
PredictDDL: Reusable Workload Performance
Prediction for Distributed Deep Learning

Kevin Assogba∗, Eduardo Lima∗, M. Mustafa Rafique, Minseok Kwon
Department of Computer Science
Rochester Institute of Technology
Rochester, New York 14623, USA

{kta7930, lima, mrafique, jmk}@cs.rit.edu

Abstract—Accurately predicting the training time of deep
learning (DL) workloads is critical for optimizing the utilization
of data centers and allocating the required cluster resources for
completing critical model training tasks before a deadline. The
state-of-the-art prediction models, e.g., Ernest and Cherrypick,
treat DL workloads as black boxes, and require running the
given DL job on a fraction of the dataset. Moreover, they require
retraining their prediction models every time a change occurs in
the given DL workload. This significantly limits the reusability
of prediction models across DL workloads with different deep
neural network (DNN) architectures. In this paper, we address
this challenge and propose a novel approach where the prediction
model is trained only once for a particular dataset type, e.g.,
ImageNet, thus completely avoiding tedious and costly retraining
tasks for predicting the training time of new DL workloads. Our
proposed approach, called PredictDDL, provides an end-to-end
system for predicting the training time of DL models in dis-
tributed settings. PredictDDL leverages Graph HyperNetworks, a
class of neural networks that takes computational graphs as input
and produces vector representations of their DNNs. PredictDDL
is the first prediction system that eliminates the need of retraining
a performance prediction model for each new DL workload and
maximizes the reuse of the prediction model by requiring running
a DL workload only once for training the prediction model. Our
extensive evaluation using representative workloads shows that
PredictDDL achieves up to 9.8× lower average prediction error
and 10.3× lower inference time compared to the state-of-the-art
system, i.e., Ernest, on multiple DNN architectures.

Index Terms—Deep Neural Networks, Machine Learning, Per-
formance Prediction, Graph HyperNetwork

I. INTRODUCTION

The performance of training a deep neural network (DNN)
in modern data centers is impacted by DNN-specific and
hardware-related factors, including the DNN’s complexity, and
availability and allocation of the compute and storage re-
sources for running the specific deep learning (DL) workload.
Performance prediction models approximate the execution
time of DL workload, i.e., training a DNN on a dataset
using the allocated data center resources, allowing workload
managers and schedulers, e.g., SLURM [1], to optimize cluster
resource utilization. Modern DL workloads are composed of
DNN architectures that change over time [2]–[4] according
to business needs, thus requiring a significant overhead of re-
training the prediction model to accurately predict the training

∗
Equal contribution

time. Furthermore, modern DL workloads execute on large-
scale distributed computing clusters where the availability of
data center resources is highly dynamic [5]. This overhead
is dominated by the time to collect execution data from
different workload configuration runs to train the prediction
model. An ideal prediction model yields a low prediction error,
e.g., less than 20% [6], with low overhead after workload
changes. However, the search space, comprising multiple
neural network (NN) architectures and data center configu-
rations, challenges the applicability of existing performance
prediction models that rely on historical execution data to
maintain a low error rate. Therefore, reducing the number of
times a prediction model is retrained improves its efficiency
and enhances its applicability. We address the challenge of
accurately predicting the execution time of distributed DL
workloads, after a DL workload has changed, and propose
a performance prediction model to maintain a low error rate
without retraining the prediction model.

For reducing the retraining overhead, existing prediction
models [5]–[8] execute a subset of the target workload, e.g.,
training with a small amount of data or training using fewer
iterations. Depending on the size and execution environment
of a DNN, these limited training executions take several
hours [5], [9], [10]. As reusing a prediction model without
retraining increases the prediction error, the existing perfor-
mance modeling systems assume that the DL model remains
unchanged to maintain high accuracy [6], [7]. However, more
DNN architectures are designed for diverse use cases including
neural architecture search where performance prediction accel-
erates the search for the ideal neural network architecture [11].

We predict the training time of DL workloads. We define
a DL workload as the training of any DNN model in any
computing cluster using any dataset. To accurately estimate
the required training time for a DL workload, we inspect
the corresponding DNN architecture to generate a vector
representation of the computational operations involved in
its training process. One major challenge is that predicting
the characteristics of a neural network is a computationally
prohibitive task akin to the problem of neural architecture
search [12]. In general, the design of a neural network follows
a trial-and-error approach without a theory that explains the
capabilities of a DNN based on its configuration. Moreover,
features such as the number of layers and the total number

1

20 40 60
Actual Time (sec.)

20

40

60
Pr

ed
ic

te
d

Ti
m

e
(s

ec
.)

RMSE=41.78 sec.

(a) Black Box

20 40 60
Actual Time (sec.)

20

40

60

Pr
ed

ic
te

d
Ti

m
e

(s
ec

.)

RMSE=0.20 sec.

(b) Gray Box

Fig. 1: Comparison of prediction errors using the black box
and gray box approaches when predicting the training time of
the VGG-16 model.

of learnable parameters are not sufficient to determine the
complexity of a neural network [13], [14].

To address the aforementioned challenges, we propose a
framework called PredictDDL that predicts the training time
of a given DL workload on the available distributed data
center resources. We feature the vector representation of the
complexity of a DNN architecture and the capabilities of
available computing resources to estimate the training time.
We formulate the performance prediction as a regression
problem with DNN architecture descriptions as part of the
input. PredictDDL uses an end-to-end performance prediction
engine that leverages Graph HyperNetwork 2 (GHN-2) [15]
embeddings to compute the complexity of the given DNN
architecture. For prediction, PredictDDL incorporates cluster-
specific features, such as the number of servers, the number
of floating point operations per second (FLOPS) that can
be executed on each server, the available CPU and GPU
memory, and CPU and GPU resource utilization. We evaluate
the prediction error of PredictDDL using 60 servers (CPU-only
and CPU-GPU servers) and 31 DL models. We compare Pre-
dictDDL with an existing performance prediction framework,
i.e., Ernest [6], and observe that PredictDDL yields 9.8× lower
average prediction error than Ernest on six DL workloads.
Moreover, PredictDDL improves the inference time by up to
10.3× by reducing the need to retrain DL prediction models.

To the best of our knowledge, this is the first work that
uses DNNs’ representations obtained from a graph hyper
network for performance prediction. Specifically, we make the
following contributions:

• We propose PredictDDL, a framework that reduces the
need for frequent retraining of a performance prediction
model for DL workloads in a distributed cluster.

• PredictDDL enables different regression algorithms to
be used easily in the prediction model by creating a
continuous space that unifies GHN-2 embeddings with
cluster description features.

• We conduct a thorough evaluation of PredictDDL and
compare it with the state-of-the-art performance predic-
tion models, and show that PredictDDL minimizes the
prediction error and inference time.

6 8 10 12
Actual Time (sec.)

6

8

10

12

Pr
ed

ic
te

d
Ti

m
e

(s
ec

.)

