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Image sensing with multilayer nonlinear 
optical neural networks

Tianyu Wang    1,4  , Mandar M. Sohoni1,4  , Logan G. Wright    1,2  , 
Martin M. Stein1, Shi-Yuan Ma    1, Tatsuhiro Onodera    1,2, Maxwell G. Anderson1 
& Peter L. McMahon    1,3 

Optical imaging is commonly used for both scientific and technological 
applications across industry and academia. In image sensing, a 
measurement, such as of an object’s position or contour, is performed by 
computational analysis of a digitized image. An emerging image-sensing 
paradigm relies on optical systems that—instead of performing imaging—act 
as encoders that optically compress images into low-dimensional spaces 
by extracting salient features; however, the performance of these encoders 
is typically limited by their linearity. Here we report a nonlinear, multilayer 
optical neural network (ONN) encoder for image sensing based on a 
commercial image intensifier as an optical-to-optical nonlinear activation 
function. This nonlinear ONN outperforms similarly sized linear optical 
encoders across several representative tasks, including machine-vision 
benchmarks, flow-cytometry image classification and identification of 
objects in a three-dimensionally printed real scene. For machine-vision 
tasks, especially those featuring incoherent broadband illumination, our 
concept allows for a considerable reduction in the requirement of camera 
resolution and electronic post-processing complexity. In general, image 
pre-processing with ONNs should enable image-sensing applications that 
operate accurately with fewer pixels, fewer photons, higher throughput  
and lower latency.

Optical images are widely used to capture and convey information 
about the state or dynamics of physical systems, in both fundamental 
science and technology. They are used to guide autonomous machines, 
to assess manufacturing processes, and to inform medical diagno-
ses and procedures. In such applications, an optical system such as a 
microscope forms an image of a subject on a camera, which converts 
the photonic, analogue image into an electronic, digital image. Digital 
images are typically many megabytes; however, for most applications, 
nearly all of this information is redundant or irrelevant. There are three 
main reasons: (1) natural images contain sparse information and are 
therefore compressible1–3; (2) most applications involve images of 

subjects with additional underlying commonalities beyond sparsity; 
and, finally (3), most information in an image is irrelevant to the image’s 
end use. Here we refer to machine-vision applications for which factor 
(3) is applicable as image sensing—only a specific subset of information 
from each image is sought for these applications, as demonstrated  
in Fig. 1a.

The information inefficiency of conventional imaging has 
inspired machine-vision paradigms in which optics are designed 
not as conventional imaging systems, but instead as optical encod-
ers—computational pre-processors that extract relevant information 
from an image1,4–9. Techniques include end-to-end optimization5,8–17, 
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camera with C-fold fewer pixels typically leads to a C-fold improvement 
in the achievable frame rate, in the total number of photons required 
for each detector to achieve a high signal-to-noise ratio, and in the total 
system power and cost. Although high compression ratios (C ≫ 10) are 
routinely achieved with electronic deep neural networks (DNNs), the 
computational capacity of simple optical encoders (such as single 
random or optimized masks) is rarely sufficient to realize such high 
compression.

Fortunately, much richer optical processing is possible with opti-
cal neural networks (ONNs)6,28—optoelectronic systems that perform 
mathematical operations involved in typical DNN inference calcula-
tions with optics. Optical neural networks are thus ideal for enabling 

compressed sensing and single-pixel imaging1,3,18,19, coded aper-
tures17,20,21 and related approaches for computational lensless imag-
ing22. Related trends include the broader fields of smart cameras23, 
in- and near-sensor computing7,24,25, variational quantum sensors26 and 
machine-learning-enabled smart sensors27.

