaxas 48 °C
using the same cropland biome parameter values as in [47]. Topt Was set as 28 °C, following [35],
which estimated Topt from the relationship between the daily average daytime temperature (Tor)
and either the GPPec or vegetation index (EVI).

For comparison, we carried out two sets of VPM simulations to estimate daily GPP using site
climate data alongside (1) time-series EVI and LSWI data from Landsat and Sentinel images
(GPPvpm-1s) and (2) time-series EVI and LSWI data from MODIS images (GPPvem-mob).

2.5. Vegetation Transpiration Model (VTM)

In a crop field, evapotranspiration comprises evaporation (E) from the soil and intercepted
canopy water and transpiration (T) from plants [66,99]. During the crop growing season,
transpiration usually exceeds evaporation [100-102]. At the foliar level, there is a strong linkage
between photosynthesis (gross primary production, GPP) and transpiration. This often results in
the calculation of the leaf-level water use efficiency as the ratio between these two (i.e., WUE eaf =
GPP/T, expressed in mol COz/mol H20). The Vegetation Transpiration Model (VTM) predicts daily
transpiration as an outcome of GPP and WUELeaf, and it was first tested in grassland ecosystems
[103]. Literature data indicate that the WUELeat c3 for C3 plants is 500 umol CO2/umol H20, while
for C4 plants, the WUELeaf_cais 250 umol CO2/pumol H20 [104].

T=(C3F x 1/WUE eaf 3+ C4F * 1/WUEleaf ca) X GPP, (10)

If C3F = 1.0, T (mm H20/day) = 0.33 (mm H,0/g C/m?/day) x GPP (g C/m?/day) (112)

If C4F = 1.0, T (mm H20/day) = 0.165 (mm H20/g C/m?/day) x GPP (g C/m?/day) (12)
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2.6. Statistical Analysis

We assessed the biophysical performance of the EVI in terms of GPP changes and seasonal
behavior at the sugarcane plantations. We analyzed data from two growing seasons for the Brazil
site and three growing seasons for the USA site.

GPPyvpm data were assessed with GPPecdata at daily and 8-day scales. In a similar way, the Tvtm
estimates were compared against the ETec. In addition, 8-day ET estimates from the MOD16
product were included in the comparison with the ETecto provide a reference for the performance
of one of the most common data products for this variable. The metrics for assessment included
the coefficient of determination (R-squared, R?), the Pearson correlation coefficient (p), the mean
absolute error (MAE), and the normalized root mean squared error (NRMSE). Finally, we compared
the ETec:P and Tvim:ETec ratios for the periods with data available to better explore the interannual
changes and performance of the model capturing this variability.

3. Results
3.1. Seasonal Dynamics of Climate, Vegetation Indices, and Carbon Fluxes (NEE, GPP)
3.1.1. Seasonal Dynamics of Climate

The Brazil site (Figure 2a) had a tropical climate, characterized by a dry and a wet season,
which is typical in tropical regions, with January being the wettest month (247 mm) and July the
driest month (27 mm) [30,31]. The annual rainfall was higher during the first crop cycle (1651 mm)
than during the second crop cycle (1446 mm). The seasonal dynamics of the daily mean air
temperature (Toa) ranged between 14 °C and 26 °C. The mean daily PAR in a year was 39.9 mol
m-2day-1, varying from the lowest in June (19.18 mol m-2day-!) to the highest in February (55.7
mol m-2day-?) (Figure 2a).

The USA site had a sub-tropical climate, characterized by four seasons and a moderately cold
winter. On average, March was the driest month (48 mm) and August the wettest month (188 mm)
at this site. The second crop cycle was the wettest (1720 mm), and the third cycle was the driest
(1477 mm). The air temperature ranged between 5 °C Tpain the winter and 30 °C Tpain the
summer. The daily daytime mean air temperature (Tor) was 2—3 degrees higher than the daily mean
air temperature (Toa). The average daily PAR in a year was 18.19 (mol m-2day~!) for the three crop
cycles, varying from the lowest in the winter (1.8 mol m-2day-'in January) to the highest in the
summer (34 mol m-2day-tin June) (Figure 2b).
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Figure 2. Seasonal variation in daily temperature, daily mean daytime temperature, 8-day average
photosynthetically active radiation (PAR), and accumulated rainfall (8-day interval) of the sugarcane EC flux
tower sites. (a) FAYS-Brazil site 2015-2017. (b) Chacahoula, USA site 2018-2020.

