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Photonic simulators using synthetic frequency dimensions have enabled
flexible experimental analogues of condensed-matter systems. However,

so far, such photonic simulators have been limited in scale, yielding results
that suffer from finite-size effects. Here we present an analogue simulator
capable of simulating large two-dimensional (2D) and 3D lattices, as well

as lattices with non-planar connectivity. Our simulator takes advantage of
the broad bandwidth achievable in photonics, allowing our experiment to
realize programmable lattices with over 100,000 lattice sites. We showcase
the scale of our simulator by demonstrating the extension of bandstructure
spectroscopy from 1D to 2D and 3D lattices. We then report the direct
observation of time-reversal symmetry-breaking in a triangular lattice
inboth momentum and real space, as well as site-resolved occupation
measurementsin atree-like geometry that serves as a toy model in
quantum gravity. Moreover, we demonstrate amethod to excite arbitrary
multisite states, which we use to study the response of a 2D lattice to both
conventional and exotic input states. Our work highlights the scalability and
flexibility of optical synthetic frequency dimensions. Future experiments
building on our approach will be able to explore non-equilibrium
phenomenain high-dimensional lattices and to simulate models with
nonlocal higher-order interactions.

Simulations have long been used to understand emergent pheno-
mena in complex many-body systems. Special-purpose analogue
simulators trade off the generality of digital implementations for
eitherscalability or access to regimes that are challenging for digital
computers. Inthis regard, photonic analogue simulators'® comple-
ment developments in platforms like superconducting circuits’®
and ultracold atoms’ by enabling, in principle, extremely large-scale
simulations. Photonic simulation hasalong history and has led to the
discovery of avariety of phenomena that are challenging torealizein
conventional condensed-matter systems, such as topological phase

10-14 15-17

transitions'®"*and non-Hermitian exceptional points™ ™"/, whichinturn
has led to new photonic devices with applications far beyond basic
physical science’",

Although telecommunication technologies routinely utilize the
highbandwidthinherent to optics, harnessing the frequency parallel-
ism of light for large-scale analogue simulation has largely remained
unexplored. One promising approach is to implement synthetic
frequency dimensions®*°**, in which optical frequency modes are
mapped to lattice sites to perform bosonic analogue simulations.
Simulators using synthetic frequency dimensions have been shown to
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Fig.1|Simulations of large-scale bosonic transport with aprogrammable
photonicsimulator. a, Dynamic modulation of a fibre ring resonator couples
frequency components of the intracavity field in each roundtrip, represented in
the basis of the frequency modes as U = F'e'F. Here, V « diag(v) is the diagonal
voltage operator defining the modulation signal v = (u(t,), v(t,), ..., v(1/Q)), and
Fis the discrete Fourier transform. The components of the voltage modulation
define the coupling (bottom). By modulating at multiples of the mode spacing
(Q), we only couple long-lived modes of the cavity, allowing for injected signals to
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propagate in frequency for many multiples of the roundtrip time. b, Engineered
long-range coupling maps the 1D spectrumto an L x L 2D lattice with twisted
boundary conditions. As L grows large, the lattice approaches asmooth 2D plane.
¢, Aset of voltage signals defining lattices in 2D and 3D (top; see the main text and
Supplementary Fig. 7 for details), and the response to a single frequency drive
(single-site) for a twisted 2D square lattice with over 20,000 lattice sites
compared with tight-binding simulations of a 2D square lattice (bottom).

be versatile,implementing synthetic electric and magnetic fields* 7,
non-Hermitian coupling®*®and nonlinear interactions**°. So far, how-
ever, these demonstrations have been confined to small lattice sizes,
with limited programmability and restricted initial conditions.

In this Article we demonstrate a frequency-mode-based plat-
form that can simulate transport of arbitrary excitations in planar
and non-planar optical lattices with up to 100,000 sites—orders of
magnitude greater than achieved previously in photonic simulators
with programmable geometry*. By pursuing a dense spectrum with
megahertz mode spacing, we leverage developments in both optical
frequency combs and high-frequency optoelectronics to manipu-
late and probe a large number of optical frequency modes in a ring
cavity. Additionally, these technologies enable a wide-bandwidth
measurement scheme and arbitrary encoding of both the amplitude
and phase of input states, allowing fine resolution and control of bos-
onic transport. We leverage the scale and programmability of our
simulator with three key demonstrations. First, our simulator can
read out momentum-space features with high resolution, enabling
us to measure bandstructures of various multidimensional lattices.
Second, we observe both the real-and momentum-space signatures
of time-reversal symmetry-breaking due to an effective gauge field in
atwo-dimensional (2D) triangular lattice, an important step towards
the realization of the photonic quantum-valley Hall effect® >, Third,
we observe hierarchical transport across several orders of magnitude
of length scales within a non-planar tree-like network, a toy model for
quantum gravity and p-adic anti-de Sitter/conformal field theory (AdS/
CFT) correspondence®,

