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ABSTRACT
Deep learning models are extensively used in a wide range of do-
mains, e.g., scientific simulations, predictions, and modeling. How-
ever, training these dense networks is both compute and memory
intensive, and typically requires accelerators such as Graphics Pro-
cessing Units (GPUs). While such DNNworkloads consume a major
proportion of the limited onboard high-bandwidth memory (HBM),
they typically underutilize the GPU compute resources. In such
scenarios, the idle compute resources on the GPU can be leveraged
to run pending jobs that can either be (1) accommodated on the
remainder HBM, or (2) can share memory resources with other con-
current workloads. However, state-of-the-art workload schedulers
and DNN runtimes are not designed to leverage HBM co-location
to improve resource utilization and throughput. In this work, we
propose COLTI , which introduces a set of novel techniques to solve
the aforementioned challenges by co-locating DNN training and
inference on memory-constrained GPU devices. Our preliminary
evaluations of three different DNN models implemented in the Py-
Torch framework demonstrate up to 37% and 40% improvement in
makespan and memory utilization, respectively.
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1 INTRODUCTION
Deep learning (DL) based services and knowledge discovery are
accelerating a broad range of use cases, from businesses and com-
merce to research industry and defense systems. DNN with large
size (e.g. LLM, stable diffusion) has gained rapid traction from a
diverse set of audiences for personal and professional assistance.
However, such DL models are compelled to undergo continuous
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Figure 1: Comparison of GPU HBM occupancy and compute
resource occupancy scenarios.

training processes to learn from the complex data patterns of differ-
ent users and/or applications. Additionally, these models often have
to serve inference requests at a rate high enough to saturate the
system resources. While accelerators, such as GPUs, are imperative
to run DL training and inference workloads due to their embarrass-
ingly parallel SIMT architecture, even when the compute resources
are underutilized, the limited onboard GPU HBM restricts the num-
ber of jobs that can be run concurrently for improving utilization
of expensive resources.

In scenarios where multiple training and inference jobs are en-
queued in the job scheduler, as shown in Figure 1a, the scheduler
typically dispatches these jobs sequentially to the GPU or allows for
co-location only when the desired number of memory and compute
units are available on the GPU. However, from the characterization
of Alibaba traces [2], only 7% of GPUs have a utilization rate of more
than 95%. Another finding is that about 80% of high GPU utilizing
tasks, e.g., image processing and NLP tasks, use less than one GPU.
Based on these findings, it can be surmised that co-locating DL jobs
that have little to no impact on the I/O (host-to-device) and HBM
allocations of the existing jobs can lead to significant improvements
in system throughput and job completion times. However, such
co-location necessitates coordination between the job scheduler
and the DL workloads running on different GPUs to determine the
best candidate for co-location with minimal interference between
the co-located workloads.

This challenge of resource underutilization andmemory-compute
skew on GPU devices has been extensively studied in the past. A
commonly adopted approach is to use independent clusters for
inference and training. While this approach is simple and effective
in controlling service-level agreements (SLAs) of each workload, it
suffers from inadequate system throughput and unbalanced cluster
utilization during load spikes in training or inference jobs. Tech-
niques such as GSLICE [1] attempt to improve resource utilization
by co-locating multiple inference jobs by sharing a single DL model
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across multiple jobs. However, none of them contribute towards the
co-location of both training and inference workloads. To this end,
we study the system of sharing the DL model across both training
and inference workloads to improve system throughput and reduce
job completion times.

2 SYSTEM DESIGN
2.1 COLTI Architecture
To co-locate and run multiple DL training and inference jobs con-
currently, COLTI proposes the following set of modules:

• Model-aware Job Scheduler:We propose a specialized job
scheduler that records the meta-data pertaining to model
characteristics in addition to launch parameters. This design
enables us to efficiently co-locate multiple jobs running on
the same model. As outlined in Figure 1b, the job queue
accepts a reference to the model ID, e.g.<1, which is being
utilized by each of the enqueued workloads.

• Inter-process CUDA Memory Sharing: The inter-process
communication (IPC) module of the CUDA runtime allows
for independent processes to share memory using the IPC
handles. We leverage this functionality to store the loca-
tion of different models loaded on the GPU HBM, thereby
allowing the co-located jobs to share models.

2.2 Implementation
We implement COLTI in PyTorch v1.13. We expose a single API
that can be invoked during model loading, to lookup the location
of the shared model. If a model is not found on any GPU HBM,
then it is loaded from the disk into the GPU, and its corresponding
CUDA IPC handle is cached for future jobs (that arrive before the
completion of the current job).

3 PRELIMINARY EVALUATION
3.1 Evaluation Setup
We evaluate our proposal on a single node with Nvidia GeForce
RTX 3060 GPU (12 GiB HBM). Our server contains a single-socket
Intel(R) Xeon(R) W-2145 CPU and 32 GiB DRAM, running a total
of 16 threads (hyper-threading enabled). We use Ubuntu 20.04.6
LTS, CUDA version 11.7, Python version 3.8, and the /dev/shm/
directory is used for caching model IPC handles.

3.2 Methodology
Throughout our evaluations, we compare our proposed COLTI
based DL model-sharing approach against the baseline, which is
representative of sequential scheduling when required memory is
not available, as observed in real-world scenarios. In our evaluation,
we use three popular DL models, i.e., Resnet50, Efficientnet-b0, and
SSD. For each of the aforementioned approaches and models, we
measure the following:

(1) Makespan and throughput for varying number of processes.
(2) Memory utilization when two jobs are co-located and share

the same model.
(3) Accuracy of the training and inference workloads [shown

only in the poster due to limited space].

(a) Makespan for increasing num-
ber of processes

(b) Memory utilization for co-
located shared-model jobs

Figure 2: Makespan andmemory utilization normalized with
respect to the baseline approach. Lower is better.

3.3 Experimental Results
3.3.1 Makespan. Wemeasure the overall makespan of all enqueued
jobs in the scheduler. As observed in Figure 2a, for an increasing
number of jobs, the overall makespan using COLTI is between 22%
and 37% faster as compared to the baseline approach. Moreover,
for 16 jobs co-located on the same GPU, we observe a significantly
higher baseline makespan as compared to the case of 8 jobs, due to
which COLTI performs better for 16 jobs.

3.3.2 Memory Utilization. We evaluate the difference in the mem-
ory utilization of the GPU when a single inference job is co-located
with the already running training job. Figure 2b depicts the amount
of HBM savings achieved for different models, ranging from 17% to
40%. While we expect to observe a flat 50% memory saving since
both jobs use the same model, and the inference job typically has
negligible input size (as compared to the model), this is not the
case because PyTorch has an independent caching mechanism that
interferes with the expected memory savings.

4 CONCLUSION
We design and develop COLTI to co-locate model-sharing between
training and inference jobs to increase system throughput in GPU
memory-constrained environments. Our preliminary evaluations
yield up to 37% faster job completion time as compared to the
baseline approaches. Currently, our system is for a single GPU,
single node. In the future, we will extend COLTI to multi-GPU
settings. Current design should be applicable for distributed training
framework unless the model is distributed across nodes. How co-
location will affect the jobs individual performance (e.g. latency) is
another scope of future investigation.
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