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Abstract We propose a novel deep learning framework, named SYMHnet, which employs a graph neural
network and a bidirectional long short‐term memory network to cooperatively learn patterns from solar wind
and interplanetary magnetic field parameters for short‐term forecasts of the SYM‐H index based on 1‐ and 5‐
min resolution data. SYMHnet takes, as input, the time series of the parameters' values provided by NASA's
Space Science Data Coordinated Archive and predicts, as output, the SYM‐H index value at time point t + w
hours for a given time point t where w is 1 or 2. By incorporating Bayesian inference into the learning
framework, SYMHnet can quantify both aleatoric (data) uncertainty and epistemic (model) uncertainty when
predicting future SYM‐H indices. Experimental results show that SYMHnet works well at quiet time and storm
time, for both 1‐ and 5‐min resolution data. The results also show that SYMHnet generally performs better than
related machine learning methods. For example, SYMHnet achieves a forecast skill score (FSS) of 0.343
compared to the FSS of 0.074 of a recent gradient boosting machine (GBM) method when predicting SYM‐H
indices (1 hr in advance) in a large storm (SYM‐H= − 393 nT) using 5‐min resolution data. When predicting the
SYM‐H indices (2 hr in advance) in the large storm, SYMHnet achieves an FSS of 0.553 compared to the FSS of
0.087 of the GBM method. In addition, SYMHnet can provide results for both data and model uncertainty
quantification, whereas the related methods cannot.

Plain Language Summary In the past several years, machine learning and its subfield, deep
learning, have attracted considerable interest. Computer vision, natural language processing, and social network
analysis make extensive use of machine learning algorithms. Recent applications of these algorithms include the
prediction of solar flares and the forecasting of geomagnetic indices. In this paper, we propose an innovative
machine learning method that utilizes a graph neural network and a bidirectional long short‐term memory
network to cooperatively learn patterns from solar wind and interplanetary magnetic field parameters to provide
short‐term predictions of the SYM‐H index. In addition, we present techniques for quantifying both data and
model uncertainties in the output of the proposed method.

1. Introduction
Geomagnetic activities and events are known to have a substantial impact on the Earth. They can damage and
affect technological systems such as telecommunication networks, power transmission systems, and spacecraft
(Jordanova et al., 2020; Ayala Solares et al., 2016). These activities are massive and scale on orders of magnitude
(Newell et al., 2007). It may take a few days to recover from the damage, depending on its severity. These ac-
tivities and events cannot be ignored regardless of whether they are in regions at high, medium, or low latitudes
(Carter et al., 2016; Gaunt & Coetzee, 2007; Moldwin & Tsu, 2016; Tozzi et al., 2019; Viljanen et al., 2014).
Therefore, several activity indices have been developed to measure the intensity of the geomagnetic effects. These
indices characterize the magnitude of the disturbance over time. Modeling and forecasting these geomagnetic
indices have become a crucial area of study in space weather research.

Some indices, such as Kp, describe the overall level of geomagnetic activity while others, such as the disturbance
storm time (Dst) index (Woodroffe et al., 2016), describe a specific area of geomagnetic activity. The Dst index
has been used to classify a storm based on its intensity (Bala & Reiff, 2012; Gruet et al., 2018; Lazzús et al., 2017;
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Lu et al., 2016; Xu et al., 2023). The storm is intense when Dst is less than − 100 nT, moderate when Dst is
between − 100 and − 50 nT, and weak when Dst is greater than − 50 nT (Gruet et al., 2018; Nuraeni et al., 2022).
Another important index is the symmetric H‐component index (SYM‐H), which is used to represent the longi-
tudinally symmetric disturbance of the intensity of the ring current during geomagnetic storms. The SYM‐H index
is the 1‐min version of the DST index, obtained by data from more stations (Rangarajan, 1989; Siciliano
et al., 2021; Vichare et al., 2019; Wanliss & Showalter, 2006). On the other hand, ASY‐H (the asymmetric
geomagnetic disturbance of the horizontal component) is quantified as the longitudinally asymmetric part of the
geomagnetic disturbance field at low latitude to midlatitude. In addition, there are other indices that can be used to
measure the activity of the storm as described in Mayaud (1980).

A lot of efforts have been devoted to developing strategies to alleviate the geomagnetic effects on technologies and
humans, but it is almost impossible to offer complete protection from the effects (Siciliano et al., 2021). Some of
these strategies are to predict the occurrence and intensity of geomagnetic storms to offer some level of mitigation
of their damaging effects. For example, Burton et al. (1975) established an empirical connection between inter-
planetary circumstances and Dst using a linear forecasting model. Temerin and Li (2002) developed an explicit
model to predict Dst on the basis of solar wind data for the years 1995–1999, by finding functions and values of free
parameters that minimize the root square error (RMS error) between their model and the measured Dst. Wang
et al. (2003) used differential equationmodels to examine the effect of the dynamic pressure of the solarwind on the
decay and injection of the ring current.Yurchyshyn et al. (2004) proposed that the hourly averagedmagnitude of the
Bz component of the magnetic field in interplanetary ejecta is correlated with the speed of the CME, which may
open a way to predict the Dst index using CME parameters. Ayala Solares et al. (2016) performed predictions of
global magnetic disturbance in near‐Earth space in a case study for the Kp index using Nonlinear AutoRegressive
with eXogenous (NARX) models. Due to the intrinsic complex response of the circumterrestrial environment to
changes in the interplanetarymedium, these simplemodelswere unable to properly and fully depict the evolution of
the solar wind‐magnetosphere‐ionosphere system (Consolini & Chang, 2001; Klimas et al., 1996; Siciliano
et al., 2021). To surpass the limitations of simple models and acquire the complex response of the magnetosphere,
researchers resorted to more advanced models such as artificial neural networks (ANNs).

The use ofANNs focused on the prediction of theDst andKp indices. Gleisner et al. (1996) constructed the first Dst
prediction model employing a time‐delay ANNwith solar wind parameters as input variables. Lazzús et al. (2017)
created a particle swarm optimization method to train ANN connection weights to improve the accuracy of the
prediction of the Dst index. Bala and Reiff (2012) combined ANNs and physical models with solar wind and
interplanetary magnetic field parameters such as velocity, interplanetary magnetic field (IMF) magnitude, and
clock angle. Chandorkar et al. (2017) used Gaussian processes (GP) to build an autoregressive model to predict the
Dst index 1 hr in advance based on the past solar wind velocity, the IMF component Bz, and the values of the Dst
index. This method generated a predictive distribution rather than a single prediction point. However, the mean
values of the estimations are not as accurate as those generated by ANNs. Gruet et al. (2018) overcame the poor
performance of GP and constructed a Dst index estimation model by merging GP with a long short‐term memory
(LSTM) network to obtain more accurate results. More recently, Xu et al. (2023) developed a new GP regression
model that performed better than related distance correlation learning methods (Lu et al., 2016) in forecasting the
Dst index during intense geomagnetic storms. Rastätter et al. (2013) compared the effectiveness of 30 Dst forecast
models and found that none of the models performed consistently the best for all events.

