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Programmable large-scale simulation 
of bosonic transport in optical synthetic 
frequency lattices

Alen Senanian    1,2  , Logan G. Wright    2,3, Peter F. Wade4, Hannah K. Doyle2 & 
Peter L. McMahon2,5 

Photonic simulators using synthetic frequency dimensions have enabled 
flexible experimental analogues of condensed-matter systems. However, 
so far, such photonic simulators have been limited in scale, yielding results 
that suffer from finite-size effects. Here we present an analogue simulator 
capable of simulating large two-dimensional (2D) and 3D lattices, as well 
as lattices with non-planar connectivity. Our simulator takes advantage of 
the broad bandwidth achievable in photonics, allowing our experiment to 
realize programmable lattices with over 100,000 lattice sites. We showcase 
the scale of our simulator by demonstrating the extension of bandstructure 
spectroscopy from 1D to 2D and 3D lattices. We then report the direct 
observation of time-reversal symmetry-breaking in a triangular lattice 
in both momentum and real space, as well as site-resolved occupation 
measurements in a tree-like geometry that serves as a toy model in 
quantum gravity. Moreover, we demonstrate a method to excite arbitrary 
multisite states, which we use to study the response of a 2D lattice to both 
conventional and exotic input states. Our work highlights the scalability and 
flexibility of optical synthetic frequency dimensions. Future experiments 
building on our approach will be able to explore non-equilibrium 
phenomena in high-dimensional lattices and to simulate models with 
nonlocal higher-order interactions.

Simulations have long been used to understand emergent pheno
mena in complex many-body systems. Special-purpose analogue 
simulators trade off the generality of digital implementations for 
either scalability or access to regimes that are challenging for digital 
computers. In this regard, photonic analogue simulators1–6 comple-
ment developments in platforms like superconducting circuits7,8 
and ultracold atoms9 by enabling, in principle, extremely large-scale 
simulations. Photonic simulation has a long history and has led to the 
discovery of a variety of phenomena that are challenging to realize in 
conventional condensed-matter systems, such as topological phase 

transitions10–14 and non-Hermitian exceptional points15–17, which in turn 
has led to new photonic devices with applications far beyond basic  
physical science18,19.

Although telecommunication technologies routinely utilize the 
high bandwidth inherent to optics, harnessing the frequency parallel-
ism of light for large-scale analogue simulation has largely remained 
unexplored. One promising approach is to implement synthetic 
frequency dimensions6,20–24, in which optical frequency modes are 
mapped to lattice sites to perform bosonic analogue simulations. 
Simulators using synthetic frequency dimensions have been shown to 
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geometries are defined by the complex tunnelling rates Jk = | Jk|eiϕk, 
which encode the translationally invariant coupling of sites a distance 
k apart with amplitude |Jk| and phase ϕk. The main goal of the photonic 
simulator we present in this work is to be able study the transport of a 
variety of single-particle excitations in any Hamiltonian in the class 
defined by equation (1), where the complex parameters Jk can be pro-
grammed arbitrarily—this allows us to study a diversity of different 
lattices, including those that are multidimensional.

In the synthetic-frequency-dimensions approach30 that we adopt, 
the lattice operators al, a†l  are associated with the lth frequency mode 
of an optical cavity, spaced apart by Ω (the free spectral range (FSR) of 
the cavity). The tunnelling rates (Jk)k = 1, 2, 3, … are physically realized using 
a phase modulator within the optical cavity (Fig. 1a)—intuitively, the 
modulator creates optical sidebands at the frequencies contained in 
the modulation signal v(t) and, by setting these sidebands at harmonics 
of Ω, these sidebands cause coupling between cavity modes. Addition-
ally, by setting the amplitudes and phases of frequency components 
in v(t) appropriately, different lists of tunnelling amplitudes (| Jk|) and 
relative phases (ϕk) can be programmed (Fig. 1a), which in turn realize 
different lattice geometries (Fig. 1c). Our simulator includes a gain/
loss balance term in the Hamiltonian, but this is kept close to zero. 
Additionally, phase modulation at Ω produces higher-order sidebands, 
but these can be suppressed to negligible amplitudes by appropriately 
choosing the modulation voltage (Methods).