RMSE=8.49 sec.

(a) Black Box

6 8 10 12
Actual Time (sec.)

6

8

10

12

Pr
ed

ic
te

d
Ti

m
e

(s
ec

.)

RMSE=0.75 sec.

(b) Gray Box

Fig. 2: Comparison of prediction errors using the black box
and gray box approaches when predicting the training time of
the MobileNet-V3 model.

The rest of the paper is organized as follows. In Section II,
we discuss the background and motivation for predicting the
performance of DL workloads. In Section III, we present the
objectives, overview, architecture, and details of PredictDDL’s
design. In Section IV, we present the performance evaluation
of PredictDDL using diverse DL workloads and compare it
with relevant state-of-the-art alternative approaches. In Sec-
tion V, we summarize existing efforts that are closely related
to the work presented in this paper. Finally, we conclude the
paper in Section VI.

II. BACKGROUND AND MOTIVATION

A. Deep Learning Performance Prediction

Deep learning performance prediction models approximate
the performance characteristics, e.g., iteration training time,
total training time, the optimal number of epochs, etc., of a
DL application to estimate the execution time [16], select the
best DNN architecture [11], and ensure fault tolerance [17].
These prediction models either leverage a black box or a gray
box approach. We identify a prediction model as a black box
that does not leverage the architecture of the DNN, while a
gray box approach uses some features specific to the DNN
for improving its prediction accuracy. Therefore, black box
prediction only considers external characteristics of the DL
workload, e.g., data input size and the number of servers in the
cluster. The gray box prediction includes features of the DNN
architecture, e.g., the number and types of layers, number
of parameters, learning rate, and optimization algorithms, in
addition to the external features that are used by the black
box prediction approaches. As a more fine-grained modeling
approach, the gray box approach often requires developers
to identify domain-specific features, e.g., the number of fil-
ters at each convolution layer, thereby incurring additional
complexity in the performance prediction process. They also
enlarge the prediction search space, thus negatively impacting
the search duration and undermining their usefulness for DL
performance prediction. It is inherently challenging to predict
the computational requirements of a DNN with a black box
approach because several characteristics of the DNN archi-
tecture impact the training process [12], [18]. For example,

2

EfficientNet-B0 ResNeXt-50 SqueezeNet-1

Marker
Primitive input conv BN dilated sum avg bias group

 operation grp conv pool conv

Computation graphs of popular DNN architectures: nodes define linked primitive operations

Fig. 3: Representation of DNNs as computational graphs to train the GHN-2 model.

DNN architectures become more computationally complex by
increasing the dimension of individual layers or stacking up
more layers. However, to avoid this additional complexity of
enlarged search space in grey box approaches, performance
prediction models typically assess the DNN as a black box
and do not capture factors essential to accurate predictions.
Therefore, it is vital to identify a mechanism to explore
the internal features of the DNN for performance prediction
without enlarging the search space.

We further motivate the importance of exploring DNN-
specific features using the root mean square test error (RMSE)
of two DNNs (MobileNet-V3 [19] and VGG-16 [20]). We
train each DNN on the CIFAR-10 [21] dataset and collect
the training times when varying the number of servers within
the training cluster. A detailed description of the servers and
their underlying processors (CPUs and GPUs) is presented in
Section IV-A. To study the impact of DNN-specific features,
we split the collected execution data into training and testing
samples following an 80/20 split ratio. For analysis, we
consider the following scenarios: (a) black box approach
training a linear regression model with the DNN name, the
number of servers, the number of floating point operations per
second as features, and the training time as prediction target;
(b) gray box approach training a linear regression model with
all features in (a) in addition to the number of layers and the
number of parameters in each DNN. Figure 1 and Figure 2
report the results. We obtain lower RMSE for all DNNs using
the gray box approach. Specifically, we observe up to 99.5%
and 91.2% RMSE improvement using a gray box approach on
VGG-16 and MobileNet-V3 models, respectively.

These results highlight the benefits of including features
that explain the DNN, enabling the linear regression model
to capture additional details on the training performance. The
black box approach cannot identify the characteristics of the

DNN and averages the measurements of the collected training
samples resulting in higher prediction errors. Unfortunately,
the number of layers and parameters do not comprehensively
describe the DNN architecture, leading the existing gray box
approaches to explore more features, e.g., kernel size, stride
size, and input padding [22], thereby enlarging the search
space. Our proposed approach, PredictDDL, addresses this
challenge and reduces the search overhead.

B. Graph HyperNetworks: Extracting Vector Representations
of DNN Architectures

Graph HyperNetworks (GHNs) [23] are graph neural net-
works designed to predict neural network parameters. As
shown in Figure 3, a DNN architecture can be represented as
a directed acyclic graph (DAG) where each node represents
a primitive computation operation, e.g., convolution, group
convolution, concatenation, summation, averaging, pooling,
bias addition, and batch normalization. Edges of this DAG
represent the data flow wherein the output of a node is used
as the input to the next node. Overall, the DAG of a DNN
architecture specifies all operations that are performed on the
input data. A GHN takes the computational graph of a DNN as
input, as shown in Figure 4, and predicts weights parameters
that allow the DNN to achieve faster convergence, lower
error, and higher accuracy. GHNs are trained on the same
dataset as the target DNN, i.e., they are tailored to the specific
task that is performed by the DNN, e.g., image classification
on datasets such as CIFAR-10. The output of a GHN is
a fixed-size vector that projects the DNN architecture in a
continuous n-dimensional architectural space (Figure 5). In
PredictDDL, we denote the output vector as DNN embeddings
and refer to these embeddings for mapping the DL workloads
into points in a search space to determine the most similar
DNN architecture. This representation enables our approach

3

x1

x2

xn

x1

x2

xn

x1

x2

xn

x1

x2

xn

x1

x2

xn

x1

x2

xn

Node neighborhood represent

connected DNN operations

Node vector is aggregated

with neighbor's vectors

Weigh

decoder

Graph Neural Network message passing repeats k

times

DNN architecture

vectors

Decoder-generated

DNN parameters

DNN computation

graph

X1

X2

Xn

DNN

parameters

Fig. 4: PredictDDL uses the output of the k-deep graph neural network component of a trained GHN-2 model.

m

x

b
+ y

m

x

b
+ yD

N
N

ar

ch
ite

ct
ur

e
A

D
N

N

ar
ch

ite
ct

ur
e

B

GHN-2 Graph
HyperNetwork

GHN-2 Graph
HyperNetwork

GHN-2 Embedding Space

Distance-based

similarity

How to calculate

similarity?

Fig. 5: Distance-based similarity measurement between DNN
architectures using fixed-size vector embeddings.