Optical encoders improve machine-vision systems by reducing 
the number of photodetectors. Many performance metrics such as 
frame rate and photon efficiency are directly bottlenecked by the 
number of pixels in the camera, including the energy and time costs 
of transducing images from the optical to digital electronic domain, of 
transporting them from the sensor to the post-processor, and perform-
ing high-dimensional digital post-processing2,23. Consequently, using a 
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Fig. 1 | A multilayer optical-neural-network encoder as a frontend for image 
sensing. a, Image sensing via direct imaging versus optical encoding. In 
conventional image sensing, an image is collected by a camera and then 
processed, often using a neural network to extract a small piece of relevant 
information such as the text of a sign. Rather than faithfully reproducing the full 
image of a scene onto the sensor array, an ONN encoder instead pre-processes 
the image, compressing and extracting only the image information necessary for 
its end use, allowing a much smaller (fewer pixel) sensor array. As with more 
widely studied ONN inference accelerators, such a system can improve the speed 
or energy efficiency of neural-network-based machine-vision and image-based 
sensors. However, an important distinction is that an ONN image sensor takes a 
natural image as input—a pattern of incoherent photons scattered from a real 
object—and can improve sensor performance in ways that extend beyond latency 

and power consumption, such as effective resolution or sensitivity. b, The 
neural-network diagram and corresponding mathematical operations of the 
ONN encoder used in this study. The ONN encoder consists of interleaved linear 
and nonlinear layers before the compressed signal is captured by a small 
photodetector array. x⃗, input image; Wi, weight matrix of fully connected layer i; 
σ, optical-to-optical nonlinear activation function; fdigi, digital backend function. 
c, The schematic of the fully optical matrix–vector multiplier used for 
constructing both linear layers in b. d, The schematic of the optical-to-optical 
nonlinear activation layer realized with a saturating image intensifier. The inset 
plot shows that the output light intensity of a single spatial mode begins to 
saturate as the input light intensity increases, resembling the sigmoid activation 
function.
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a new class of image-sensing devices called ONN sensors4–8,29, where 
an ONN pre-processes data from, and in, the analogue optical domain 
before its conversion into digital electronic signals. Unlike the com-
plementary application of ONNs for accelerating deep-learning cal-
culations on digital-domain data, the goal of ONN sensors is not only 
to accelerate calculations by replacing electronic operations with 
optical ones, but to also improve sensing performance, both by allow-
ing faster, lower latency image processing, as well as by performing 
optical-domain computations that might be impractical or even impos-
sible to perform after converting the photonic signal into a digital 
electronic one.

However, most optical image encoders experimentally demon-
strated so far have involved only linear optical operations or, equiva-
lently, a single-layer neural network5,6,8,14,23. Nonlinearity is essential for 
deep networks and high-performance image processing: multilayer, 
nonlinear networks are exponentially (in the number of neurons) more 
efficient than single-layer neural networks at approximating practically 
relevant functions30. There have been several promising proposals 
and proof-of-concept demonstrations for incorporating optoelec-
tronic nonlinearity to enable multilayer ONNs31–35; for example, an 
integrated photonic system for all-optical, low-latency classification 
of images under laser illumination36. However, most machine-vision 
settings would require ONNs to process high-spatial-resolution images 
obtained with conventional or natural illumination, that is, patterns of 
broadband, incoherent light scattered from real, three-dimensional 
physical objects and scenes.

Here we demonstrate an optical neural network image sensor that 
uses optoelectronic optical-to-optical nonlinear activation (OONA) to 
perform multilayer ONN pre-processing for a variety of image-sensing 
applications. Our multilayer, nonlinear ONN pre-processor takes natu-
ral images (that is, patterns of incoherent photons scattered from 
real objects) as input, and conditionally compresses the image data 
into a low-dimensional latent feature space in a single shot, achieving 
compression ratios of up to 800:1. This allows image sensing to be 
performed with much simpler cameras (for example, a few pixels rather 
than millions of pixels), and vastly reduced digital post-processing 
and associated latency. At high compression ratios, our device con-
sistently outperforms conventional image sensing and linear optical 
pre-processing on experiments based on standard machine-vision 
datasets, on flow-cytometry image classification, and for real scene 
object detection and measurement. The OONA used in our experiments 
is based on a commercial image intensifier typically used, for example, 
in night-vision goggles or low-light scientific imaging. Broadly, our 
findings support the use of multilayer ONNs with nonlinear activations 
as optical-domain pre-processors for sensors. Given the numerous 
ONN platforms36–38 being developed, we expect that a variety of deep 
ONN sensors are possible; these future sensors may detect informa-
tion encoded in light’s spatial, spectral, and/or temporal degrees  
of freedom.