Although the Hamiltonian in equation (1) nominally describes a 
1D lattice, we can implement effective higher-dimensional lattices by 
suitably programming the couplings (Jk) to reflect the local geometry 
of a target higher-dimensional lattice. For example, an effective L × L 
2D square lattice can be realized in a nonlocal 1D lattice by coupling 
nearest-neighbours and Lth nearest-neighbours, that is, (Jk)k = 1, 2, 3, … = 
(J1, 0, …, 0, JL, 0, …) (Fig. 1b). This produces a 2D lattice with a twisted 
boundary condition20,36, and only approximates a true 2D lattice once 
L is made to be very large. Here, any local excitation with finite lifetime 
will become insensitive to the boundary. Thus, by pursuing a large 
number of modes, we can realize effective lattices in higher dimen-
sions that approximate the true physics. The vanishing effects of the 

be versatile, implementing synthetic electric and magnetic fields25–27, 
non-Hermitian coupling6,28 and nonlinear interactions27,29. So far, how-
ever, these demonstrations have been confined to small lattice sizes, 
with limited programmability and restricted initial conditions.

In this Article we demonstrate a frequency-mode-based plat-
form that can simulate transport of arbitrary excitations in planar 
and non-planar optical lattices with up to 100,000 sites—orders of 
magnitude greater than achieved previously in photonic simulators 
with programmable geometry30. By pursuing a dense spectrum with 
megahertz mode spacing, we leverage developments in both optical 
frequency combs and high-frequency optoelectronics to manipu-
late and probe a large number of optical frequency modes in a ring 
cavity. Additionally, these technologies enable a wide-bandwidth 
measurement scheme and arbitrary encoding of both the amplitude 
and phase of input states, allowing fine resolution and control of bos-
onic transport. We leverage the scale and programmability of our 
simulator with three key demonstrations. First, our simulator can 
read out momentum-space features with high resolution, enabling 
us to measure bandstructures of various multidimensional lattices. 
Second, we observe both the real- and momentum-space signatures 
of time-reversal symmetry-breaking due to an effective gauge field in 
a two-dimensional (2D) triangular lattice, an important step towards 
the realization of the photonic quantum-valley Hall effect31–33. Third, 
we observe hierarchical transport across several orders of magnitude 
of length scales within a non-planar tree-like network, a toy model for 
quantum gravity and p-adic anti-de Sitter/conformal field theory (AdS/
CFT) correspondence34,35.

The class of Hamiltonians that our system is able to simulate is 
given by

H = ∑
i<j

Ji−ja†i aj +H.c. (1)

Hamiltonians in this class describe non-interacting bosons on 
translationally invariant lattices. a†l  and al are, respectively, the bosonic 
creation and annihilation operators for the lth lattice site. The lattice 
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Fig. 1 | Simulations of large-scale bosonic transport with a programmable 
photonic simulator. a, Dynamic modulation of a fibre ring resonator couples 
frequency components of the intracavity field in each roundtrip, represented in 
the basis of the frequency modes as U = F†eiVF. Here, V ∝ diag(v) is the diagonal 
voltage operator defining the modulation signal v = (v(t1), v(t2), …, v(1/Ω)), and  
F is the discrete Fourier transform. The components of the voltage modulation 
define the coupling (bottom). By modulating at multiples of the mode spacing 
(Ω), we only couple long-lived modes of the cavity, allowing for injected signals to 

propagate in frequency for many multiples of the roundtrip time. b, Engineered 
long-range coupling maps the 1D spectrum to an L × L 2D lattice with twisted 
boundary conditions. As L grows large, the lattice approaches a smooth 2D plane. 
c, A set of voltage signals defining lattices in 2D and 3D (top; see the main text and 
Supplementary Fig. 7 for details), and the response to a single frequency drive 
(single-site) for a twisted 2D square lattice with over 20,000 lattice sites 
compared with tight-binding simulations of a 2D square lattice (bottom).
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twisted boundary condition can be seen in the steady-state response 
to a single-site excitation in the comparison shown in Fig. 1c between 
our experiment and simulations of a true 2D tight-binding lattice with 
hard boundary conditions.

The frequency-multiplexed platform has a convenient encoding 
of reciprocal space for lattice systems. In the mapping from lattice sites 
to frequency modes, time maps to momentum22. Therefore, because 
the Fourier components of the modulation signal define the connectiv-
ity, the modulation signal in the time domain defines the bandstruc-
ture. For a 1D lattice, this correspondence is exact: the modulation 
signal v(t) = −V0cos(Ωt) couples nearest-neighbour modes, implement-
ing a 1D tight-binding chain with bandstructure E(k) = −Jcos(ka). Here 
the lattice spacing a is identified with the mode spacing Ω, and momen-
tum k with time t. More generally, the action of phase modulation on 
the frequency modes can be expressed as a unitary operator U = F†eiVF, 
where F is the discrete Fourier transform, and V ∝ diag(v) is a diagonal 
matrix whose values are proportional to the voltage signal 
v = (v(t1), v(t2), …, v(1/Ω)). In our simulator, the operator U implements 
the time evolution defined by the Hamiltonian in equation (1). Thus, 
the modulation signal v(t) defines the time evolution in a diagonal basis, 
and therefore encodes energy eigenvalues of the lattice, that is, the 
bandstructure. As a consequence, this permits us to encode arbitrary 
lattices that have a single-band bandstructure. Additionally, it provides 
us direct access to momentum-space lattice measurements22.