CIFAR-10 Tiny-ImageNet
0

1

2

3

4

5

Pr
ed

ic
te

d
/ A

ct
ua

l
0.24 0.43

1.55

0.901.02 0.92

0.24 0.43
0.16

0.97

0.34

2.27

Parameters
Layers
DNN Embeddings
DNN Embeddings + Parameters
DNN Embeddings + Layers
DNN Embeddings + Parameters + Layers

Fig. 6: Impact of DNN architecture features on the accuracy
of the DNN’s training time prediction. Closer to 1 is better.

to support workloads with multiple DNN architectures without
retraining our prediction model.

DNN embeddings generated by GHNs offer a fine-grained
representation of the complexity of DNNs and reduce the
prediction error of regression models. We evaluate the benefits
of the DNN embeddings as compared to other DNN-specific
features, such as the number of layers and parameters. For
these experiments, we evaluate the error for the CIFAR-10
and Tiny-ImageNet [24] datasets. We use the same experiment
setup described in Section IV-A to collect DNN training times
and vary the input features of the regression model. We use a
second-order polynomial linear regression because it exhibits
the best performance in our experiments, as explained in
Section IV-B2. Figure 6 summarizes the relative prediction
error of each scenario to the actual training time. We observe
that GHN yields lower prediction error, e.g., 96.4% and 97.4%
lower than features such as the number of layers and trainable
parameters, respectively. While the number of layers proves
to be more informative than the number of parameters, they
perform worse than the GHN-based DNN embeddings that
we use in PredictDDL. Note that combining features does not
reduce the error value because it introduces duplicate internal
representations as the GHN model already considers the types
and number of layers and weights parameters.

III. DESIGN OF PREDICTDDL
In this section, we discuss the objectives of PredictDDL

as an end-to-end framework for predicting the performance
of DL training workloads, present an overview of its design
architecture, and describe each of its components in detail.

A. Design Objectives

PredictDDL is a reusable performance prediction framework
designed to reduce various computational overheads in DL
applications, such as neural architecture search, and hyper-
parameter optimization. These applications are computation-
ally expensive as they explore tens or hundreds of neural net-
work configurations to identify the best neural architecture or
initial weights that satisfy an objective function, e.g., minimize
loss, maximize precision, recall, and accuracy. The existing
prediction models [6], [7] partially execute a DL workload to
collect execution measurements for performance prediction.
However, the prediction accuracy degrades when the target
DNN architecture is new to the prediction model, i.e., features
used by the prediction model are not specific to the target
DNN and collected execution measurements do not correspond
to the execution environment of the DL workload. Our goal
is to predict the training time of any DL workload using a
prediction model trained only once on a dataset that does not
necessarily contain measurements for the exact DNN used in
the DL workload. Specifically, the objectives of PredictDDL
are as follows:

4

• Generate a vector representation of the DNN in the target
DL workload to ensure the reusability of the proposed
performance prediction model. The vector representation
not only identifies the DNN architecture but also embeds
the complexity of the DNN model, enabling a seamless
association with other DNN models of similar complexity
to minimize the prediction error.

• Design a performance prediction framework that can be
extended for neural architecture search algorithms [25]
or the existing cluster schedulers [26] to optimize the
placement of DL training workloads. The performance
prediction model should also be extensible for other
regression algorithms.

• Minimize the error rate when predicting the completion
time of running the training process on a distributed
computing cluster of any size.

B. PredictDDL Overview

PredictDDL is a performance prediction and modeling
framework that combines DNN-specific features and charac-
teristics of the target computing cluster to predict the execution
time of given DL workloads. Our prediction model is driven
by the idea of inspecting a DNN architecture by navigating
all primitive operations that define the corresponding computa-
tional graph. We generate a compact vector representation that
characterizes a DNN architecture using the GHN-2 model [15]
and uses a regression algorithm that incorporates this repre-
sentation to predict the training time of a DL workload. The
original objective of GHN-2 is to predict weights parameters
for DNN training, but intermediate results of the proposed
framework capture the DNN’s complexity and are beneficial
for predicting the training time.

The GHN vector representation converts the original high-
dimensional space of DNN architecture computational graphs
into a discrete and computationally viable space with a fixed-
sized dimension (e.g., 32). It also allows standard regression
techniques to associate dependent and independent variables
without incurring the overhead of high dimensionality [27].
PredictDDL takes the computational graphs of DNNs as input,
converts them into vectors, and uses the distance between a
pair of vectors to indicate the similarity of the corresponding
DNN architectures. Intuitively, in the vector space, similar
DNN architectures are closer than distinct ones, i.e., using
cosine similarity, which enables the regression algorithm to
find the closest matching DNN architecture for the current
workload. This way, we can predict the training time of the
target DNN architecture using a regression algorithm trained
on experimental measurements of multiple DNN architectures.

Figure 7 shows the performance prediction process of
PredictDDL. First, we collect the user’s input to PredictDDL,
i.e., parameters to describe the DL workload, e.g., size of the
input training dataset (1 GB), dataset type (CIFAR-10), tasks
(image classification), and the path to the user’s training code
(step 1). The DL training code captures the DAG representing
the DL’s computations. Modern DL libraries, e.g., Tensorflow
and PyTorch, automatically generate the DAG for the given DL

Cluster Resource
Collector

Inference Engine

Output

Task
CheckerListener

Controller

GHN
Exists?

Input

GHN-W
Embeddings

Generator

Offline
GHN-2
Trainer

Yes

No

1

4

2

4

3

5

3

5

6

m

x

b

+ y

Fig. 7: Workflow of performance prediction in PredictDDL.

model, that we leverage in PredictDDL to make PredictDDL
more user-friendly. We use a Listener to receive (step 1)
and forward (step 2) the request to the Task Checker for
validation (Step 3). If the input dataset does not have a
matching pre-trained GHN model, we proceed to an offline
training of a new GHN model (Step 4). This scenario requires
additional experiments to collect execution samples and retrain
the prediction model. However, if the dataset matches a GHN
model, irrespective of other parameters in the input request,
we generate the vector representation of the target DNN
architecture (step 5). Concurrently, we update the information
about the characteristics of cluster resources using the Cluster
Resource Collector before triggering the prediction of the
DNN training time by the Inference Engine (step 6).

C. Inference Engine

The Inference Engine computes the estimated execution
time for a dynamically changing target DL workload. It
takes as input the data being fed to the workload, a graph
describing the DNN architecture, and a cluster configuration
that describes the available resources for running the workload.
The cluster configuration includes (1) the number of compute
servers; (2) associated CPUs; (3) the number of GPUs; (4)
available RAM; (5) the number of CPU cores; and (6) the
number of FLOPS. We include the number of FLOPS as it
encapsulates the processing power of the GPU. Other features,
such as the number of streaming multi-processor, and the size
of the GPU’s high-bandwidth memory, can also be included to
capture the characteristics of distributed computing and storage
resources that are available for running the given training jobs.

A regression algorithm reads the defined variables and fits
a curve while reducing the training and testing errors. Simpler
regression algorithms, e.g., linear regression [28], have a lower

5

overhead both at training and inference time; however, they
often fail to model the complexity of the prediction [29].
Conversely, overly complex learning algorithms overfit the
data and thus perform poorly in a real-world setting for lack of
generalization. An ideal regression algorithm needs to adapt to
the complexity of DL workloads while maintaining minimum
computing overhead.

