
Accelerating Performance of GPU-based Workloads Using CXL
Moiz Arif

Rochester Institute of Technology
Rochester, NY, USA
ma3890@cs.rit.edu

Avinash Maurya
Rochester Institute of Technology

Rochester, NY, USA
am6429@cs.rit.edu

M. Mustafa Rafique
Rochester Institute of Technology

Rochester, NY, USA
mrafique@cs.rit.edu

ABSTRACT
High-performance computing (HPC) workloads such as scientific
simulations and deep learning (DL) running across multi-GPU sys-
tems are memory and data-intensive, relying on the main memory
to complement its limited onboard high-bandwidth memory (HBM).
To facilitate faster data transfer across the slow device-to-host PCIe
interconnects, these workloads typically pin memory on the host
system, thereby creating a memory capacity limitation on the host
memory for workloads running on peer GPUs of the same node.
Compute express link (CXL) is an emerging technology that trans-
parently extends the available system memory capacity at low la-
tency and high throughput in a cache-coherent fashion. While this
can be leveraged by workloads running across multi-GPU nodes
to allocate and pin more memory, using conventional memory al-
location schemes can adversely impact the data throughput due
to contention on the CXL memory. To this end, we highlight the
challenges related to conventional job scheduling and memory al-
location on such CXL-enabled multi-GPU systems and propose an
algorithm tomitigate the contention on the CXLmemory, maximize
throughput and reduce the overall data transfer time. Our prelimi-
nary evaluation of our proposed memory allocation approach based
on simulations of a variety of job profiles and system configurations
demonstrates up to 65% lower data transfer overheads as compared
to the existing memory allocation approaches.

CCS CONCEPTS
• Hardware→ Emerging architectures; Emerging interfaces;
• Software and its engineering→ Allocation / deallocation
strategies; • Computer systems organization→ Heterogeneous
(hybrid) systems.

KEYWORDS
Memory allocation; multi-GPU systems; tiered memory; Compute
Express Link (CXL); pinned memory
ACM Reference Format:
Moiz Arif, Avinash Maurya, and M. Mustafa Rafique. 2023. Accelerating
Performance of GPU-based Workloads Using CXL. In Proceedings of the 13th
Workshop on AI and Scientific Computing at Scale using Flexible Computing
Infrastructures (FlexScience’23), June 20, 2023, Orlando, FL, USA. ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/3589013.3596678

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FlexScience’23, June 20, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0166-5/23/06. . . $15.00
https://doi.org/10.1145/3589013.3596678

1 INTRODUCTION
The exponential amount of data to be processed by HPC systems
across various disciplines of industry, research, and academics com-
pels HPC datacenters to leverage emerging hardware technologies
such as GPUs, DPUs, and FPGAs, to accelerate processing. Unsur-
prisingly, running HPC workloads on such accelerators shifts them
from being compute-bound to becoming memory and data-bound.
Such accelerator-based HPC workloads are typically characterized
by their memory, data, and data-intensive nature and often involve
large-scale simulations, complex computations, and massive data
processing, generating and manipulating huge amounts of interme-
diate and output data. These workloads require fast and efficient
memory and data operations to read andwrite data from/tomemory
and storage systems, as well as to exchange data between devices or
servers in a distributed computing environment. Therefore, efficient
data management, storage, and data operations are the key factors
to achieve high performance and scalability of HPC workloads.

GPU-based HPC workloads face limitations in terms of mem-
ory capacity and memory bandwidth due to the limited onboard
HBM [15]. Particularly, workloads such as adjoint computations
(e.g., Reverse Time Migration and Quantum Optimal Control), DL,
and other scientific simulations involve iterative read/writes of ter-
abytes of data for storing intermediate results, supporting in-situ
analytics, and collaborative processing. Given the limited HBM
capacity, the GPU is forced to perform frequent data read/writes to
the main memory. Furthermore, to facilitate faster transfer across
the GPUHBM and host memory using direct memory access (DMA)
and enable compute-transfer overlap, the GPU pins memory on
the main memory. On multi-GPU setups, however, such pinning
limits the amount of main memory available to other GPUs in the
system, which leads to significant data transfer overheads and even
job failures if the required amount of memory cannot be pinned
before launching the computations.