To extend the momentum-to-time analogy to 2D and 3D, we 
require a large enough number of modes to eliminate the finite-size 
effects from the twisted boundary condition. For the above example 
of an effective 2D lattice, slices of the bandstructure along the slow axis 
(that is, the axis corresponding to transport along nearest neighbours) 
suffer from an asymmetry near the boundaries of the Brillouin zone 
(Fig. 2a), prominent for small L. This is due to the twisted boundary 
conditions, which makes the two directions no longer independent, 
because L hops along Ω will reach the same position as a single hop 
along LΩ. Concretely, the asymmetry can be seen by comparing the 
two-tone signal we use to generate a 2D lattice, v(t) = −2V0cos(Ωt) − 2
V0cos(LΩt), and a true 2D tight-binding lattice with nearest-neighbour 
hopping, which has a bandstructure E(k) = −2Jcos(kxa) − 2Jcos(kya). 
The latter has two independent reciprocal lattice vectors, kx and ky. 
For L ≫ 1, however, we can rely on a separation of timescales and treat 

Ω′ = LΩ as an effective independent degree of freedom. This approach 
can be extended to higher-dimensional lattices; for example, for a 3D 
square lattice, Ω, LΩ and L2Ω are the independent degrees of freedom.

Figure 2a outlines how we extend the methods introduced in ref. 22 
to measure the bandstructure of a 2D lattice in a single shot, then slice 
up the measured bandstructure in periods of Tfast = 1/LΩ to reconstruct 
the 2D full bandstructure. See the Methods and Supplementary Figs. 9 
and 10 for full details on this reconstruction. As L → ∞, the bandstruc-
ture of our effective 2D square lattice approaches that of a regular 2D 
square lattice, as seen when comparing Fig. 2a and 2b. Slices through 
high symmetry points of the full bandstructure are shown in Fig. 2b–e 
for 2D square, 2D triangular, 3D simple cubic and 3D hexagonal lattices, 
along with the respective density of states for each. Theoretical curves 
for ordinary tight-binding lattices are shown in black.

High-bandwidth telecommunications optoelectronics enable 
the study of transport in our platform for arbitrary input states. Our 
scheme is enabled by 12-GHz electro-optic modulation, as summa-
rized schematically in Fig. 3a. This technique allows us to specify the 
amplitude and phases of input excitations for up to ~4,000 lattice sites, 
limited primarily by a bandpass filter (Methods). Figure 3b presents 
experimental measurements of various input states, including stand-
ing wavepacket eigenstates, angular wavepackets and a Cornell ‘C’. The 
right columns display their respective steady-state response. Here, we 
are continuously exciting local states and observing their steady-state 
dynamics in the presence of loss. The full control over both amplitude 
and phase enables us to excite states with net momentum. Figure 3c 
shows the steady-state response of momentum eigenstates of a 2D 
square lattice enveloped with a Gaussian for a discrete set of nonzero 
input momenta. We can directly observe locally excited momentum 
states propagating in different directions. The momentum of each 
input state is labelled by its respective momentum distribution within 
the Brillouin zone, shown in the left column of Fig. 3c.

By programming the phases and detunings of the coupling Hamil-
tonian (equation (1)), we implemented synthetic magnetic and electric 
fields, respectively (Supplementary Fig. 18 provides measurements for 
synthetic electric fields)25,26,37–45, as well as non-Hermitian models (Sup-
plementary Figs. 19 and 20 provide realizations of the Hatano–Nelson 
model in 1D and 2D). Figure 4 shows the effect of a synthetic gauge field 
applied to a 2D triangular lattice, giving rise to a global zero magnetic 
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Fig. 2 | Optical bandstructure measurements of 2D and 3D lattices. a, Top: the 
bandstructure for a twisted 2D square lattice is measured from the time-domain 
response of the cavity to scanning single-frequency injection as a function of 
the detuning Δ (ref. 22), here demonstrated using a pedagogical example with 
linear lattice size L = 3. This time-trace output is sliced into chunks of length 
L, allowing the reconstruction of a full 2D bandstructure measured in a single 
shot (Supplementary Fig. 9). Bottom: reconstructed bandstructure for a 2D 
square lattice with large L, comparing theoretical (left) with experimental (right) 
results for L = 100. As L grows large, the effect of the twisted boundary condition 

