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Optical imaging is commonly used for both scientific and technological
applications across industry and academia. Inimage sensing, a
measurement, such as of an object’s position or contour, is performed by
computational analysis of a digitized image. An emerging image-sensing
paradigm relies on optical systems that—instead of performing imaging—act
as encoders that optically compress images into low-dimensional spaces
by extracting salient features; however, the performance of these encoders
istypically limited by their linearity. Here we report a nonlinear, multilayer
optical neural network (ONN) encoder for image sensing based on a
commercialimage intensifier as an optical-to-optical nonlinear activation
function. This nonlinear ONN outperforms similarly sized linear optical
encoders across several representative tasks, including machine-vision
benchmarks, flow-cytometry image classification and identification of
objectsinathree-dimensionally printed real scene. For machine-vision
tasks, especially those featuring incoherent broadband illumination, our
conceptallows for a considerable reductionin the requirement of camera
resolution and electronic post-processing complexity. In general, image
pre-processing with ONNs should enable image-sensing applications that
operate accurately with fewer pixels, fewer photons, higher throughput
and lower latency.

Optical images are widely used to capture and convey information
about the state or dynamics of physical systems, in both fundamental
science and technology. They are used to guide autonomous machines,
to assess manufacturing processes, and to inform medical diagno-
ses and procedures. In such applications, an optical system such as a
microscope forms an image of a subject on a camera, which converts
the photonic, analogue image into an electronic, digitalimage. Digital
images are typically many megabytes; however, for most applications,
nearly all of this informationis redundant orirrelevant. There are three
main reasons: (1) natural images contain sparse information and are
therefore compressible!™; (2) most applications involve images of

subjects with additional underlying commonalities beyond sparsity;
and, finally (3), mostinformationinanimageisirrelevant to theimage’s
end use. Here we refer to machine-vision applications for which factor
(3)isapplicable asimage sensing—only aspecific subset of information
from each image is sought for these applications, as demonstrated
inFig.1a.

The information inefficiency of conventional imaging has
inspired machine-vision paradigms in which optics are designed
not as conventional imaging systems, but instead as optical encod-
ers—computational pre-processors thatextract relevantinformation
from an image"*”’. Techniques include end-to-end optimization®*?,
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Fig.1| A multilayer optical-neural-network encoder as a frontend forimage
sensing. a, Image sensing via directimaging versus optical encoding. In
conventional image sensing, animage is collected by acamera and then
processed, often using a neural network to extract a small piece of relevant
information such as the text of a sign. Rather than faithfully reproducing the full
image of ascene onto the sensor array, an ONN encoder instead pre-processes
theimage, compressing and extracting only the image information necessary for
itsend use, allowing amuch smaller (fewer pixel) sensor array. As with more
widely studied ONN inference accelerators, such a system canimprove the speed
or energy efficiency of neural-network-based machine-vision and image-based
sensors. However, animportant distinction is that an ONN image sensor takes a
natural image as input—a pattern of incoherent photons scattered from areal
object—and canimprove sensor performance in ways that extend beyond latency
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and power consumption, such as effective resolution or sensitivity. b, The
neural-network diagram and corresponding mathematical operations of the
ONN encoder used in this study. The ONN encoder consists of interleaved linear
and nonlinear layers before the compressed signal is captured by a small
photodetector array. X, input image; W, weight matrix of fully connected layer i;
o, optical-to-optical nonlinear activation function; fy,; digital backend function.
¢, The schematic of the fully optical matrix-vector multiplier used for
constructing both linear layers inb. d, The schematic of the optical-to-optical
nonlinear activation layer realized with a saturating image intensifier. The inset
plot shows that the output light intensity of a single spatial mode begins to
saturate as the input light intensity increases, resembling the sigmoid activation
function.

compressed sensing and single-pixel imaging>'*'?, coded aper-
tures'”**?* and related approaches for computational lensless imag-
ing?’. Related trends include the broader fields of smart cameras®,
in-and near-sensor computing”***, variational quantum sensors® and
machine-learning-enabled smart sensors”.

Optical encoders improve machine-vision systems by reducing
the number of photodetectors. Many performance metrics such as
frame rate and photon efficiency are directly bottlenecked by the
number of pixels in the camera, including the energy and time costs
oftransducing images from the optical to digital electronic domain, of
transporting them from the sensor to the post-processor, and perform-
ing high-dimensional digital post-processing*. Consequently, using a

camerawith C-fold fewer pixels typically leads to a C-fold improvement
inthe achievable frame rate, in the total number of photons required
foreachdetector toachieve ahighsignal-to-noiseratio, and in the total
system power and cost. Although high compressionratios (C > 10) are
routinely achieved with electronic deep neural networks (DNNs), the
computational capacity of simple optical encoders (such as single
random or optimized masks) is rarely sufficient to realize such high
compression.

Fortunately, muchricher optical processing is possible with opti-
cal neural networks (ONNs)***—optoelectronic systems that perform
mathematical operations involved in typical DNN inference calcula-
tions with optics. Optical neural networks are thus ideal for enabling
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anew class of image-sensing devices called ONN sensors* %, where

an ONN pre-processes data from, and in, the analogue optical domain
before its conversion into digital electronic signals. Unlike the com-
plementary application of ONNs for accelerating deep-learning cal-
culations on digital-domain data, the goal of ONN sensors is not only
to accelerate calculations by replacing electronic operations with
optical ones, but toalsoimprove sensing performance, both by allow-
ing faster, lower latency image processing, as well as by performing
optical-domain computations that might be impractical or evenimpos-
sible to perform after converting the photonic signal into a digital
electronic one.