Relatively few researchers have focused on the prediction of SYM‐H. This happens probably because of the high
temporal resolution of 1 min for the SYM‐H index, which gives rise to a more difficult problem in estimating
SYM‐H due to its highly oscillating nature (Siciliano et al., 2021). However, some SYM‐H index prediction
techniques have been reported in the literature. Cai et al. (2010) presented the first 5‐min average estimates of the
SYM‐H index throughout large storms between 1998 and 2006 using a NARX neural network with IMF and solar
wind data. Bhaskar and Vichare (2019) predicted both the SYM‐H and ASY‐H indices for solar cycle 24 by
employing the NARX neural network in a similar way. Both Bhaskar and Vichare (2019) and Cai et al. (2010)
used the IMF magnitude (B), By, and Bz components, as well as the density and velocity of the solar wind as input
data for their models. Siciliano et al. (2021) provided a comprehensive examination of two well‐known deep
learning models, namely long short‐term memory (LSTM) and a convolutional neural network (CNN), with an
average temporal resolution of 5 min for the estimation of SYM‐H index values (1 hr in advance). The authors
used the IMF component Bz, squared values of the magnitude of the IMF B and the By component, measured at L1
by the ACE satellite in GSM coordinates. Collado‐Villaverde et al. (2021) created neural network models for the
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SYM‐H and ASY‐H predictions by combining CNN and LSTM. The authors
considered 42 geomagnetic storms between 1998 and 2018 for model
training, validation, and testing purposes. Iong et al. (2022) developed a
model using gradient boosting machines to predict the SYM‐H index (1 and
2 hr in advance) with a temporal resolution of 5 min.

In this paper, we present a new method, named SYMHnet, that utilizes
cooperative learning of a graph neural network (GNN) and a bidirectional
long short‐term memory (BiLSTM) network with Bayesian inference to
conduct short‐term (1 or 2 hr in advance) predictions of the SYM‐H index for
solar cycles 23 and 24. We consider temporal resolutions of 1 and 5 min,
respectively, for the SYM‐H index. To our knowledge, this is the first time
that 1‐min resolution data have been used to predict the SYM‐H index.
Furthermore, our method can quantify both model and data uncertainties
when producing prediction results, whereas related machine learning methods
cannot.

The remainder of this paper is organized as follows. Section 2 describes the
data, including the solar wind and IMF parameters, as well as geomagnetic
storms, used in this study. Section 3 presents the methodology, explaining the
SYMHnet framework, its architecture, and the uncertainty quantification
algorithm. Section 4 evaluates the performance of SYMHnet on 1‐ and 5‐min
resolution data. We also report the experimental results obtained by
comparing SYMHnet with related machine learning methods on 5‐min res-
olution data. Section 5 presents a discussion and concludes the paper.

2. Database
In training and evaluating SYMHnet, we built a database that combines the
solar wind and IMF parameters with the geomagnetic storms studied in this

paper. This database contains 42 storms selected from the past two solar cycles (#23 and #24). The storms
occurred between 1998 and 2018.

2.1. Solar Wind and IMF Parameters

We consider seven solar wind, IMF, and derived parameters: IMF magnitude (B), By, and Bz components, flow
speed, proton density, electric field and flow pressure. These parameters have been used in related studies
(Bhaskar & Vichare, 2019; Cai et al., 2010; Denton et al., 2016; Iong et al., 2022). The parameters' values along
with the SYM‐H index values are collected from the NASA Space Science Data Coordinated Archive available at
https://nssdc.gsfc.nasa.gov (King & Papitashvili, 2005). Data are collected with 1‐ and 5‐min resolutions.

2.2. Geomagnetic Storms

We work with the same storms as those considered in previous studies (Collado‐Villaverde et al., 2021; Iong
et al., 2022; Siciliano et al., 2021). Table 1 lists the storms used to train SYMHnet. Table 2 lists the storms used to
validate SYMHnet. Table 3 lists the storms used to test SYMHnet. The training set, validation set, and test set are

disjoint. Thus, SYMHnet can make predictions on storms that it has never
seen during training. Note that each storm period listed in Tables 1–3 contains
both quiet time and storm time, as indicated by the maximum SYM‐H and
minimum SYM‐H values in the period.

3. Methodology
Machine learning (ML) and its subfield, deep learning (DL) (Goodfellow
et al., 2016), have been used extensively in the space weather community for
predicting solar flares (Abduallah et al., 2021; Huang et al., 2018; Liu
et al., 2019), flare precursors (Chen et al., 2019), coronal mass ejections

Table 1
Storms Used to Train SYMHnet

Storm # Start date End date Min SYM‐H (nT) Max SYM‐H (nT)

1 02/14/1998 02/22/1998 − 119 12

2 08/02/1998 08/08/1998 − 168 25

3 09/19/1998 09/29/1998 − 213 8

4 02/16/1999 02/24/1999 − 127 28

5 10/15/1999 10/25/1999 − 218 42

6 07/09/2000 07/19/2000 − 335 76

7 08/06/2000 08/16/2000 − 235 10

8 09/15/2000 09/25/2000 − 196 43

9 11/01/2000 11/15/2000 − 174 43

10 03/14/2001 03/24/2001 − 165 22

11 04/06/2001 04/16/2001 − 275 32

12 10/17/2001 10/22/2001 − 210 37

13 10/31/2001 11/10/2001 − 313 43

14 05/17/2002 05/27/2002 − 113 101

15 11/15/2003 11/25/2003 − 488 10

16 07/20/2004 07/30/2004 − 208 32

17 05/10/2005 05/20/2005 − 302 64

18 04/09/2006 04/19/2006 − 110 24

19 10/09/2006 12/19/2006 − 206 39

20 03/01/2012 03/11/2012 − 149 49

Table 2
Storms Used to Validate SYMHnet

Storm # Start date End date Min SYM‐H (nT) Max SYM‐H (nT)

21 04/28/1998 05/08/1998 − 268 50

22 09/19/1999 09/26/1999 − 160 64

23 10/25/2003 11/03/2003 − 427 33

24 06/18/2015 06/28/2015 − 207 77

25 09/01/2017 09/11/2017 − 144 54
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(Alobaid et al., 2022; Liu et al., 2020), solar energetic particles (Abduallah
et al., 2022; Laurenza et al., 2009; Lavasa et al., 2021; Núñez, 2011; Stumpo
et al., 2021), and geomagnetic indices (Amata et al., 2008; Bala &
Reiff, 2012; Bhaskar & Vichare, 2019; Collado‐Villaverde et al., 2021; Gruet
et al., 2018; Lazzús et al., 2017; Pallocchia et al., 2006; Siciliano et al., 2021).
Different from the existing methods, SYMHnet combines a graph neural
network (GNN) and a bidirectional long short‐term memory (BiLSTM)
network to jointly learn patterns from input data. GNN learns the relationships
among the parameter values in the input data, while BiLSTM captures the
temporal dynamics of the input data. As our experimental results show later,
this combined learning framework works well and generally performs better
than related machine learning methods for SYM‐H index forecasting.

