Asynchronous Multi-Level Checkpointing: An Enabler of
Reproducibility using Checkpoint History Analytics

Kevin Assogba
Rochester Institute of Technology
Rochester, NY, USA
kta7930@cs.rit.edu

Hubertus Van Dam
Brookhaven National Laboratory
Upton, NY, USA
hvandam@bnl.gov

ABSTRACT

High-performance computing applications are increasingly inte-
grating checkpointing libraries for reproducibility analytics. How-
ever, capturing an entire checkpoint history for reproducibility
study faces the challenges of high-frequency checkpointing across
thousands of processes. As a result, the runtime overhead affects
application performance and intermediate results when interleav-
ing is introduced during floating-point calculations. In this paper,
we extend asynchronous multi-level checkpoint/restart to study
the intermediate results generated from scientific workflows. We
present an initial prototype of a framework that captures, caches,
and compares checkpoint histories from different runs of a scientific
application executed using identical input files. We also study the
impact of our proposed approach by evaluating the reproducibility
of classical molecular dynamics simulations executed using the
NWChem software. Experiment results show that our proposed
solution improves the checkpoint write bandwidth when capturing
checkpoints for reproducibility analysis by a minimum of 30x and
up to 211X compared to the default checkpointing approach in
NWChem.

KEYWORDS

result reproducibility, checkpoint analysis, high performance com-
puting, asynchronous multi-level checkpointing

ACM Reference Format:

Kevin Assogba, Bogdan Nicolae, Hubertus Van Dam, and M. Mustafa Rafique.
2023. Asynchronous Multi-Level Checkpointing: An Enabler of Reproducibil-
ity using Checkpoint History Analytics. In Workshops of The International
Conference on High-Performance Computing, Network, Storage, and Analysis
(SC-W 2023), November 12—17, 2023, Denver, CO, USA. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3624062.3624256

1 INTRODUCTION

High-Performance Computing (HPC) applications produce massive
amounts of distributed intermediate data during their execution
that needs to be checkpointed concurrently by a large number
of processes in real-time at scale. This is a fundamental I/O pat-
tern used in a wide range of scenarios [23]: resilience based on
checkpoint-restart, suspend-resume to continue long-running jobs

SC-W 2023, November 12—17, 2023, Denver, CO, USA
2023. ACM ISBN 979-8-4007-0785-8/23/11...$15.00
https://doi.org/10.1145/3624062.3624256

Bogdan Nicolae
Argonne National Laboratory
Lemont, IL, USA
bnicolae@anl.gov

M. Mustafa Rafique
Rochester Institute of Technology
Rochester, NY, USA
mrafique@cs.rit.edu

over multiple reservations or to preempt batch jobs without losing
progress in order to free resources for another [15], higher priority
jobs producer-consumer patterns in workflows that communicate
using intermediate data captured as checkpoints (e.g., simulations
coupled with analytics), revisiting previous states to advance a
computation (e.g., to enable out-of-core adjoint computations [16]),
etc.

One of the key emerging scenarios enabled by checkpointing is
the study of the reproducibility of scientific results. In this context,
the increasing complexity of scientific applications and the extreme
heterogeneity they face from all perspectives (different types of
tasks, patterns, accelerators, job scheduling decisions, interleaving
and competition for resources, etc.) makes it challenging to reason
about reproducibility [7, 11]. A naive solution that simply compares
the end results of two different application runs that start with the
same input data does not enable enough insight. For example, if
the end results are different, then there is no information avail-
able about what went wrong and when this happened during the
runtime. Similarly, if there is a single valid path to reach the end
result (which is often the case of HPC simulations), then obtaining
a correct end result does not guarantee it was obtained through the
valid path and not by coincidence through an alternative invalid
path. Instead, checkpointing can be used to capture not only the
end results of different application runs but also an entire history
of intermediate checkpoints that describe the evolution of repre-
sentative data structures during runtime. Thus, we can analyze the
history of intermediate checkpoints to study reproducibility [1]. For
example, we can compare each checkpoint of the history of one run
with its equivalent from the history of another run to determine
exactly when the two runs start diverging, what data structures
were affected and how large the differences are. Similarly, we can
check each checkpoint of the history against a set of invariants that
describe a valid path to determine if the run has diverged from the
valid path or not.

Capturing an entire history of checkpoints for the purpose of
enabling the study of reproducibility is challenging for several
reasons. First, the checkpoint frequency can be very high (e.g.,
a checkpoint may be needed at the end of every iteration of an
HPC simulation) and may incur a significant runtime overhead
due to I/O bottlenecks. The runtime overhead not only increases
the time to solution and cost of obtaining the scientific results, but
it may also affect the behavior of the application (e.g., it induces

https://doi.org/10.1145/3624062.3624256
https://doi.org/10.1145/3624062.3624256

different runtime decisions or interleavings under concurrency
that affect intermediate results and/or cause deviation from the
valid path). Thus, there is a need to minimize the overhead of
checkpointing. Second, repeated runs of the same problem for the
purpose of studying reproducibility do not always need to run to
completion. For example, if the captured checkpoints of a second
run show significant differences compared with the history of the
first run early during the execution, it may be the case that enough
information was already collected to enable a root cause analysis,
in which case the second run can be terminated early to save time
and resources.