However, most optical image encoders experimentally demon-
strated so far have involved only linear optical operations or, equiva-
lently, asingle-layer neural network>*%'*?*_ Nonlinearity is essential for
deep networks and high-performance image processing: multilayer,
nonlinear networks are exponentially (in the number of neurons) more
efficient than single-layer neural networks at approximating practically
relevant functions®’. There have been several promising proposals
and proof-of-concept demonstrations for incorporating optoelec-
tronic nonlinearity to enable multilayer ONNs*~**; for example, an
integrated photonic system for all-optical, low-latency classification
of images under laser illumination®®. However, most machine-vision
settings would require ONNs to process high-spatial-resolutionimages
obtained with conventional or naturalillumination, thatis, patterns of
broadband, incoherent light scattered from real, three-dimensional
physical objects and scenes.

Here we demonstrate an optical neural network image sensor that
uses optoelectronic optical-to-optical nonlinear activation (OONA) to
performmultilayer ONN pre-processing for a variety of image-sensing
applications. Our multilayer, nonlinear ONN pre-processor takes natu-
ral images (that is, patterns of incoherent photons scattered from
real objects) as input, and conditionally compresses the image data
into alow-dimensional latent feature space in asingle shot, achieving
compression ratios of up to 800:1. This allows image sensing to be
performed with much simpler cameras (for example, afew pixels rather
than millions of pixels), and vastly reduced digital post-processing
and associated latency. At high compression ratios, our device con-
sistently outperforms conventional image sensing and linear optical
pre-processing on experiments based on standard machine-vision
datasets, on flow-cytometry image classification, and for real scene
object detection and measurement. The OONA used in our experiments
isbased onacommercialimage intensifier typically used, for example,
in night-vision goggles or low-light scientific imaging. Broadly, our
findings support the use of multilayer ONNs with nonlinear activations
as optical-domain pre-processors for sensors. Given the numerous
ONN platforms®** being developed, we expect that a variety of deep
ONN sensors are possible; these future sensors may detect informa-
tion encoded in light’s spatial, spectral, and/or temporal degrees
of freedom.

Results

ONN-based image sensors with optical-to-optical nonlinearity
Our experimental ONN image sensor consists of two fully connected
opticallinear layers with an element-wise OONA layer in-between them

(Fig.1b). The linear layers (matrix-vector multiplications) inour ONN
areimplemented using atechnique designed to facilitate broadband,
incoherent light as directinputs. Optical fully connected matrix-vector
multiplications are performed using amethod similar to past works***’
(see Methods and Supplementary Note 2). Natural input images are
first fanned out (multiple spatially distinct copies of the inputimages
are created) by anarray of microlenses. Multiplicationis then achieved
by attenuating the copies of the inputimage in proportion to the com-
ponents of the weight matrix, which can be typically implemented
with aspatial light modulator (SLM) for intensity modulation. Finally,
the summation of each output vector element is realized by focusing
the attenuated light components using a lens (Fig. 1c). To realize the
OONA operations applied to each element of this output vector, light
is focused onto a commercial image intensifier tube. Incident light
generates free electrons fromaphotocathode, which are locally ampli-
fied by a microchannel plate (MCP) and then produce new, amplified
bright spots as they strike a phosphor screen*®. The local saturation
of the MCP’s amplification leads to a saturating nonlinear response
thatis qualitatively similar to the positive half of the sigmoid function
(Fig. 1d and Supplementary Fig. 8). Although the OONA is optoelec-
tronic rather than all-optical, its local, in-place realization preserves
the spatial parallelism of the ONN, and avoids the time and energy costs
required for read-out/inwhenthe nonlinear activationis computed on
aseparate electronic processor?***’, Toimplement the second layer of
the ONN, the light produced by the intensifier is processed by asecond
copy of the optical matrix-vector multiplier depicted in Fig. 1c. The
output from this layer (a four-dimensional vector) was detected by a
camera (see Methods), butin principle can be captured by an array of
four photodetectors.

Nonlinear encoders are more efficient than linear encoders

We first performed several image-classification tasks to evaluate the
performance of the multilayer, nonlinear ONN encoder (Fig. 2). As a
benchmark, we trained classifiers for ten pre-selected classes of the
Quick, Draw! (QuickDraw) image dataset*. By placing a beamsplitter
before theintensifier OONA, we could reconfigure the ONNimage sen-
sor for directimaging (by setting the SLM of the first linear layer to be
transparent) and for single-layer linear encoding (by applying linear
layer weights to the first SLM for intensity modulation). Input images
(28 x 28 pixels) were binarized and displayed on a digital micromirror
display (DMD), which was placed in front of the image sensor working
innonlinear multilayer, linear single-layer or directimaging mode. For
adirect comparison, the vector dimension at the optical electronic
bottleneckineach sensoris the same—a2 x 2array or four-dimensional
latent space, which represents a196:1image compressionratio (inthe
directimaging mode, the images were directly down-sampled by bin-
ningthe four quadrants of the image into four pixels). The multilayer,
nonlinear ONN encoder achieved better classification accuracy than
thelinear ONN encoder and direct downsampling ofimages (Fig. 2b-d).
To ensure that the accuracy advantage of the nonlinear, multilayer
ONN encoder over linear encoders is consistent for any possible linear
encoder with the same bottleneck dimension, we also trained all-digital
(with real number weights and biases) single-layer linear encoders
for the same task, without image downsampling (Fig. 2d). Despite the