3.1.2. Seasonal Dynamics of Vegetation Indices

At the Brazil site (Figure 3c), the EVI and LSWI rose rapidly in December, reaching the
maximum value in May 2015. The EVI and LSWI gradually decreased, and by October the EVI
reached below 0.1 and the LSWI below 0. The field was harvested in October 2016. The
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VI-based start of the sugarcane growing season (SOS) at this site was November 2015 for the first
cycle and early December 2016 for the second cycle. The end of the growing season (EOS) was in
late October 2016, according to the thresholds used in our previous study [35], which were EVI <
0.1 and LSWI < 0. The results indicated a ~12 month sugarcane growing season length (GSL).
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Figure 3. Seasonal variation in estimated GPPgc and measured NEEgc at 8-day intervals over the study period.
Seasonal variation in vegetation indices (land surface water index (LSWI) and enhanced vegetation index
(EVI)) derived from 8-day MODIS data. (a,c) FAYS Brazil site, 2015-2017. (b,d) Chacahoula, USA site (2018-
2020).

At the USA site (Figure 3d), the EVI and LSWI started to rise in late April and early May and
reached their highest values between July and August. The EVI and LSWI gradually dropped,
reaching LSWI < 0 and EVI < 0.1 by early November. The VI-based start and end of the sugarcane
growing season (SOS and EOS) at this site were May and November, respectively, with a growing
season length of 7 months.

3.1.3. Seasonal Dynamics of Carbon Fluxes (NEE and GPP)

At the Brazil site (Figure 3a), the GPPec rose steadily in November 2015 to higher than 1 g C
m-2day~!, reached the top levels in March, and dropped to 1 g C m-2day~*in October 2016. The
GPPec rose again in November 2016, which indicated the start of a new sugarcane growing cycle
(Figure 3a). Following the GPP > 1 g C m=2 day-! criterion, the GPP-based start and end of the
growing season (SOS and EQS) at the Brazil site were in November 2015 and October 2016,
respectively, which adequately matched the SOS metrics outlined by the vegetation indices (Figure
3a).

At the USA site (Figure 3b), the GPPecbegan to increase in late April, was high in the summer,
and decreased below 1 g C m-2day-' by September in 2018 and November in 2019 and 2020, due
to sugarcane harvesting. Following the GPP >= 1 g C m-% day-! condition, the GPP-based GSL of
sugarcane oscillated between April and November (Figure 3b), which fit sufficiently with the
growing season metrics based on the vegetation indices (Figure 3d).

3.2. The Relationships between GPPec and Vegetation Indices from MODIS, Landsat, and
Sentinel-2 Images

For both sugarcane plantations, we assessed in terms of GPP dynamics the biophysical
response of the vegetation indices. Figures 4 and 5 show the agreement during the cane growing
seasons between the GPPecand EVI at both plantations.
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Figure 4. (Left panel): The relationships between gross primary production (GPPg) and the enhanced
vegetation index (EVI) derived from moderate-spatial-resolution images (MSR, MODIS) and high-spatial-
resolution images (HSR, Landsat and Sentinel-2) within the growing season. (Right panel): 3 m 4-band planet
Scope and 5 m RapidEye Ortho tile surface reflectance true-color images of vegetation cover in the FAYS Brazil
study area. The red circle represents the area used to obtain the time-series of HSR data.

At the Brazil site, the GPPec had a sturdier linear relationship with EVlis.s2 from the Landsat
and Sentinel-2 images (R? = 0.74) than with EVlmopis from the MODIS image (R? = 0.67). The
difference between Landsat/Sentinel-2 and MODIS can be attributed to the MODIS pixel containing
information from neighboring fields with different planting and harvesting dates. Figure 4
illustrates the differences in the crop management of sugarcane fields around the EC site. In
February 2016 and August 2016 (Figure 4a,b), within the 500 m MODIS pixel, the south field
(February) and the plantation west of the EC tower (August) had bare soil landcover, while the
study field had green vegetation. In addition, the effects of radiation changes and cloud cover on
the relationship between the GPPec and the vegetation index are supported by Figure 4d, where
green vegetation is visible, but the estimated GPPec was below 5 g C/m?.
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Figure 5. (Left panel): The relationship between the estimated gross primary production (GPPgc) and
enhanced vegetation index derived from moderate-spatial-resolution images (MSR, MODIS) and high-
spatial-resolution images (HSR, Landsat and Sentinel-2) within the growing season. (Right panel): 3 m 4-
band planet Scope and 5 m RapidEye Ortho tile surface reflectance true-color images of vegetation cover in
the Chacahoula, USA study area. The red circle represents the area used to obtain the time-series of HSR
data.