We train a representative number of regression algorithms,
namely linear regression, generalized linear regression with
polynomial terms, support vector regression, and multi-layer
perceptron, and choose the one that performs best in predicting
DL training time in a given cluster. Moreover, PredictDDL
also allows users to directly specify their preferred regression
model if the model that performs best on the target data
is already known. For finding the best-performing regression
algorithm, we divide the data into training and test splits and
use the test part to estimate the real-world performance.

For describing the computing capabilities of a distributed
computing cluster, we make the prediction model agnostic to
server configurations. This allows us to process configurations
of heterogeneous clusters, i.e., clusters with servers that have
different CPU manufacturers, RAM sizes, and storage subsys-
tems. A cluster may have varying states with changes to its
available resources at a given time. For example, only 50% of
its disk throughput may be available, a fewer number of CPU
cores are available than the total installed cores, or there are
estimates of unused FLOPS for a CPU core. A cluster under a
partial load is modeled by adjusting available capabilities per
core, e.g., RAM ′ is modeled as:

RAM ′ =
RAM

|cores|
(1)

where RAM ′ represents the estimated RAM per core, RAM
represents the overall memory available in a server, and cores
represents the number of cores present in the CPU. Addition-
ally, we calculate the total available RAM by summing all
RAM ′ over computing cores:

AvailableRAM =
∑
cores

RAM ′ (2)

We apply the same transformation to the disk throughput
and the number of FLOPS to calculate available storage
throughput and the relative number of FLOPS.

D. Controller

The Controller is the entry point to train GHN models and to
predict the training time of a DNN architecture. The controller
has a listener to receive and forward incoming requests to the
Task Checker for the verification of the requests. In most cases,
PredictDDL does not need retraining but uses embeddings
generated by the GHN-2 model. However, a new GHN model
needs to be trained to generate quality embeddings if the
dataset changes as a new dataset with new content (landscape,
animal, car images) and type (text, image, or video) introduces
new information unseen by the existing GHN models. In
contrast, a change in dataset size or adding new samples to the

existing dataset does not require retraining. The Task Checker
launches the inference procedure directly if a trained GHN
model is available for a submitted workload.

E. GHN-based Workload Embeddings Generator

The GHN-based Workload Embeddings Generator selects
the closest GHN model out of a set of pre-trained GHN models
associated with different datasets. The Embeddings Generator
then feeds the GHN model with a computational graph of the
target DNN architecture. The GHN model generates vectors
that encode the DNN architecture and passes the vectors to
the Inference Engine or the Offline GHN Trainer based on the
DNN model of the submitted request. Referring to an existing
application of GHN models [15], where a correlation study
between actual and predicted convergence times, inference
speeds, and classification accuracies on clean and corrupt
subsets of CIFAR-10 and ImageNet datasets is performed,
we identify a similarity between our objective, i.e., predicting
the DL training time, and the task of estimating the training
convergence time. In [15], we notice an anti-correlation of 0.60
and 0.42 for CIFAR-10 and ImageNet datasets respectively,
and therefore hypothesize that GHN models are well-suited to
generate vectors for representing DNN architectures.

Our design ensures that PredictDDL finds the closest match
based on the cosine similarity in case there is no exact match
among DNN architectures in the search space. Consider the
submission of a DL workload with a new DNN architecture for
predicting its training time. PredictDDL feeds a new computa-
tion graph to the GHN-based Workload Embeddings Generator
to provide a corresponding vector representation. Formally,
GHN takes as input the computational graph of a DNN
architecture a, which is a DAG where nodes V = {vi}|V |

i=1 are
operations (e.g., convolutions, fully-connected layers, summa-
tions), and their connectivity is denoted by a binary adjacency
matrix A ∈ {0, 1}|V |×|V |. Nodes are also characterized by a
matrix of the initial node features H0 = [h0

1, h
0
2, . . . , h

0
|V |],

where each h0
v is a one-hot vector representing the operation

performed by the node.
We leverage [23] for GHN definitions and operations. A

GHN HD comprises three modules. The first module trans-
forms the features H0 of an input node into d-dimensional
node features H1 ∈ R|V |×d. This operation is referred to as
an embedding layer. The second module reads H1 along with
adjacency matrix A and feeds them into a modified gated graph
neural network (GatedGNN) [30]. This GatedGNN mimics
the order π in which the operations are performed in the
forward (fw) and backward (bw) passes in the computational
graph. Intuitively, the forward and backward passes during
the evaluation and training phases can be mapped into graph
traversal. During the graph traversal, GHN performs iterative
message-passing operations to aggregate neighboring nodes’
features into message mt

v , i.e., message received by node v at
time t. These messages are continuously aggregated and used
to compute the internal embedding vector ht+1

v of node v at
time t + 1 using a recurrent cell function that takes as input

6

GHN Model
Training

Retrieve cluster
metadata

Dataset

GHN Model Collect
Embeddings

Train Polynomial
Regression model

m

x

b
+ y

m

x

b
+ y

DNNs

m

x

b
+ y

3

5

542
1

Fig. 8: Workflow of PredictDDL offline training.

the message mt
v and the current internal embedding vector ht

v .
Each of these inputs is computed as follows:

mt
v =

∑
u∈Nπ

v

MLP (ht
u), h

t
v = GRU(ht

v,m
t
v) (3)

∀t ∈ [1, . . . , T], ∀π ∈ [fw, bw], ∀v ∈ π

where T denotes the total number of forward-backward passes;
ht
v corresponds to the features of node v in the t-th graph

traversal; MLP (·) is a multi-layer perceptron; and GRU(·)
is the update function of the Gated Recurrent Unit [31]. In
the forward propagation (π = fw), N π

v corresponds to the
incoming neighbors of a node defined by A. In the backward
propagation (π = bw), N π

v corresponds to the outgoing
neighbors of the node.

Further enhancements to the original GHN introduced by
GHN-2 [15] include: (1) adding virtual edges to the compu-
tation graph, as shown in Equation 4; (2) applying operation-
dependent normalization to avoid gradient explosion, making
the convergence of GHNs more stable; and (3) extending the
Differentiable Architecture Search (DARTS) [18] framework
to cover a broader set of primitive operations. The authors of
GHN-2 generated a synthetic set of 106 DNN architectures
using DARTS primitives and reported that the GHN model
predicts weight parameters better than random initialization.
GHN-2 updates the message-passing term mt

v to incorporate
virtual edges calculated by shortest paths between the current
node and all other reachable ones:

mt
v =

∑
u∈Nπ

v

MLP (ht
u) +

∑
u∈N (sp)

v

1

svu
MLPsp(h

t
u), (4)

ht
v = GRU(ht

v,m
t
v)

∀t ∈ [1, . . . , T], ∀π ∈ [fw, bw], ∀v ∈ π

where N (sp)
s are neighbors satisfying 1 < svu ≤ s(max), and

s(max) is a hyperparameter.
GHN’s last module uses the hidden output states hT

v of
the GatedGNN [30] to condition a decoder that produces the
parameters wp

v , e.g., convolutional weights, for each node.
Since PredictDDL tries to generate a low-dimensional repre-
sentation of the DNN architecture, we skip the last module in
the original GHN and use the intermediate complexity vector
representation as input for our Inference Engine.