Fig.2|Comparison between linear and nonlinear ONN encoders on diverse
image classification tasks. a, Classification of hand-drawn figures from ten
different classes in the QuickDraw dataset. b,c, The results of QuickDraw*!
classification with a linear (b) or nonlinear (c) ONN encoder as the frontend. The
neural-network architecture with corresponding mathematical operationsis
placed above the confusion matrix it produces (blue slabs, linear optical neurons;
purpleslabs, nonlinear activations; grey bars, digital neurons). d, Comparison
ofthe accuracy derived from classifiers equipped with different frontends. In all
cases, the encoder’s output dimension (number of pixels) is 4. e, Classification of
Hela cells labelled for different organelles from a dataset acquired from

flow-cytometry experiments*. f,g, The results of cell-organelle classification
withalinear (f) or anonlinear (g) ONN encoder as the frontend. h, Visualization
of the compressed cell-organelle data with density uniform manifold
approximation and projection (DensMAP)*". i, Recognition of three-dimensional
objects: each of eight 3D-printed speed-limit signs are viewed from different
perspectives by an ONN encoder, which classifies the speed-limit number on

the sign. j,k, The results of classifying speed limits with a linear (j) or anonlinear
(k) ONN encoder as the frontend. 1, Classification accuracy as a function of the
viewing angle, 6. The shaded area denotes 1s.d. from the mean for repeated
classification tests.
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constraint of non-negative weights and the non-analytical formofour  boththe optical (69.5%) and optimized digital (74%) single-layer encod-
OONA, the experimental, multilayer nonlinear ONN encoder’s perfor-  ers. Compared withanideal digital multilayer encoder with real-valued
mance (79% test accuracy) surpassed that of linear encoders, beating  weights and biases and a sigmoid nonlinear activation function, the
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Fig.3|Nonlinear ONN encoders trained for classification can be reused for
diverse image-sensing tasks by training only new digital backends. a, New
image-sensing tasks can be performed by using the feature vectors produced

by the nonlinear ONN encoders trained for classification as input to new digital
backends. b, Images from the QuickDraw dataset were reconstructed by training
anew digital decoder to reconstruct rather than classify images from the feature
vectors. The encoder is exactly the same ONN, including weights, as in Fig. 2c,d.
¢, Although the encoder was only trained to preserve class information,
randomly selected reconstructed images show that feature information,

such asthe direction or shape of the chairs and hurricanes, is preserved.

d,e, By performing unsupervised clustering (see Methods) on the feature vector
produced by the cell-organelle-classifier ONN frontend from Fig. 2g (d), we can
accurately detect anomalous doublet images that were not part of the encoder’s
training set (e). f, We trained a new digital backend to, rather than classify the
content of a speed-limit sign, use the speed-sign classifier’s feature vector to infer
the viewing angle of the sign. g, The speed-limitimages above the viewing angle
inference plot refer to the ground-truth images at a few different viewing angles.
0., estimated viewing angle; ..., true viewing angle.

experimental nonlinear ONN encoder has aslightly lower testaccuracy
(79% versus 82%). For single-shot processing of incoherent light, ONNs
arerestricted to non-negative weights. Although this is not a severe
limitation for the tasks considered here (see Supplementary Note 16),
it may need to be addressed in future work.

To explore the potential of ONN image sensors for amore practi-
callyimportant application, we next tested our image sensors on the
task of classifying fluorescent images of cell organelles acquired in a
flow-cytometry device*. Image-based flow cytometry is an emerging
techniqueinwhich cellstravel through afluidic channeland are sorted,
ideally one-by-one, on the basis of their, for example, fluorescence
and/or phase images** **. To process statistically useful collections of
cells,soastodetect, forinstance, extremely rare cancerous cells, itis
essential to minimize the latency of each sorting decision, maintaining
ahighthroughput of, for example, 100,000 cells per second** *.In our
experiments we displayed binarized images from the dataset in ref. **
onthe DMD and performed classification with each ONN encoder, as
in the QuickDraw experiments (Fig. 2e). When each cell image was
compressed to a four-dimensional feature vector, the multilayer,
nonlinear ONN encoder exhibited a better classification accuracy

for the five considered classes than that of the linear ONN encoder
(93% versus 88.5% test accuracy, Fig. 2f,g; higher local density within
clusters, Fig. 2h).

Althoughitis helpfulinimproving both the accuracy and flexibility
of our ONN sensors, the small digital post-processing layer we employ
inthese networksisnotanecessity and canbe eliminatedif applications
requireaparticularly shortlatency. For the same flow-cytometry task
considered above, we show that all-optical classification (that s, clas-
sification without an electronic digital backend) is also possible (see
Supplementary Note 13). Evenin this case, nonlinear optical classifiers
outperform linear optical classifiers.

Thetwotasks considered so far are effectively experimental simu-
lations ofimage-sensing tasks; realimage-sensing tasksinvolve directly
processing photons arriving from real three-dimensional objects. To
test this setting, we applied theimage sensors to the task of classifying
traffic signs in a real-model scene, the three-dimensionally printed
intersectionshowninFig. 2i. Due to the limited field-of-view of the par-
ticular microlens array used in this experiment, the inputimagesto the
image sensors (insets of Fig. 2g) primarily contain only the speed limit
sign being classified. The nonlinear, multilayer ONN encoder results
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Fig. 4 |Simulations of performance scaling with deeper nonlinear optical
neural network encoders for ten-class cell-organelle classification.
Classification accuracy as a function of image compression ratio (or bottleneck
feature vector dimension) for all of the models. Linear, single-layer (linear)

ONN encoder; multilayer perceptron (MLP), anonlinear encoder with two

fully connected layers; CNN1, a three-layer nonlinear ONN encoder witha
convolutional layer followed by two fully connected layers; CNN3, a five-layer
nonlinear ONN encoder with three convolutional and two fully connected layers.
The ResNet-based model is a state-of-the-art digital model shown here as an
estimate of the upper bound on performance at each compression ratio. Deeper
models generally produce higher accuracy, especially at higher compression
ratios.

inbetteridentification of the speed limit than thelinear ONN encoder
across arange of viewing angles from 0° to 80° (Fig. 2j-1).