At the USA site, GPPecalso had a stronger correlation with EVlis-s2 (R?= 0.76) than EVlmoois (R?
=0.71) (Figure 5). The sugarcane fields around the EC study field had different planting and harvest



Remote Sens. 2024, 16, 46

10 of 23

dates (Figure 5a—d), which affected the data analysis of the relationship between GPPecand EVImop.
Wind conditions influenced the tower’s fetch footprint and varied depending on the season and
the landcover type [105,106]. May and June 2018 had high EVI values (0.628) (Figure 3d), and the
field was green in June (Figure 5a), but there was no vegetation cover on some of the fallowed
sugarcane fields nearby, resulting in a low GPPgc of 3.7 g C/m?2. Similar situations were observed on
22 September 2018

(Figure 5b), the date with the highest EVI of 2018 (0.72); October 2019 (Figure 5c); and
September 2020 (Figure 5d), for which there were high EVI values (>0.5), relatively low GPPgc
values (<5.45 g C/m?), and a harvested field contiguous with the green sugarcane plantation EC
site. The sugarcane fields adjacent to the EC site were managed differently and could introduce
uncertainty in the MSR data products (i.e., EVImop) as some of the fields were within the 500 m
MODIS pixel centered on the EC tower.

The slightly lower R? values at the Brazil site when compared to the USA site were partly
attributed to the effect of cloud coverage, increase in shadow during the rainy season, fetch
footprint changes throughout the seasons, and influence of the crop management (rotation and
harvest) of neighboring sugarcane fields, as evinced by the moderate differences in the vegetation
indices (Figure 3a,c).

3.3. Relationships between Air Temperature and GPP and Enhanced Vegetation Index (EVI)

Given the importance of the optimal temperature in multiple biophysical processes and the
limited availability of these data, we assessed the relationships between the GPPecand air
temperature (Tor, Toa) during the growing seasons (Figure 6), as this is one of the most reliable
methods to estimate Topt. For the site in Brazil, tGPPecincreased as the Torand Toarose and
reached its plateau at ~25 *C and 23 °C, respectively (Figure 6a,c). In the USA plantation, the
GPPecincreased when the Torand Toarose and found its plateau at 28 *C and 26 °C, respectively
(Figure 6b,d).
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Figure 6. Relationships between estimated gross primary production (GPP_EC), mean daily temperature,
and mean daily daytime temperature within the sugarcane growing seasons. (a,c) FAYS Brazil site, 2015—
2017. (b,d) Chacahoula, USA site (2018-2020).

We also studied the relationships between the vegetation index (EVIis-s2, EVImonis) and air
temperature (Torand Tpa) (Figure 7) as a potential method to calculate Topt. At the Brazil site, both
EVlis-s2 and EVImop had weak but similar relationships with air temperature (Tor and Toa) (Figure
7a,b). For the Tor, the EVI rose and peaked at 20 ° C with a greater density of high values at 26 °C;
the EVIreached its plateau at a Toaof 23 * C. The results at the USA location (Figure 7c,d) displayed
high EVI values at 28 ° C Tprand
25 °C Toa. The results were consistent for both sites and similar for HSR EVIis-s2and MSR EVImop.

EViis-s2reached a plateau at slightly warmer temperatures at both sites, but remained overall close
to the EVImon (~0.15 ° C). Following these results, the optimum air temperature (Topt) for modeling
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purposes was established as 25 °C (GPP-based) or 26
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Figure 7. Relationship between enhanced vegetation index derived from MODIS (EVI 500 m) and
Landsat/Sentinel-2 (EVI 10 m) with mean daily air temperature and mean daily daytime temperature during
the growing seasons. (a,b) FAYS Brazil site, 2015-2017. (c,d) Chacahoula, USA site (2018-2020).