CXL [10] is an emerging high-speed interconnect memory tech-
nology that provides an effective means to solve the challenges of
limited memory capacity and bandwidth, and memory stranding.
It is gaining rapid traction in both HPC and cloud computing be-
cause of its features such as byte-addressability, cache coherency,
low latency, and unified access. Based on the encouraging results
demonstrated by the previous and next-generation CXL protocols
and prototypes [2, 13], the HPC community is actively investigating
its applicability and support on multi-GPU setups for higher mem-
ory capacity and throughput. To this end, the CXL memory can
mitigate, if not eliminate the challenge of limited available memory
to pin multiple GPUs memory as required by the workloads.

While the available system memory for a multi-GPU system is
extended by the CXL memory, allowing the underlying OS and/or
GPU drivers to pin memory independent of other workloads may
lead to suboptimal memory allocations. Such inefficient memory

https://doi.org/10.1145/3589013.3596678
https://doi.org/10.1145/3589013.3596678

FlexScience’23, June 20, 2023, Orlando, FL, USA Moiz Arif, Avinash Maurya, and M. Mustafa Rafique

mappings can adversely impact the data movement of an appli-
cation, leading to lower memory throughput and bandwidth uti-
lization, and increased application execution times. In this paper,
we explore the design of a CXL-enabled multi-GPU system and
highlight the challenges related to pinning memory on such CXL
extensions. To the best of our knowledge, we are the first to study the
impact of CXL memory and contention for workload on multi-GPU
systems. Specifically, we make the following contributions:

(1) Propose a reference architecture for enabling CXL memory
extension in Nvidia’s DGX-A100 system (§ 3).

(2) Highlight the performance bottlenecks of default memory
allocation on CXL-enabled systems when running multiple
jobs on a single multi-GPU system (§ 3.2).

(3) Propose a schedule-aware memory allocation approach that
incorporates the memory requirement on each socket of a
multi-GPU system and provides an efficient memory place-
ment map to mitigate memory contention (§ 3.4).

(4) Evaluate our approach using diverse job profiles and system
configurations. Our simulations show up to 65% lower data
transfer times using our approach as compared to the default
memory allocation approaches (§ 4).

2 RELATED WORK
Memory Management Approaches for Tiered Memory: Ef-
forts, such as TPP [11], propose a transparent page placement mech-
anism for CXL-enabled memory to move pages across memory tiers
based on the hotness/coldness of pages. Similarly, Radient [8] pro-
poses a page table management technique that applies efficient page
placement policies and dynamically manages the pages between
main memory and NVMe. HotBox [4], which is a disaggregated
memory management subsystem, maximizes the local memory hit
rate with low memory management overhead. However, none of
the tiered memory management approaches consider the case of
pinned memory allocated on CXL-enabled multi-GPU setups.
Memory Disaggregation with CXL: Recently, CXL has been uti-
lized to implement disaggregated memory systems [6, 7, 9] that
enable accessing terabytes of memory over the CXL interface with
low overhead. Several research efforts [1, 2] have utilized CXL-
based memory to improve the performance of workloads by lever-
aging it as a memory expansion device and source of additional
memory bandwidth. Similarly, CMS [13] improves the performance
of memory-intensive applications by exploiting CXL interconnect
to expand the memory capacity and uses a near-data processing
approach to maximize the internal bandwidth. Nonetheless, the
bandwidth bottleneck of CXL memory connected over PCIe lanes
has not been studied yet.

3 CXL-ENABLED MULTI-GPU SYSTEM DESIGN
In this section, we discuss the high-level system architecture, con-
straints, and assumptions used in this paper. We propose an al-
gorithm that leverages heuristics from the job scheduler, system
configuration, and statistics to generate efficient memory placement
maps for main and CXL memory on multi-GPU systems.