The class of Hamiltonians that our system is able to simulate is
givenby

H= Zji_jajaj +H.c. 1)

i<j

Hamiltonians in this class describe non-interacting bosons on
translationally invariant lattices. a,Tand a,are, respectively, the bosonic
creation and annihilation operators for the /th lattice site. The lattice

geometries are defined by the complex tunnelling rates J; = | /i€,
whichencode the translationally invariant coupling of sites a distance
kapartwith amplitude|/| and phase ¢,. The main goal of the photonic
simulator we presentin this work is to be able study the transport of a
variety of single-particle excitations in any Hamiltonian in the class
defined by equation (1), where the complex parameters J, can be pro-
grammed arbitrarily—this allows us to study a diversity of different
lattices, including those that are multidimensional.

In the synthetic-frequency-dimensions approach’® that we adopt,
thelattice operatorsa, a; are associated with the /th frequency mode
ofanoptical cavity, spaced apart by Q (the free spectral range (FSR) of
the cavity). The tunnelling rates (/). , 5 .. are physically realized using
a phase modulator within the optical cavity (Fig. 1a)—intuitively, the
modulator creates optical sidebands at the frequencies contained in
the modulationsignal v(¢) and, by setting these sidebands at harmonics
of Q, these sidebands cause coupling between cavity modes. Addition-
ally, by setting the amplitudes and phases of frequency components
inv(t) appropriately, different lists of tunnelling amplitudes (| /¢|)and
relative phases (¢,) can be programmed (Fig. 1a), whichin turnrealize
different lattice geometries (Fig. 1c). Our simulator includes a gain/
loss balance term in the Hamiltonian, but this is kept close to zero.
Additionally, phase modulation at Q produces higher-order sidebands,
butthese canbe suppressed to negligible amplitudes by appropriately
choosing the modulation voltage (Methods).

Although the Hamiltonian in equation (1) nominally describes a
1D lattice, we can implement effective higher-dimensional lattices by
suitably programming the couplings (J,) to reflect the local geometry
of atarget higher-dimensional lattice. For example, an effective L x L
2D square lattice can be realized in a nonlocal 1D lattice by coupling
nearest-neighbours and Lth nearest-neighbours, that is, (/);-1 53, .. =
(., 0,...,0,/,,0,...) (Fig. 1b). This produces a 2D lattice with a twisted
boundary condition?**¢,and only approximates atrue 2D lattice once
Lismadetobeverylarge.Here, any local excitation with finite lifetime
will become insensitive to the boundary. Thus, by pursuing a large
number of modes, we can realize effective lattices in higher dimen-
sions that approximate the true physics. The vanishing effects of the
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Fig.2|Optical bandstructure measurements of 2D and 3D lattices. a, Top: the
bandstructure for a twisted 2D square lattice is measured from the time-domain
response of the cavity to scanning single-frequency injection as a function of
the detuning 4 (ref. 22), here demonstrated using a pedagogical example with
linear lattice size L = 3. This time-trace output is sliced into chunks of length

L, allowing the reconstruction of a full 2D bandstructure measured in a single
shot (Supplementary Fig. 9). Bottom: reconstructed bandstructure fora2D
square lattice with large L, comparing theoretical (left) with experimental (right)
results for L =100. As L grows large, the effect of the twisted boundary condition

inthe bandstructure becomes negligible, and the measured bandstructure
approximates that of aregular 2D square lattice. b, Data of the full bandstructure
plotted along slices that connect special points of the Brillouin zone, compared
with theoretical results for a true 2D square lattice (black line). These points
(highlighted bottom left) denote locations in momentum space with high
symmetry. The density of states g(£) is directly measured by summing the
time-domain response (right). c-e, Bandstructures and density of states fora

2D triangular lattice (L =100) (d), 3D square lattice (L = 28) (e) and 3D hexagonal
lattice (L =28) (f).

twisted boundary condition can be seen in the steady-state response
to asingle-site excitation in the comparison shown in Fig. 1c between
our experiment and simulations of a true 2D tight-binding lattice with
hard boundary conditions.