3.4. Comparison between GPP from VPM Simulations (GPPvev) and GPP Estimates from the

Eddy Flux Sites (GPPgc)

At the Brazil site, the seasonal dynamics of the GPPecand GPPvpm agreed reasonably well
(Figure 8a). The Pearson correlation coefficients and R? values indicated that there was a stronger
relationship between the GPPecand GPPvpm_is-s2 (r = 0.86, R?= 0.74) than between the GPPecand
GPPvem-mop (r = 0.78, R?2=0.62) (Figure 8c, Table 1). The seasonal sums of the GPPecand GPPvem
within the sugarcane growing season differed noticeably (Table 2).
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Figure 8. GPP estimate time series from the EC flux sites (black line) and the VPM (HSR GPP in blue and MSR
GPP in red). (a) FAYS Brazil site GPP time series estimates (2015-2017). (b) Chacahoula, USA site GPP time
series estimates (2018-2020). Relationship between GPP¢c and the VPM (HSR GPP in blue and MSR GPP in
red) (c) FAYS Brazil. (d) Chacahoula, USA site.

Table 1. A comparison of statistical metrics from the correlation analyses between GPPgc (g C m~2day~1) and

GPPypm (g C m=2day™1) for the Brazil and USA sites.
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Brazil USA
Metric GPPecvs. GPPvPM-  GPPecvs. GPPecvs. GPPecvs.
MoD GPPvPM_LS-S2 GPPvPM-MOD GPPvPM_Ls-S2
R2 0.62 0.74 0.63 0.82
cc 0.78 0.86 0.79 0.90
MAE 2.96 2.03 2.21 1.83
NRMSE 0.23 0.17 0.16 0.12

Table 2. Seasonal sums of GPPgcand GPPypy during the growing the season defined by the GPP-based method
and VI-based method at the Brazil and USA sites.

. GPP-Based Growing GPPgc(g C GPPvpMm_LS-s2(gC  GPPvPM-MOD (g
Site Season m-2yr-1) m-2yr-1) Cm-2yr-1)
. 11/05/2015-10/31/2016 2428 2688 2464
Brazil 11/16/2016-08/26/2017 1722 1817 1974
05/09/2018-09/22/2018 608 766 1102
USA 04/01/2019-11/11/2019 2304 2704 1728
04/09/2020-12/02/2020 2976 2688 1432
Table 2. Cont.
. VI-Based Growing GPPec(g C GPPvpm_Ls-s2(gC  GPPvpm-moD (g
Site season m-2yr-1) m-2yr-1) Cm-2yr-1)
) 12/15/2015-10/23/2016 2263 2630 2312
Brazil 12/10/2016-08/26/2017 1642 1794 1952
05/22/2018-10/29/2018 599 700 1287
USA 05/25/2019-11/17/2019 1896 2256 1592
05/10/2020-11/06/2020 2696 2536 1280

At the USA site, the seasonal dynamics of the GPPec and GPPvem agreed reasonably well
(Figure 8b). The GPPvpm_ts-s2 values had a stronger relationship with the GPPec(CC = 0.90, R?=0.82)
than the GPPvpm-mop values did with the GPPgc (CC = 0.79, R? = 0.63) (Figure 8d, Table 1). The
seasonal sums of the GPP:c and GPPvrm throughout the growing season also differed noticeably
(Table 2).

3.5. Seasonal Dynamics of ET as Measured at the Tower Site (ETec) and Transpiration as
Estimated by VTM Simulations (Tvrm)

At the Brazil site, the seasonal dynamics of the ETecand Tvim_ecagreed reasonably well (Figure
9a). The peak ETec values ranged between 4 and 5 mm/day during December to February, while
the peak Tvrm_ec values varied between 2 and 3 mm/day for the same peak periods. The Pearson
correlation coefficients and R? values indicated that there was a moderate relationship between
the ETecand Tvrm ec (p = 0.68, R? = 0.47) at the Brazil site (Table 3). The Brazil site had the worst
performance of the two sites, as the VTM estimates had weak to moderate relationships with the
ETec and Tvrm, whereas these relationships at the site in the USA were moderate to strong. The
Tvrm-ts2in Brazil (p = 0.45, R?= 0.21) had a stronger linear relationship than the Tvrm-mop, which had
the weakest correlation across the study (p = 0.09, R? = 0.009). The ETec/P ratio was consistently
~72.5% in Brazil during the study period, while the Tvrm:ETec ratio for 2016 (complete calendar
year) ranged between 64% and 75%, compared to the range of 78% to 95% for 2017 (only including
data until August) (Tables 4 and 5).
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Figure 9. ETgc estimate time series from the EC flux sites (black line) and the Tyrm_ec (red line) for (a) the FAYS
Brazil site and (b) Chacahoula, USA.