In this paper, we propose a framework for reproducibility analyt-
ics based on the study of intermediate checkpoint histories that is
specifically designed to address the aforementioned challenges. Our
key idea is to extend asynchronous multi-level checkpointing tech-
niques [20] with support to capture, cache, and compare histories of
intermediate checkpoints of multiple application runs. Specifically,
such techniques hide the overhead of checkpointing by blocking
the application only for a minimal duration until a local copy of the
checkpoint was captured on local storage (e.g., SSDs), from where
it is flushed asynchronously to an external shared repository (e.g.,
parallel file system), which absorbs a majority of the I/O bottlenecks
in the background. We summarize our contributions as follows:

o We illustrate how to study reproducibility based on check-
point history analytics by considering the case of the north-
west computational chemistry package (NWChem) [12], a
widely used computational chemistry code (Section 2).

e We propose a series of design principles that leverage the
fact that checkpoints are cached on fast local storage, which
can be used to collectively optimize the flushing of the check-
point history of multiple runs and accelerate comparisons.
In particular, we insist on the need for a flexible analytics
approach that enables both an offline comparison of the
checkpoint histories, as well as an online comparison that
enables early termination if desired (Section 3.1).

e We introduce an early prototype that provides a minimal-
ist implementation of the design principles based on VE-
LOC [20], a production-ready HPC checkpoint-restart li-
brary. In particular, VELOC offers versioning support for
checkpoints, which we leverage to build a checkpoint his-
tory. Separately, we use an SQLite database instance to record
additional metadata needed to compare the checkpoint his-
tories of multiple runs (Section 3.2).

e We run a series of extensive experiments using a variety of
NWChem scenarios. For each scenario, we study the runtime
overhead introduced by frequent checkpointing necessary to
capture the checkpoint history, and we characterize the evo-
lution of key NWChem data structures from the checkpoint
history across different runs, insisting on both quantitative
and qualitative aspects (Section 4).

2 USE CASE: MOLECULAR DYNAMICS WITH
NWCHEM
Molecular dynamics (MD) simulations study the behavior and prop-

erties of molecular systems over time. These simulations follow fun-
damental thermodynamics principles and equations (e.g., Newton’s

Workflow Sequence

<«—> |Inter-Process Comm

“Buﬂered Data Transfer

Global
Database

RS
=

@@@@
g

Figure 1: Illustration of a Molecular Dynamic Workflow

5 60

‘;50_ EZZ Error=1e-4 Bmd Error=1e0

E BN Error=Tle-2 [Error=1el

2409 - 3

© 30 30 33

5 30 27 27

R 21 21

O 20 A 16 16 17 17
c b

.2 b o q q
5 104 . o o o 5 b
© P 0 ©1p q d 2
- -

Water Coord

Figure 2: Illustration of the magnitude of errors induced by
floating-point arithmetic in the Ethanol workflow.

second law of motion) to explore changes in the state of molecules
as they move, interact, and bind with other atoms over time in a
molecular system. Software packages such as NWChem [13] and
GAMESS [24] are often used to simulate computational workflows
that model the desired molecular system.

In this paper, we focus on NWChem as a representative HPC
application whose reproducibility can be studied by comparing the
checkpoint history of two repeated runs. To this end, we choose a
scenario that studies how protein atoms bind to the DNA, which
we refer to as 1H9T [28].

Figure 1 illustrates the steps involved in this process. First, a
preparation step is needed to read the structural information about
the atoms in the system from a Protein Data Bank file (PDB) in
order to generate a topology file and a restart file. The topology file
contains static information about the system whereas the restart
file captures dynamic information, and is regularly updated as the
state of the system changes. Second, the topology file and a restart
file are used to minimize atomic net forces and to write the new
state back into the restart file. Third, a restrained equilibration step
reorganizes and aligns the molecules in the system. Finally, an HPC
simulation is responsible for solving the system.

These steps form an HPC workflow that involves multiple dis-
tributed processes, which coordinate through a global database

Ckpt
History 1

Load Ckpt
Histories
1+2

Reproducibility
Analyzer

Ckpt
History 2

(a) Default NWChem

g))

===

Client 1

VELOC | 1] Rezrodlucibinty
i nalyzer

Client 2 Scratch Space

(b) VELOC + NWChem

Figure 3: Intergration of VELOC with NWChem for checkpoint history analytics.

that provides a global view of the entire workflow for consistency.
NWChem partitions the system into rectangular super-cells, allo-
cates each cell to one process or rank, and uses the Global Array
toolkit to enable each process to concurrently read, write, and up-
date the region of the global variable that corresponds to their
allocated cells.

For the purpose of this work, we focus on the equilibration step,
which is critical in determining the outcome of the simulation.
The equilibration uses an iterative technique that runs for a fixed
number of iterations. After every K iteration, we capture several
representative data structures (such as indices, coordinates, and
velocities of water molecules and solute atoms) into a checkpoint
on each process. The set of checkpoints corresponding to the same
iteration is then added to the checkpoint history to capture the
global evolution of the data structures on all distributed processes.
The reproducibility analysis consists of comparing all checkpoints
corresponding to the same iteration and the same process in the
history of two repeated runs.

The captured data structures include a mix of integer values (e.g.
indices) and floating point values (coordinates, velocities). Since
floating point values are subject to numerical instability, simple
byte-to-byte comparisons are not enough to determine equality.
Even when applying an error threshold, the variability between
different runs can be significant. For example, in Figure 2 we can
observe that for the same data structure captured in the same check-
point iteration, the differences between corresponding values of
two repeated runs can cover a wide range (107 ... 10!). While the
explanations of this pattern are outside the scope of this work (and
application-specific), this example illustrates that comparing two
repeated runs is non-trivial, hence the need for scalable tools that
facilitate reproducibility analytics.