3.1. Parameter Graph

We construct an undirected unweighted fully connected graph (FCG) for the
solar wind, the IMF and the derived parameters considered in this study,
where each node represents a parameter and there is an edge between every
two nodes. Because the parameter values are time series, we obtain a time
series of parameter graphs where the topologies of the graphs are the same,
but the node values vary as time goes on. For example, Figure 1 shows three
parameter graphs constructed at time points t, t+ 1, t+ 2, respectively, with a
resolution of 1 min to predict the SYM‐H index 1 hr in advance. In Figure 1,
the leftmost graph at t contains the values of the seven parameters, repre-
sented by seven nodes or circles, at the time point t. The FCG symbol in the

center indicates that this is a fully connected graph in which every two nodes are connected by an edge. (For
simplicity, only a portion of the edges are shown in the figure). Furthermore, the graph contains a node that
represents the value of the SYM‐H index at the time point t + 1 hr. During training, this SYM‐H index value is
used as the label for the graph. The GNN in SYMHnet will learn the relationships among the parameters' values
and the relationships between the parameters' values and the label. If we want to predict the SYM‐H index 2 hr in
advance, then the label will be the SYM‐H index value at the time point t + 2 hr.

The middle graph at t + 1 in Figure 1 contains the values of the seven parameters at the time point t + 1 min. In
addition, this graph contains the SYM‐H index value at the time point (t+ 1 min)+ 1 hr, which is the label for this

Table 3
Storms Used to Test SYMHnet

Storm # Start date End date Min SYM‐H (nT) Max SYM‐H (nT)

26 06/22/1998 06/30/1998 − 120 39

27 11/02/1998 11/12/1998 − 179 19

28 01/09/1999 01/18/1999 − 111 9

29 04/13/1999 04/19/1999 − 122 63

30 01/16/2000 01/26/2000 − 101 21

31 04/02/2000 04/12/2000 − 315 16

32 05/19/2000 05/28/2000 − 159 47

33 03/26/2001 04/04/2001 − 434 109

34 05/26/2003 06/06/2003 − 162 10

35 07/08/2003 07/18/2003 − 125 23

36 01/18/2004 01/27/2004 − 137 41

37 11/04/2004 11/14/2004 − 393 92

38 09/10/2012 10/05/2012 − 138 18

39 05/28/2013 06/04/2013 − 134 37

40 06/26/2013 07/04/2013 − 110 19

41 03/11/2015 03/21/2015 − 233 62

42 08/22/2018 09/03/2018 − 205 26

Figure 1. Illustration of the parameter graphs constructed at time points t, t + 1, t + 2, respectively with a resolution of 1 min
for predicting the SYM‐H index 1 hr in advance. Each graph contains seven parameters: IMF magnitude (B), By component,
Bz component, electric field (EF), proton density (N_p), flow pressure (P_dyn), and flow speed (V). The colored values in the
graphs represent the parameters' values that change as time goes on, while the topologies of the graphs remain the same. The
value in the SYM‐H node in a graph is the label of the graph. The FCG symbol in a graph indicates that the graph is fully
connected.
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Figure 2. The SYMHnet framework: (a) the overall architecture of SYMHnet, (b) the architecture of its GNN component, and
(c) the architecture of its BiLSTM component. The input parameter graph is for illustration; the actual graph in the
implementation is a fully connected graph (FCG). B = IMF magnitude (B), By = By component, Bz = Bz component,
EF = Electric field, N_p = Proton density, P_dyn = Flow pressure, and V = Flow speed.
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graph. If we want to predict the SYM‐H index 2 hr in advance, then the label
will be the SYM‐H index value at the time point (t + 1 min) + 2 hr.

The rightmost graph at t + 2 in Figure 1 contains the values of the seven
parameters at the time point t + 2 min. Additionally, this graph contains the
SYM‐H index value at the time point (t + 2 min) + 1 hr, which is the label for
this graph. If we want to predict the SYM‐H index 2 hr in advance, then the
label will be the SYM‐H index value at the time point (t + 2 min) + 2 hr.

During testing/prediction, given the values of the seven parameters at a time
point t′ (without a label), SYMHnet will predict the label, which is the SYM‐
H index value at the time point t′ + 1 hr (for 1‐hr ahead predictions) or the
SYM‐H index value at the time point t′ + 2 hr (for 2‐hr ahead predictions), as
detailed in Section 3.2.

3.2. The SYMHnet Framework

Figure 2 illustrates the SYMHnet framework. During training, we feed the input data sample at each time point in
turn to SYMHnet. The input data sample at the time point t consists of the parameter graphGt constructed at t and
a sequence of m records Xt− m+1, Xt− m+2, …, Xt where Xi, t − m + 1 ≤ i ≤ t, represents the record collected at the
time point i. Xi contains the seven values of the solar wind and IMF parameters along with the SYM‐H index value
at the time point i. Including previous SYM‐H index values in the input to predict future SYM‐H indices improves
prediction accuracy (Iong et al., 2022). The number of records, m, in the input is set to 10 which was determined
by our experiments. When m < 10, BiLSTM cannot effectively capture the temporal patterns in the data. When
m > 10, it causes additional overhead for larger sequence sizes without improving prediction accuracy. The label
of the graph Gt is used as the label of the input data sample at the time point t.