in the bandstructure becomes negligible, and the measured bandstructure 
approximates that of a regular 2D square lattice. b, Data of the full bandstructure 
plotted along slices that connect special points of the Brillouin zone, compared 
with theoretical results for a true 2D square lattice (black line). These points 
(highlighted bottom left) denote locations in momentum space with high 
symmetry. The density of states g(E) is directly measured by summing the 
time-domain response (right). c–e, Bandstructures and density of states for a 
2D triangular lattice (L = 100) (d), 3D square lattice (L = 28) (e) and 3D hexagonal 
lattice (L = 28) (f).
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field, but nonzero local magnetic field. Adding a relative phase along 
nearest-neighbour hoppings results in an accumulated phase of either 
eiϕ or e−iϕ, indicating a local nonzero magnetic flux going around each 
plaquette. The sign of the accumulated phase alternates between 
neighbouring plaquettes, making the total magnetic flux through the 
lattice vanish globally. Shown in Fig. 4b, the addition of this field breaks 
time-reversal symmetry, which, for the triangular and honeycomb lat-
tices, maps the K points to K′ points31. This results in a reduction from a 
six-fold symmetry to a three-fold symmetry in the transport of injected 
light, where propagation of light is prohibited in certain directions, as 
shown in the heterodyne measurements of the steady-state density 
(Fig. 4). This time-reversal symmetry-breaking with local nonzero fields 
is one key ingredient in observations of the quantum-valley Hall effect 
seen in honeycomb lattices31–33.

In addition to lattices found in traditional condensed-matter sys-
tems, our photonic simulator is capable of simulating systems not  
realizable in crystalline materials. Systems with non-planar connectivity  
are particularly interesting given that their realization in solid-state 
systems is impractical, yet they contain rich physics. Periwal and  
colleagues9 recently experimentally demonstrated a simulation of a 
graph with exotic long-range connectivity given by

Ji−j ∝ {
|i − j|s |i − j| = 2n, n ∈ {0, 1, 2, …}

0 otherwise
(2)

This describes a system that can be continuously changed, using  
the parameter s, from an Archimedean-geometry regime in which  
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correlations between sites decay with distance |i − j|, to a non- 
Archimedean-geometry regime in which the correlations between sites 
have a tree-like structure. The hierarchical geometry of this tree-like 
system is a toy model for p-adic AdS/CFT correspondence35, studied 
previously using atomic ensembles in an optical lattice with 16 sites9, 
but shown here in a photonic system. We experimentally show this 
transition in Fig. 5a in the measurements of correlations of the lattice 
as s is tuned (the Methods provides details on the correlation measure-
ments and Supplementary Fig. 17 presents another example). Near the 
transition, at s = 0.5, the lattice exhibits both strong local and nonlocal 
connectivity, resulting in dense yet extremely large lattices, as shown 
in both optical-spectrum measurements in Fig. 5b and radiofrequency 
(RF) spectrum measurements in Fig. 5c.

Although some graphs, such as the tree-like example depicted in 
Fig. 5, result in occupations that span 100,000 or more lattice sites, 
quantifying the absolute size of our simulator requires some nuance. 
On the one hand, based on the dispersion and bandwidth of the ele-
ments inside the cavity, we believe the lattices we simulate span sev-
eral terahertz, corresponding to millions of lattice sites. On the other 
hand, as in real material systems, local excitations in lattices that have 
only short- or medium-range connectivity will typically not be able to 
propagate to very distant sites before their amplitude decays below 

the noise floor of the detector. For example, in the experiments we 
performed with 2D lattices, the steady-state response was detectable 
in at most ~104 lattice sites in the vicinity of the injected wavepacket 
(Fig. 1c and Supplementary Fig. 16).