3 PROPOSAL: REPRODUCIBILITY
FRAMEWORK USING CHECKPOINT
HISTORY ANALYTICS

3.1 Design Principles

Asynchronous Checkpoint Capture. Traditional checkpoint-
ing techniques are often synchronous, i.e., they block the applica-
tion until the data structures have been captured and persisted
into checkpoint files on a stable repository (typically a parallel
file system). Although straightforward to implement, such tech-
niques often cause an unacceptably high runtime overhead due to
/O bottlenecks, which are noticeable especially at scale when a
large number of application processes compete for the limited I/O
bandwidth of the repository where the checkpoints are stored. This
runtime overhead is further exacerbated in the case reproducibility
studies compared with traditional use cases of checkpointing (e.g.
fault tolerance based on checkpoint-restart) for three reasons. First,
the need to study the evolution of representative data structures
at fine granularity leads to a higher checkpoint frequency. Second,
reproducibility involves multiple repeated runs (at least two), each
of which exhibits a high checkpoint frequency. Third, many HPC
applications (such as NWChem) do not support distributed check-
pointing, collecting instead the data structures on a single process
that is responsible for writing the checkpoint (illustrated in Fig-
ure 3a). If the runtime overhead due to checkpointing is high, this
may trigger a different application behavior (e.g., different inter-
leaving of parallel patterns) that potentially affects the evolution of
the intermediate data structures between different runs. In this case,
checkpointing is an invasive operation. Even when checkpointing
is not an invasive operation, a high runtime overhead accumu-
lates quickly over multiple runs and results in extra costs and/or
missed deadlines. To mitigate this issue, multi-level checkpointing
strategies (as illustrated by VELOC [19, 20] and SCR [17]) can be
used that leverage hierarchic node-local storage tiers (e.g., GPU
memory, host memory, non-volatile memory, emerging CXL-based
memory [3], and SSDs) to flush the checkpoints to the slower tiers
asynchronously. Specifically, in this case, the application is blocked
only for the duration of the writes to the fastest tier, while other

cascading transfers to the slower tier proceed concurrently in the
background. This is illustrated in Figure 3b. We argue that such
techniques are highly effective and propose to extend them for the
purpose of reproducibility, which we discuss next.

Flexible Offline/Online Analytics. In the simplest form, the
study of reproducibility involves two repeated runs, each of which
independently captures and persists the intermediate checkpoint
history to a parallel file system using asynchronous multi-level
checkpointing techniques. In this case, the reproducibility analysis
is decoupled from the actual runs and can be performed at any later
moment in offline fashion. However, doing so may unnecessarily
execute the second run to completion even if a divergence between
the two runs can be observed early in the checkpoint history, which
may be enough to identify a root cause and therefore justify an
early termination. Thus, we argue in favor of a flexible solution
that enables an alternative online reproducibility analytics that
consumes the checkpoint history of the first run on the fly while
the second run progresses. Specifically, as soon as a checkpoint
corresponding to the same process and iteration is available for
both the first and second runs, a comparison can be made asyn-
chronously without blocking the progress of either run. Then, if
the checkpoints are considered divergent, early termination can be
triggered. Such an approach is particularly effective in combination
with asynchronous multi-level checkpointing techniques because
the comparisons can be introduced in the asynchronous I/O pipeline
in order to minimize the runtime overheads. Optimizations in this
direction will be discussed next.

Cache and Reuse Checkpoint History on Local Storage. A
naive implementation may simply perform repeated reads from the
parallel file system to compare all checkpoints corresponding to
the same processes and the same iteration from the two checkpoint
histories. However, such a naive approach has an important dis-
advantage: it incurs high overheads due to the need to read large
amounts of data from the parallel file system under concurrency,
which often leads to I/O bottlenecks. As a consequence, it is not
enough to optimize asynchronous multi-level checkpointing tech-
niques just to write checkpoints efficiently (which is often sufficient
for scenarios like fault tolerance, since reading checkpoints is com-
paratively infrequent). Instead, we need to co-optimize the problem
of writing and revisiting checkpoints later. To this end, we pro-
pose to extend approaches such as those proposed in [16], which
employ multi-level access pattern aware caching and prefetching
techniques in order to anticipate and accelerate the full cycle of
writing and reading a checkpoint history. In this context, there are
several opportunities. First, the buffers reserved for caching and
prefetching on different storage tiers can be shared by multiple runs.
For example, if offline analytics is desired, it is not necessary to
wait for the first run to finish before starting the second run. In fact,
both runs can be started simultaneously at the expense of write
competition between the two runs for the storage tiers used by
multi-level caching and prefetching techniques. If online analytics
is desired, the problem is further complicated by the interleaving
of reads and writes belonging to different runs. Thus, our proposed
extensions aim to mitigate the interference between different runs
in order to maximize the reuse of checkpoints on the fastest storage

Algorithm 1: VELOC Checkpointing for NWChem.

Input: ckptname, conf file, ftn_arrs, step, maxstep, err

1 begin

2 if step == 0 then

3 ga_comm «

ga_mpi_comm_pgroup_default(ga_comm)

4 VELOC_Init(ga_comm, conf file, err)

5 for each ftn_arr in fin_arrs do

6 c_arr « Transpose(ftn_arr)

7 VELOC_Mem_protect (step, c_loc(c_arr),
8 size(c_arr), sizeof(c_arr[1]), err)
9 VELOC_Checkpoint(ckptname, step, err)
10 if step == maxstep then

1 | VELOC_Finalize(err)

tiers. Second, even if the checkpoints are read from the fastest stor-
age tiers, the overhead of comparing large checkpoints iterating
over their whole content can be significant. As a consequence, we
envision novel comparison techniques that are based on hierarchic
hashing (similar to Merkle trees) and are tolerant to floating point
variations (as discussed in Section 2). Such an approach only needs
to revisit hashing metadata instead of the full checkpoint pairs,
at the expense of additional computational overhead needed for
hashing. To mitigate the computational overhead, we extend high-
performance hashing techniques originally used for de-duplicating
checkpointing data [25].

3.2 Implementation

In this section, we introduce a preliminary implementation that
integrates VELOC with NWChem for the purpose of evaluating
the potential benefits of the design principles discussed in Sec-
tion 3. This implementation can be easily adapted to other HPC
applications that are capable of checkpointing intermediate data.

NWChem supports diverse chemistry simulation workflows in-
cluding classical MD, density functional theory, etc. Since NWChem
is implemented in Fortran, we had to develop Fortran bindings
for VELOC, which in turn call its C++ API Our integration with
NWChem requires solving two main challenges: the representation
of array data structures and the capture of checkpoint descriptors
(the name of the workflow, checkpoint iteration, the process ID,
and data types and dimensions of variables to checkpoint).

Checkpoint Data Representation. Fortran and C++ represent
arrays in different ways. Fortran stores arrays in column-major
order while C++ uses a row-major order. As a consequence, it is not
enough to simply pass pointers to Fortran arrays into C++. We had
to implement a transposition function in the comparison pipeline
that converts the column-major order to the row-major order.