The parameter graph Gt is sent to SYMHnet's GNN component (Panagopoulos et al., 2021) while the
sequence of m records, Xt− m+1, Xt− m+2, …, Xt, is sent to SYMHnet's BiLSTM component (Abduallah
et al., 2022). The GNN, illustrated in Figure 2b, contains a graph convolutional layer followed by a rectified
linear unit (ReLU), which is followed by another graph convolutional layer and ReLU. The BiLSTM
network, illustrated in Figure 2c, is composed of two LSTM layers (Hochreiter & Schmidhuber, 1997) with
opposite directions when processing the data. This architecture allows the BiLSTM network to use one LSTM
layer to read the sequence from the end to the beginning, denoted as forward, and the other LSTM layer to
read the sequence from the beginning to the end, denoted as backward. GNN is good for learning the
correlations between nodes (parameters) in a graph (Panagopoulos et al., 2021) while BiLSTM is suitable for
learning the temporal patterns in time series (Abduallah et al., 2022; Siami‐Namini et al., 2019). SYMHnet
combines the learned parameter correlations and temporal patterns into a joint pattern, which is then passed to
two dropout and dense layers.

A dropout layer provides a mechanism to randomly drop a percentage of neurons to avoid over‐fitting on the
training data so that the SYMHnet model can generalize to unseen test data. It also enables the Monte Carlo (MC)
sampling method described in Section 3.3 because the internal structure of the network is slightly different each
time neurons are dropped (Gal & Ghahramani, 2016; Jiang et al., 2021). Each neuron in a dense layer connects to
every neuron in the preceding layer (Goodfellow et al., 2016). The dense layer helps to change the dimensionality

of the output of the preceding layer so that the SYMHnet model can easily
define the relationship between the values of the data on which the model
works. In this way, we better train our model, and the model learns things
more effectively. Table 4 summarizes the details of the model architecture.

During testing/prediction, we feed an unlabeled test data sample to SYMHnet
where the test data sample is the same as the training data sample, except that
the test data sample does not have a label. The trained SYMHnet model will
predict the label based on the input test data sample. SYMHnet uses the MC
dropout sampling method described in Section 3.3 to produce, for a test data
sample, a predicted SYM‐H index value accompanied by results of aleatoric
uncertainty and epistemic uncertainty.

Table 4
Architecture Details of SYMHnet

Component Parameter Value

Forward LSTM Number of LSTM units 400

Backward LSTM Number of LSTM units 400

Activation function ReLU

GNN Number of nodes 8

Number of edges 56

Activation function ReLU

Number of graph convolutional layers 2

Dense layer Number of neurons 200

Table 5
Hyperparameter Values Used by SYMHnet

Parameter Value

Dropout rate 0.5

Batch size 1,024

Epochs 50

Optimizer RMSProp

Learning rate 0.0002

Loss function MSE
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3.3. Uncertainty Quantification

Quantification of uncertainty is essential for the reproducibility and validation of a model (Volodina & Challe-
nor, 2021). Uncertainty quantification with deep learning has been used in computer vision (Kendall &Gal, 2017),
space weather (Gruet et al., 2018), and solar physics (Jiang et al., 2021). There are two types of uncertainty:
aleatoric and epistemic. Aleatoric uncertainty captures the inherent randomness of data, hence also referred to as
data uncertainty. Epistemic uncertainty occurs due to the inexact weight calculations in a neural network and is also
known as model uncertainty.

In incorporating Bayesian inference into SYMHnet, our goal is to find the posterior distribution over the weights
of the network, W, given the observed training data, X, and the labels Y, that is, P(W|X, Y). The posterior dis-
tribution is intractable (Jiang et al., 2021), and one has to approximate the weight distribution (Denker &
LeCun, 1990). We use variational inference as suggested by Graves (2011) to learn the variational distribution on
the weights of the network, q(W), by minimizing the Kullback–Leibler (KL) divergence of q(W) and P(W|X, Y).

Training a network with dropout (Srivastava et al., 2014) is equivalent to a variational approximation on the
network (Gal & Ghahramani, 2016). Furthermore, minimizing the loss function of cross‐entropy (CE) (Good-
fellow et al., 2016) can have the same effect as minimizing the KL divergence term. Minimizing CE loss in
classification problems is equivalent to minimizing mean squared error (MSE) loss in regression problems (Hung
et al., 2020; Kline & Berardi, 2005). Therefore, we use the MSE loss function and the root mean squared
propagation (RMSProp) optimizer with a learning rate of 0.0002 to train SYMHnet. Table 5 summarizes the
hyperparameters and their values used by SYMHnet. We use q̂(W) to represent the optimized weight distribution.

During testing/prediction, SYMHnet uses the MC dropout sampling method (Gal & Ghahramani, 2016) to
quantify uncertainty. Specifically, we process the test data K times to generate K MC samples where K is set to
100. We have experimented with different K values. Using a K value of less than 100 does not generate enough
samples; the produced uncertainty ranges are too large to be useful. Using a K value of larger than 100 increases
computation time, while the model performance remains the same. As a consequence, we set K to 100 to process
the test data 100 times. Each time, a set of weights is randomly drawn from q̂(W). We obtain the mean and
variance for the K samples. The mean is the anticipated SYM‐H value. According to Jiang et al. (2021), we split
the variance into aleatoric and epistemic uncertainties.

4. Experiments and Results
4.1. Performance Metrics

To assess the prediction accuracy of SYMHnet and compare it with related machine learning models, we adopt
the following metrics: root mean square error (RMSE), forecast skill score (FSS) and R‐squared (R2). These
metrics have been used in the forecasting of geomagnetic indices and are recommended in the literature
(Camporeale, 2019; Iong et al., 2022; Liemohn et al., 2018). Our experiments were carried out by feeding time
series data samples from the training storms in Table 1 (training set) to train a model. We then used the time series
data samples from the validation storms in Table 2 (validation set) to validate the model and optimize its
hyperparameters. Finally, we used the trained model to predict the SYM‐H index values of the time series data
samples from the test storms in Table 3 (test set).

Table 6
Results of the Ablation Study Based on 1‐Min Resolution Data

Metric Hour‐ahead SYMHnet SYMHnet‐B SYMHnet‐G SYMHnet‐BG

RMSE 1 3.002 (2.169) 3.210 (2.319) 4.194 (3.030) 5.348 (2.957)

2 3.171 (2.201) 3.432 (2.382) 4.369 (3.033) 5.623 (3.066)

FSS 1 0.668 (0.131) 0.563 (0.003) 0.007 (0.012) − 0.644 (0.015)

2 0.760 (0.089) 0.387 (0.031) − 0.367 (0.016) − 0.731 (0.031)

R2 1 0.993 (0.003) 0.913 (0.001) 0.789 (0.001) 0.602 (0.001)

2 0.993 (0.003) 0.908 (0.002) 0.776 (0.002) 0.594 (0.002)
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RMSE measures the difference between prediction and ground truth for each test data sample. It is calculated as
follows:

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑
n

i=1
( yi − ŷi)

2
√

, (1)

where n is the number of test data samples in a test storm in Table 3, and ŷi (yi, respectively) represents the
predicted SYM‐H index value (observed SYM‐H index value, respectively) at the time point i in the test storm.
The smaller the RMSE, the more accurate the model.