The frequency-multiplexed platform has a convenient encoding
ofreciprocal space for lattice systems. In the mapping from lattice sites
to frequency modes, time maps to momentum?®. Therefore, because
the Fourier components of the modulation signal define the connectiv-
ity, the modulation signal in the time domain defines the bandstruc-
ture. For a 1D lattice, this correspondence is exact: the modulation
signal u(t) = —V,cos(Qt) couples nearest-neighbour modes, implement-
inga 1D tight-binding chain with bandstructure E(k) = —Jcos(ka). Here
thelattice spacing aisidentified with the mode spacing Q,and momen-
tum k with time ¢. More generally, the action of phase modulation on
the frequency modes can be expressed as a unitary operator U= F'e’'F,
where Fis the discrete Fourier transform, and V « diag(v)isadiagonal
matrix whose values are proportional to the voltage signal
v=(v(t, v(t,), ..., v(1/Q)).In our simulator, the operator Uimplements
the time evolution defined by the Hamiltonian in equation (1). Thus,
the modulationsignal v(¢) defines the time evolution in adiagonal basis,
and therefore encodes energy eigenvalues of the lattice, that is, the
bandstructure. As aconsequence, this permits us to encode arbitrary
lattices that have asingle-band bandstructure. Additionally, it provides
us direct access to momentum-space lattice measurements™.

To extend the momentum-to-time analogy to 2D and 3D, we
require a large enough number of modes to eliminate the finite-size
effects from the twisted boundary condition. For the above example
of aneffective 2D lattice, slices of the bandstructure along the slow axis
(thatis, the axis corresponding totransport along nearest neighbours)
suffer from an asymmetry near the boundaries of the Brillouin zone
(Fig. 2a), prominent for small L. This is due to the twisted boundary
conditions, which makes the two directions no longer independent,
because L hops along Q will reach the same position as a single hop
along LQ. Concretely, the asymmetry can be seen by comparing the
two-tone signal we use to generate a 2D lattice, v(£) = -2V,cos(Qt) - 2
Vycos(LQt), and atrue 2D tight-binding lattice with nearest-neighbour
hopping, which has a bandstructure E(k) = -2/cos(k.a) - 2/cos(k,a).
The latter has two independent reciprocal lattice vectors, k, and k.
For L > 1, however, we can rely on a separation of timescales and treat

' =LQasaneffectiveindependent degree of freedom. Thisapproach
can be extended to higher-dimensional lattices; for example, fora3D
squarelattice, Q, LQand [*Qare the independent degrees of freedom.

Figure 2a outlines how we extend the methodsintroduced inref. 22
tomeasure the bandstructure ofa2D latticeinasingle shot, thenslice
up the measured bandstructure in periods of T;,, = 1/LQtoreconstruct
the 2D full bandstructure. See the Methods and Supplementary Figs. 9
and 10 for full details on this reconstruction. As L - «, the bandstruc-
ture of our effective 2D square lattice approaches that of aregular 2D
square lattice, as seen when comparing Fig. 2a and 2b. Slices through
high symmetry points of the fullbandstructure are shownin Fig.2b-e
for2Dsquare, 2D triangular, 3D simple cubic and 3D hexagonal lattices,
along with the respective density of states for each. Theoretical curves
for ordinary tight-binding lattices are shown in black.

High-bandwidth telecommunications optoelectronics enable
the study of transport in our platform for arbitrary input states. Our
scheme is enabled by 12-GHz electro-optic modulation, as summa-
rized schematically in Fig. 3a. This technique allows us to specify the
amplitude and phases of input excitations for up to-4,000 lattice sites,
limited primarily by a bandpass filter (Methods). Figure 3b presents
experimental measurements of various input states, including stand-
ing wavepacket eigenstates, angular wavepackets and a Cornell ‘C’. The
right columns display their respective steady-state response. Here, we
are continuously exciting local states and observing their steady-state
dynamicsinthe presence of loss. The full control over both amplitude
and phase enables us to excite states with net momentum. Figure 3c
shows the steady-state response of momentum eigenstates of a 2D
square lattice enveloped with a Gaussian for a discrete set of nonzero
input momenta. We can directly observe locally excited momentum
states propagating in different directions. The momentum of each
inputstateislabelled by its respective momentum distribution within
the Brillouin zone, shownin the left column of Fig. 3c.