Checkpoint Annotation. By default, VELOC captures the check-
point name, the process ID, and a user-defined version number
(typically the iteration number) into the checkpoint history. Fur-
thermore, each checkpoint file contains a header that describes the
captured data structures and their sizes. However, the header does
not contain information about the type of the data structures. This

Table 1: Summary of checkpointing and comparison time on 1H9T, Ethanol and Ethanol-4 workflows.

Worlflow | # of Ranks Ckpt time (ms) Ckpt size (KB) Comparison time (ms)
Our Solution | Default | Our Solution | Default | Our Solution | Default
1H9T 4 1.96 49.46 1480 1356 602 605
1H9T 8 1.01 47.12 1492 1356 834 837
1H9T 16 0.65 48.83 1524 1356 1352 1358
Ethanol 4 0.45 7.55 52 96 583 586
Ethanol 8 0.31 8.67 64 96 862 866
Ethanol 16 0.50 10.78 68 96 1306 1312
Ethanol-4 4 0.82 141.81 2972 4764 591 594
Ethanol-4 8 0.69 148.25 2984 4764 886 889
Ethanol-4 16 0.62 154.19 3004 4764 1361 1365

missing information is important in the context of reproducibil-
ity because it determines how the comparison must be performed
(i.e., exact for integers and approximate for floating points). There-
fore, we collect additional information about the type of the data
structures and annotate the checkpoints accordingly.

Checkpoint History Capture. We asynchronously checkpoint
the application data using VELOC’s API as detailed in Listing 1. To
align with NWChem, we intersect the global MPI communicator
used by the application to initialize the VELOC client. We use the
VELOC_Mem_protect API to declare the memory regions that are
part of the checkpoint and serialize such regions as a new check-
point using the VELOC_Checkpoint APIL Each checkpoint has a
corresponding ID that we define to be the number of the current
simulation step. Our implementation focuses on two-level check-
pointing using one temporary scratch space (local storage available
on the compute nodes) and one persistent repository (a parallel
file system). We defined our checkpointing frequency to match
the frequency of rewriting the NWChem restart file. This restart
frequency is pre-defined in the NWChem input file, therefore, we
do not require users to explicitly define a checkpointing frequency
parameter.

Analysis of Checkpoint Histories. To analyze collected check-
points, we restore the checkpoint histories into the host memory
using the VELOC_Restart API. Our current prototype implements
two types of comparison: exact and approximate comparison of the
checkpoints. Each checkpoint in our use case application (classi-
cal MD) captures the indices, coordinates, and velocities of water
molecules and solute atoms. NWChem uses the C++ equivalent
of a 64-bit integer for indices, and double-precision floating-point
numbers for coordinates and velocities. We apply the exact compar-
ison to compare the indices because they are whole numbers and
perform an approximate comparison of coordinates and velocities.
Floating-point numbers are non-associative and non-distributive
and, thereby, are subject to rounding errors that propagate from
one MD calculation to the other. These properties render an exact

comparison impractical and require an approximate comparison
with respect to an error margin . We compare two floating-point
numbers a and b by verifying whether |a — b| > €. If the condition
is satisfied, we label the corresponding index as a mismatch.

4 PRELIMINARY EVALUATION
4.1 Setup

We evaluate our approach on the Polaris HPC system, an Argonne
Leadership Computing Facility (ALCF) system that consists of 560
compute nodes. Each node is equipped with a single 2.8 GHz AMD
EPYC Milan CPU (32-cores), 512 GiB DDR4 memory, and 4 NVIDIA
A100 GPUs. The nodes can access a 10 TB Lustre parallel file system
through a POSIX mount point. While our experiments did not
require access to a GPU, this HPC system setup regularly hosts
large-scale scientific applications. For our evaluation, we leverage
a single node on the system to execute our selected MD workflows
(Section 4.2). In terms of the software ecosystem, we used VELOC
1.5 and NWChem software with dependencies such as GFortran
11.2, GCC/G++ 11.2, and MPICH 8.1.

4.2 Workflows

We base our evaluation on two popular molecular dynamics work-
flows: 1H9T [28] and Ethanol [29]. 1H9T workflow studies the
transcription of genes focusing on the binding process between
a protein and DNA. This MD simulation executes a sequence of
steps including a system preparation, minimization calculation,
equilibration calculation, and molecular dynamics simulation. Our
evaluation focuses on the equilibration calculation which is the last
step before the MD simulation. We aim to study the reproducibil-
ity of the intermediate results that are used during the simulation.
The Ethanol workflow simulates the dynamics of a single ethanol
molecule in water. We add three variants of this workflow to eval-
uate the strong and weak scalability of our proposed approach:
Ethanol-2, Ethanol-3, and Ethanol-4. These variants increase the
number of unit cells per supercell in the molecular system, requiring

respectively 8%, 27X, and 64x the number of processes allocated
to the base ethanol simulation for weak scalability. We execute
each workflow for 100 iterations and collect a checkpoint every 10
iterations.

4.3 Compared Approaches

We compare the following two approaches using the offline com-
parison method:

Default NWChem. This is the default strategy used in NWChem:

the data processed by each MPI rank is gathered on one process
and synchronously flushed to the PFS. We use a Lustre filesys-
tem to store the checkpoint histories generated by this approach
and reload the histories of the first and second execution of the
workflow back into the host memory after the completion of both
executions.

Our Approach. Our approach uses asynchronous multi-level
checkpointing to capture workflow checkpoint histories and com-
pares the critical data contained in the checkpoints of two inde-
pendent executions of the workflow to study the workflow’s repro-
ducibility. We use a temporary memory-based filesystem (TMPFS)
as scratch storage and the PFS as persistent storage.