3.1 System Architecture
In this paper, we envision a reference CXL-enabled multi-GPU sys-
tem architecture as shown in Figure 1. We extend this architecture

G0 G1 G2 G3 G4 G5 G6 G7

Socket 0 DRAM Socket 1 DRAM

GPUs
PCIe switch

Socket-0 CXL memory Socket-1 CXL memory

Infinity fabric PCIe interconnect

Figure 1: CXL-enabled multi-GPU system architecture.

from the Nvidia DGX-A100 system, which consists of 8 GPUs dis-
tributed evenly across the two sockets. Using PCIe switches, a pair
of GPUs share the available PCIe bandwidth to connect with the
main and CXL memory. All PCIe links are composed of ×16 lanes
each. GPUs are interconnected to each other using a hybrid mesh-
cube topology using NVLinks and NVSwitches (which we omit
from this figure for simplicity). Next, we mount a CXL memory
on each socket using a dedicated PCIe link (×16 lanes) to expand
the capacity of the main memory. Although the processors in the
DGX-A100 system can support up to 128 PCIe lanes, we map a lim-
ited number of lanes to each CXL device since most commercially
available CXL expansion cards are based on PCIe ×8 configuration.
Similarly, multiple CXL cards can be attached to the system PCIe in-
terface. Therefore, when all GPUs are actively reading/writing data
to/from the CXL memory of a single socket, the bandwidth of the
CXL memory gets evenly distributed across all the 8 GPUs, thereby
creating contention on the PCIe interconnect of the CXL mem-
ory. Implementing our design involves a combination of user and
kernel-level code to ensure efficiency and maximize performance.

3.2 Bandwidth Contention on CXL Memory
Figure 1 shows each job with different color codes mapped to respec-
tive GPUs. We consider each of the GPUs mapped to 6 different jobs,
such that the job to GPU mapping looks as follows: 𝐽1 : ⟨𝐺0⟩; 𝐽2 :
⟨𝐺1,𝐺2,𝐺3⟩; 𝐽3 : ⟨𝐺4⟩; 𝐽4 : ⟨𝐺5⟩; 𝐽5 : ⟨𝐺6⟩; 𝐽6 : ⟨𝐺7⟩. Since the
CXL device is used for memory expansion, the operating system
considers it a logical extension of the local memory and extends
the physical memory address space to append the CXL memory
addresses at the end of the main memory address. With such a
design, the initial memory allocations are made from the main
memory, and after completely exhausting the main memory, fur-
ther allocations are mapped to the CXL memory. We exemplify this
in Figure 1, where we observe that the jobs which started sooner
(𝐽1 : ⟨𝐺0⟩: color-coded orange) allocate and pins the required mem-
ory from the main memory (consumed 90%), compelling the later
jobs (𝐽2 : ⟨𝐺1,𝐺2,𝐺3⟩) to allocate memory from the CXL memory.
In such scenarios, although we see an added memory capacity with
the CXL device, the data read/write throughput for the job 𝐽2 run-
ning on𝐺1,𝐺2, and𝐺3 gets negatively impacted by the contention
on the ×8 lane PCIe interface of the CXL device. Assuming that
all GPUs (𝐺0 − 𝐺3) need to transfer data in parallel to the host,
such memory allocation would allow 𝐺0 to utilize all the DRAM
bandwidth, while ⟨𝐺1,𝐺2,𝐺3⟩ compete to access their respective
data on 𝑠𝑜𝑐𝑘𝑒𝑡 − 0 CXL memory.

Accelerating Performance of GPU-based Workloads Using CXL FlexScience’23, June 20, 2023, Orlando, FL, USA

3.3 Design Goals and System Constraints
Our goal is to design an efficient schedule for memory allocation
across the main and CXL memory tiers on a CXL-enabled multi-
GPU setup, such that the overall time spent in data movement
between GPU and host memory is minimized. The performance
and efficiency of production HPC jobs are impacted by several
constraints, including memory, compute resources, time, data, and
software. Addressing these constraints requires both hardware and
software-level optimizations, such as adjustments to the scheduler
and other system components to ensure job constraints are satisfied.
The design of our system is subject to the following constraints:
• Jobs will be scheduled based on the availability of com-
pute resources [5]: The scheduled jobs are sent for execu-
tion as compute resources (GPUs and/or CPUs) become avail-
able regardless of the memory availability and contention
on the memory and CXL interfaces.
• Uncoordinated data movement [14]: All running jobs
transfer data with the assumption that the entire transfer
bandwidth is available without performing any contention
control. Similarly, the Linux kernel and the memory con-
troller will utilize basic contention control mechanisms, e.g.,
fair-share and first-come-first-serve, to ensure fairness.
• CXL device for memory expansion [2]: The CXL mem-
ory provides additional byte-addressable memory and band-
width to cache-coherently support the main memory.