TABLE I: Key performance questions that we answer in
PredictDDL’s evaluation.

Questions Sections
How accurate is PredictDDL at predicting DNN training time? IV-B1
How do different regression models affect PredictDDL? IV-B2
How much training data do we need? IV-B3
Are there any impacts of cluster size on prediction? IV-B4
Does PredictDDL improve the performance of batch infer-
ence?

IV-B5

F. Cluster Resource Collector

The main task of the Cluster Resource Collector is to pro-
vide an updated inventory of resources that are available in the
cluster. This component leverages a client-server architecture
for communication with servers in the cluster. The server
module runs on the cluster manager, and all other servers join
the cluster through the client module. The Cluster Resource
Collector maintains one thread open for new connections to the
cluster and launches a pool of threads to collect details about
available compute and memory resources in the cluster. Every
new server that joins the cluster notifies the Cluster Resource
Collector with details about the underlying system and hard-
ware resources, e.g., the number of cores, available memory
space, current CPU utilization, and number of FLOPS.

G. Offline GHN-2 Retraining

We retrain the performance prediction model when a new
dataset is introduced using an offline retraining procedure, as
shown in Figure 8, where the Offline GHN Trainer trains
the GHN and prediction models. First, the GHN model is
trained using the new dataset. Second, the computational
graphs representing DNN architectures are parsed by the
trained GHN model to yield fixed-size vectors that compactly
store the associated DNN architecture. Concurrently, details
on cluster resources are retrieved and used along with the
vector representation to train the prediction model. As more
cluster configurations are considered, the prediction model will
require retraining to learn new features from the performance
data collected using the newly added cluster configurations.
The GHN-2 model is not associated with the computing
environment, and will not require retraining when the same
workload is executed on a different cluster.

IV. PERFORMANCE EVALUATION

We evaluate the performance of PredictDDL for predicting
the training time of a DL model by measuring (1) the rel-
ative error between the predicted and actual training times,
i.e., Predicted

Actual ; and (2) the running time of the PredictDDL
prediction engine. We also analyze the impacts of training
sample size on prediction error rates to study the overhead of
data collection. Through this evaluation, we seek to answer
the research questions presented in Table I. Our results show
that PredictDDL predicts the training time of DL models with
an average relative error of 8%. In comparison to the existing

7

EfficientNet-B0 ResNeXt-50 VGG-16
0.0

0.5

1.0

1.5

2.0

Pr
ed

ic
te

d
/ A

ct
ua

l

(a) CIFAR-10

104%

50%

45%

4% 1% 4%

AlexNet ResNet-18 SqueezeNet-1
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(b) Tiny-ImageNet

175%

15%

80%

30%

1% 8%

Actual
Ernest
PredictDDL

Actual
Ernest
PredictDDL

Fig. 9: Prediction error of PredictDDL compared to actual training times and Ernest performance prediction approach. Closer
to 1 is better.

state-of-the-art approach, i.e., Ernest, PredictDDL has a 9.8×
lower prediction error on average.

A. Experimental Setup

1) Evaluation Testbed: We conduct our experiments using
60 servers from CloudLab [32], [33], specifically 40 CPU-
only servers and 20 GPU-based servers. For the CPU-based
experiments, we use 20 servers, each of which has two 8-core
Intel E5-2630 CPUs and 128 GB memory, and another set of
20 servers, each of which is equipped with one 8-core Intel
E5-2650 CPU and 64 GB memory. Each GPU server has two
10-core Intel Xeon Silver 4114 CPUs, 192 GB memory, and
one NVIDIA P100 GPU of 12 GB memory connected through
PCI Express. Each server has a local disk space of 480 GB and
runs Ubuntu 20.04. Moreover, we use CUDA runtime 11.3.1
for GPU-based servers.

2) Deep Neural Network Architectures: We train the pre-
diction engine with 31 image classification DL models from
the PyTorch Vision libraries1. To diversify our experimental
workloads, we select representative models from different
architecture families, including ResNet [34], VGG [20], and
EfficientNet [35]. We execute the same PyTorch training script
for all DL models and only focus on data-parallel training
using the PyTorch Distributed Data-Parallel (DDP) module.
For GPU-based training, we train each model on dedicated
GPUs. Therefore, the study of any interference overhead due
to GPU sharing is beyond the scope of this paper. In total, we
collect 2, 000 data points by training each DL model by using
1–20 high-end servers.

3) Training Datasets: For each model, we train the studied
models using the two representative datasets CIFAR-10 [21]
and Tiny-ImageNet [24]. CIFAR-10 (≈163 MB) is an image
dataset that contains 60, 000 images grouped into ten classes.
Tiny-ImageNet (≈250 MB) is a subset of the large ImageNet
dataset and contains 100, 000 images of 200 classes. All the

1https://pytorch.org/vision/0.8/models.html

TABLE II: Summary of training datasets and DL workloads
used in evaluating PredictDDL.

Training Datasets DL Models

CIFAR-10

EfficientNet-B0; ResNeXt-50
VGG-16; AlexNet
ResNet-18; DenseNet-161
MobileNet-V3; SqueezeNet-1

Tiny-ImageNet
AlexNet
ResNet-18
SqueezeNet-1

datasets are stored in an external storage device and accessed
by the training nodes via the Network File System (NFS).
While the dataset is exposed through NFS, we expect a similar
trend in the prediction performance for other file systems
when the prediction model is trained with data collected from
the same cluster. In Table II, we summarize the eight image
classification workloads that we use to measure prediction
errors in our evaluation.

4) Performance Baselines: We use three performance base-
lines in our evaluation: (1) the actual training time; (2)
Ernest [6]; and (3) PredictDDL. For the actual training time,
we execute the studied models on the target cluster config-
uration and measure its training time. Ernest is a black box
approach that predicts training time using linear regression
based on historic measurements from the actual training work-
load’s execution. Finally, PredictDDL represents our proposed
approach as described in Section III.