The demonstrations described in this Article cover only a small  
fraction of the bosonic physics that can be simulated with frequency- 
domain coupling of photonic modes. Simple modifications to the 
presented experimental set-up, such as dispersion compensation, 
reducing total intracavity loss, and reducing the input power far 
below the gain-saturation power, should substantially increase the 
number of accessible lattice sites. Additionally, stabilizing the cavity  
phase with respect to the phase of the input state would remove 
decoherence effects limiting the propagation of our input excita-
tions. With these upgrades, observing dynamics on lattices spanning 
millions of sites (or more) would become feasible. By adding multiple 
spatial modes46 or bidirectional propagation12, simulations of topo-
logical phenomena found in higher-dimensional gapped multiband 
systems may be realized. With coupled cavities, defects and hard  
lattice edges24 may be implemented. In our simulator, this would enable  
the study of propagating edge modes in high-dimensional lattices. 
By varying the intracavity phase modulation over multiple cavity 
periods, time-dependent lattices may be realized, which would allow 
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the study of new non-equilibrium phases47 and the implementation  
of very wide convolutional optical neural networks48. Similarly, 
the use of stroboscopic modulation, as opposed to continuous- 
wave modulation, would enable timed measurements of transient 
dynamics, such as observing band evolutions49 and time-resolved 
spectral measurements. In unmodulated cavities, Kerr nonlinearities 
give rise to locked combs defined by dissipative cavity solitons50. 
In the frequency domain, the Kerr effect produces highly non
local, four-mode interactions27,29. Because Kerr interactions may be  
programmed by modifying intracavity dispersion and spectral  
loss, and by introducing additional mode families46, it should be  
possible to realize both new types of intricately tailored Kerr  
frequency comb, as well as simulations of the statistical mechanics 
of graphs with higher-order interactions47, which should allow the 
observation of emergent multistable states and abrupt synchroniza-
tion (mode-locking) transitions.

Photonic simulators have, over the past decade, been established 
as robust platforms for exploring condensed-matter phenomena, 
including some that have been inaccessible in material systems. In this 
Article we have demonstrated a large-scale, programmable photonic 
simulator using synthetic frequency dimensions. We have used our 
simulator to study several models with a variety of different geometries, 
including a lattice with tree-like connectivity that has, to our knowl-
edge, not previously been realized outside of cold-atom experiments 
and that would be impractical to realize at scale in most simulator 
platforms without the use of synthetic dimensions due to the model’s 
highly nonlocal interactions. Looking to the future, our simulator 
could be extended to even larger sizes through dispersion and loss 
engineering, modified to support the study of topological phenom-
ena, and augmented with a nonlinearity that induces higher-order 
interactions between lattice sites. With extensions to fully utilize the 
many terahertz of bandwidth that is, in principle, available in optics, 
programmable synthetic-frequency-dimension photonic simulators 
may soon explore high-dimensional nonlinear physics, both near and 
far from equilibrium. At all scales, advances in this platform will benefit 
the development of tailored light sources and optical signal proces-
sors. However, it is in the terahertz-spanning ultra-large-scale regime 
that photonic simulators seem most compelling to us as analogue 
simulators, with prospects to explore—and discover—entirely new and 
unexpected physical phenomena.
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Methods
Experimental details
The experimental set-up, shown schematically in Supplementary Fig. 1,  
consists of a long fibre ring with FSR of Ω = 1.226045 MHz, modulated 
with a 40-GHz phase modulator to produce the lattices described in 
the main text and the Supplementary Information. The losses in the 
cavity are compensated by a semiconductor optical amplifier (SOA). 
The initialization of arbitrary input states is enabled by filtering modu-
lations of an injection. The modulation of both the input-state phase 
modulator and the cavity phase modulator are controlled by a single, 
multichannel arbitrary waveform generator (AWG). The injection laser 
serves both as a local oscillator for heterodyne detection, and for excit-
ing input states. For high-bandwidth heterodyne detection, roughly 
half of the injection is sent through a phase modulator to prepare the 
input state before entering the cavity, while the other half is sent to 
recombine with the cavity output to produce 12-GHz beats. For full 
details, see Supplementary Figs. 1 and 13. The prescription of initializing 
input states results in 20 dB of insertion loss, but more than 30 dB of 
isolation between the filtered sideband and the local oscillator (LO), 
resulting in a clean single-sideband modulation. An initial amplifer is 
placed before the 50:50 splitter for compensating this insertion loss. 
After passing through the state-preparation module, the polarization 
of the prepared input state is set to align with the crystal axis of the 
intracavity electro-optic modulator (EOM). Coupling into and out of 
the cavity is done with 99:1 beamsplitters. Finally, the output of the 
cavity is combined with the LO before being detected by a photode-
tector, resulting in a 12-GHz heterodyne detection of the output. One 
component of resultant RF signal is amplified before being sent to an 
oscilloscope for single-shot bandstructure spectroscopy in the time 
domain. The other component of the RF signal is sent to the spectrum 
analyser (Tektronix RSA5126A) to perform direct readout of the lattice 
over 26 GHz. For bandstructure measurements, the heterodyne arm 
is turned off. The spectrum measured in Fig. 5b was measured with an 
optical spectrum analyser.