Several HPC systems support specifying job requirements to en-
sure proper execution and optimal performance. Additionally, since
HPC clusters are typically heterogeneous in nature [3], it is crucial
to meet job requirements to ensure deterministic performance. To
incorporate these requirements of real-world applications, we make
the following assumptions in this paper:
• The job queue always contains a batch of jobs such that they
can consume all available GPUs on the system.
• The memory required by each job is pinned during appli-
cation initialization to achieve higher transfer rates using
DMA and cannot be resized until the job completes.
• All jobs specify unique memory requirements and the mem-
ory footprint remains constant throughout the execution [16].
• All jobs are memory bound and each job performs contin-
uous reads/writes to/from the data residing on the main
memory and CXL memory tiers.
• The CXL device has a large enough capacity to support the
memory requirements of active and scheduled jobs.

3.4 Schedule Aware Data Allocation Approach
We propose a memory placement approach that leverages the tiered
memory and the optimal memory source to maximize the data
transfer rate and reduces the total execution time. Our proposed
approach is shown in Algorithm 1. We consider a series of batch
jobs 𝐽 enqueued on the scheduler ready for execution. The job
configuration enlists the number of GPUs required and the total
memory footprint which is either known in advance or can be
estimated using predictors [12]. Additionally, the system-level sta-
tistics, such as the amount of available memory per tier and data
movement bandwidth, are provided to the scheduler using resource
monitoring tools, micro-benchmarks, and node specifications.

Algorithm 1: Our proposed memory allocation approach.
Input :𝑁 : # sockets per node, 𝐽 : list of jobs containing tuples

⟨ 𝑗_𝑖𝑑, 𝑡𝑜𝑡𝑎𝑙_𝑚𝑒𝑚,𝑛_𝑔𝑝𝑢𝑠 ⟩,𝐺 : list of vacant GPUs IDs,
𝐷 : List of DRAM memory available per socket,𝐶 : List of
CXL memory available per socket, 𝐵𝑊𝐷 : DRAM
bandwidth per socket, 𝐵𝑊𝑃 : PCIe bandwidth, 𝐵𝑊𝐶 : CXL
bandwidth

Output :𝑆 : Amount of main and CXL memory to be allocated
1 begin
2 𝑆 ← [𝑗 ∈ 𝐽 if 𝑗 [𝑛_𝑔𝑝𝑢𝑠] < 𝑎𝑣𝑎𝑖𝑙_𝑔𝑝𝑢𝑠]
3 for 𝑗 ∈ 𝑆 do
4 𝑗 [𝑔𝑝𝑢𝑠] ← 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒_𝑔𝑝𝑢𝑠 (𝐺, 𝑗 [𝑛_𝑔𝑝𝑢𝑠])
5 𝑗 [𝑚𝑝𝑔] ← 𝑗 [𝑡𝑜𝑡𝑎𝑙_𝑚𝑒𝑚]/𝑗 [𝑛_𝑔𝑝𝑢𝑠] // req_mem/GPU

6 for 𝑗 ∈ 𝑆 do
7 for 𝑔 ∈ 𝑗 [𝑔𝑝𝑢𝑠] do
8 𝑠𝑝𝑖𝑙𝑙 ← 𝑐𝑎𝑙𝑐_𝑠𝑝𝑖𝑙𝑙 (𝑗, 𝑁 , 𝑠𝑜𝑐𝑘𝑒𝑡 (𝑔), 𝐷,𝐶)
9 𝑐𝑥𝑙_𝑝𝑢𝑙𝑙 ← 𝑐𝑎𝑙𝑐_𝑐𝑥𝑙 (𝑠𝑝𝑖𝑙𝑙,𝐶, 𝐵𝑊𝐷 , 𝐵𝑊𝑃 , 𝐵𝑊𝐶)