The USA site displayed stronger and clearer seasonal dynamics. It had peaks during the
summer months, showing ETec values ranging between 3 and 5 mm/day and Tvim_ec values
between 2 and 3 mm/day (2018 and 2019), with higher rates in 2020 ranging between 3 mm/day
and 4 mm/day. The year 2020 was the driest year, with an annual total P of 1438 mm, and 2019
was the wettest with a value of 1721 mm. This site displayed the strongest Pearson correlation
coefficients and R?values of either site. For this site, the strongest relationship was between ETec
and Tvrm_is-s2 (p = 0.78, R? = 0.61), while the relationship between ETec and Tvrm_mop remained
moderate (p = 0.72, R = 0.52) (Table 3). Tables 4 and 5 display the results of the Tvim estimates
derived using the GPPec (Tvrm-ec),

GPPvpMm-Ls2 (TvTM-LS2), and GPPvPM-MoD09 (TVvTM-MODO09). The ETEC:P ratios had a similar magnitude
over the years (45% to 51%), the Tvim:ETec ratios varied widely, with a 41% average for 2018, 79%
average for 2019, and abnormally high average of 91% for 2020.

Table 3. A comparison of statistical metrics from the correlation analyses between ETec (mm day™1) and Tytm

(mm day™?) for the Brazil and USA sites.

ETecvs. Model Estimates (VTM)

Brazil USA
TVTM_EC TvTM_MoD TVTM_LS-S2 TVTM_EC TvTM_MOD TVTM_LS-S2
R2 0.47 0.009 0.21 0.44 0.52 0.61
p 0.68 0.09 0.45 0.67 0.72 0.78

Table 4. A comparison of the seasonal sums of precipitation, evapotranspiration (ETgc) from the tower
observations, and transpiration (Tytm) from the Vegetation Transpiration Model (VTM) simulations. Daily ETec

(mm day~?) and Tyrm (mm day~?!) from the study sites were aggregated over days with ET observations.

Annual Totals (mm)

Year
P ETec TVTM-EC TvTMm-LS2 TvTM-MODO09
2016 1492 1098 706 833 724
Brazil
2017 909 659 517 559 631
USA 2018 1597 815 202 319 473
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2019 1721 786 640 659 565

2020 1438 718 826 733 418

Table 5. A comparison of the ratio of transpiration (Tyrm) to evapotranspiration (ETgc) according to the

growing season at the Brazil and USA sites. Daily ETec (mm day~1) and Tyrm (mm day~1) from the study sites
were aggregated over days with ET observations for the study period within each year.

Study Period Water Return Rates (%)

Year
ETec:P TVTM-EC:ETEC TvTM-LS2:ETEC TVTM-MODO09:ETEC
2016 73 65 75 64
Brazil

2017 72 78 84 95

2018 51 26 40 58
USA 2019 45 81 84 72

2020 50 115 102 58

4. Discussion
4.1. Biophysical Performance of Vegetations Indices from Landsat and Sentinel-2 at
Sugarcane Plantations

The one advantage of MODIS sensors (MSR images) is that they acquire images daily and
could provide enough good-quality observations to track temporal changes in the vegetation
canopy. Many studies have demonstrated that time-series VI data derived from MODIS images at
daily and 8-day temporal resolutions can effectively track the seasonal variation and interannual
dynamics of vegetation canopies [29,107-110]. In comparison, as Landsat and Sentinel-2 (HSR
images) acquire images at multi-day intervals (for example, Landsat has a 16-day revisit cycle and
Sentinel-2 has a 10-day revisit cycle), one sensor often cannot provide enough good-quality
observations to track temporal changes in the vegetation canopy. A few studies have combined
Landsat images and Sentinel-2 images to construct VI time series and then used them to track the
seasonal dynamics of the vegetation canopy [76,111-113]. In comparison to the MODIS time-
series data, our results also showed that a combination of Landsat and Sentinel-2A/B images
increased the number of good-quality observations, providing sufficient data to track the seasonal
dynamics and interannual variation of the sugarcane canopy at the Brazil (tropical climate) and
USA (subtropical climate) sites. Furthermore, our results indicated that despite the limitations of
HSR data in tropical climates, the combined time series of the Landsat and Sentinel-2A/B images
provided a better representation of the vegetation carbon uptake, with a linear relationship (R%=
0.74) stronger than the linear relationship between EVImoois and the EC site vegetation carbon
uptake data (R?=0.67).