B. Performance Results

1) Analysis of Training Time Prediction Error: To evaluate
the effectiveness of PredictDDL, we first analyze the relative
error of PredictDDL for predicting the training time of DL
workloads. We train our prediction engine and Ernest’s re-
gression model using a train-test split ratio of 80/20. Figure 9
shows the prediction errors. We observe that the predictions

8

CIFAR-10 Tiny-ImageNet
0

1

2

3

Pr
ed

ic
te

d
/ A

ct
ua

l

1.02 0.920.99

2.31

0.97 0.960.96

3.31
Polynomial Regression
Support Vector Regression
Linear Regression
Multi-Layer Perceptron

Fig. 10: Impact of different regression models on the predic-
tion accuracy. Closer to 1 is better.

of PredictDDL are closest to the actual training times with a
1%–4% prediction error for DNNs trained on CIFAR-10 and
a 1%–30% for DNNs trained on Tiny-ImageNet datasets. For
all the test workloads, PredictDDL yields a mean relative error
of 8%, and on average, PredictDDL reduces a prediction error
by 9.8× compared to Ernest. PredictDDL demonstrates its
efficiency at approximating the training time due to two main
reasons: First, PredictDDL introduces a vector representation
of the DNN with the target test workload as an input feature,
whereas Ernest evaluates the test workloads merely as black
boxes without considering the DNN that is a part of the
DL workload. Second, PredictDDL leverages a polynomial
regression model, but Ernest uses a simple linear regression
model. Note that linear regression predicts well on VGG-
16 and ResNet-18, but performs poorly on EfficientNet-B0
and AlexNet. This discrepancy presents a research question
for identifying an ideal regression model for targeted DL
workloads. We address this question in Section IV-B2.

2) Impact of Different Regression Models on PredictDDL:
We compare four regression models to find the approach that
yields the lowest prediction error. Specifically, the models are
second-order polynomial regression (PR), supporting vector
regression (SVR), multi-layer perception (MLP), and gen-
eralized linear regression (LR). These models are tuned to
identify regression parameters that ensure maximum accuracy.
For example, we perform a grid search for SVR considering
radial and linear kernels with a trade-off parameter C from
1 to 103, an influence indicator γ from 0.05 to 0.5, and ϵ
value ranging from 0.05 to 0.2. For MLP, we use a single
hidden layer with 1 to 5 neurons. Moreover, we limit the
number of neurons to avoid over-fitting. The train and test split
ratio remains 80/20 for all the regression models. Figure 10
shows the impact of using different regression models on
prediction accuracy. We observe that PR and LR models
produce high accuracy for both CIFAR-10 and Tiny-ImageNet
datasets. We also observe that SVR and MLP yield low error
rates on CIFAR-10, but not on the Tiny-ImageNet dataset.
This performance gap can be explained by the configuration
differences between different test workloads. For example,
DNNs trained on CIFAR-10 leverage GPUs, thus reducing the
training duration and exposing smaller values as input for the

EfficientNet-B0 ResNeXt-50 VGG-16 ResNet-18 DenseNet-161
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ed

ic
te

d
/ A

ct
ua

l

50:50 Split 66:34 Split 80:20 Split

Fig. 11: Impact of the amount of data used to train Predict-
DDL’s predictor. All reported DNNs are trained on the CIFAR-
10 dataset. Closer to 1 is better.

regression analysis. While PR and LR models achieve similar
performance, we identify PR as an ideal regressor compared
to other regression models used in our evaluation because of
the added benefit of including both the first and second powers
of feature values.

3) Sensitivity of the Prediction Error to the Prediction
Model’s Training Dataset Size: We also study the impacts of
different train-test split ratios on the performance of Predict-
DDL. We split the collected dataset following 50/50, 67/33,
and 80/20 ratios to train and test the prediction engine of
PredictDDL, where the 80/20 ratio uses 80% of the data for
training and 20% for testing. Figure 11 shows the prediction
accuracy of the trained regression model on five evaluation
workloads. We observe that PredictDDL performs well on all
three split ratios, but does not improve in accuracy when the
size of the train split increases. Due to the randomness in di-
viding the train-test samples, the training data does not always
contain training samples that are used by the regression model
to improve its accuracy for unseen workloads. Therefore, it is
essential to consider the relevance of training samples when
predicting the training time of unseen workloads. We note that
the study and careful selection of training samples is beyond
the scope of this paper.

4) Impact of the Training Cluster Size on Performance
Prediction Error: We analyze the relative prediction error
of PredictDDL on different cluster sizes. In this experiment,
we predict the training time of the DL models used in
our evaluation when executed on 4, 8, and 16 servers, and
report the prediction error. Figure 12 shows that PredictDDL
estimates the training time within a minimum of 0.1% and
up to 23.5% of the actual time across all workloads used in
our evaluation. These results indicate that PredictDDL remains
effective irrespective of the scale of the execution environment
used for training the given workload.

5) Scalability Analysis of PredictDDL on Batch Perfor-
mance Prediction Jobs: We also evaluate the overhead of
including DNNs’ internal representations into the features
used by the prediction engine of PredictDDL compared to
considering the DNN as a black box. We define the submission

9

EfficientNet-B0 ResNeXt-50 VGG-16 ResNet-18 DenseNet-161 MobileNet-V3 SqueezeNet-1
0.00

0.25

0.50

0.75

1.00

1.25

Pr
ed

ic
te

d
/ A

ct
ua

l 11.3% 6.4%

10.8%

11.1%
0.1%

23.5%

0.8%6.1% 1.0% 2.1% 3.0% 2.6%
9.6% 6.0%

5.1% 3.7%

20.8%

7.8%
0.5% 2.7% 1.6%

4 Servers 8 Servers 16 Servers

Fig. 12: Impact of cluster size on training DL workloads on the prediction error of PredictDDL. Closer to 1 is better.

2 4 6 8
Number of Unique DNN per Batch Job

100

101

102

103

104

Lo
g

Sc
al

e
Ex

ec
ut

io
n

Ti
m

e
(m

se
c.

)

Ernest Train PredictDDL Train Ernest Infer PredictDDL Infer

Fig. 13: Prediction model training and execution durations for
batches of different DL workloads.

of two or more test workloads from Table II as one batch
job and simulate the execution of batch jobs with 2, 4,
6, and 8 DL models. Figure 13 presents the training and
inference execution times on a log scale. PredictDDL trains its
prediction model only once and can complete all the inference
workloads with little changes in the accuracy. In contrast,
Ernest needs to retrain its prediction model with new data
every time the workload changes to maintain high accuracy.
As a result, PredictDDL reduces the total execution time,
including training and inference execution times, by 2.6×,
5.1×, 7.7×, and 10.3× for batch jobs of 2, 4, 6, and 8
DL models, respectively. We note that PredictDDL incurs
an additional overhead for generating embeddings for the
submitted DL models, however, this overhead is amortized as
the number of architectures grows, highlighting the scalability
benefits of PredictDDL.

V. RELATED WORK

We summarize closely related work including black box
performance prediction, analytical performance modeling and
search space optimization.