FSS is calculated using the prediction provided by the Burton equation (O’Brien & McPherron, 2000) as a
baseline and is defined as follows (Iong et al., 2022; Murphy, 1988):

FSS = 1 −
1
n∑

n
i=1( yi − ŷi)

2

1
n∑

n
i=1( yi − ybi )

2 (2)

where ybi represents the prediction provided by the Burton equation at the time point i in the test storm. The FSS
value between 0 and 1 indicates that the model is better than the baseline, while the negative FSS value indicates
that the model is worse than the baseline (Iong et al., 2022).

R2 determines the amount of variance of the observed data explained by the predicted data. It is calculated as
follows:

R2 = 1 −
∑n
i=1( yi − ŷi)

2

∑n
i=1( yi − ȳ)

2 , (3)

where ȳ is the mean of the observed SYM‐H index values for the test data samples in the test storm. The larger the
R2, the more accurate the model.

For each metric, the mean and standard deviation of the metric values for all test storms in the test set (Table 3) are
calculated and recorded.

Figure 3. Predictions for storm #36 (top) and storm #37 (bottom) made by the SYMHnet model based on 1‐min resolution
data. The red line represents the observed SYM‐H values, the yellow dashed line represents the model's predictions, and the
blue line represents the prediction error. Both quiet time and storm time are shown in the figure.
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4.2. Results Based on 1‐Min Resolution Data

In this section, we present experimental results based on the 1‐min resolution data in our database. First, we
conducted an ablation study to analyze and assess the components of SYMHnet. Then we performed case studies
on a moderately large storm (storm #36 with SYM‐H = − 137 nT) and a very large storm (storm #37 with SYM‐
H = − 393 nT) in the test set shown in Table 3 where both storms were previously investigated by Iong
et al. (2022). It should be noted that the work of Iong et al. (2022) was based on 5‐min resolution data. To our
knowledge, no previous method used 1‐min resolution data to predict the SYM‐H index.

4.2.1. Ablation Study With 1‐Min Resolution Data

We considered three variants of SYMHnet: SYMHnet‐B, SYMHnet‐G, and SYMHnet‐BG. SYMHnet‐B rep-
resents the subnetwork of SYMHnet with the BiLSTM component removed. SYMHnet‐G represents the sub-
network of SYMHnet with the GNN component removed. SYMHnet‐BG represents the subnetwork of SYMHnet
with both the BiLSTM and GNN components removed. Thus, SYMHnet‐BG simply contains the dense layers in
SYMHnet, which amounts to a simple multilayer perceptron network. When conducting the ablation study, we
turned off the uncertainty quantification mechanism.

Table 6 presents the average values for RMSE, FSS, and R2 (with standard deviations enclosed in parentheses)
obtained by the four models: SYMHnet, SYMHnet‐B, SYMHnet‐G and SYMHnet‐BG, based on the 1‐min
resolution data in our database. The best metric values are highlighted in boldface. It can be seen from

Table 7
Results of the Ablation Study Based on 5‐Min Resolution Data

Metric Hour‐ahead SYMHnet SYMHnet‐B SYMHnet‐G SYMHnet‐BG

RMSE 1 5.914 (2.169) 6.324 (2.319) 8.262 (2.834) 10.537 (2.958)

2 6.481 (2.201) 8.646 (2.636) 13.021 (3.315) 14.165 (3.194)

FSS 1 0.484 (0.195) 0.407 (0.087) 0.005 (0.012) − 0.465 (0.023)

2 0.593 (0.096) 0.302 (0.048) − 0.286 (0.035) − 0.570 (0.042)

R2 1 0.993 (0.003) 0.912 (0.003) 0.789 (0.004) 0.601 (0.005)

2 0.989 (0.003) 0.905 (0.003) 0.773 (0.004) 0.592 (0.005)

Figure 4. Uncertainty quantification results produced by the SYMHnet model in storm #36 (top) and storm #37 (bottom)
based on 1‐min resolution data. The red line represents the observed SYM‐H values, the yellow dashed line represents the
model's predictions, the light‐blue region shows epistemic uncertainty (model uncertainty), and the light‐gray region shows
aleatoric uncertainty (data uncertainty). Both quiet time and storm time are shown in the figure.

SpaceWeather 10.1029/2023SW003824

ABDUALLAH ET AL. 9 of 18

 15427390, 2024, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023SW

003824, W
iley O

nline Library on [15/02/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Table 6 that SYMHnet outperforms its three variants. SYMHnet‐B is the second best among the four models,
implying that a GNN is effective in solving time series regression problems (Bloemheuvel et al., 2022).
SYHMnet‐G, which contains a BiLSTM network but no GNN, does not perform well. This finding is consistent
with those in Collado‐Villaverde et al. (2021), who showed that LSTM performed worse than a combination of
LSTM and CNN in SYM‐H forecasting. Finally, SYMHnet‐BG is the worst among the four models. This happens
because SYMHnet‐BG loses the advantages offered by GNN and BiLSTM networks.

4.2.2. Case Studies With 1‐Min Resolution Data

Here we conducted case studies by using SYMHnet to predict the SYM‐H index values in storms #36 and #37
given in Table 3 based on the 1‐min resolution data in our database. Additional case studies on other storms can be
found in Appendix A. The period of storm #36 started on 18 January 2004 and ended on 27 January 2004, with a

Figure 5. Predictions for storm #36 (top) and storm #37 (bottom) made by the SYMHnet model based on 5‐min resolution
data. The red line represents the observed SYM‐H values, the yellow dashed line represents the model's predictions, and the
blue line represents the prediction error. Only the peak storm time is shown in the figure.

Figure 6. Uncertainty quantification results produced by the SYMHnet model in storm #36 (top) and storm #37 (bottom)
based on 5‐min resolution data. The red line represents the observed SYM‐H values, the yellow dashed line represents the
model's predictions, the light‐blue region shows epistemic uncertainty (model uncertainty), and the light‐gray region shows
aleatoric uncertainty (data uncertainty). Only the peak storm time is shown in the figure.