One MODIS pixel (MSR, 500 m) often contains multiple crop fields, which could be cultivated
with different types of crops or the same type of crop with different management practices, and
thus reflects the spectral properties of mixed-crop fields and/or crops under various management
practices [114-116]. For example, within the MODIS pixel for the USA sugarcane site, there were
seven sugarcane fields at different stages in the crop cycle (e.g., fallow, recently planted cane, and
ratooning cane) with different management practices, which may have affected the relationship
between the MODIS-based VI values and the GPPec. The results from this study showed that the
relationships between the GPPtcand EVI at the sugarcane plantations were stronger when the EVI
was calculated from the Landsat/Sentinel-2 (HSR) images than when the EVI was calculated from
the MODIS (MSR) images. Other studies have found similar results, highlighting the benefits of
high-spatial-resolution images and their contribution to stronger correlations between carbon flux
data and vegetation indices on grasslands and croplands [117-119]. This is important for
estimating crop performance and vegetation health insurance indices over farms with multiple
types of crops, rotations, and management techniques [119-121].

Sugarcane yields are affected by genotype, environmental conditions, and the time of harvest
[122]. Our results showed that the EVI and LSWI tracked the phenological dynamics of sugarcane
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plantations well, providing a detailed cultivation history for the sugarcane at both plantations
[31,77,123]. The LSWI was able to delineate the phenological metrics (SOS, EOS) and identify the
harvest dates, consistent with previous studies on sugarcane and other crop types [35,124,125].
As the sugarcane plants at these two sites were harvested while they were still green, the unique
phenomenon of the LSWI dropping to <0 reflected the physical system change from green
sugarcane fields to brown crop residue and bare soils after harvest at both sites. The harvest date,
or EQS, corresponded with the time of the initial negative LSWI value. Our results showed that the
harvest dates at the Brazil and USA plantations were accurately recognized by the VI-based
algorithms. However, these algorithms had limitations in identifying the SOS at the USA site, which
was detected 2 to 4 weeks later across the three growing seasons. These differences could
potentially impact the annual total vegetation carbon uptake in the fields. Note that the seasonal
changes in GPPec and NEEec could also be used to track and delineate the surface phenology of
croplands in terms of physiology. The GPPec accurately tracked the vegetation carbon fixation
period using the GPPec > 1 g C/m?2/day criterion. Our results showed that the temporal agreement
of the land surface phenology metrics derived from the VI-based and GPPec-based approaches was
stronger for the USA site when the VI values from Landsat/Sentinel-2 (HSR) images were used, in
part because the MODIS pixel at the USA site covered several crop fields. Finally, the results agreed
well with other studies, like that of Zhang (2022) [76], which highlighted the potential of
Landsat/Sentinel-2 images in representing planting patterns over agroecosystems. Finally, this
study demonstrated the capabilities and limitations of the VI-based method in determining the
growing season length.

4.2. Comparison of GPP Estimates Using Landsat/Sentinel-2 Data and MODIS Data

In comparison to major grain crops (e.g., maize, soybean, winter wheat, and rice), only a few
studies have assessed GPP estimates of sugarcane plantations from light use efficiency models with
MODIS data [35,47,126]. GPPec estimates are widely used to assess GPP calculations from light use
efficiency models [47,127,128]. In our study analyzing data from 2015-2017 in Brazil and 2018—
2020 in the USA, the GPP estimates from the VPM simulations with MODIS images and local
climate data agreed reasonably well with the GPPecdata, being consistent with the results reported
in Xin et al. 2020 [35], where GPP estimates were evaluated using 2005-2007 data from an eddy
flux tower site in Brazil and 2017 data from an eddy flux tower site in USA.