Aversatile optical frontend for assorted vision tasks

By training new digital post-processers only, the same optical encoders
trained for classification in the previous section can be reused for a
variety of otherimage-sensing tasks. If suitably trained (see Methods),
encoders can produce robust representations of high-dimensional
images in the low-dimensional latent space, which preserve far more
information than the bare minimum required for classification. For
example, although the QuickDraw-classification encoder (Fig. 2a-c)
was trained only to facilitate classification, the feature space evidently
preserves more complex attributes of the original images beyond
just the figure’s class. When a digital decoder is trained to recon-
struct QuickDraw images from the classification encoder’s features
(Fig. 3b,c), it produces reconstructions that—although often lacking
specific details, such as the position of the clock’s hands—capture
coarse intra-class details such as the orientation or shape of chairs and
hurricanes. Although nonlinear encoders generally enable improved
image reconstruction performance®, this is not necessarily the case
for all datasets or models. In the case of the QuickDraw dataset con-
sidered here, we find only amarginal benefit from nonlinear encoding
(Supplementary Fig. 25).

As another example of the versatility of optical image encod-
ing, using the same multilayer ONN encoder previously trained for
traffic-sign classification (Fig. 2i-1), we trained a new digital backend
to predict the angle at which a traffic sign was viewed (Fig. 3f,g). The
resulting predictions are very accurate, although the performance is
reducedifthe networkisrequired to predict the viewing angle for all of
the speed-limit classes, rather than just one at atime (Supplementary
Fig.27).

Finally,in many image-sensing applications, initial device training
will not be able to account for edge cases that may be encountered in

deployment. To test the capacity for detecting anomalies not previ-
ously observed (and on which the optical encoder was not trained),
we introduced anomalous images of doublet cell clusters to the ONN
image sensor (Fig. 3d). To detect these anomalies, we applied spec-
tral clustering to the normalized four-dimensional feature vectors
produced by the ONN encoder previously trained for cell-organelle
classification (see Methods). By identifying the six most prominent
clustersasthefive trained classes, plus onelast class corresponding to
anomalousimages, we were able to adapt the digital decoder toreliably
identify anomalous images in the test set (Fig. 3e). These results show
that the nonlinear ONN encoder does not overfit to the initial training
dataset, but instead preserves important data structure beyond the
initially chosen classes, while still compressing the original images to
alow-dimensional space.

Deeper ONN image sensors for more complex tasks

The results presented in Figs. 2 and 3 illustrate that a two-layer non-
linear ONN pre-processor enables consistently better image-sensing
performance across a wide range of tasks than conventional imaging
with directdownsampling or linear ONN pre-processing. Nonetheless,
an ONN encoder withtwo fully connected layersis merely afirst step. A
key motivation for using an OONA is that it will facilitate even deeper
ONN encoders. To explore what may soon be possible with deeper,
nonlinear ONN encoders, we performed realistic simulations of four
different optical pre-processors (see Fig. 4), performing an extended
(ten-class) version of the organelle classification task considered in
Figs.2and 3 (Supplementary Fig. 28). This dataset—which is more chal-
lenging than the five-class cell-organelle classification demonstrated
in earlier experiments—allowed us to study the performance of more
complicated ONN encoders. Our simulations (see Methods for details)
consider physical noise, and involve strictly non-negative weights,
which is a critical constraint for ONNs operating on incoherent light,
such as fluorescence.

Figure 4 shows how the classification accuracy of the different
ONN pre-processors varies as the compression ratio is changed. The
compressionratiois changed by modifying the number of output neu-
rons in the final optical layer, which determines the number of pixels
or photodetectors required on the photosensor. As a reference for
achievable performance, we also performed the task with a fully digital
classifier based on aResNet model (an18-layer pretrained ResNet plus
four additional adapting layers)*°. All networks, including the all-digital
reference, have the same single-layer digital decoder architecture.

The key result in Fig. 4 is that deeper ONNs with multiple non-
linear layers lead to progressively better classification performance
across awiderange of compression ratios. The benefit of pre-processor
depth becomes especially evident at very high compression ratios:
fora compression ratio of 10* (bottleneck dimension 1), the five-layer
pre-processor (CNN3) achieves nearly double the accuracy of shal-
lower networks.

Discussion

We demonstrated anonlinear ONN system that can—inasingle shot, and
withoutrelying onaseparate digital electronic processor toimplement
the nonlinearity—performavariety of nonlinear image processing tasks
onnaturalimages, thatis, on patterns of incoherent photons scattered
from a real object. By performing image compression in the optical
domain, ONN image sensors can fundamentally bypass the optoelec-
tronicbandwidth limit of high-resolution cameras, allowing for faster,
moresensitive and more efficient machine-vision systems. Our results
show that the nonlinear processing capacity of ONNs enables image
sensors to outperformimage sensors based either on direct downsam-
pling of conventionalimages or purely linear optical pre-processing. We
alsosee that the performance advantages of nonlinear ONN encoders
scale favourably with additional layers of ONN pre-processing. Such
nonlinear optical encoders extend the paradigm of end-to-end image
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system optimization®*'°"”, Given the numerous promising optical’°
and optoelectronic nonlinearities proposed for ONNs, we are optimistic
about future prospects for compact, scalable multilayer ONN image
sensors (see Supplementary Note 15).

An important benefit of ONN sensors is their potential for dra-
matically reduced latency in high-speed control scenarios such as
manufacturing robotics, human-machine interfaces, active flow and
plasmastabilization, and defence applications. For ONN-based image
sensors, capturing and parallel processing of the largest number of
spatial modes motivates the use of free-space systems, an approach
employed by this work. Nonetheless, implementing more than a few
layers in this format will eventually encounter trade-offs with respect
tosystemsize (see Supplementary Note 15and Supplementary Table 9).
Theoutput of free-space layers are stillin the optical domain, however,
so a promising solution is to route the compressed optical feature
vector directly froma free-space layer to integrated-photonics neural
networks for further optical processing, rather thanto digital electron-
ics®?$363152 The resulting all-optical intelligent sensors could entirely
bypass electronic bottlenecks on speed, sensitivity and resolution,
and could one day operate with multigigahertz bandwidth, gigapixel
effective spatial resolution and subnanosecond-scale latency.