By programming the phases and detunings of the coupling Hamil-
tonian (equation (1)), we implemented synthetic magnetic and electric
fields, respectively (Supplementary Fig.18 provides measurements for
synthetic electric fields)*?** %, as well as non-Hermitian models (Sup-
plementaryFigs.19 and 20 provide realizations of the Hatano-Nelson
modelin1Dand 2D). Figure 4 shows the effect of a synthetic gauge field
appliedtoa2D triangular lattice, giving rise to a global zero magnetic
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Fig.3|Input state preparation. a, Scheme for preparing arbitrary input states. Gaussian, and the Cornell University logo. The steady-state outputs of these
Using a phase modulator (PM), asingle frequency tone is modulated with aRF states fora2D L x L square lattice are shown to the right, along with acomparision
signal encoding both amplitude and phase of a given state, producing symmetric with theory. ¢, We excited the momentum eigenstates of a 2D square lattice with
sidebands (orange spectrum). The initial tone and the unwanted sideband is momentain various directions, enveloped with a Gaussian. Left: representation
thenrejected with abandpass filter (red envelope), leaving only the positive of theinput statein momentum space, k = (k,, k). Right: the experimental
sidebands, which are sent into the cavity. b, Experimental measurements of steady state in position space x = (x, y). Here, local momentum eigenstates
input states for anincreasing number of modes programmed in the input signal are continuously excited at the centre, and propagate with a well-defined
for (top to bottom) a standing wavepacket, an angular wave enveloped witha momentum before decaying.
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Fig.4 | Time-reversal symmetry-breakingina 2D triangular lattice due Peierls substitution (bottom). ¢, Measured steady-state spectral response due to
to an effective gauge field. a, Complex hopping termsinduce anonzero asingle-site injection under the influence of the synthetic local magnetic field.
local magnetic flux within a plaquette of a triangular lattice. Here, a relative The presence of the synthetic field leads to a departure from six-fold symmetry
phaseis added to one of three directions incident on a given lattice site. b, The to three-fold symmetry in the transport. Experimental data (left) are compared
introduction of the magnetic field breaks time-reversal symmetry, as can be seen with simulations (right).
intheasymmetry of the Kand K" points in the bandstructure after performing
field, but nonzero local magnetic field. Adding a relative phase along Inadditiontolattices foundintraditional condensed-matter sys-

nearest-neighbour hoppingsresultsinanaccumulated phaseof either  tems, our photonic simulator is capable of simulating systems not
e? ore ™, indicating a local nonzero magnetic flux goingaround each  realizablein crystalline materials. Systems with non-planar connectivity
plaquette. The sign of the accumulated phase alternates between are particularly interesting given that their realization in solid-state
neighbouring plaquettes, making the total magnetic flux throughthe systems is impractical, yet they contain rich physics. Periwal and
lattice vanish globally. Shown in Fig. 4b, the addition of this field breaks  colleagues’ recently experimentally demonstrated a simulation of a
time-reversal symmetry, which, for the triangular and honeycomblat-  graph with exotic long-range connectivity given by

tices, maps the K points to K’ points. This resultsinareductionfroma L o

six-fold symmetry to a three-fold symmetry in the transport of injected li=jF li-jl=2"ne{0,12 .} )
light, where propagation of light is prohibited in certain directions, as A 0 otherwise

shown in the heterodyne measurements of the steady-state density

(Fig.4). This time-reversal symmetry-breaking with local nonzero fields

isonekeyingredientin observations of the quantum-valley Hall effect This describes a system that can be continuously changed, using
seenin honeycomb lattices® . the parameter s, from an Archimedean-geometry regime in which
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Fig. 5| Simulations of bosonic transportin a tree-like geometry with agraph
comprising over 100,000 sites. a, Non-equilibrium correlation measurements
for a1D chain with nonlocal connectivity, characterized by the degree of locality s
(equation (2)). Assis tuned from -1 (left) to +1 (right), the correlations transition
from locally decaying to tree-like’. The top row presents experimental data,

and bottom row shows the theory. The lattice cartoons on the left and right
schematically show the coupling form for a single lattice site (position 0).
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b, Optical-spectrum measurement for the response to a single-site injection
withs=0.5, showing a measurable steady-state populationin>100,000 lattice
sites. c-e, RF spectrum measurements showing the lattice occupation with
single-site resolution of the zoom-in in the full optical spectrum, comparing with
simulations for windows of 20 GHz (¢), 500 MHz (d) and 100 MHz (e). Theoretical
results have been inverted for clarity.

correlations between sites decay with distance |i -, to a non-
Archimedean-geometry regime in which the correlations betweenssites
have a tree-like structure. The hierarchical geometry of this tree-like
system is a toy model for p-adic AdS/CFT correspondence®, studied
previously using atomic ensembles in an optical lattice with 16 sites’,
but shown here in a photonic system. We experimentally show this
transition in Fig. 5a in the measurements of correlations of the lattice
assistuned (the Methods provides details on the correlation measure-
ments and Supplementary Fig.17 presents another example). Near the
transition, ats = 0.5, the lattice exhibits both stronglocal and nonlocal
connectivity, resulting in dense yet extremely large lattices, as shown
inboth optical-spectrum measurementsin Fig. 5b and radiofrequency
(RF) spectrum measurements in Fig. 5c.