A. Black Box Performance Prediction

Ernest [6] predicts the performance of analytics jobs with
high accuracy but does not capture the complexity and dy-

namics of modern deep neural network architectures. Another
popular black box approach, i.e., CherryPick [7], identifies
the best cloud configurations for big data analytics workloads
using non-parametric Bayesian optimization with a smaller
search cost than Ernest, however similar to Ernest, CherryPick
is sensitive to workload changes, and requires retraining the
prediction model for better cost estimation. Other research
works have introduced black box performance prediction mod-
els as part of cluster schedulers [8]. For example, Optimus [8]
proposes a scheduler that models the training convergence to
find the optimal distribution of machine learning workloads.
A major limitation of the black box prediction models is that
a change in the target workload requires retraining the target
DNN to collect the training time through multiple training
runs that consume additional memory and computation time.
Some prediction models succeeded in decreasing the number
of training runs [6], but still are unable to fully adapt to
workloads with deep neural network architectures.

B. Analytical Performance Modeling

Several analytical performance models have been introduced
to explore the complexity of deep neural networks [36],
[37]. Paleo [38] separated training time into computation
and communication times to capture the complexity of deep
neural network architectures based on their input size, number
of FLOPS, parallelization strategies, and bandwidth. Justus
et al. [22] conducted an in-depth analysis of the features
that are unique to each type of layer, e.g., pooling, recur-
rent, and convolution. They employed random sampling to
reduce the search space. Habitat [39] targets the challenges
of selecting cost-efficient GPUs for running deep learning
jobs and leverages pre-trained multi-layer perceptrons that
take layer dimensions, memory capacity, bandwidth of GPUs,
peak FLOPS, and the number of streaming multiprocessors as
input. These analytical models predict the performance based
on measurements from sample execution of the given DL
workload, i.e., for one epoch or a few iterations. However,
they either capture a few internal characteristics of the deep
neural network or require fine-grained input parameters for
accurately predicting the training time of DL workloads.

10

C. Search Space Optimization

Performance prediction models are extensively used in
neural architecture search, hyperparameter optimization, etc.,
to optimize the search for solutions that satisfy an objective
function, e.g., maximum training accuracy, and minimum
testing error [40]–[42]. Naive search approaches are expen-
sive as they explore all possible combinations of hyperpa-
rameters. Prediction models reduce the number of evaluated
combinations [40]. However, the number of parameters to
consider, e.g., optimization algorithm, learning rate, batch size,
and activation function, remains considerable. PredictDDL
uses GHN, a class of GNN [15] that significantly reduces
the dimensionality of the search space. The resulting low-
dimension representation is also beneficial as more features
of the underlying compute cluster are added to the search
space because of their importance for accurately modeling the
execution time of DL workloads [43].

Existing black box approaches fall short of modeling the
complexity of DL workloads with multiple and varying DNN
architectures, while current analytical performance modeling
approaches fail to capture critical characteristics of the deep
neural network or are complex in their design and require-
ment for fine-grained details on the deep neural network.
PredictDDL addresses the limitations of these two classes
of performance prediction models by proposing a reusable
approach that is more accurate without requiring running the
costly retraining process of the prediction model.

VI. CONCLUSION

We have presented PredictDDL, a framework to predict
the training time of distributed deep learning (DL) workloads
by transforming the computational graph of their respective
deep neural network (DNN) into a vector representation of
its complexity using Graph HyperNetworks (GHNs) and in-
corporating the characteristics of the available resources of
the distributed computing cluster for accurately predicting the
training time. PredictDDL consists of a performance prediction
model that is trained offline and predicts the performance of
different DNN architectures without retraining when the work-
load changes, contrary to the existing black box approaches.
We conducted a comprehensive performance evaluation using
representative DNNs and training datasets, and observed that
PredictDDL outperforms Ernest, a popular state-of-the-art
performance prediction model, on all evaluated workloads.
PredictDDL reduces the error in predicting the training time
of DL workloads by up to 9.8× as compared to Ernest and
reduces the total execution time of inference requests by up
to 10.3×.

Motivated by these results, we plan to investigate the impact
of the embedding vector’s dimensionality on prediction error,
improve PredictDDL’s GHN-based embeddings generator to
generalize for multiple datasets, study the impact of different
training sample sizes and their distributions on the prediction
error, and integrate PredictDDL with production-level cluster
schedulers as future work.

ACKNOWLEDGMENT

This work is supported in part by the National Sci-
ence Foundation (NSF) under Awards No. 2106634 and
2106635. Results presented in this paper are obtained using
the Chameleon and CloudLab testbeds supported by the NSF.

REFERENCES

[1] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility
for resource management,” in Proceedings of the Workshop on Job
Scheduling Strategies for Parallel Processing. Springer, 2003, pp. 44–
60.

[2] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at Google with Borg,” in
Proceedings of the 10th European Conference on Computer Systems
(EuroSys), 2015, pp. 1–17.

[3] C. Lu, W. Chen, K. Ye, and C.-Z. Xu, “Understanding the workload char-
acteristics in Alibaba: A view from directed acyclic graph analysis,” in
Proceedings of the 2nd International Conference on High Performance
Big Data and Intelligent Systems (HPBD&IS), 2020, pp. 1–8.

[4] W.-Y. Chen, K.-J. Ye, C.-Z. Lu, D.-D. Zhou, and C.-Z. Xu, “Interference
analysis of co-located container workloads: a perspective from hardware
performance counters,” Journal of Computer Science and Technology,
vol. 35, no. 2, pp. 412–417, 2020.

[5] R. Adolf, S. Rama, B. Reagen, G.-Y. Wei, and D. Brooks, “Fathom:
Reference workloads for modern deep learning methods,” in Proceedings
of the IEEE International Symposium on Workload Characterization
(IISWC), 2016, pp. 1–10.

[6] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica, “Ernest:
Efficient performance prediction for {Large-Scale} advanced analytics,”
in Proceedings of the 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2016, pp. 363–378.

[7] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “CherryPick: Adaptively unearthing the best cloud config-
urations for big data analytics,” in Proceedings of the 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
2017, pp. 469–482.

[8] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: an efficient
dynamic resource scheduler for deep learning clusters,” in Proceedings
of the 13th European Conference on Computer Systems (EuroSys), 2018,
pp. 1–14.

[9] C. Coleman, D. Narayanan, D. Kang, T. Zhao, J. Zhang, L. Nardi,
P. Bailis, K. Olukotun, C. Ré, and M. Zaharia, “Dawnbench: An end-
to-end deep learning benchmark and competition,” Training, vol. 100,
no. 101, p. 102, 2017.

[10] M. Commons. (2021) Ml commons training benchmark v1.0. [Online].
Available: https://mlcommons.org/en/training-normal-10/

[11] B. Baker, O. Gupta, R. Raskar, and N. Naik, “Accelerating neu-
ral architecture search using performance prediction,” arXiv preprint
arXiv:1705.10823, 2017.

[12] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture
search on target task and hardware,” arXiv preprint arXiv:1812.00332,
2018.

[13] N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso, “The com-
putational limits of deep learning,” arXiv preprint arXiv:2007.05558,
2020.