4.4 Results

Impact of Asynchronous Multi-level Checkpointing on Re-
producibility Analysis. We first analyze the checkpointing and
comparison overheads for the workflows described in Section 4.3.
Table 1 summarizes the time spent by the compared approaches to
capture and compare the checkpoint histories of two repeated runs.
We observe that our approach improves the checkpointing time by
a minimum of 30X and up to 211X compared to Default NWChem.
This benefit is due to asynchronous checkpointing where VELOC
first stages the checkpoints on TMPFS before flushing to the PFS.
Meanwhile, the default approach takes longer because only one
process synchronously flushes the checkpoints to the PFS. At the
end of the second execution, the checkpoint histories are loaded
back into the host memory for comparison. Such data transfer from
PFS to host memory also increases the time to compare checkpoint
histories as opposed to VELOC which directly loads from TMPFS
into the host memory.

Strong scalability of checkpointing throughput. Next, we
compare the checkpointing throughput of default NWChem with
our solution. First, we focus our study on strong scalability: we in-
crease the number of MPI ranks used to execute the MD simulation
while keeping the number of cells in the molecular system fixed.
We study four different configurations. For each of these config-
urations, we measure the checkpointing throughput (bandwidth),
which results in comparable quantities despite different checkpoint
sizes. Figure 4 shows that Default NWChem achieves a peak write
bandwidth of 39 MB/s when executing the 1H9T workflow using
2 MPI ranks whereas our solution yields 8.8 GB/s using 32 MPI
ranks on the Ethanol-4 workflow. With the same checkpoint size,
as shown in Table 1, the performance of Default NWChem reduces
as more processes are used to execute the simulation because the
main MPI rank spends an increasing amount of time gathering the
same data size from all the ranks. This performance reduction also

%0 I Rank=2 I Rank=8 I Rank=32
S 401 Rank=4 EXN Rank=16
2| N %
Sl BN w R BN
s N 72\ BN
5 NBR N B IN
g NB 75\ N
2101 BENE BN BNl BN

NENE R
76N I 7EN I 7EN O 7EN
THIT Ethanol Ethanol-2 Ethanol-4
MD workflows
(a) Default NWChem checkpoint write bandwidth

G gk EEE Rank=2 XN Rank=16
s Rank=4 BB Rank=32
g 6K+ EEE Rank=8 §
5 4K+ ZAN
: , N
%2}(- § 7 N é §
? | mAdN . AN N

THIT Ethanol Ethanol-2
MD workflows

Ethanol-4

(b) VELOC checkpoint write bandwidth

Figure 4: Analysis of checkpoint write bandwidth.

I Ethanol [Ethanol-2 I Ethanol-3

4K A
»
)
s 3K
£
T 2K A
2
o
S 1K J
. |

0' T T

10 20 30 40 50 60 70 80 90 100
Iteration number

Figure 5: Weak scalability analysis of VELOC checkpointing
using the Ethanol workflow variants.

highlights a disadvantage of using a single process for synchronous
checkpointing. On the other hand, an asynchronous multi-level
checkpointing solution is both faster and more scalable, since all
application processes contribute to saving their checkpoints con-
currently with VELOC. Consequently, despite the small increase
in the checkpoint size (due to additional metadata attached to the
checkpoint of each MPI rank), the increased number of processes
improves the write bandwidth.

Weak scalability of checkpoint throughput. Figure 5 reports
on the performance benefits of using VELOC to capture checkpoints

B Exact match

T Approximate match

BBl Mismatch]

150K 1 150K 1 150K 1

X 100K 1 100K - 100K -
(%]
@©
©

O 50K+ 50K A 50K A

OK - OK - 0K -

2 4 8 16 32 2 4 8 16 32 2 4 8 16 32
Ranks (lteration = 10) Ranks (lteration = 50) Ranks (Iteration = 100)
Figure 6: Comparison of the velocities of water molecules from two executions of the Ethanol-4 workflow.
B Exact match [Approximate match B Mismatch]

1500 1500 1500
(O]
N

« 1000 1 1000 A 1000 A
3]
©
a

500 500 500

0- i i

0
2 4 8 16 32 2

Ranks (Iteration = 10)

4

Ranks (Iteration = 50)

0
8 16 32 2 4 8 16 32
Ranks (Iteration = 100)

Figure 7: Comparison of the velocities of solute atoms from two executions of the Ethanol-4 workflow.

in weak scaling scenarios. We design weak scalability experiments
by executing Ethanol, Ethanol-2, and Ethanol-3 workflows with
1, 8, and 27 MPI ranks, respectively. We observe that our solution
maintains a peak bandwidth of up to 4 GB/s in weak scaling scenar-
ios. The maximum bandwidth reduces by ~2x compared to strong
scaling scenarios described in Figure 4 because of the increased
interference and contention for I/O resources. The increase in the
number of MPI ranks does not alleviate the workload of each rank
as the workload size increases at the same rate, and each rank con-
tinues to process the same number of cells in the molecular system.
Nevertheless, our solution yields up to a 5X increase in bandwidth
during the Ethanol-2 simulation with respect to the Ethanol sim-
ulation. The same scale of bandwidth increase is observed when
executing the Ethanol-3 simulation.

Checkpoint history comparison. Our final set of experiments
focuses on the analysis of collected checkpoint histories. We evalu-
ate the number of mismatches in compared checkpoints using two
types of comparisons: exact and approximate. The exact compari-
son is applied for integer values and checks whether they are equal
in their binary representations, whereas the approximate compari-
son is applied for floating point values and evaluates whether the
absolute difference between them is lower than an error value. For
our evaluation, we use an error of 1e-4. This value is selected based
on previous NWChem studies [30], in which a relative error of
le-4 was observed as a result of bit-flips in the representation of
double-precision floating point numbers.

Figures 6 and 7 respectively report the number of exact matches,
approximate matches, and mismatches in the velocities of water

molecules and solute atoms from the Ethanol-4 simulation. We
present the comparison of the first checkpoint (iteration 10), the
fifth checkpoint (iteration 50), and the last checkpoint (iteration 100).
We observe that the rounding error from floating point calculations
accumulates across iterations. For example, we notice such a trend
in Figures 6 and 7 where the first checkpoints with 2 and 4 MPI
ranks yield no mismatch, but, the error accumulates during the
following iterations leading to more approximate matches and
mismatches at the fifth checkpoint iteration. This instability in
floating-point numbers can also lead to reduced error, as with the
velocities of the solute atoms in the last checkpoint where some
mismatches in the fifth checkpoint qualify as approximate matches.
These variations highlight the importance of considering an entire
checkpoint history for reproducibility analytics.