The intracavity SOA compensates for roundtrip losses in the cavity. 
However, the SOA contributes substantially to noise via the unwanted 
production of amplified spontaneous emission (ASE). To reduce ASE, a 
filter was placed in the cavity, and roundtrip losses were minimized to 
reduce the operating point of the SOA. The cavity losses were reduced 
to 5 dB, 4 dB of which originated from the insertion loss of the cavity 
EOM. In addition to limiting the noise, reducing the operating point 
of the SOA has the added benefit of reducing the contribution of ASE 
to the gain saturation. For a large ratio of input power to saturating 
power, transport of the optical power along the 1D chain is limited. 
From simulations, we find that a ratio of Pseed/Psat < 1/100 is enough to 
reach thousands of modes above the noise floor of our set-up. The right 
side of Supplementary Fig. 3 shows the experimental measured value 
of gain saturation at ~4 dBm, so, for all of the measurements in the main 
text, we had an input power of below −20 dBm going into the cavity.

To instantiate a lattice with a large numbers of sites, knowledge 
of the cavity FSR is needed to within ~10 Hz to sustain the required 
coherence over many roundtrips. This was carefully measured using 
a number of methods (providing course-grained or fine-grained char-
acterization). In a first step, we measured the FSR by exciting the cavity 
far above the lasing threshold and measured the mode excitations. 
This procedure gave us the FSR to within 10 kHz. Next, we placed the 
cavity just below the lasing threshold and performed spectral meas-
urements following single-site injection, and maximized the transport 
observed over the modes as we varied the modulation frequency. To 
measure the FSR of our cavity down to 10 Hz, we modulated the EOM 
with multiple tones, which increased the sensitivity due to interfer-
ences between different paths taken over multiple roundtrips of the 
cavity. If the modulation is slightly detuned, the transport exhibits 
effects related to Bloch oscillations, which are much easier to detect 
than direct resonance. The Supplementary Information provides more 

details, including measurements of Bloch oscillations (Supplementary 
Fig. 5). Suppressing these oscillations allowed us to find the FSR to five 
decimal places, down to 10 Hz.

Set-up modelling
We consider the complex-valued electric field A(x, t) inside the ring 
cavity such that A(x, t) = A(x + L, t) where L is the roundtrip length of 
the cavity. In the absence of dispersion, we can expand this electric 
field in terms of resonant modes as A(x, t) = ∑mA(x)am(t)eimΩt due to this 
periodic boundary condition. Here, Ω is the mode spacing, related to 
the roundtrip length as Ω = c/L. In the frequency domain, the resonant 
modes am are then coupled via a phase modulator to realize a variety 
of tight-binding graphs. In the time domain, the action of the phase 
modulator over one roundtrip is simply a(t + τ) = eiϕ(t)a(t), where the 
cavity modulation ϕ(t) is proportional to the RF signal v(t) driving the 
phase modulator and is periodic over the roundtrip time τ. In the basis 
of the frequency modes, this action is described by

U = eiJτ = F†eiVF (3)

where V is a diagonal operator encoding the modulation ϕ(t) along the 
diagonal, and F is the discrete Fourier transform Fjk = (e−i2π/N)jk, where 
N is the number of modes. The equation above sets constraints on the 
time evolution operator U, namely that it is a unitary Toeplitz operator, 
that is, a unitary matrix with constant diagonals.

For small values of the matrix J, the full coupled mode equations 
are

̇am(t) = (imΩ − g
1 +∑n|an|2/Psat

− ℓ)am(t) − i∑
n
Jn−man(t) + ain(t)ei∆t

(4)

where g is the small-signal gain, ℓ is the roundtrip loss, ain is a complex 
frequency-dependent amplitude encoding the input state at frequency 
ωin, Psat is the nonlinear saturating gain, and Δ is the detuning between 
the seed and the cavity frequency. The term Jk describes the coupling 
terms from the phase modulator, given by Jk = (2π)−1 ∫1/Ω

0 dteiϕ(t)eikΩt. 
To model the effect of dispersion we would include a term proportional 
to m2 in the first term, but we have not done so because in our experi-
ments the dispersion was sufficiently small that it could be neglected.