[14] R. Novak, Y. Bahri, D. A. Abolafia, J. Pennington, and J. Sohl-Dickstein,
“Sensitivity and generalization in neural networks: an empirical study,”
arXiv preprint arXiv:1802.08760, 2018.

[15] B. Knyazev, M. Drozdzal, G. W. Taylor, and A. Romero Soriano, “Pa-
rameter prediction for unseen deep architectures,” Advances in Neural
Information Processing Systems (NeurIPS), vol. 34, pp. 29 433–29 448,
2021.

[16] K. Assogba, M. Arif, M. M. Rafique, and D. S. Nikolopoulos, “On
realizing efficient deep learning using serverless computing,” in Pro-
ceedings of the 22nd IEEE International Symposium on Cluster, Cloud
and Internet Computing (CCGrid), 2022, pp. 220–229.

[17] M. Arif, K. Assogba, and M. M. Rafique, “Canary: fault-tolerant faas for
stateful time-sensitive applications,” in Proceedings of the IEEE/ACM
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2022, pp. 568–583.

[18] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture
search,” arXiv preprint arXiv:1806.09055, 2018.

11

https://mlcommons.org/en/training-normal-10/

[19] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for mobilenetv3,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), 2019, pp. 1314–1324.

[20] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[21] A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” Master’s thesis, Department of Computer Science,
University of Toronto, 2009.

[22] D. Justus, J. Brennan, S. Bonner, and A. S. McGough, “Predicting the
computational cost of deep learning models,” in Proceedings of the IEEE
International Conference on Big Data (Big Data), 2018, pp. 3873–3882.

[23] C. Zhang, M. Ren, and R. Urtasun, “Graph hypernetworks for
neural architecture search,” in Proceedings of the 7th International
Conference on Learning Representations (ICLR), 2019. [Online].
Available: https://openreview.net/forum?id=rkgW0oA9FX

[24] Y. Le and X. Yang, “Tiny imagenet visual recognition challenge,” CS
231N, vol. 7, no. 7, p. 3, 2015.

[25] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” The Journal of Machine Learning Research, vol. 20, no. 1, pp.
1997–2017, 2019.

[26] G. Rjoub, J. Bentahar, O. A. Wahab, and A. Bataineh, “Deep smart
scheduling: A deep learning approach for automated big data scheduling
over the cloud,” in Proceedings of the 7th IEEE International Conference
on Future Internet of Things and Cloud (FiCloud), 2019, pp. 189–196.

[27] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp.
34–37, 1966.

[28] Y. Li, Y. Sun, and A. Jog, “A regression-based model for end-to-end
latency prediction for dnn execution on gpus,” in Proceedings of the
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2023, pp. 343–345.

[29] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The
elements of statistical learning: data mining, inference, and prediction.
Springer, 2009, vol. 2.

[30] Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel, “Gated graph
sequence neural networks,” in Proceedings of the 4th International
Conference on Learning Representations (ICLR), 2016. [Online].
Available: http://arxiv.org/abs/1511.05493

[31] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
arXiv preprint arXiv:1409.1259, 2014.

[32] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb et al., “The design and

operation of CloudLab,” in Proceedings of the USENIX Annual Technical
Conference (USENIX ATC), 2019, pp. 1–14.

[33] R. Ricci, E. Eide, and C. Team, “Introducing cloudlab: Scientific
infrastructure for advancing cloud architectures and applications,” ;
login:: the magazine of USENIX & SAGE, vol. 39, pp. 36–38, 2014.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

[35] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolu-
tional neural networks,” in Proceedings of the International Conference
on Machine Learning (ICML). PMLR, 2019, pp. 6105–6114.

[36] A. Castelló, M. C. Catalán, M. F. Dolz, J. I. Mestre, E. S. Quintana-
Ortı́, and J. Duato, “Performance modeling for distributed training of
convolutional neural networks,” in Proceedings of the 29th Euromicro
International Conference on Parallel, Distributed and Network-Based
Processing (PDP), 2021, pp. 99–108.

[37] Y.-C. Liao, C.-C. Wang, C.-H. Tu, M.-C. Kao, W.-Y. Liang, and S.-H.
Hung, “Perfnetrt: Platform-aware performance modeling for optimized
deep neural networks,” Proceedings of the International Computer
Symposium (ICS), pp. 153–158, 2020.

[38] H. Qi, E. R. Sparks, and A. Talwalkar, “Paleo: A performance model
for deep neural networks,” in Proceedings of the 5th International
Conference on Learning Representations (ICLR), 2017. [Online].
Available: https://openreview.net/forum?id=SyVVJ85lg

[39] G. X. Yu, Y. Gao, P. Golikov, and G. Pekhimenko, “Habitat: A runtime-
based computational performance predictor for deep neural network
training,” in Proceedings of the USENIX Annual Technical Conference
(USENIX ATC), 2021, pp. 503–521.

[40] C. White, A. Zela, R. Ru, Y. Liu, and F. Hutter, “How powerful
are performance predictors in neural architecture search?” Advances in
Neural Information Processing Systems (NeurIPS), vol. 34, pp. 28 454–
28 469, 2021.

[41] C. White, W. Neiswanger, and Y. Savani, “Bananas: Bayesian opti-
mization with neural architectures for neural architecture search,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
no. 12, 2021, pp. 10 293–10 301.

[42] J. Zavatone-Veth and C. Pehlevan, “Exact marginal prior distributions
of finite bayesian neural networks,” Advances in Neural Information
Processing Systems (NeurIPS), vol. 34, pp. 3364–3375, 2021.

[43] B. Huang, M. Boehm, Y. Tian, B. Reinwald, S. Tatikonda, and F. R.
Reiss, “Resource elasticity for large-scale machine learning,” in Proceed-
ings of the ACM SIGMOD International Conference on Management of
Data, 2015, pp. 137–152.

12

https://openreview.net/forum?id=rkgW0oA9FX
http://arxiv.org/abs/1511.05493
https://openreview.net/forum?id=SyVVJ85lg

	Introduction
	Background and Motivation
	Deep Learning Performance Prediction
	Graph HyperNetworks: Extracting Vector Representations of DNN Architectures

	Design of PredictDDL
	Design Objectives
	PredictDDL Overview
	Inference Engine
	Controller
	GHN-based Workload Embeddings Generator
	Cluster Resource Collector
	Offline GHN-2 Retraining

	Performance Evaluation
	Experimental Setup
	Evaluation Testbed
	Deep Neural Network Architectures
	Training Datasets
	Performance Baselines

	Performance Results
	Analysis of Training Time Prediction Error
	Impact of Different Regression Models on PredictDDL
	Sensitivity of the Prediction Error to the Prediction Model's Training Dataset Size
	Impact of the Training Cluster Size on Performance Prediction Error
	Scalability Analysis of PredictDDL on Batch Performance Prediction Jobs

	Related Work
	Black Box Performance Prediction
	Analytical Performance Modeling
	Search Space Optimization

	Conclusion
	References