Although some graphs, such as the tree-like example depicted in
Fig. 5, result in occupations that span 100,000 or more lattice sites,
quantifying the absolute size of our simulator requires some nuance.
On the one hand, based on the dispersion and bandwidth of the ele-
ments inside the cavity, we believe the lattices we simulate span sev-
eral terahertz, corresponding to millions of lattice sites. On the other
hand, asinreal material systems, local excitations in lattices that have
only short- or medium-range connectivity will typically not be able to
propagate to very distant sites before their amplitude decays below

the noise floor of the detector. For example, in the experiments we
performed with 2D lattices, the steady-state response was detectable
in at most ~10* lattice sites in the vicinity of the injected wavepacket
(Fig.1c and Supplementary Fig.16).

The demonstrations described in this Article cover only a small
fraction of the bosonic physics that can be simulated with frequency-
domain coupling of photonic modes. Simple modifications to the
presented experimental set-up, such as dispersion compensation,
reducing total intracavity loss, and reducing the input power far
below the gain-saturation power, should substantially increase the
number of accessible lattice sites. Additionally, stabilizing the cavity
phase with respect to the phase of the input state would remove
decoherence effects limiting the propagation of our input excita-
tions. With these upgrades, observing dynamics on lattices spanning
millions of sites (or more) would become feasible. By adding multiple
spatial modes*® or bidirectional propagation’, simulations of topo-
logical phenomena found in higher-dimensional gapped multiband
systems may be realized. With coupled cavities, defects and hard
lattice edges® may beimplemented. In oursimulator, thiswould enable
the study of propagating edge modes in high-dimensional lattices.
By varying the intracavity phase modulation over multiple cavity
periods, time-dependent lattices may be realized, which would allow
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the study of new non-equilibrium phases*” and the implementation
of very wide convolutional optical neural networks*®. Similarly,
the use of stroboscopic modulation, as opposed to continuous-
wave modulation, would enable timed measurements of transient
dynamics, such as observing band evolutions*’ and time-resolved
spectral measurements. Inunmodulated cavities, Kerr nonlinearities
give rise to locked combs defined by dissipative cavity solitons®.
In the frequency domain, the Kerr effect produces highly non-
local, four-mode interactions”?°. Because Kerr interactions may be
programmed by modifying intracavity dispersion and spectral
loss, and by introducing additional mode families*, it should be
possible to realize both new types of intricately tailored Kerr
frequency comb, as well as simulations of the statistical mechanics
of graphs with higher-order interactions*, which should allow the
observation of emergent multistable states and abrupt synchroniza-
tion (mode-locking) transitions.

Photonicsimulators have, over the past decade, been established
as robust platforms for exploring condensed-matter phenomena,
including some that have beeninaccessible in material systems. In this
Article we have demonstrated a large-scale, programmable photonic
simulator using synthetic frequency dimensions. We have used our
simulator tostudy several models with a variety of different geometries,
including a lattice with tree-like connectivity that has, to our knowl-
edge, not previously beenrealized outside of cold-atom experiments
and that would be impractical to realize at scale in most simulator
platforms without the use of synthetic dimensions due to the model’s
highly nonlocal interactions. Looking to the future, our simulator
could be extended to even larger sizes through dispersion and loss
engineering, modified to support the study of topological phenom-
ena, and augmented with a nonlinearity that induces higher-order
interactions between lattice sites. With extensions to fully utilize the
many terahertz of bandwidth that is, in principle, available in optics,
programmable synthetic-frequency-dimension photonic simulators
may soon explore high-dimensional nonlinear physics, both near and
far from equilibrium. At all scales, advancesin this platform will benefit
the development of tailored light sources and optical signal proces-
sors. However, itisin the terahertz-spanning ultra-large-scale regime
that photonic simulators seem most compelling to us as analogue
simulators, with prospects to explore—and discover—entirely new and
unexpected physical phenomena.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
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Methods