This equation is simplified by moving to the rotating frame of each 
mode am(t) → am(t)eimΩt and operating well below the saturation power. 
In this form, the equations reduce to

̇am(t) = −γam(t) − i∑
n
Jn−man(t) + ain(t)ei∆t (5)

where γ = ℓ − g is the gain–loss balance, and Δ is the detuning from the 
cavity modes. Collecting the mode amplitudes in a column vector 
|a(t)⟩ = (a0(t), a1(t), …)

T with the basis {|m⟩} indexing the cavity modes, 
we obtain

i ⟨m| ( ∂
∂t

− iγ + J) |a(t)⟩ = ⟨m|ain⟩ei∆t (6)

In this basis, |ain⟩ is a column vector encoding the injection. For a 
continuous wave injection, |ain⟩ = (0, 0, … , 0, ain, 0, …)

T . Neglecting 
the loss in the system, the equation above describes the Schrödinger 
equation derived from the Hamiltonian in equation (1), with H = J. The 
implicit assumption is that because the Hamiltonian is sufficiently 
linear, the many-body states are described with just a single-excitation 
picture, that is, with first quantization.

Equation (6) has a simple steady-state solution in the continuous 
limit for a single-site injection, that is, |ain⟩ = (0, 0, …0, 1, 0, … , 0, 0)T. 
Substituting the basis vectors {⟨m|} indexing the mode numbers with 
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a continuous parameter x, we can integrate equation (6) with Fourier 
transforms to obtain

a(x, t →∞) = i√Pin∫
dk eikx
ϕk − iγ (7)

where ϕk is the spectrum of J. For example, for a 1D nearest-neighbour 
coupling with strength J0, where ϕk = k2, equation (7) has the steady-state 
solution

a(x) = π√Pin
e−√2γ/J0 |x|

2γ/J0
(8)

where x is the continuous variable indexing the mode number. Clearly, 
by taking γ → 0, that is, operating at threshold, the number of occupied 
modes reaches infinity. Of course, the solution in equation (8) neglects 
the effects of dispersion and, more importantly, gain saturation. From 
simulations, we found that dispersion would begin limiting our lattice 
sizes around a bandwidth of ~100 GHz, but that the gain saturation limits 
the size much earlier, effectively increasing the loss as discussed above.

Figure 4 shows the correlations of a simple 1D lattice with either 
nearest-neighbour hoppings or next-nearest-neighbour hoppings. 
These matrices are constructed from the measured spectral response 
of the lattice at a given injection site:

Gij = ⟨n(i)∗n(j)⟩ − ⟨n(i)∗⟩⟨n(j)⟩ (9)

where n(j) denotes the population at site j, and n(i)* denotes the popula-
tion at site i given the injection was made at site i, and the 〈…〉 brackets 
denote the average over injection sites. We denote these quantities as 
the non-equilibrium correlation matrices, and find these measure-
ments capture correlations of systems also found in other literature9.

Real-space-occupation and bandstructure measurements
To map the power spectrum to the occupation at a particular lattice 
site, the peak of the power around a neighbourhood of the expected 
frequency of the cavity mode was picked. To generate lattice plots in 
2D and higher, we employed this prescription to retrieve the peaks 
from a 1D chain, then reshaped the data appropriately depending 
on the type of lattice the coupling signal realizes. For example, if we 
measure the response in a 2D square lattice, where we modulate the 
cavity at Ω and LΩ, we pick N = L × L peaks of the spectrum, and wrap 
them in an L × L matrix.

To instantiate a triangular lattice, we modulate the intracavity 
EOM at three frequencies {Ω, LΩ, (L + 1)Ω}, a 2D square lattice with extra 
diagonal connections. By choosing the relative values of the coupling, 
the connectivity of this graph can be made exact with the connectivity 
of a triangular lattice. However, the six-fold symmetry of this lattice 
is not captured when presented in regular euclidean space. Thus, 
beginning with every even row of our lattice, we shift the indices over 
by one, as shown in Supplementary Fig. 8, resulting in the expectant 
traversals. Doing so preserves the local connectivity of the triangular 
lattice without physically altering the connectivity.

To measure the bandstructure, the output of the cavity is ampli-
fied and filtered with a 0.1–1-GHz bandpass filter in the RF domain. The 
amplifier increases the signal-to-noise ratio needed for the single-shot 
readout for the bandstructure measurements. Single-shot readout is 
needed due to the phase walk-off between the injection and the cavity. 
For details of the bandstructure measurements, we refer to ref. 22, but 
we briefly summarize the procedure here and outline our extensions 
for measurements of bandstructures in 2D and higher.