SpaceWeather 10.1029/2023SW003824

ABDUALLAH ET AL. 10 of 18

 15427390, 2024, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023SW

003824, W
iley O

nline Library on [15/02/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



minimum SYM‐H value of − 137 nT and a maximum SYM‐H value of 41 nT
during the period. The period of storm #37 started on 4 November 2004 and
ended on 14 November 2004, with a minimum SYM‐H value of − 393 nT and a
maximum SYM‐H value of 92 nT during the period. Figure 3 shows the pre-
dictions and measured error of the SYMHnet model in storm #36 and storm #37
respectively. In the figure, each point on a yellow dashed line represents the
prediction made at the corresponding time x on the X‐axis. For 1‐hr ahead (2‐hr
ahead, respectively) predictions, the point/prediction at time x is produced based
on the solar wind/IMF parameters at time x–1 hr (x–2 hr, respectively). There is
a lag of 1 hr (for 1‐hr ahead predictions) or 2 hr (for 2‐hr ahead predictions) as in
previous studies (Collado‐Villaverde et al., 2021; Iong et al., 2022). It can be
seen from Figure 3 that the SYMHnet model works well at both quiet time and
storm time. The measured error ranges between − 15 and 23 nT for storm #36
and between − 50 and 34 nT for storm #37. The more intense the storm, the
larger the measured error.

Figure 4 presents uncertainty quantification results produced by SYMHnet in
storm #36 and storm #37, respectively, based on the 1‐min resolution data in our
database. In the figure, the red line represents the observed values of the SYM‐H
index, and the yellow dashed line represents the predicted values of the SYM‐H
index. The light‐blue region shows the epistemic uncertainty (model uncer-
tainty) and the light‐gray region shows the aleatoric uncertainty (data uncer-
tainty) of the predicted outcome. It can be seen in Figure 4 that the yellow
dashed line (predicted values) is reasonably close to the red line (observed
values), again demonstrating the good performance of SYMHnet. The light‐
blue region is tinier than the light‐gray region, indicating that the model un-
certainty is lower than the data uncertainty. This is due to the fact that the un-
certainty in the predicted outcome is primarily caused by the noise in the input
test data, not by the SYMHnet model.

4.3. Results Based on 5‐Min Resolution Data

SYMHnet can be easily modified to process 5‐min resolution data. As described
in Section 3.2, the input data sample at the time point t is composed of the
parameter graph Gt and a sequence of m records. The difference is that the
cadence of the m records here is 5‐min rather than 1‐min. Furthermore, the
labels of the parameter graphsGt,Gt+5,Gt+10 are the SYM‐H index values at the
time points t + w hour, (t + 5 min) + w hour, (t + 10 min) + w hour, respec-
tively, for w‐hour ahead predictions where w is 1 or 2.

In the following, we present experimental results based on the 5‐min resolution
data in our database. As in Section 4.2, we conducted an ablation study, this time
using the 5‐min resolution data. We then performed case studies on storms #36
and #37. Finally, we compared SYMHnet with related machine learning
methods, all of which utilized the 5‐min resolution data in our database. Since

the related methods cannot quantify uncertainty, we turned off the uncertainty quantification mechanism in
SYMHnet while conducting the comparative study.

4.3.1. Ablation Study With 5‐Min Resolution Data

Table 7 presents the average values for RMSE, FSS, and R2 (with standard deviations enclosed in parentheses)
obtained by the four models: SYMHnet, SYMHnet‐B, SYMHnet‐G and SYMHnet‐BG, based on the 5‐min
resolution data in our database. The best metric values are highlighted in boldface. It can be seen from Table-
7 that SYMHnet is again the best among the four models for the 5‐min resolution data, a finding consistent with
that in Table 6 for the 1‐min resolution data.

Table 8
RMSEs for 1‐Hr Ahead Prediction From the Comparative Study Including
SYMHnet, LCNN (Collado‐Villaverde et al., 2021), GBM (Iong
et al., 2022), LSTM and CNN (Siciliano et al., 2021), and Burton Equation
(O’Brien & McPherron, 2000)

1‐hr ahead prediction (RMSE)

Storm # SYMHnet LCNN GBM LSTM CNN Burton

26 3.977
6.630

5.863
6.700

7.200
6.839

27 7.682
8.913

7.729
8.900

10.500
7.955

28 4.599
5.858

4.281
5.400

5.600
5.967

29 5.058
6.683

5.833
7.200

7.700
6.511

30 2.213
5.200

4.927
5.600

6.500
4.614

31 7.923
8.584

8.277
10.700

9.600
8.838

32 3.969
7.259

6.841
8.300

8.200
9.487

33 11.366
13.340

14.492
16.300

19.100
16.630

34 5.259
10.034

10.190
11.300

12.400
10.888

35 5.406
7.693

7.154
8.500

8.800
7.918

36 5.618
9.525

8.512
8.700

10.500
9.082

37 10.320
15.184

14.548
17.500

17.300
15.713

38 3.368
4.080

3.886
4.200

4.600
4.572

39 5.670
6.431

5.901
5.700

6.800
6.663

40 5.752
4.673

4.976
5.500

5.900
5.371

41 5.871
7.882

7.558
9.000

9.400
8.358

42 3.900
5.669

5.030
5.900

6.300
5.549

Note. The best metric values are highlighted in boldface.
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4.3.2. Case Studies With 5‐Min Resolution Data

Figure 5 shows the predictions and measured error of SYMHnet in storms #36
and #37, respectively, and Figure 6 presents the uncertainty quantification
results produced by SYMHnet in these storms respectively, based on the 5‐
min resolution data in our database. Unlike Figures 3 and 4, in which both
quiet time and storm time are shown, Figures 5 and 6 focus on the peak storm
time. In Figure 5, the measured error ranges between − 24 and 25 nT for storm
#36 and between − 52 and 36 nT for storm #37. These results indicate that
SYMHnet can properly forecast the SYM‐H index even in the most intense
storm period.

In Figure 6, the red line represents the observed values of the SYM‐H and the
yellow dashed line represents the predicted values of the SYM‐H. The light‐
blue area shows the epistemic uncertainty (model uncertainty) and the light‐
gray area shows the aleatoric uncertainty (data uncertainty) of the predicted
outcome. It can be seen from Figure 6 that the red line representing the
observed SYM‐H values is within the uncertainty interval, indicating
SYMHnet's predicted values together with the uncertainty values well cover
the observed values. The overall findings here are similar to those from the 1‐
min resolution data shown in Figure 4.