Experimental details

The experimental set-up, shown schematically in Supplementary Fig.1,
consists of along fibre ring with FSR of Q =1.226045 MHz, modulated
with a 40-GHz phase modulator to produce the lattices described in
the main text and the Supplementary Information. The losses in the
cavity are compensated by a semiconductor optical amplifier (SOA).
Theinitialization of arbitrary input states is enabled by filtering modu-
lations of an injection. The modulation of both the input-state phase
modulator and the cavity phase modulator are controlled by a single,
multichannel arbitrary waveform generator (AWG). The injection laser
servesbothasalocal oscillator for heterodyne detection, and for excit-
ing input states. For high-bandwidth heterodyne detection, roughly
half of the injection is sent through a phase modulator to prepare the
input state before entering the cavity, while the other half is sent to
recombine with the cavity output to produce 12-GHz beats. For full
details, see Supplementary Figs.1and 13. The prescription of initializing
input states results in 20 dB of insertion loss, but more than 30 dB of
isolation between the filtered sideband and the local oscillator (LO),
resulting in a clean single-sideband modulation. An initial amplifer is
placed before the 50:50 splitter for compensating this insertion loss.
After passing through the state-preparation module, the polarization
of the prepared input state is set to align with the crystal axis of the
intracavity electro-optic modulator (EOM). Coupling into and out of
the cavity is done with 99:1 beamsplitters. Finally, the output of the
cavity is combined with the LO before being detected by a photode-
tector, resulting in a12-GHz heterodyne detection of the output. One
component of resultant RF signal is amplified before being sent to an
oscilloscope for single-shot bandstructure spectroscopy in the time
domain. The other component of the RF signalis sent to the spectrum
analyser (Tektronix RSA5126A) to performdirect readout of the lattice
over 26 GHz. For bandstructure measurements, the heterodyne arm
isturned off. The spectrum measured in Fig. 5b was measured withan
optical spectrumanalyser.

Theintracavity SOA compensates for roundtrip lossesin the cavity.
However, the SOA contributes substantially to noise viathe unwanted
production of amplified spontaneous emission (ASE). To reduce ASE, a
filter was placed in the cavity, and roundtrip losses were minimized to
reduce the operating pointof the SOA. The cavity losses were reduced
to 5 dB, 4 dB of which originated from the insertion loss of the cavity
EOM. In addition to limiting the noise, reducing the operating point
of the SOA has the added benefit of reducing the contribution of ASE
to the gain saturation. For a large ratio of input power to saturating
power, transport of the optical power along the 1D chain is limited.
From simulations, we find that aratio of P,..4/P,, < 1/100 is enough to
reachthousands of modes above the noise floor of our set-up. The right
side of Supplementary Fig. 3 shows the experimental measured value
ofgainsaturation at -4 dBm, so, for all of the measurementsin the main
text, we had aninput power of below —20 dBm going into the cavity.

To instantiate a lattice with a large numbers of sites, knowledge
of the cavity FSR is needed to within ~10 Hz to sustain the required
coherence over many roundtrips. This was carefully measured using
anumber of methods (providing course-grained or fine-grained char-
acterization). In afirst step, we measured the FSR by exciting the cavity
far above the lasing threshold and measured the mode excitations.
This procedure gave us the FSR to within 10 kHz. Next, we placed the
cavity just below the lasing threshold and performed spectral meas-
urements following single-site injection, and maximized the transport
observed over the modes as we varied the modulation frequency. To
measure the FSR of our cavity down to 10 Hz, we modulated the EOM
with multiple tones, which increased the sensitivity due to interfer-
ences between different paths taken over multiple roundtrips of the
cavity. If the modulation is slightly detuned, the transport exhibits
effects related to Bloch oscillations, which are much easier to detect
thandirect resonance. The Supplementary Information provides more

details, including measurements of Bloch oscillations (Supplementary
Fig.5). Suppressing these oscillations allowed us to find the FSR to five
decimal places, downto10 Hz.

Set-up modelling

We consider the complex-valued electric field A(x, ¢) inside the ring
cavity such that A(x, t) =A(x + L, t) where L is the roundtrip length of
the cavity. In the absence of dispersion, we can expand this electric
fieldinterms of resonantmodesas A(x, t) =Y ,A(x)a,(t)e™ due to this
periodic boundary condition. Here, Qis the mode spacing, related to
theroundtrip length as Q = ¢/L.Inthe frequency domain, the resonant
modes a,, are then coupled via a phase modulator to realize a variety
of tight-binding graphs. In the time domain, the action of the phase
modulator over one roundtrip is simply a(t + 1) = €?Ya(t), where the
cavity modulation ¢p(¢) is proportional to the RF signal v(¢) driving the
phase modulator and is periodic over the roundtrip time 7. In the basis
of the frequency modes, this actionis described by

U=el"=FTelVF 3

where Visadiagonal operator encoding the modulation ¢(¢) along the
diagonal, and Fis the discrete Fourier transform Fj, = (e=2NY" where
Nisthe number of modes. The equation above sets constraints onthe
time evolution operator U, namely thatitis aunitary Toeplitz operator,
thatis, a unitary matrix with constant diagonals.