Finally, beyond allowing information encoded in many spatial
modes tobe transmitted into just a few pixels, ONN image sensors are
also exciting because they may be sensitive to other optical information
thatis traditionally lost in photodetection, such as hyperspectral®and
vectorial (for example, ray direction) information, both of which can
drastically change what information can be extracted fromascene.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41566-023-01170-8.
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Methods

Multilayer optical-neural-network image pre-processor

The ONN pre-processor (Supplementary Fig.1a) comprises an optical
matrix-vector multiplier unit,an OONA unit, asecond optical matrix—
vector multiplier, and a camera. Light is detected in the compressed,
low-dimensional latent space on the camera, and is subsequently digi-
tally post-processed (see Supplementary Note 1for more details).

The optical matrix-vector multiplier treats animage with N pixels
as an N-dimensional vector and multiplies it with a user-specified
matrix. To implement the matrix-vector product between an Nby ¥
matrix, Wand an N-dimensional input vector, we take the following
steps, which are alsoillustrated graphically in Supplementary Fig. 3a.
First,theinputimage (vector) is fanned-out to create N'identical copies.
This is realized by using a microlens array (MLA) to form N identical
images onregions of an SLM. Second, each optically fanned-out copy
oftheimage covers N pixels on the SLM, and the intensity of eachimage
was modulated in an element-wise fashion according to a different
column of matrix W.Finally, after the intensity modulationby the SLM,
whichimplements the weight multiplication, the intensity-modulated
image copies are optically fanned-in by forming ademagnified image
of the N’ copies onto an image intensifier or a camera. Provided that
the size of the focused image of each attenuated copy is smaller than
theresolution of theimage intensifier (or the size of the camera super-
pixel), the photoelectrons generated by each optical copy are pooled
toachieve the summation step of the matrix-vector multiplication for
eachrow, producing the N-dimensional output vector.

For the optical matrix-vector multiplier thatimplements the first
fully connected layer, the square MLA array has apitch of 1.1+ 0.001 mm
andafocallength of128.8 mm (APO-Q-P1100-F105, OKO Optics). This
first MLA contains 26 x 26 = 676 lenslets altogether, but we used only
6 x 6 =36 of themto create 36 optical copies of the input image, limited
by several practical constraints detailed in Supplementary Note 2. For
the second fully connected layer, the MLA has a rectangular pitch of
4 mm x 3 mm and a focal length of 38.10 mm (no. 63-230, Edmund
Optics). The weights of each layer are stored as pixel valueson aliquid
crystaldisplay (LCD, Sony LCX029, with LCX017 controllers by Bild-und
Lichtsysteme GmbH). The LCDs were operated as transmissive intensity
modulation SLMs by placing two polarizers—oriented at +45° and -45°
relative to the pixel grid of the LCD—before and after the LCD panel. The
transmission was calibrated as a function of the LCD pixel value. The
calibration procedure for the LCD-based matrix-vector multipliersis
described in Supplementary Note 2. Under white-light illumination,
the extinctionratio of the LCD pixels was measured to be atleast 400,
and the LCD can provide 256 discrete modulation levels.

The optical fan-in for the first layer was implemented by demagni-
fying optical fan-out copies after they were modulated by an LCD. The
demagnification factor of x30 was implemented by a 4fimaging sys-
tem composed of asinglet lens (LA1484-A-ML, Thorlabs;f=300 mm)
and an objective lens (MY20X-804, 20x, Mitutoyo; f=10 mm). The
optical fan-in of the second layer was performed using a zoom lens
(Zoom 7000, Navitar) and imaged onto a camera (Prime 95B Scien-
tific CMOS Camera, Teledyne Photometrics). The pixels values were
summed digitally after read-out, but could equivalently be summed
in an analogue fashion by binning camera pixels or by using larger
pixels/photodetectors.

Among the two optical fully connected layers, the optical trans-
mission of the first layer is critical to the sensitivity of the ONN image
sensor because it directly operates on the limited amount of light
from the physical environment. The optical transmission of our first
matrix-vector multiplier was measured to be 2.9%. Through detailed
analysis (Supplementary Note 5), we estimated that the pure optical
transmission (that is, without adding any additional attenuation by
setting all of the pixels on the LCD to the maximum transmission) can
be improved to close to 50% with customized optical elements. The
50% hard limit is due to the inevitable loss of half of the power when

incoherent light goes through a polarizer. Even higher (at least 90%)
transmission should be possible for devices that can assume coher-
entillumination, or that performincoherent spatial light modulation
without polarizers.

The OONA after the first matrix-vector multiplication was realized
with a commercial image intensifier tube (MCP125/Q/S20/P46/GL,
Photek). The image intensifier provides large input-output gains
(around 800in our work), a crucial feature for multilayer networks and
low-light operation. A more subtle feature of the image intensifier’s
OONA isthatitresets the number of spatial optical modes: eventhough
the number of modes incident to the photocathodes is equal to the
number of weights in the weight matrix NV, the number of distinct
output beamsis only equal to the output vector size N

The device, and its local nonlinearity, operates as follows. In the
image intensifier, lightis collected on a photocathode, which produces
photoelectrons in proportion to the local input light intensity. These
photoelectrons are then locally amplified with a microchannel plate
(MCP). The amplified photoelectronsin each channel then excite pho-
tons onaphosphorscreen, producing the lightinput to the next layer.
Thesaturation of thisinput-output response resultsin the nonlinearity
used in our ONN encoders. The image intensifier used in our experi-
mentsisfromPhotek, and includes aS20 photocathode, one-stage MCP
and P46 phosphor. We find that the nonlinearity of intensifier varies
slightly from channel to channel, so we calibrated the input-output
response for all 36 illuminated regions separately (Supplementary
Fig.8), fittingthem eachtoacurve of theformy=a(l-e™) +c(1- %),
where a, b, ¢, d are fit parameters for each region. The intensifier’s
response time was measured to be approximately 20 ps (Supplemen-
tary Fig.7).