5 RELATED WORK

The reproducibility of computational workflows is a principle for
scientific integrity and reusability. When a scientific application
executes multiple times using identical input files and source code
on the same computing infrastructure, reproducibility entails that
the application follows the same execution path, i.e., identical traces
of function calls from the first instruction to the last, produces the
same intermediate results, and yields the same outcome. The sci-
entific community agrees on the prevalence of reproducibility, but
executing applications on high-performance computers challenges
the guarantee of reproducibility, e.g., due to dynamic scheduling of
parallel processes [2]. A small variation in the computing environ-
ment, e.g., a different version of a software dependency or adding
an intermediate calculation step in the workflow, creates numerical
instability and yields computational irreproducibility [26]. Variabil-
ity in the computing environment, e.g., network bandwidth is also
a cause for non-reproducible application performance [27].

For resilience and fault tolerance, HPC applications have adopted
the checkpoint-restart model to recover from application failures
without losing computational results produced before the failure.
Multi-level asynchronous I/O frameworks for checkpointing, e.g.,
VELOC[20] and ADIOS?2 [9], relieve the overhead of flushing ap-
plication checkpoints at high frequency to the PFS. Asynchronous
checkpointing captures intermediate results with minimal over-
head on the application [10], enabling the study of intermediate
checkpoints to analyze the application’s reproducibility before its
completion.

To reduce the effect of interference from other applications on
reproducibility, workflow management systems [8] are increasingly
adopting sandboxed environments, e.g., docker and singularity
containers, to isolate computations [5, 6] and enable a continuous
analysis of the computational workflow with minimal startup cost
and complexity [4]. This solution alleviates external effects but
fails to account for errors related to the target applications. The
current I/O pattern of scientific applications to flush checkpoints
directly to the PFS presents a risk of interleaves that affect ongoing
computations and introduce varying errors on intermediate results.
Existing studies explore strategies to improve reproducibility by
reducing numerical roundoff errors introduced with floating-point
arithmetic [2, 14], e.g., error-free transformation for reproducible
summation [18], but as the scale of execution environment and

the complexity of data types used during computations increase,
current solutions will need to be revisited. This paper advocates
analytical tools to identify the root causes of irreproducibility.

Reproducibility analytics usually focuses on workflow prove-
nance [21] and performance data, e.g., execution time [22], but
little attention is given to the comparison of intermediate results
produced by the function calls and steps along the provenance
graph. These comparisons can contribute to identifying the root
causes of the application’s irreproducibility. In this paper, we lever-
age the checkpoint-restart mechanism, already used by scientific
applications, to instrument the analysis of intermediate results
reproducibility.

6 CONCLUSION

In this work, we propose a framework for reproducibility analytics
that is based on the idea of comparing histories of intermediate
checkpoints captured during repeated runs of HPC applications.
We envision a solution based on several design principles: adapting
asynchronous multi-level checkpointing techniques in the context
of reproducibility, a flexible approach to compare the checkpoint
histories in both offline and online fashion, as well as scalable tech-
niques for caching, prefetching and hash-based comparison that
maximize the use of fast cache tiers and, respectively, minimize the
comparison overheads. To this end, we implemented an early proto-
type based on VELOC, a production-level asynchronous multi-level
checkpointing library, and integrated our solution with NWChem,
a computational chemistry software, to study the reproducibility of
HPC molecular dynamics simulation workflows. Preliminary eval-
uations show that our solution has promising potential to reduce
the checkpointing overhead compared with the default checkpoint-
ing strategy employed by NWChem: it is up to 211x faster with a
minimum checkpoint bandwidth increase of 30X. This is important
not only to save core hours and reduce the runtime and resource
utilization but also to reduce the influence of checkpointing on
the behavior of the application. Furthermore, we observed inter-
esting patterns in the evolution of the checkpointed data between
two runs: some of the variables are stable while others begin to
diverge and increase their divergence over time. Encouraged by
these preliminary results, we plan to explore in future work several
promising avenues: (1) interpret the results with domain-specific
knowledge to explain the observed divergence; (2) design, develop,
and implement novel algorithms and techniques based on the de-
sign principles and demonstrate their effectiveness in speeding up
the reproducibility analytics; (3) demonstrate the effectiveness of
these algorithms at scale compared with the preliminary imple-
mentation introduced in this work, as well as compared with other
state-of-art techniques.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S. Department
of Energy (DOE), Office of Science, Office of Advanced Scientific
Computing Research, under grants 0269227 and 220807, as well
as under contract DE-AC02-06CH11357. Furthermore, it was sup-
ported by the National Science Foundation (NSF) under Awards No.
2106634 and 2106635.

REFERENCES

(1]

[7

—

[10]

[11

[12

[13

[14

[15]

Ishan Abhinit, Emily K. Adams, Khairul Alam, Brian Chase, Ewa Deelman, Lev
Gorenstein, Stephen Hudson, Tanzima Islam, Jeffrey Larson, Geoffrey Lentner,
Anirban Mandal, John-Luke Navarro, Bogdan Nicolae, Line Pouchard, Rob Ross,
Banani Roy, Mats Rynge, Alexander Serebrenik, Karan Vahi, Stefan Wild, Yufeng
Xin, Rafael Ferreira da Silva, and Rosa Filgueira. 2022. Novel Proposals for
FAIR, Automated, Recommendable, and Robust Workflows. In Proceedings of
the 17th Workshop on Workflows in Support of Large-Scale Science (WORKS’22 in
conjunction with SC’22) (Dallas, USA). IEEE Computer Society, Los Alamitos, CA,
USA, 84 - 92.

Peter Ahrens, James Demmel, and Hong Diep Nguyen. 2020. Algorithms for effi-
cient reproducible floating point summation. ACM Transactions on Mathematical
Software (TOMS) 46, 3 (2020), 1-49.