The modulation signal to realize a 30 × 30 2D square lattice is  
v2D(t) = V1cos(Ωt) + V2cos(30Ωt), as shown in Supplementary Fig. 9a. 
The output of the cavity is measured with an oscilloscope to produce 
the raw measurement of a 1D time series (Supplementary Fig. 9b). This 

time series is then divided into chunks set by the cavity roundtrip time 
τ = 1/Ω. Here, we scanned over one mode in 1 ms. These two timescales 
were observed to be well separated enough to allow the laser to find 
equilibrium with the continuously changing scanning frequency. The 
widths of the bandstructures are proportional to ΩV/Vπ, where V is the 
modulation amplitude and Vπ is the pi-voltage of the phase modulator. 
For all bandstructure measurements we drove the EOM very close to 
the pi-voltage to obtain wide bandstructures.

A real 2D square lattice has a bandstructure of E(k) = −2Jcos(kxa) −  
2Jcos(kya), but the above produces only a single dimension. To con-
struct the full 2D bandstructure from this signal, we again separate 
the time-domain response signal into two timescales. The timescale 
measuring the cavity response over just a single roundtrip is decom-
posed into L chunks, so that each chunk is of length tfast = 1/LΩ, where 
L is the secondary long-range coupling used to instantiate a 2D square 
lattice. The secondary timescale is synthetically formed by looking at 
points separated by 1/LΩ. In other words, if we reconstruct the full 2D 
bandstructure by appending chunks of length tfast, tslow is the orthogonal 
direction pointing along the different chunks. These two timescales, 
tfast and tslow, map to the two independent momenta kx and ky, when 
the timescales are well separated enough, as is the case for L ≫ 1. See 
Methods and Supplementary Figs. 9, 10 and 12 for full details of this 
reconstruction.

To take paths through the high symmetry points of the Brillouin 
zone, high-resolution experimental data are needed. For the bandstruc-
ture measurements, the cavity was modulated at a slightly detuned fre-
quency (~10–20 Hz) to match with a multiple of the sampling rate of the 
oscilloscope. This also prevented a walk-off in the reconstructions when 
the scope sampling rate was detuned from the cavity-mode spacing, 
leading to a linear shift in the bandstructure along tslow when digitized.

Input-state preparation
To prepare arbitrary input states, a high modulation bandwidth and 
high preparation fidelity, with no spurious images or modes, are 
required. To this end, we implemented an image rejection IQ mixer in 
the optical domain by combining a 12-GHz phase modulator with a fibre 
Bragg grating as a filter (Supplementary Fig. 12). The Bragg grating is a 
4-GHz bandpass filter centred 12 GHz away from the injection, enabling 
programmability input states in ~4,000 lattice sites, while rejecting the 
spurious sidebands in addition to the carrier frequency. The baseband 
signal around a 12-GHz tone was encoded in a voltage signal from an 
AWG as I and Q pairs and upconverted with an electronic IQ mixer. The 
resultant upconverted signal was then sent to drive the external EOM, 
enabling both phase and amplitude programmability of the input state 
at every lattice position.

To account for spectral inhomogeneities in the input chain, we 
calibrated the modulation by measuring the light before entering the 
cavity. If the modulation has some inhomogeneity, such that a voltage 
signal V(t) = ∑nVn sin(nΩt)  is modified to V(t) = ∑n(Vnηn) sin(nΩt) , the 
output power in each mode is scaled by η2

n. To compensate, we injected 
light that had been uniformly modulated at all integer multiples of the 
FSR within the spectral region of interest, that is, a top hat distribution 
defined on lattice sites. This region of interest contains roughly up to 
2,000 modes for the input states presented in Fig. 3b. The square root 
of the response of this measurement gives us ~ηn, which we used to apply 
an envelope function to the modulation signal. If successful, a top hat 
modulation multiplied with this envelope function will produce a clean 
flat spectrum. Otherwise, this process can be iterated for higher order.

The phase modulator preparing input states and the phase modu-
lator programming the cavity interactions are synced to the same 
clock; however, the voltage signal driving the input-state modulator 
is upconverted before hitting the EOM. This imparts a phase differ-
ence between the input state and the cavity due to the different cable 
lengths. The phase difference between the injected light and the cavity 
defines the average momentum of the excitation. To account for this 
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delay, we prepared a state with net-zero momentum (in the frame of 
the outgoing signal) into a tight-binding lattice, and tuned the phase 
of the cavity signal until we observed no transport.

Data availability
All data generated used in this work are available at https://doi.org/ 
10.5281/zenodo.6959554.

Code availability
All code used in this work are available at https://doi.org/10.5281/
zenodo.6959554.
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