For small values of the matrix/, the full coupled mode equations
are

g

ap® = (im.Q R S
" 1+ 3,10,/ Poac

- éj) am(t) - izjn—man([) + ain(t)eiAt
' )

where gis the small-signal gain, £is the roundtrip loss, a;, is acomplex
frequency-dependent amplitude encoding theinputstate at frequency
W, P, is the nonlinear saturating gain, and 4 is the detuning between
the seed and the cavity frequency. The termJ, describes the coupling
terms from the phase modulator, given by J, = 2m)™ /' dtei#©eiks2t,
Tomodelthe effect of dispersion we would include aterm proportional
to m*in the first term, but we have not done so because in our experi-
ments the dispersion was sufficiently small that it could be neglected.

Thisequationis simplified by moving to the rotating frame of each
mode a,,(t) > a,(t)e™ and operating well below the saturation power.
Inthis form, the equations reduce to

@(0) = —Ya(O) = i Y Jum@n(t) + Qi (02 )

wherey = £ - gisthe gain-loss balance, and 4 is the detuning from the
cavity modes. Collecting the mode amplitudes in a column vector
la(t)) = (ao(0), a;(0), ...)" with the basis {|m)} indexing the cavity modes,
we obtain

igmi( 2 iy+1) @) = (miagyet>* ©)

In this basis, |a;,) is a column vector encoding the injection. For a
continuous wave injection, |a;,) = (0, 0, ..., O, aj,, O, D Neglecting
the loss in the system, the equation above describes the Schrédinger
equation derived from the Hamiltonianin equation (1), with H=/. The
implicit assumption is that because the Hamiltonian is sufficiently
linear, the many-body states are described with just a single-excitation
picture, thatis, with first quantization.

Equation (6) has asimple steady-state solution in the continuous
limit for a single-site injection, that s, |a;,) = (0, 0, ...0,1, 0, ..., 0, 0)".
Substituting the basis vectors {(m|} indexing the mode numbers with
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acontinuous parameter x, we can integrate equation (6) with Fourier
transforms to obtain

o
alx, t > m):iﬁ/% 7)

where ¢ is the spectrum of /. For example, for a1D nearest-neighbour
couplingwithstrength/,, where ¢, = k%, equation (7) has the steady-state
solution

—V2y/Jolx|
ax) = T[\/P_inezy—/jo (8)

wherexisthe continuous variableindexing the mode number. Clearly,
bytakingy - 0, thatis, operating at threshold, the number of occupied
modesreachesinfinity. Of course, the solutionin equation (8) neglects
the effects of dispersion and, more importantly, gain saturation. From
simulations, we found that dispersion would begin limiting our lattice
sizesaround abandwidth of -100 GHz, but that the gain saturation limits
the size much earlier, effectively increasing the loss as discussed above.

Figure 4 shows the correlations of a simple 1D lattice with either
nearest-neighbour hoppings or next-nearest-neighbour hoppings.
These matrices are constructed from the measured spectral response
ofthelattice atagiveninjection site:

Gy = (@) n() — (n@" Xn()) ©

where n(j) denotes the population at sitej, and n(i)* denotes the popula-
tionatsiteigiventheinjection wasmadeatsitei,and the(...) brackets
denote the average over injection sites. We denote these quantities as
the non-equilibrium correlation matrices, and find these measure-
ments capture correlations of systems also found in other literature’.

Real-space-occupation and bandstructure measurements

To map the power spectrum to the occupation at a particular lattice
site, the peak of the power around a neighbourhood of the expected
frequency of the cavity mode was picked. To generate lattice plots in
2D and higher, we employed this prescription to retrieve the peaks
from a 1D chain, then reshaped the data appropriately depending
on the type of lattice the coupling signal realizes. For example, if we
measure the response in a 2D square lattice, where we modulate the
cavity at Q and LQ, we pick N=L x L peaks of the spectrum, and wrap
theminan/ x L matrix.

To instantiate a triangular lattice, we modulate the intracavity
EOMatthree frequencies {Q, LQ, (L +1)Q},a2Dsquare lattice with extra
diagonal connections. By choosing therelative values of the coupling,
the connectivity of this graph can be made exact with the connectivity
of atriangular lattice. However, the six-fold symmetry of this lattice
is not captured when presented in regular euclidean space. Thus,
beginning with every even row of our lattice, we shift the indices over
by one, as shown in Supplementary Fig. 8, resulting in the expectant
traversals. Doing so preserves the local connectivity of the triangular
lattice without physically altering the connectivity.