The results of our study showed that the temporal agreement between GPPecand GPPvpm.Ls-

s2(R?0.82 and 0.74) was stronger than the temporal agreement between GPPec and GPPvem-mop (R?
0.63 and 0.62), which could largely be attributed to two factors:

(1) individual MODIS pixels often included multiple crop fields that have different management
practices and cultivation calendars (green-up dates and harvest dates), and (2) the footprints of
the eddy flux tower sites were much smaller than the MODIS pixels (500 m), corresponding well
with the MODIS limitations reported in other studies [129-131] investigating the vegetation
carbon uptake in crops. In comparison, vegetation indices from Landsat and Sentinel-2 images,
which are used to calculate fPARchi and Wiscalar, Often reflect the vegetation canopy dynamics from
one crop field within the footprint of the eddy flux tower site [132,133].

The stronger correlations between EVIis.s2 and GPPec highlighted in Section 4.1 underscore
the influence of vegetation indices on the VPM performance. On the other hand, the EVI values at
both an MSR and HSR displayed similar results in estimating the site-specific optimal temperature,
which is a crucial parameter to enhance the accuracy of GPP estimates. These results were
consistent with other studies, where authors such as Velez (2022) [134] have highlighted the
potential of HSR (10 m) vegetation index time series in assessing relevant agronomic parameters.
In our study, the EVI was used as opposed to the NDVI given its limitations in canopies, which can
become oversaturated, as with sugarcane. The results of our investigation evidenced the potential
of the VPM fed with Landsat and Sentinel-2 images for estimating the GPP of sugarcane plantations
under different climate zones, sugarcane varieties, and crop practices. Finally, the results
underscored the potential of the VPM as a tool for crop growth monitoring in precision agriculture
that addresses some of the complexity and scalability issues of typical crop models [135,136].
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4.3. Sources of Uncertainties and Errors in VPM Simulations for Sugarcane Plantations

The sources of errors and uncertainties in the GPP estimates from light use efficiency models
comprise the model structure; model parameters; and input datasets, including satellite images
and climate data. Xin et al. (2020) discussed VPM simulations at two sugarcane sites with a focus
on the LUE parameter. The maximum LUE affects the vegetation carbon uptake at the ecosystem
level [48,137-139] and can be estimated through a linear regression between the aboveground
dry biomass and total amount of radiation captured by the vegetation [140,141] or based on the
relationship between the PAR and GPP [142]. The LUE values have a large range of variability over
sugarcane depending on the climate conditions, altitude, and crop management [142-146]. Our
results suggested a maximum LUE ranging between 0.7 and 0.9 g C mol-1 PPFD for Brazil, similar to
the ranges reported in other studies in the Brazilian region [147]. Xin et al. (2020) [35] reported
that the maximum LUE for VPM simulations was set to 0.9 g C mol-* PPFD for both sugarcane sites.
Further studies are needed to evaluate the maximum LUE parameter over sugarcane plantation
sites worldwide, as it could introduce a source of uncertainty for the regional and global GPP
estimations.

The comparison of VPM simulations based on MSR images and HSR images illustrates the
error sources and uncertainty associated with landcover types within one image pixel and the
spatial mismatch (inconsistency) between image pixels and the footprints of an eddy flux tower
site [148,149]. One MSR pixel often contains multiple landcover types, often called a mixed pixel,
while one HSR pixel most likely contains one landcover type, often called a pure pixel
[117,150,151]. The presence of different landcover types within a single pixel affects the model’s
representation of the fraction of PAR absorbed by chlorophyll and the vegetation water response,
both strong drivers of vegetation carbon uptake. Moreover, the number of good-quality
observations from satellite optical sensors would decrease if frequent clouds occurred. In addition,
EC flux tower estimates are influenced by the surrounding fields as the footprint changes with the
season, weather conditions, vegetation height, and vegetation cover [66,106,148]. The sources of
uncertainty from the EC tower increase the challenges of validating GPP estimates, and the sources
of error in the system increase based on the condition of the instruments and sensors. In this study,
we also used the NEE and latent heat flux data from the tower sties to identify additional poor-
quality data in the time series that were not removed by the site’s quality assurance filters.