10 𝑜𝑛_𝑐𝑥𝑙 ←𝑚𝑖𝑛 (𝑐𝑥𝑙_𝑝𝑢𝑙𝑙, 𝑗 [𝑚𝑝𝑔])
11 𝑜𝑛_𝑑𝑟𝑎𝑚 ←𝑚𝑖𝑛 (𝑗 [𝑚𝑝𝑔] − 𝑜𝑛_𝑐𝑥𝑙, 𝐷 [𝑠𝑜𝑐𝑘𝑒𝑡 (𝑔)])
12 𝑗 [‘𝑑𝑟𝑎𝑚‘] [𝑠𝑜𝑐𝑘𝑒𝑡 (𝑔)]+ = 𝑜𝑛_𝑑𝑟𝑎𝑚
13 𝑗 [‘𝑐𝑥𝑙 ‘] [𝑠𝑜𝑐𝑘𝑒𝑡 (𝑔)]+ = 𝑜𝑛_𝑐𝑥𝑙
14 𝐷 [𝑠𝑜𝑐𝑘𝑒𝑡 (𝑔)]− = 𝑜𝑛_𝑑𝑟𝑎𝑚
15 𝐶 [𝑠𝑜𝑐𝑘𝑒𝑡 (𝑔)]− = 𝑜𝑛_𝑐𝑥𝑙

16 return 𝑆

Our proposed algorithm, listed in Algorithm 1 works as follows:
select a list of jobs 𝑆 for execution on the available GPU resources
(Lines 2-5). Next, the scheduler determines the excess amount of
memory required by each GPU, referred to as spill based on the
scheduled jobs and available memory on the CXL and DRAM cache
tiers (Line 8). The calc_spill function computes the fraction of
DRAM memory requested by the GPU 𝑔 of job 𝑗 which exceeds
the DRAM capacity when all the scheduled jobs on 𝑠𝑜𝑐𝑘𝑒𝑡 (𝑔) are
allocated fair proportions of the DRAM memory. Based on the spill,
CXL memory available on that socket, and bandwidth of DRAM,
PCIe, and CXL, respectively, the routine calc_cxl computes the
amount of memory that can be efficiently allocated on the CXL
device, such that none of the jobs scheduled on the peer-GPUs face
DRAM starvation (Line 9-10). Once the efficient memory allocations
are computed, they are mapped to the job 𝑗 , and deducted from
the available DRAM (𝐷) and CXL (𝐶) memory for the next set of
jobs (Line 12-15). Finally, the algorithm outputs an efficient multi-
tier memory allocation plan for the scheduled 𝑆 jobs.

4 PRELIMINARY EVALUATIONS
In this section, we describe our evaluation methodology, perfor-
mance metrics, and performance results of our proposed approach.

4.1 Evaluation Methodology
4.1.1 Simulation and Traces. We evaluate our proposed schedule-
aware CXL memory placement approach for different hardware
and workload profiles. To mimic the workload scheduling similar
to HPC data centers, we develop a simulation model, written in
Python with about 400 lines of code, which enables us to evaluate
our proposed approach with various configurations. In addition to
running our proposed memory allocation approach, the simulation

FlexScience’23, June 20, 2023, Orlando, FL, USA Moiz Arif, Avinash Maurya, and M. Mustafa Rafique

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200
 1300

16 32 64 96 128 256

D
a

ta
 T

ra
n

s
fe

r
T

im
e

 (
m

in
s
)

DRAM memory per socket (GB)

Naive
Uniform
Our Approach

(a) Increasing memory capacity

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200

6 12 24 36 48 96

D
a

ta
 T

ra
n

s
fe

r
T

im
e

 (
m

in
s
)

PCIe bandwidth available per GPU (GB/s)

Naive
Uniform
Our Approach

(b) Variable PCIe bandwidth

 0

 50

 100

 150

 200

 250

 300

 350

40 30 20 10 5 0

D
a

ta
 T

ra
n

s
fe

r
T

im
e

 (
m

in
s
)

CXL penalty (% of PCIe un-utilized)

Naive
Uniform
Our Approach

(c) Varying degrees of CXL penalty

Figure 2: Data transfer time for varying memory capacity, PCIe bandwidth per GPU, and CXL penalties.
also generates synthetic job traces to run across 100 CXL-enabled
multi-GPU nodes. The simulation is performed on Ubuntu 22.04 LTS
server operating system with two 2.40 GHz Intel Xeon Gold 6240R
processors, with 192 GB main memory. Each job consumes 1 to 8
GPUs and runs either on a single socket or both sockets depending
on the requested GPUs which are allocated evenly across sockets.