For most experiments in this work, the ONN device and architec-
tureare similar: theinputisal,600 (40 x 40 pixels) image, and the first
fully connected layer consists of a1,600 x 36 weight matrix, whereas
thesecond fully connected layer—after the optical-to-optical nonlinear-
ity—usually comprised a36 x 4 weight matrix, except for the traffic-sign
classification task, whichused a36 x 2 weight matrix. The convention
for matrix size used throughout this paper is: the first dimensionis the
length of input vector or the number of neuronsinthe input layer, and
the second dimension is the output vector dimension or the number
of neurons in the output layer. The effective input image size equals
the number of LCD pixels each optically fanned-out copy of the input
image covers on the first LCD, which is used as a transmissive SLM for
element-wise multiplication.

To monitor the light at intermediate locations in the ONN
pre-processor, and to enable us to perform experiments with direct
imaging and single-layer ONN pre-processing, we included a beam-
splitter (BP245B1, Thorlabs) after the first LCD, and another (BS013,
Thorlabs) immediately after the image intensifier. Each beamsplitter
directs part of the light to a monitoring camera, which enabled us to
observe several intermediate steps of computation. The full experi-
mental set-up is depicted in Supplementary Fig. 2.

QuickDraw image classification

We chose the QuickDraw dataset**' to benchmark the performance of
theencodersasit: (1) ismuchharder thanthe MNIST dataset; and (2) can
bebinarized and displayed ona DMD without substantial loss of image
information. Ten classes (clock, chair, computer, eyeglasses, tent,
snowflake, pants, hurricane, flower, crown) were chosen arbitrarily (by
hand, butwith no deliberate rationale other than to ensure the classes
were not too similar) from the available 250+ classes. Inappropriate
images, or images that were obviously not of the intended class, were
removed by hand. The first 300 images remaining for each class were
used for the training set (total size 3,000) with arandom train-valida-
tion split of 250:50, whereas the next 50 were used for testing (total size
500). This datasetis included with all other data for this manuscript at
https://doi.org/10.5281/zenod0.6888985.
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For experiments, the QuickDraw images were resized to 100 x 100
pixels, binarized and then displayed on a DMD (V650L Vialux GmbH).
The DMD was illuminated by a white-light source (MNWHL4-4900
K, Thorlabs).

To train the ONN'’s weights, we needed to first measure the input
images that were seen by the ONN device. This was necessary as the
optically fanned-out images that formed on the LCD differed slightly
fromthe digitalimage loaded onto the DMD, due to theimaging resolu-
tionlimitand aberrations of the MLA. To measure these, we displayed
each QuickDraw image on the DMD—leaving all of the LCD pixels at
their highest transmission—and then inserted a pellicle beamsplitter
(BP245B1, Thorlabs) after the LCD to reflect part of light to a monitor-
ing camera (see Supplementary Fig. 2 for details). An image of the
LCD panel was formed on the camera so that each fanned-out copy
of the input image could be captured by the monitoring camera as
the effective ground truth of the input images. These ground-truth
images were used for training the weights of the ONN pre-processor
on a computer (Supplementary Note 6) and for checking the accu-
racy of optical matrix-vector multipliers (Supplementary Figs. 5 and
6). Each ground-truth image of the fanned-out copies was resized to
40 x40 =1,600 pixels, corresponding to the 40 x 40 LCD pixels used
as the weights for eachimage.

For the QuickDraw image classification task shownin Fig. 2a, the
multilayer ONN encoder consisted of a matrix-vector multiplica-
tion, with a weight matrix size of 1,600 x 36, the 36 optical-to-optical
nonlinear activations, and a final matrix-vector multiplication witha
weight matrix size of 36 x 4 (Supplementary Fig.11). The digital decoder
consisted of a single matrix-vector multiplication with a weight matrix
sizeof 4 x 10. The linear ONN pre-processor involved just asingle opti-
calmatrix-vector multiplication with a weight matrix size of 1,600 x 4,
followed by a 4 x10 digital decoder. For direct imaging, the 40 x 40
ground-truth images were resized to 2 x 2 images by averaging the
pixel values, and sent to a digital decoder comprising a 4 x 10 weight
matrix. The linear digital neural network shown in Fig. 2d consists
of alinear layer with a1,600 x 4 weight matrix, followed by another
linear layer with a 4 x 10 weight matrix. There is no nonlinear activa-
tionfunctionbetween the two linear layers, and both have real-valued
weights and bias terms. The nonlinear digital neural network shownin
Fig. 2d has a linear layer with a 1,600 x 36 weight matrix, followed by
element-wise nonlinear activations (sigmoid), followed by another
linear layer with a 36 x 4 weight matrix, and finally a linear layer with
a4 x10 weight matrix. There is no nonlinear activation between the
36 x 4 linear layer and 4 x 10 linear layer. All layers have real-valued
weights and bias terms.

Optical-neural-network training
Training of the ONN layers was achieved primarily by creating anaccu-
rate model (digital twin) of the optical layers, and training the model’s
parametersinsilico, including the digital post-processinglayer(s). The
digital model treated each optical fully connected layer as matrix-vec-
tor multiplication, and included the 36 individually calibrated nonlin-
ear curves for theimage intensifier activation functions. As our optical
matrix-vector multiplier was engineered to perform matrix-vector
multiplication, our digital models are composed of mathematical
operations like those in regular digital neural networks, but do not
require simulation of any physical process such as optical diffraction.
To improve the robustness of the model and allow it to be accurately
implemented experimentally despite the imperfection of this calibra-
tion, we made use of three key techniques: an accurate calibrated digital
model as described above, data augmentation for modelling physical
noiseand errors, and alayer-by-layer fine-tuning with experimentally
collected data.