4.4. Capabilities and limitations of VTM-Forecasted Transpiration for Sugarcane Plantations

The correlation between ETec and Tvrm for the Brazil site was moderate for the

Tvrm_ec model (R?= 0.47) but exhibited lower values for Tvrm_moo (R2= 0.009) and

Tvim_ ts-s2 (R? = 0.21), indicating that further improvement and additional variables should be
considered in sites located in tropical environments like the Brazil site, where elements such as the
residual straw and Bowen ratio variability can affect the transpiration and evapotranspiration rates
[152], whereas the more wider spaced rows in Louisiana (1.5 m single row compared to 1.83 m
single row and 2.4 m double row) could have affected these water rates [153]. Conversely, the USA
site showed a robust correlation across all VTM estimates, especially for the high-spatial-resolution
Tvrm_s-s2 (R?2=0.61), which outperformed the estimates calculated using the GPPecdata as an input
for the VTM. The observed differences could be attributed to various factors, including the climatic
conditions, soil properties, row spacing, data quality, and sugarcane varieties.

The annual total data in Table 4 underscore the inherent variability in precipitation, ETec, and
Tvrm across the sites. Ref. [154] highlighted the changes in actual evaporation and transpiration
linked to climate change as one of the leading factors in the interannual yield variability of
sugarcane in Brazil. The USA site exhibited the largest interannual variation in precipitation, ETec,
and transpiration VTM rates. Ref. [155] emphasized the impact of soil water conditions as the main
driver of the interannual variability in ET and T, partially explaining some the differences observed
in the Tvim:ETecratios over time. Moreover, ref. [156] addressed the significance of row spacing, as
it increases soil water content and provides more space for the sugarcane to grow, significantly
increasing transpiration in periods of low rainfall, which could partially explain some of the
abnormally high Tvtmrates at the USA site in 2020 (driest year). In addition, some of the differences
between the MSR and HSR transpiration estimates can be linked to the fact that the MSR pixel
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included multiple fields containing different varieties and, in some cases, different management
practices.

The VTM showed a strong capacity to capture the seasonal dynamics and some of the
interannual variability in the transpiration rates. Despite the simplicity of the approach, overall,
the Tvrm results captured the seasonal dynamics of the water flux, underscoring the potential of
this tool and its applications. However, the variability across different scales in the results suggests
that for field-level and commercial applications the time-scale dependency should be further
studied, and additional parameters such as initial water content and row spacing should be
included to provide a better field representation of the transpiration water flux.

5. Conclusions

This study successfully explored the use of Landsat and Sentinel-2 imagery to monitor
phenology and as an input for gross primary production (GPP) estimation in sugarcane
plantations in S3o Paulo, Brazil, and Louisiana, USA. Our findings contribute significantly to the
field of remote sensing in agriculture, offering new perspectives and methodologies. The key
conclusions and contributions include:

o Potential of Landsat and Sentinel-2 over cloudy environments: We demonstrated the
effective combination of Landsat and Sentinel-2 time-series images for monitoring
phenology and as an input for GPP estimation in sugarcane plantations. This approach
proved particularly effective in diverse environmental conditions, including cloudy scenarios
where HSR images have the greatest limitations, thereby underscoring the robustness of
these satellite images in capturing agricultural dynamics. Furthermore, HSR data better
represented field vegetation carbon uptake at both sites compared to MSR data.

o EVI as a proxy for estimating optimal air temperature: The study revealed a novel
application of the enhanced vegetation index (EVI) in estimating site-specific optimal air
temperature (Topt) for photosynthesis. This correlation between the GPPec, EVI, and air
temperature variables opens up new avenues for understanding the biophysical
performance of vegetation indices across different pixels and fields.

e VPM efficacy: Our research highlighted the VPM’s capabilities for accurately estimating the
seasonal dynamics of GPP in sugarcane plantations at a high spatial resolution. The model’s
adaptability to varying environmental conditions was a key finding, showcasing its potential
for broader application. Nonetheless, the field variability of the ECT footprint introduced
some uncertainty into the ground data.

e  Transpiration modeling insights: The Vegetation Transpiration Model (VTM) effectively
captured the seasonal dynamics of transpiration. However, its dependency on high-quality
GPP data and the need for further research into time-scale dependency and initial water
content impact were noted. The model showed promise in environments like Louisiana, but
additional research is needed in settings like Brazil to refine its accuracy and address
uncertainties.

Future work will include assessments of the models at additional sugarcane plantations with
EC flux systems, spatial yield data, and detailed field information including variety type and row
spacing, as this could increase our knowledge regarding likely sources of uncertainty and the
prospects of deploying the models as tools for precision agriculture.
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