4.1.2 Simulation Testbed. We simulate a series of different testbed
profiles using the aforementioned simulation. We vary the profiles
of the testbed starting from the default configuration of the Nvidia
DGX-A100 machine, with the exception of considering 64 GB mem-
ory available per socket instead of the default 512 GB. Multiple
GPUs are connected to the host system using PCIe Gen 4.0 as per
the topology shown in Figure 1. The observed idle memory access
latency is approximately 130 𝑛s.

4.1.3 Compared Approaches. We compare three approaches for
pinned memory allocation on CXL-enabled multi-GPU devices:

• Naive: This is the default approach adopted for memory
allocation where the system starts allocating memory from
the main memory followed by the CXL memory tier. In this
approach, jobs that get scheduled first end up consuming all
the available main memory, forcing the later jobs to allocate
memory from the CXL device.
• Uniform: In this approach, the scheduler uniformly dis-
tributes the available main memory across all GPUs. This
approach ensures equal main memory allocation to all jobs.
• Our Approach: This approach is detailed in § 3.4.

4.2 Performance Results
We evaluate the performance of various compared approaches by
measuring the total amount of time taken by the job to perform
data transfer across the main and CXL memory allocations. In our
evaluations, GPUs access data concurrently to the host memory
tiers, as observed in GPU-bound HPC and DL applications. We
measure the data transfer time for an increasing amount of main
memory available per socket, varying PCIe bandwidth available,
and varying degrees of CXL penalty.

4.2.1 Increasing Available Main Memory per Socket. Our first set
of experiments evaluates the data transfer times for an increasing
main memory capacity. As observed in Figure 2a, our approach
yields faster data transfer times with increasing capacity. This is
because with increased main memory capacity our approach can
perform better memory placement and load distribution across
both main and CXL memory. For varying job profiles, our approach
demonstrates a reduction in data transfer overheads from 15.4% to
61.2% as compared to the naive memory allocation approach.

4.2.2 Varying PCIe Bandwidth. Our next set of experiments mea-
sures the data transfer overheads of varying amounts of PCIe band-
width available for both the GPUs and the CXL memory. This exper-
iment studies the impact of various PCIe generations (starting from
PCIe 3.0). As shown in Figure 2b, our approach performs 65.35%
and 21.3% better on average as compared to the naive and uniform
allocation-based allocation approaches, respectively. We note that
the bandwidth reported on the x-axis is the actual share of PCIe
bandwidth available to each GPU when two GPUs share a single
PCIe bus using the PCIe switch. In real-world testbeds, we achieve
only ∼75% of the theoretical transfer throughput from the GPU to
the host memory. We use this to estimate the PCIe bandwidth of
the next-generation PCIe protocols.
4.2.3 Varying Degrees of CXL Penalty. As specified in the CXL 3.0
specification, the CXL protocol is currently capable of achieving
only 60%-90% of actual PCIe bandwidth, which we refer to as the
CXL penalty. Therefore, in our last set of experiments, we evalu-
ate the data transfer times for the compared memory allocation
approaches for different degrees of CXL penalties. As observed
in Figure 2c, our approach demonstrates 17.7% to 67% lower data
transfer overheads as compared to the naive and uniform memory
allocation policies.

Our evaluations show that while CXL has promising benefits in
terms of main memory expansion, increased data transfer through-
put, and low latency, the limited PCIe bandwidth connecting these
CXL devices can become a bottleneck when the memory allocations
on multi-GPU systems are done using the default schedulers.

5 CONCLUSION
GPU-based HPC workloads are data intensive and process large
amounts of data during execution. The performance of such work-
loads is often limited by the amount of onboard system memory
and the contention at shared memory resources, e.g., main memory,
and interconnects, e.g., PCIe. The CXL memory provides additional
memory capacity to workloads, however, the default memory allo-
cation approach is suboptimal for GPU-bound HPC workloads. In
this paper, we propose an efficient memory allocation approach that
leverages job schedules and additional memory tiers to mitigate
contention at the CXL memory tier and maximize the performance
of HPC workloads. Our preliminary evaluations show up to 65%
lower data transfer overheads as compared to the default memory
allocation approach. In the future, we plan to improve our memory
allocation to include dynamic memory resizing and intelligent data
movement between various memory tiers.