Moiz Arif, Kevin Assogba, M. Mustafa Rafique, and Sudharshan Vazhkudai. 2023.
Exploiting CXL-Based Memory for Distributed Deep Learning. In Proceedings
of the 51st International Conference on Parallel Processing (Bordeaux, France)
(ICPP °22). Association for Computing Machinery, New York, NY, USA, Article
19, 11 pages. https://doi.org/10.1145/3545008.3545054

Brett K Beaulieu-Jones and Casey S Greene. 2017. Reproducibility of computa-
tional workflows is automated using continuous analysis. Nature biotechnology
35, 4 (2017), 342-346.

R. Shane Canon. 2020. The Role of Containers in Reproducibility. In Proceed-
ings of the 2020 2nd International Workshop on Containers and New Orchestration
Paradigms for Isolated Environments in HPC (CANOPIE-HPC). IEEE Computer Soci-
ety, Los Alamitos, CA, USA, 19-25. https://doi.org/10.1109/CANOPIEHPC51917.
2020.00008

Shreyas Cholia, Lindsey Heagy, Matthew Henderson, Drew Paine, Jon Hays,
Ludovico Bianchi, Devarshi Ghoshal, Fernando Pérez, and Lavanya Ramakr-
ishnan. 2020. Towards Interactive, Reproducible Analytics at Scale on HPC
Systems. In Proceedings of the 2020 IEEE/ACM HPC for Urgent Decision Making
(UrgentHPC). IEEE Computer Society, Los Alamitos, CA, USA, 47-54. https:
//doi.org/10.1109/UrgentHPC51945.2020.00011

Peter V Coveney, Derek Groen, and Alfons G Hoekstra. 2021. Reliability and
reproducibility in computational science: Implementing validation, verification
and uncertainty quantification in silico. Philosophical Transactions of the Royal
Society A 379, 2197 (2021), 20200409.

Paolo Di Tommaso, Maria Chatzou, Evan W Floden, Pablo Prieto Barja, Emilio
Palumbo, and Cedric Notredame. 2017. Nextflow enables reproducible computa-
tional workflows. Nature biotechnology 35, 4 (2017), 316-319.

William F Godoy, Norbert Podhorszki, Ruonan Wang, Chuck Atkins, Greg Eisen-
hauer, Junmin Gu, Philip Davis, Jong Choi, Kai Germaschewski, Kevin Huck,
et al. 2020. Adios 2: The adaptable input output system. a framework for high-
performance data management. SoftwareX 12 (2020), 100561.

Mikaila J Gossman, Bogdan Nicolae, Jon C Calhoun, Franck Cappello, and
Melissa C Smith. 2021. Towards aggregated asynchronous checkpointing. arXiv
preprint arXiv:2112.02289 (2021).

Bin Hu, Shane Canon, Emiley A Eloe-Fadrosh, Michal Babinski, Yuri Corilo, Karen
Davenport, William D Duncan, Kjiersten Fagnan, Mark Flynn, Brian Foster, et al.
2022. Challenges in bioinformatics workflows for processing microbiome omics
data at scale. Frontiers in Bioinformatics 1 (2022), 826370.

Ricky A. Kendall, Edoardo Apra, David E. Bernholdt, Eric J. Bylaska, Michel
Dupuis, George 1. Fann, Robert J. Harrison, Jialin Ju, Jeffrey A. Nichols, Jarek
Nieplocha, T.P. Straatsma, Theresa L. Windus, and Adrian T. Wong. 2000. High
performance computational chemistry: An overview of NWChem a distributed
parallel application. Computer Physics Communications 128, 1 (2000), 260-283.
Karol Kowalski, Raymond Bair, Nicholas P Bauman, Jeffery S Boschen, Eric J
Bylaska, Jeff Daily, Wibe A de Jong, Thom Dunning Jr, Niranjan Govind, Robert J
Harrison, et al. 2021. From NWChem to NWChemEx: Evolving with the compu-
tational chemistry landscape. Chemical reviews 121, 8 (2021), 4962-4998.

Kuan Li, Kang He, Stef Graillat, Hao Jiang, Tongxiang Gu, and Jie Liu. 2023.
Multi-level parallel multi-layer block reproducible summation algorithm. Parallel
Computing 115 (2023), 102996.

Avinash Maurya, Bogdan Nicolae, Ishan Guliani, and M. Mustafa Rafique. 2021.
CoSim: A Simulator for Co-Scheduling of Batch and on-Demand Jobs in HPC
Datacenters. In Proceedings of the IEEE/ACM 24th International Symposium on
Distributed Simulation and Real Time Applications (Prague, Czech Republic) (DS-
RT °20). IEEE Press, 167-174.

[16

[20

[21

[22

[23

[24

[26

[27

[29

[30

Avinash Maurya, M. Mustafa Rafique, Thierry Tonellot, Hussain J. AlSalem,
Franck Cappello, and Bogdan Nicolae. 2023. GPU-Enabled Asynchronous Multi-
Level Checkpoint Caching and Prefetching. In Proceedings of the 32nd Inter-
national Symposium on High-Performance Parallel and Distributed Computing
(Orlando, FL, USA) (HPDC °23). Association for Computing Machinery, New York,
NY, USA, 73-85. https://doi.org/10.1145/3588195.3592987

Adam Moody, Greg Bronevetsky, Kathryn Mohror, and Bronis R. de Supinski.
2010. Design, Modeling, and Evaluation of a Scalable Multi-Level Checkpoint-
ing System. In Proceedings of the 2010 ACM/IEEE International Conference for

High Performance Computing, Networking, Storage and Analysis (SC ’10). IEEE
Computer Society, USA, 1-11. https://doi.org/10.1109/SC.2010.18

Ingo Miiller, Andrea Arteaga, Torsten Hoefler, and Gustavo Alonso. 2018. Repro-
ducible Floating-Point Aggregation in RDBMSs. In Proceedings of the 2018 IEEE
34th International Conference on Data Engineering (ICDE). IEEE Computer Society,
Los Alamitos, CA, USA, 1049-1060. https://doi.org/10.1109/ICDE.2018.00098
Bogdan Nicolae, Adam Moody, Elsa Gonsiorowski, Kathryn Mohror, and Franck
Cappello. 2019. VeloC: Towards High Performance Adaptive Asynchronous
Checkpointing at Large Scale. In Proceedings of the 2019 IEEE International Paral-
lel and Distributed Processing Symposium (IPDPS). IEEE Computer Society, Los
Alamitos, CA, USA, 911-920. https://doi.org/10.1109/IPDPS.2019.00099

Bogdan Nicolae, Adam Moody, Greg Kosinovsky, Kathryn Mohror, and Franck
Cappello. 2021. VELOC: VEry Low Overhead Checkpointing in the Age of
Exascale. In Proceedings of the First International Symposium on Checkpointing
for Supercomputing (SuperCheck’21). Virtual Event.