4.3.3. Comparative Study With 5‐Min Resolution Data

Several researchers performed SYM‐H forecasting using machine learning
and the 5‐min resolution data. Collado‐Villaverde et al. (2021) combined long
short‐term memory (LSTM) and a convolutional neural network (CNN),
referred to as the LCNN method, to forecast the SYM‐H index (1 and 2 hr in
advance). Iong et al. (2022) utilized gradient boosting machines, referred to as
the GBM method, to forecast the SYM‐H index (also 1 and 2 hr in advance).
Siciliano et al. (2021) compared LSTM and CNN for the prediction of the
SYM‐H index (only 1 hr in advance). Although the methods including ours
use slightly different data samples, these methods are all developed to predict
the SYM‐H index values in the same set of storms. The purpose of this
comparative study is to compare the prediction results/accuracies of, rather
than specific models/data samples in, these methods. This comparison
methodology has commonly been used in SYM‐H forecasting (Collado‐
Villaverde et al., 2021; Iong et al., 2022; Siciliano et al., 2021). Since the
related methods cannot predict uncertainties, we turned off the uncertainty
quantification component in SYMHnet while carrying out the comparative
study. The Burton equation (O’Brien & McPherron, 2000), used as the
baseline, is also included. The performance metric values of each method for
each test storm in the test set (Table 3) are calculated. The best metric values
are highlighted in boldface.

Tables 8 and 9 compare the RMSE results of these methods for 1‐hr and 2‐hr
ahead SYM‐H predictions, respectively, based on the RMSE values available
in the related studies (Collado‐Villaverde et al., 2021; Iong et al., 2022;
O’Brien & McPherron, 2000; Siciliano et al., 2021). Tables 10 and 11
compare the FSS results of these methods for 1‐ and 2‐hr ahead SYM‐H
predictions, respectively, based on the FSS values available in the related
studies (Collado‐Villaverde et al., 2021; Iong et al., 2022; Siciliano
et al., 2021). Table 12 compares the R2 results of these methods for 1‐hr ahead
and 2‐hr ahead SYM‐H predictions, respectively, on the same test storms.
Iong et al. (2022) did not provide R2 results, and hence the GBM method was
excluded from Table 12. These tables show that SYMHnet performs better

Table 9
RMSEs for 2‐Hr Ahead Prediction From the Comparative Study Including
SYMHnet, LCNN (Collado‐Villaverde et al., 2021), GBM (Iong et al., 2022),
and Burton Equation (O’Brien & McPherron, 2000)

2‐hr ahead prediction (RMSE)

Storm # SYMHnet LCNN GBM Burton

26 4.330 8.989 8.285 10.690
27 8.577 13.418 11.585 12.465
28 4.977 5.877 5.650 8.858
29 5.515 9.314 8.826 9.776
30 2.636 7.288 7.280 6.266
31 9.737 12.436 12.613 13.604
32 4.451 8.937 9.927 13.766
33 13.745 18.481 24.519 25.729
34 5.611 13.941 13.736 14.695
35 5.830 9.932 9.504 10.586
36 5.970 12.058 12.068 13.117
37 10.923 21.084 22.327 24.446
38 3.765 5.213 5.153 6.546
39 6.252 6.798 7.391 10.159
40 6.336 5.281 5.633 6.032
41 6.857 11.707 12.121 12.622
42 4.674 8.273 7.976 8.877

Note. The best metric values are highlighted in boldface.

Table 10
FSSs for 1‐Hr Ahead Prediction From the Comparative Study Including
SYMHnet, LCNN (Collado‐Villaverde et al., 2021), GBM (Iong et al., 2022),
LSTM and CNN (Siciliano et al., 2021)

1‐hr ahead prediction (FSS)

Storm # SYMHnet LCNN GBM LSTM CNN

26 0.418 0.031 0.143 0.020 − 0.053
27 0.034 − 0.120 0.028 − 0.119 − 0.320
28 0.229 − 0.028 0.249 0.095 0.062
29 0.223 − 0.026 0.104 − 0.106 − 0.183
30 0.520 − 0.127 − 0.068 − 0.214 − 0.409
31 0.104 0.029 0.063 − 0.211 − 0.086
32 0.582 0.235 0.279 0.125 0.136
33 0.317 0.198 0.129 0.020 − 0.149
34 0.517 0.078 0.064 − 0.038 − 0.139
35 0.317 0.028 0.096 − 0.074 − 0.111
36 0.381 − 0.049 0.063 0.042 − 0.156
37 0.343 0.034 0.074 − 0.114 − 0.101
38 0.263 0.108 0.150 0.081 − 0.006
39 0.149 0.035 0.114 0.160 − 0.021
40 − 0.071 0.130 0.074 − 0.024 − 0.098
41 0.298 0.057 0.096 − 0.077 − 0.125
42 0.297 − 0.022 0.094 − 0.063 − 0.135

Note. The best metric values are highlighted in boldface.

SpaceWeather 10.1029/2023SW003824

ABDUALLAH ET AL. 12 of 18

 15427390, 2024, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023SW

003824, W
iley O

nline Library on [15/02/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



than the related methods for all except two test storms (#28 and/or #40),
demonstrating the good performance and feasibility of our tool for SYM‐H
forecasting.

5. Discussion and Conclusion
Geomagnetic activities have a significant impact on Earth, which can cause
damages to spacecraft, electrical power grids, and navigation systems. Geo-
space scientists use geomagnetic indices to measure and quantify the
geomagnetic activities. The SYM‐H index provides information about the
response and behavior of the Earth's magnetosphere during geomagnetic
storms. Therefore, a lot of effort has been put into SYM‐H forecasting.
Previous work mainly focused on 5‐min resolution data and skipped 1‐min
resolution data. The higher temporal resolution of the 1‐min resolution data
poses a more difficult challenge to forecast due to its highly oscillating
character. This oscillating behavior could make the data more noisy to a
machine learning model. As a consequence, the model requires more itera-
tions during training with a larger number of neurons in order to learn more
features and patterns hidden in the data.

In our study, the SYMHnet model architectures for processing the 1‐min
resolution data and 5‐min resolution data are the same, as shown in Figure-
2. The configuration details and hyperparameter values of SYMHnet for
processing the 5‐min resolution data are shown in Tables 4 and 5. When
processing the 1‐min resolution data, the model is configured with a larger
number of neurons in the dense layers, a higher percentage in the dropout
layers, and a larger number of epochs during the training phase. This
configuration is designed to combat the highly oscillating behavior of the 1‐
min resolution data.

Results from our experiments demonstrated the good performance of
SYMHnet at both quiet time and storm time. These results were obtained
from a database of 42 storms that occurred between 1998 and 2018 during the
past two solar cycles (#23 and #24). As done in previous studies (Collado‐
Villaverde et al., 2021; Iong et al., 2022; Siciliano et al., 2021), 20 storms,
listed in Table 1, were used for training, five storms, listed in Table 2, were
used for validation, and 17 storms, listed in Table 3, were used for testing.
Based on the tables, the 42 storms were distributed to 14 distinct years.