ACKNOWLEDGMENTS
This work is supported in part by the National Science Founda-
tion (NSF) under Awards No. 2106634/2106635.

Accelerating Performance of GPU-based Workloads Using CXL FlexScience’23, June 20, 2023, Orlando, FL, USA

REFERENCES
[1] Minseon Ahn, Andrew Chang, Donghun Lee, Jongmin Gim, Jungmin Kim, Jaemin

Jung, Oliver Rebholz, Vincent Pham, Krishna Malladi, and Yang Seok Ki. 2022.
Enabling CXLMemory Expansion for In-MemoryDatabaseManagement Systems.
In Data Management on New Hardware (Philadelphia, PA, USA) (DaMoN’22).
Association for Computing Machinery, New York, NY, USA, Article 8, 5 pages.
https://doi.org/10.1145/3533737.3535090

[2] Moiz Arif, Kevin Assogba, M. Mustafa Rafique, and Sudharshan Vazhkudai. 2023.
Exploiting CXL-Based Memory for Distributed Deep Learning. In Proceedings
of the 51st International Conference on Parallel Processing (Bordeaux, France)
(ICPP ’22). Association for Computing Machinery, New York, NY, USA, Article
19, 11 pages. https://doi.org/10.1145/3545008.3545054

[3] Moiz Arif, M. Mustafa Rafique, Seung-Hwan Lim, and Zaki Malik. 2020.
Infrastructure-Aware TensorFlow for Heterogeneous Datacenters. In 2020 28th
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS). IEEE, 1–8. https://doi.org/10.1109/
MASCOTS50786.2020.9285969

[4] Shai Bergman, Priyank Faldu, Boris Grot, Lluís Vilanova, and Mark Silberstein.
2022. Reconsidering OS Memory Optimizations in the Presence of Disaggregated
Memory. In Proceedings of the 2022 ACM SIGPLAN International Symposium
on Memory Management (San Diego, CA, USA) (ISMM 2022). Association for
Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/
3520263.3534650

[5] Yuping Fan, Zhiling Lan, Paul Rich, William E. Allcock, Michael E. Papka, Brian
Austin, and David Paul. 2019. Scheduling Beyond CPUs for HPC. In Proceedings
of the 28th International Symposium on High-Performance Parallel and Distributed
Computing (Phoenix, AZ, USA) (HPDC ’19). Association for Computing Machin-
ery, New York, NY, USA, 97–108. https://doi.org/10.1145/3307681.3325401

[6] Donghyun Gouk, Miryeong Kwon, Hanyeoreum Bae, Sangwon Lee, and My-
oungsoo Jung. 2023. Memory Pooling With CXL. IEEE Micro 43, 2 (2023), 48–57.
https://doi.org/10.1109/MM.2023.3237491

[7] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo Jung. 2022.
Direct Access, High-Performance Memory Disaggregation with DirectCXL. In
2022 USENIX Annual Technical Conference (USENIX ATC 22). USENIX Association,
Carlsbad, CA, 287–294. https://www.usenix.org/conference/atc22/presentation/
gouk

[8] Sandeep Kumar, Aravinda Prasad, Smruti R. Sarangi, and Sreenivas Subramoney.
2021. Radiant: Efficient Page Table Management for Tiered Memory Systems. In
Proceedings of the 2021 ACM SIGPLAN International Symposium on Memory Man-
agement (Virtual, Canada) (ISMM 2021). Association for Computing Machinery,

New York, NY, USA, 66–79. https://doi.org/10.1145/3459898.3463907
[9] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti,

Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal,
Mark D. Hill, Marcus Fontoura, and Ricardo Bianchini. 2023. Pond: CXL-
Based Memory Pooling Systems for Cloud Platforms. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS
2023). Association for Computing Machinery, New York, NY, USA, 574–587.
https://doi.org/10.1145/3575693.3578835