To measure the bandstructure, the output of the cavity is ampli-
fied and filtered witha 0.1-1-GHz bandpass filter in the RF domain. The
amplifier increases the signal-to-noise ratio needed for the single-shot
readout for the bandstructure measurements. Single-shot readout is
needed due to the phase walk-offbetween the injection and the cavity.
For details of the bandstructure measurements, we refer to ref. 22, but
we briefly summarize the procedure here and outline our extensions
for measurements of bandstructuresin 2D and higher.

The modulation signal to realize a 30 x 30 2D square lattice is
U,p(t) = Vicos(Qt) + V,cos(300¢), as shown in Supplementary Fig. 9a.
The output of the cavity is measured with an oscilloscope to produce
theraw measurement of alD time series (Supplementary Fig. 9b). This

timeseriesis then divided into chunks set by the cavity roundtrip time
7=1/0.Here, we scanned over onemodein1ms. These two timescales
were observed to be well separated enough to allow the laser to find
equilibrium with the continuously changing scanning frequency. The
widths of thebandstructures are proportional to QV/V,, where Vis the
modulation amplitude and V, is the pi-voltage of the phase modulator.
For all bandstructure measurements we drove the EOM very close to
the pi-voltage to obtain wide bandstructures.

Areal 2D square lattice hasabandstructure of E(k) = —2/cos(k.a) -
2J/cos(k,a), but the above produces only a single dimension. To con-
struct the full 2D bandstructure from this signal, we again separate
the time-domain response signal into two timescales. The timescale
measuring the cavity response over just a single roundtrip is decom-
posed into L chunks, so that each chunk s of length ¢, = 1/LQ, where
Listhesecondarylong-range coupling used toinstantiatea2D square
lattice. The secondary timescale is synthetically formed by looking at
points separated by 1/LQ. In other words, if we reconstruct the full 2D
bandstructure by appending chunks of length ¢, ¢, is the orthogonal
direction pointing along the different chunks. These two timescales,
trs and t,,, map to the two independent momenta k, and k,, when
the timescales are well separated enough, as is the case for L > 1. See
Methods and Supplementary Figs. 9,10 and 12 for full details of this
reconstruction.

To take paths through the high symmetry points of the Brillouin
zone, high-resolution experimental dataare needed. For the bandstruc-
ture measurements, the cavity was modulated at aslightly detuned fre-
quency (-10-20 Hz) to match with amultiple of the sampling rate of the
oscilloscope. This also prevented awalk-offin the reconstructions when
the scope sampling rate was detuned from the cavity-mode spacing,
leading to alinear shift in the bandstructure along t,,,, when digitized.

Input-state preparation

To prepare arbitrary input states, a high modulation bandwidth and
high preparation fidelity, with no spurious images or modes, are
required. To this end, weimplemented an image rejection IQ mixerin
the optical domain by combining a12-GHz phase modulator with afibre
Bragggratingas afilter (Supplementary Fig.12). The Bragg gratingisa
4-GHzbandpass filter centred 12 GHz away from the injection, enabling
programmability input statesin~4,000 lattice sites, while rejecting the
spurious sidebandsinaddition to the carrier frequency. The baseband
signal around a 12-GHz tone was encoded in a voltage signal from an
AWG asland Q pairs and upconverted with an electronic IQ mixer. The
resultant upconverted signal was then sent to drive the external EOM,
enablingboth phase and amplitude programmability of the input state
atevery lattice position.

To account for spectral inhomogeneities in the input chain, we
calibrated the modulation by measuring the light before entering the
cavity. If the modulation has someinhomogeneity, such thatavoltage
signal V() = 3}V, sin(n2t) is modified to W(t) = 3, (Van,) sin(ns2t), the
output power ineach modeis scaled by n2. To compensate, we injected
light that had been uniformly modulated at allinteger multiples of the
FSRwithinthe spectral region of interest, thatis, atop hat distribution
defined on lattice sites. This region of interest contains roughly up to
2,000 modes for the input states presented in Fig. 3b. The square root
oftheresponse of this measurement gives us -7, whichwe used to apply
anenvelope function to the modulation signal. If successful, atop hat
modulation multiplied with this envelope function will produce a clean
flat spectrum. Otherwise, this process can beiterated for higher order.

The phase modulator preparinginput states and the phase modu-
lator programming the cavity interactions are synced to the same
clock; however, the voltage signal driving the input-state modulator
is upconverted before hitting the EOM. This imparts a phase differ-
ence between the input state and the cavity due to the different cable
lengths. The phase difference between the injected light and the cavity
defines the average momentum of the excitation. To account for this
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delay, we prepared a state with net-zero momentum (in the frame of
the outgoing signal) into a tight-binding lattice, and tuned the phase
of the cavity signal until we observed no transport.
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