To avoid bias in drawing a conclusion from the above experiments, we
conducted an additional experiment using 14‐fold cross validation where the
data was divided into 14 partitions or folds. Each fold corresponds to 1 year
in which at least one storm occurred. The sequential order of the data in
each fold was maintained. In each run, one fold was used for testing and the
other 13 folds together were used for training. Thus, the training set and test
set are disjoint, and the trained model can predict unseen SYM‐H values in
the test set. There were 14 folds and consequently 14 runs where the
average performance metric values over the 14 runs were calculated. The
results of the 14‐fold cross validation were consistent with those reported in
the paper. These results indicate that the SYMHnet tool can be used to
predict future SYM‐H index values without knowing whether a storm is
going to start. When the predicted SYM‐H value is less than a threshold
(e.g., − 30 nT), the tool detects the occurrence of a storm. Thus, we
conclude that the proposed SYMHnet is a viable machine learning method
for short‐term, 1 or 2‐hr ahead forecasts of the SYM‐H index for both 1‐
and 5‐min resolution data.

Table 11
FSSs for 2‐Hr Ahead Prediction From the Comparative Study Including
SYMHnet, LCNN (Collado‐Villaverde et al., 2021), and GBM (Iong
et al., 2022)

2‐hr ahead prediction (FSS)

Storm # SYMHnet LCNN GBM

26 0.595 0.159 0.225
27 0.312 − 0.076 0.071
28 0.438 0.337 0.362
29 0.436 0.047 0.097
30 0.579 − 0.163 − 0.162
31 0.284 0.086 0.073
32 0.677 0.351 0.279
33 0.466 0.282 0.047
34 0.618 0.051 0.065
35 0.449 0.062 0.102
36 0.545 0.081 0.080
37 0.553 0.138 0.087
38 0.425 0.204 0.213
39 0.385 0.331 0.272
40 − 0.050 0.125 0.066
41 0.457 0.072 0.040
42 0.473 0.068 0.101

Note. The best metric values are highlighted in boldface.

Table 12
R2s for 1‐ and 2‐Hr Ahead Predictions From the Comparative Study
Including SYMHnet, LCNN (Collado‐Villaverde et al., 2021), LSTM and
CNN (Siciliano et al., 2021)

1‐hr ahead prediction (R2)
2‐hr ahead

prediction (R2)

Storm # SYMHnet LCNN LSTM CNN SYMHnet LCNN

26 0.956 0.870 0.890 0.870 0.948 0.766
27 0.952 0.939 0.940 0.920 0.940 0.862
28 0.957 0.936 0.950 0.950 0.949 0.936
29 0.955 0.922 0.930 0.920 0.946 0.848
30 0.991 0.946 0.950 0.930 0.987 0.894
31 0.976 0.971 0.960 0.970 0.963 0.939
32 0.986 0.953 0.950 0.950 0.982 0.929
33 0.979 0.965 0.960 0.950 0.969 0.932
34 0.945 0.798 0.750 0.700 0.938 0.612
35 0.954 0.907 0.900 0.890 0.947 0.845
36 0.949 0.864 0.890 0.840 0.943 0.782
37 0.993 0.966 0.960 0.960 0.992 0.934
38 0.961 0.939 0.940 0.930 0.951 0.900
39 0.964 0.932 0.960 0.940 0.943 0.924
40 0.948 0.966 0.950 0.950 0.937 0.957
41 0.984 0.969 0.960 0.960 0.978 0.931
42 0.985 0.968 0.970 0.960 0.978 0.932

Note. The best metric values are highlighted in boldface.
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Appendix A: Additional Case Studies With 1‐Min Resolution Data
Figure A1 shows the predictions and measured error of SYMHnet in storms #28, #31, #33, #40, and #42,
respectively, and Figure A2 presents the uncertainty quantification results produced by SYMHnet in these storms,
respectively, based on the 1‐min resolution data in our database. The period of storm #28 started on 9 January
1999 and ended on 18 January 1999, with a minimum SYM‐H value of − 111 nT and a maximum SYM‐H value of
9 nT. The period of storm #31 started on 2 April 2000 and ended on 12 April 2000, with a minimum SYM‐H value

Figure A1. Predictions for storms (from top to bottom) #28 in January 1999, #31 in April 2000, #33 in March 2001, #40 in
June 2013, and #42 in August 2018, made by the SYMHnet model based on 1‐min resolution data. The red line represents the
observed SYM‐H values, the yellow dashed line represents the model's predictions, and the blue line represents the
prediction error. Both quiet time and storm time are shown in the figure.
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of − 315 nT and a maximum SYM‐H value of 16 nT. The period of storm #33 stared on 26 March 2001 and ended
on 4 April 2001, with a minimum SYM‐H value of − 434 nT and a maximum SYM‐H value of 109 nT. The period
of storm #40 started on 26 June 2013 and ended on 4 July 2013, with a minimum SYM‐H value of − 110 nT and a
maximum SYM‐H value of 19 nT. The period of storm #42 started on 22 August 2018 and ended on 3 September
2018, with a minimum SYM‐H value of − 205 nT and a maximum SYM‐H value of 26 nT. In Figure A1, the
measured error ranges between − 46 and 7 nT for storm #28, between − 58 and 2 nT for storm #31, between − 69

Figure A2. Uncertainty quantification results produced by the SYMHnet model in storms (from top to bottom) #28 in January
1999, #31 in April 2000, #33 in March 2001, #40 in June 2013, and #42 in August 2018, based on 1‐min resolution data. The
red line represents the observed SYM‐H values, the yellow dashed line represents the model's predictions, the light‐blue
region shows epistemic uncertainty (model uncertainty), and the light‐gray region shows aleatoric uncertainty (data
uncertainty). Both quiet time and storm time are shown in the figure.
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and 32 nT for storm #33, between − 12 and 4 nT for storm #40, and between − 26 and 7 nT for storm #42.
Generally, the more intense the storm, the larger the measured error. In Figure A2, we see that SYMHnet's
predicted values together with the uncertainty values well cover the observed values, a finding consistent with that
in Figure 4.

Data Availability Statement
• The solar wind, IMF and derived parameters along with the SYM‐H index data used in our study are publicly

available from NASA's Space Physics Data Facility at http://omniweb.gsfc.nasa.gov/ow.html.
• Details of SYMHnet can be found at https://doi.org/10.5281/zenodo.10602518.
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