We performed data augmentation on training data withrandom
image misalignments and convolutions, which were intended to
mimic realistic optical aberrations and misalignments. This included

translations (£5% of theimage sizein each direction) and mismatched
zoom factor (+4% image scale). To manage the computational cost
of this augmentation, we found that it was sufficient to only apply
these augmentations to the input layer. During each forward pass, we
also added random noise to the input of each layer of the ONN that
is equivalent to about 2% of the input values (more details in Supple-
mentary Note 6).

We first trained models entirely digitally. We used a stochastic
gradient optimizer (A\damW?**) for training. The training parameters
such as learning rate vary from task to task and are included in train-
ing code deposited in GitHub or Zenodo. Generally, each model was
trained for multiple times with each training parameter randomly
generated within a range. The parameters were fine-tuned from trial
to trial by using the package Optuna®, until the best training result
was achieved (for example, the highest validation accuracy without
obvious overfitting).

After this digital training step, we fine-tuned the trained models
using a layer-by-layer training scheme that incorporated data col-
lected from the experimental device. We first uploaded the weights for
the first optical layer obtained by training the digital model, and col-
lected the nonlinear activations for each training image after theimage
intensifier using the monitoring imaging systems (see Supplementary
Note 3). Using the images after the image intensifier as the input, we
thenretrained the second optical layer. We then uploaded the obtained
weights for the second optical layer, and for eachimage in the training
set collected the output from this second layer experimentally, which
was used to finally retrain the last digital linear layer. Only after this
layer-by-layer fine-tuning did we perform experimental testing with
the test dataset.

Toensure that all of the weights of the optical layersin the trained
ONNs are non-negative, we clamped each element of the weight matrix,
setting negative weights to zero after each parameter update during
our training of the ONNs. One can think of this as applying a rectified
linear unit to the weight matrix. This clamping slows down training and
is pronetoinstabilitiesiflarge learning rates are used, due to vanishing
gradients (once clamped, the gradient for that element is 0). We worked
around this by training with smaller and decaying learning rates, but
more epochs. We also applied techniques such as hyperparameter
searches to improve training results (Supplementary Note 6), which
was effective for all of the models used in the experiments we ran.

Flow-cytometry image classification

We performed an experimental benchmark of image-based
cell-organelle classification using a procedure mostly similar to the
QuickDraw benchmarks, including the experimental collection of input
ground-truthimages, and the training procedures. Images from ref. **
(S-BSST644, available from https://www.ebi.ac.uk/biostudies/) were
filteredinto five classes based on the organelles (nucleolus, cytoplasm,
centrosomes, cell mask, mitochondria) and the first 200 valid images
per class were selected by hand for training (1,000 imagesin total), with
arandom train-validation split 0f 160:40, and the next 40 valid images
per class were used for testing. Our selection criterion was to discard
invalid images that involve multiple or no cells. Incidentally, images
with multiple cells were added back later for the anomaly detection
benchmark showninFig. 3. As with the QuickDraw images, these images
were binarized and displayed on the DMD with a100 x 100 resolution
(in terms of DMD pixels), illuminated by the white-light source.

Real-scene image classification

For classification of objectsin areal scene, we 3D-printed asmall scene
consisting of aroad intersection centred around atraffic-sign holder, in
which different speed-limit signs could be placed. We used azoom lens
(Zoom 7000, Navitar) to image the speed-limit sign onto the input of
the ONNimage processor (Supplementary Fig.1). The demagpnification
of this lens was chosen so that the image of the sign relayed in front of
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the ONN encoder approximately spanned about 1 mm x 1 mm, which
was the same physical size of the images displayed on the DMD. The
scene wasilluminated by two green LED lights (M530L4-C1, Thorlabs)
from different angles for more uniform illumination.

To train the ONN weights for the real scene tasks, we collected
ground-truthinputimages using a procedure similar to the classifica-
tion tasks performed with the DMD input. These images were collected
foreachangle (0to 88°in1°increments), for each of eight classes (15,
20,25,30,40, 55,70 and 80 speed limits). Every fourth angle collected
wasusedinthevalidation set, so the total datasetincluded 536 images
for training and 176 images for validation.

Allother aspects of the training and network design are similar to
the previous tasks, with only two exceptions: (1) the digital backend
consisted of two layers instead of one layer; (2) the compressed dimen-
sion was 2, rather than 4. As with other tasks, this compression ratio
was selected as the highest compression ratio for which the nonlinear,
multilayer ONN was still able to perform the task with a reasonable
accuracy.

Additional image-sensing tasks based on different digital
backends

Image reconstruction with autoencoders. We reconstructed Quick-
Drawimages (as showninFig.3b,c) withadigital decoder in the follow-
ing way. Starting with the four-dimensional feature vectors produced
by the ONN encoder previously trained for classification (Fig. 2), we
trained a new digital decoder neural network that would produce an
image whose structural similarity index was minimized relative to the
ground-truth training datasetimages. The decoder neural network was
chosentobe amultilayer perceptron, withbatch normalization layers
before each sigmoid activation function. The number and widths of
the hidden layers were found by random neural architecture search,
which produced abest-performing network with three hidden layers,
where the final output dimension corresponds to the reconstructed
28 x 28 image. We found that larger (that is, more powerful) decoders
were unable to produce better reconstructions, suggesting that the
four-dimensional bottleneck is the limit on reconstruction accuracy
here. The reconstructed images showninFig. 3c are randomly chosen
testimagesinthe hurricane and chair classes. All reconstructed images
inthe testsetareshownin Supplementary Figs.15-24. See Supplemen-
tary Note 10 for more details.