Line Pouchard, Sterling Baldwin, Todd Elsethagen, Shantenu Jha, Bibi Raju, Eric
Stephan, Li Tang, and Kerstin Kleese Van Dam. 2019. Computational reproducibil-
ity of scientific workflows at extreme scales. The International Journal of High
Performance Computing Applications 33, 5 (2019), 763-776.

Srinivasan Ramesh, Mikhail Titov, Matteo Turilli, Shantenu Jha, and Allen Malony.
2022. The Ghost of Performance Reproducibility Past. In Proceedings of the 2022
IEEE 18th International Conference on e-Science (e-Science). IEEE Computer Society,
Los Alamitos, CA, USA, 513-518. https://doi.org/10.1109/eScience55777.2022.
00091

Robert Ross, Lee Ward, Philip Carns, Gary Grider, Scott Klasky, Quincey Koziol,
Glenn K. Lockwood, Kathryn Mohror, Bradley Settlemyer, and Matthew Wolf.
2018. Storage Systems and Input/Output: Organizing, Storing, and Accessing Data
for Scientific Discovery. Report for the DOE ASCR Workshop on Storage Systems
and I/O. [Full Workshop Report]. Technical Report DOE/SC-0196. US Department
of Energy. Conference: Storage Systems and I/O: Organizing, Storing, and
Accessing Data for Scientific Discovery, Gaithersburg, MD, 19-20 Sep 2018.
Michael W. Schmidt, Kim K. Baldridge, Jerry A. Boatz, Steven T. Elbert, Mark S.
Gordon, Jan H. Jensen, Shiro Koseki, Nikita Matsunaga, Kiet A. Nguyen, Shujun
Su, Theresa L. Windus, Michel Dupuis, and John A. Montgomery Jr. 1993. General
atomic and molecular electronic structure system. Journal of Computational
Chemistry 14, 11 (1993), 1347-1363.

Nigel Tan, Jakob Liittgau, Jack Marquez, Keita Teranishi, Nicolas Morales, San-
jukta Bhowmick, Franck Cappello, Michela Taufer, and Bogdan Nicolae. 2023.
Scalable Incremental Checkpointing using GPU-Accelerated De-Duplication. In
Proceedings of the 52nd International Conference on Parallel Processing, ICPP 2023,
Salt Lake City, UT, USA, August 7-10, 2023. ACM, 665-674. https://doi.org/10.
1145/3605573.3605639

Krishna Tiwari, Sarubini Kananathan, Matthew G Roberts, Johannes P Meyer,
Mohammad Umer Sharif Shohan, Ashley Xavier, Matthieu Maire, Ahmad Zyoud,
Jinghao Men, Szeyi Ng, et al. 2021. Reproducibility in systems biology modelling.
Molecular systems biology 17, 2 (2021), €9982.

Alexandru Uta, Alexandru Custura, Dmitry Duplyakin, Ivo Jimenez, Jan Reller-
meyer, Carlos Maltzahn, Robert Ricci, and Alexandru Iosup. 2020. Is Big Data
Performance Reproducible in Modern Cloud Networks?. In Proceedings of the
17th Usenix Conference on Networked Systems Design and Implementation (Santa
Clara, CA, USA) (NSDI’20). USENIX Association, USA, 513-528.

Daan MF Van Aalten, Concetta C DiRusso, and Jens Knudsen. 2001. The structural
basis of acyl coenzyme A-dependent regulation of the transcription factor FadR.
The EMBO journal 20, 8 (2001), 2041-2050.

Hubertus JJ van Dam. [n. d.]. Ethanol Test Case. https://github.com/hjjvandam/
nwchem-1/tree/pretauadio2/QA/tests/ethanol. Accessed: 2023-08-18.

Hubertus JJ van Dam, Abhinav Vishnu, and Wibe A De Jong. 2013. A case for soft
error detection and correction in computational chemistry. Journal of Chemical
Theory and Computation 9, 9 (2013), 3995-4005.

https://doi.org/10.1145/3545008.3545054
https://doi.org/10.1109/CANOPIEHPC51917.2020.00008
https://doi.org/10.1109/CANOPIEHPC51917.2020.00008
https://doi.org/10.1109/UrgentHPC51945.2020.00011
https://doi.org/10.1109/UrgentHPC51945.2020.00011
https://doi.org/10.1145/3588195.3592987
https://doi.org/10.1109/SC.2010.18
https://doi.org/10.1109/ICDE.2018.00098
https://doi.org/10.1109/IPDPS.2019.00099
https://doi.org/10.1109/eScience55777.2022.00091
https://doi.org/10.1109/eScience55777.2022.00091
https://doi.org/10.1145/3605573.3605639
https://doi.org/10.1145/3605573.3605639
https://github.com/hjjvandam/nwchem-1/tree/pretauadio2/QA/tests/ethanol
https://github.com/hjjvandam/nwchem-1/tree/pretauadio2/QA/tests/ethanol

	Abstract
	1 Introduction
	2 Use Case: Molecular Dynamics with NWChem
	3 Proposal: Reproducibility Framework using Checkpoint History Analytics
	3.1 Design Principles
	3.2 Implementation

	4 Preliminary Evaluation
	4.1 Setup
	4.2 Workflows
	4.3 Compared Approaches
	4.4 Results

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