[10] Compute Express Link. 2023. The Breakthrough CPU-to-Device Interconnect
CXL. Retrieved May 6, 2023 from https://www.computeexpresslink.org/

[11] HasanAlMaruf, HaoWang, AbhishekDhanotia, JohannesWeiner, Niket Agarwal,
Pallab Bhattacharya, Chris Petersen, Mosharaf Chowdhury, Shobhit Kanaujia,
and Prakash Chauhan. 2023. TPP: Transparent Page Placement for CXL-Enabled
Tiered-Memory. In Proceedings of the 28th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, Volume 3
(Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing Machinery,
New York, NY, USA, 742–755. https://doi.org/10.1145/3582016.3582063

[12] Md Nahid Newaz and Md Atiqul Mollah. 2023. Memory Usage Prediction of HPC
Workloads Using Feature Engineering and Machine Learning. In Proceedings of
the International Conference on High Performance Computing in Asia-Pacific Region
(Singapore, Singapore) (HPC Asia ’23). Association for Computing Machinery,
New York, NY, USA, 64–74. https://doi.org/10.1145/3578178.3578241

[13] Joonseop Sim, Soohong Ahn, Taeyoung Ahn, Seungyong Lee, Myunghyun Rhee,
Jooyoung Kim, Kwangsik Shin, Donguk Moon, Euiseok Kim, and Kyoung Park.
2023. Computational CXL-Memory Solution for Accelerating Memory-Intensive
Applications. IEEE Computer Architecture Letters 22, 1 (2023), 5–8. https://doi.
org/10.1109/LCA.2022.3226482

[14] Abel Souza, Mohamad Rezaei, Erwin Laure, and Johan Tordsson. 2019. Hy-
brid Resource Management for HPC and Data Intensive Workloads. In 2019
19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID). IEEE, 399–409. https://doi.org/10.1109/CCGRID.2019.00054

[15] Maohua Zhu, Youwei Zhuo, Chao Wang, Wenguang Chen, and Yuan Xie. 2018.
Performance Evaluation and Optimization of HBM-Enabled GPU for Data-
Intensive Applications. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 26, 5 (2018), 831–840. https://doi.org/10.1109/TVLSI.2018.2791442

[16] Darko Zivanovic, Milan Pavlovic, Milan Radulovic, Hyunsung Shin, Jongpil
Son, Sally A. Mckee, Paul M. Carpenter, Petar Radojković, and Eduard Ayguadé.
2017. Main Memory in HPC: Do We Need More or Could We Live with Less?
ACM Trans. Archit. Code Optim. 14, 1, Article 3 (mar 2017), 26 pages. https:
//doi.org/10.1145/3023362

https://doi.org/10.1145/3533737.3535090
https://doi.org/10.1145/3545008.3545054
https://doi.org/10.1109/MASCOTS50786.2020.9285969
https://doi.org/10.1109/MASCOTS50786.2020.9285969
https://doi.org/10.1145/3520263.3534650
https://doi.org/10.1145/3520263.3534650
https://doi.org/10.1145/3307681.3325401
https://doi.org/10.1109/MM.2023.3237491
https://www.usenix.org/conference/atc22/presentation/gouk
https://www.usenix.org/conference/atc22/presentation/gouk
https://doi.org/10.1145/3459898.3463907
https://doi.org/10.1145/3575693.3578835
https://www.computeexpresslink.org/
https://doi.org/10.1145/3582016.3582063
https://doi.org/10.1145/3578178.3578241
https://doi.org/10.1109/LCA.2022.3226482
https://doi.org/10.1109/LCA.2022.3226482
https://doi.org/10.1109/CCGRID.2019.00054
https://doi.org/10.1109/TVLSI.2018.2791442
https://doi.org/10.1145/3023362
https://doi.org/10.1145/3023362

	Abstract
	1 Introduction
	2 Related Work
	3 CXL-enabled Multi-GPU System Design
	3.1 System Architecture
	3.2 Bandwidth Contention on CXL Memory
	3.3 Design Goals and System Constraints
	3.4 Schedule Aware Data Allocation Approach

	4 Preliminary Evaluations
	4.1 Evaluation Methodology
	4.2 Performance Results

	5 Conclusion
	Acknowledgments
	References