Anomaly detection with unsupervised learning. We performed
the anomaly detection shown in Fig. 3d,e as follows. First, we cre-
ated a dataset consisting of 418 anomaly images by including images
containing at least two cells from all of the five original classes. These
were previously excluded from training dataset for the cell-organelle
classifier showninFig. 2e-h. Next, we displayed allimages in this new,
anomaly dataset onthe DMD and, with the ONN encoder’s weights kept
identical to those originally obtained for cell-organelle classification,
collected the four-dimensional feature vector for eachimage. Principal
component analysis on these feature vectors (Supplementary Fig. 26)
shows that the anomalous images are distinct from the previously
trained classes, occupying apart of the latent space that was previously
not accessed by any of the trained classes. As aresult, we were able to
successfully performspectral clustering on these feature vectors. This
procedure involves computing the nearest-neighbour distances of the
vectors to compute an affinity matrix, whose eigenvectors correspond
to localized clusters. The largest five clusters (largest eigenvalues) of
this matrix were found to correspond to each of the previously trained
classes, while the sixth cluster was found to correspond to anomalous
images. After assigning the most probable class label to each cluster
for the maximum overalllikelihood (Supplementary Fig.26), we com-
puted the confusion matrix of classifying the original 5 classes plus the
new anomaly class by comparing to the ground-truth labels (Fig. 3e).
The true positive rate was calculated as the percentage of anomalous

images classified as anomalous images, and the false positive rate was
calculated as the percentage of normal images in the total number of
images classified as anomalies.

Nonlinear parameter fitting. We performed the estimation of
speed-sign viewing angle as follows. Using the two-dimensional fea-
ture vectors produced by the ONN encoder trained for speed-limit
classificationinFig. 3, we trained anew digital decoder neural network
to predict sign viewing angle. The dataset split between training and
validation here was that every even angle was used in the train set and
every odd angle was used in the validation set, except we only con-
sidered one class (that is, one speed limit) at a time (in other words,
the sign angle estimation decoder only works for a given speed-limit
sign, rather than for an arbitrary sign). A multilayer perceptron with
dimensions 2 > 50 > 100 ~> 1 was found to perform well when trained
with an L1loss function, that is, |0, egicted — O:ruel- The angle prediction
can be performed for all, rather than just one, speed-limit class at a
time, albeit with reduced performance. The results are shown in Sup-
plementary Fig.27.

Simulation of deeper optical neural networks for ten-class
cell-organelle classification

To explore the possible performance and applications of future,
scaled-up nonlinear ONN encoders, we performed realistic physical
simulations of optical neural networks based on our experiments,
for amore challenging task: ten-class cell-organelle classification for
image-based cytometry.

The dataset used for this task was adapted fromref. ** (S-BSST644;
available from https://www.ebi.ac.uk/biostudies/) in the following
way. First, we selected ten of the twelve provided classes (the other
two, Golgi and Control, had too few images and no fluorescent chan-
nel respectively). Unlike our dataset preparation for the five-class
version of this task performed experimentally, here we retained all of
theimages, including those with multiple or no cells.

The five networks considered are as follows. The first ONN
pre-processorisawide (100 x 100 =10,000-dimensional input vector),
linear single-layer ONN (Linear). The second is a two-layer multilayer
perceptron with 10,000-dimensional input, and a 200-dimensional
hidden layer. Besides both the input and hidden dimension being
much larger, this network is similar to the two-layer fully connected
ONN we realized experimentally. The third and fourth models extend
this network deeper, adding one, for CNNI1, or three, for CNN3, opti-
cal convolutional layers. Multichannel optical convolutional layers
of this kind have been realized before with 4f systems (for example,
refs. '), which are in many regards simpler and more amenable to
compact implementation than fully connected optical layers. These
CNNs also include a shifted ReLU activation (that is, trained batch
normalization layers followed by ReLU), which could be realized with
a slight modification of the image intensifier electronics, or by the
threshold-linear behaviour of optically controlled VCSEL*® or LED
arrays. We have primarily assumed pooling operations are AvgPool,
whichare straightforwardly implemented with optical summation. The
MaxPool operation used once in CNN3 is more challenging but could
plausibly be realized effectively by using abroad-area semiconductor
laser or placing amaster limit on the energy availabletoa VCSEL or LED
array, such that the first unit to rise above threshold would suppress
activity in others. These ONN designs are ultimately speculative; In
general, we anticipate that practically realizing more powerful ONN
encoders will require jointly designing compact, low-cost ONN hard-
ware components and developing optics-friendly DNN architectures,
rather than simply directly adapting existing digital DNN architectures.

The decoders used for all networks areidentical linear layers with
dimensions N > 10, where Nis the bottleneck dimension. Note that the
compressionratioistakentobe100 x 100 = 10,000, the original image
resolution, divided by N.
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All-optical networks were simulated withemulated physical noise
ontheforward pass (as described in detail in Supplementary Note 14),
and weights were constrained to be non-negative (because we assumed
incoherent light). We note that it is possible that intermediate layers
could be realized with coherent light (and therefore with real-valued
weights) even if the input light is strictly incoherent, that is, by using
arrays of VCSELs’. We find that, while non-negative weights can gen-
erally be trained for various tasks, the performance of these networks
isgenerally inferior to what is possible with real (that is, both positive
and negative) weights. Consequently, our results here are roughly a
lower bound with respect to the performance of coherent-light-based
ONN encoders.

As a reference for achievable classification accuracy on this
cell-organelle classification task (that is, a practical upper bound, in
part due to the presence of anomalous multi- or no-cell images), we
trained a purely digital classifier based on a ResNet-18 (ref. *°) which
was pretrained on ImageNet. This network includes four additional
layers to adapt input images to the ResNet core, and to produce the
final classification output. All weights of this network were fine-tuned
by training with the training set.

Data availability

The demonstration data for data gathering, as well as training data for
the all-optical/digital neural networks, are available at https://github.
com/mcmahon-lab/Image-sensing-with-multilayer-nonlinear-optical-
neural-networks.

Code availability
All of the data generated, and code used, in this work are available at
https://doi.org/10.5281/zenodo.6888985.
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