Results
ONN-based image sensors with optical-to-optical nonlinearity
Our experimental ONN image sensor consists of two fully connected 
optical linear layers with an element-wise OONA layer in-between them 

(Fig. 1b). The linear layers (matrix–vector multiplications) in our ONN 
are implemented using a technique designed to facilitate broadband, 
incoherent light as direct inputs. Optical fully connected matrix–vector 
multiplications are performed using a method similar to past works38,39 
(see Methods and Supplementary Note 2). Natural input images are 
first fanned out (multiple spatially distinct copies of the input images 
are created) by an array of microlenses. Multiplication is then achieved 
by attenuating the copies of the input image in proportion to the com-
ponents of the weight matrix, which can be typically implemented 
with a spatial light modulator (SLM) for intensity modulation. Finally, 
the summation of each output vector element is realized by focusing 
the attenuated light components using a lens (Fig. 1c). To realize the 
OONA operations applied to each element of this output vector, light 
is focused onto a commercial image intensifier tube. Incident light 
generates free electrons from a photocathode, which are locally ampli-
fied by a microchannel plate (MCP) and then produce new, amplified 
bright spots as they strike a phosphor screen40. The local saturation 
of the MCP’s amplification leads to a saturating nonlinear response 
that is qualitatively similar to the positive half of the sigmoid function  
(Fig. 1d and Supplementary Fig. 8). Although the OONA is optoelec-
tronic rather than all-optical, its local, in-place realization preserves 
the spatial parallelism of the ONN, and avoids the time and energy costs 
required for read-out/in when the nonlinear activation is computed on 
a separate electronic processor29,38,39. To implement the second layer of 
the ONN, the light produced by the intensifier is processed by a second 
copy of the optical matrix–vector multiplier depicted in Fig. 1c. The 
output from this layer (a four-dimensional vector) was detected by a 
camera (see Methods), but in principle can be captured by an array of 
four photodetectors.

Nonlinear encoders are more efficient than linear encoders
We first performed several image-classification tasks to evaluate the 
performance of the multilayer, nonlinear ONN encoder (Fig. 2). As a 
benchmark, we trained classifiers for ten pre-selected classes of the 
Quick, Draw! (QuickDraw) image dataset41. By placing a beamsplitter 
before the intensifier OONA, we could reconfigure the ONN image sen-
sor for direct imaging (by setting the SLM of the first linear layer to be 
transparent) and for single-layer linear encoding (by applying linear 
layer weights to the first SLM for intensity modulation). Input images 
(28 × 28 pixels) were binarized and displayed on a digital micromirror 
display (DMD), which was placed in front of the image sensor working 
in nonlinear multilayer, linear single-layer or direct imaging mode. For 
a direct comparison, the vector dimension at the optical electronic 
bottleneck in each sensor is the same—a 2 × 2 array or four-dimensional 
latent space, which represents a 196:1 image compression ratio (in the 
direct imaging mode, the images were directly down-sampled by bin-
ning the four quadrants of the image into four pixels). The multilayer, 
nonlinear ONN encoder achieved better classification accuracy than 
the linear ONN encoder and direct downsampling of images (Fig. 2b–d). 
To ensure that the accuracy advantage of the nonlinear, multilayer 
ONN encoder over linear encoders is consistent for any possible linear 
encoder with the same bottleneck dimension, we also trained all-digital 
(with real number weights and biases) single-layer linear encoders 
for the same task, without image downsampling (Fig. 2d). Despite the 

Fig. 2 | Comparison between linear and nonlinear ONN encoders on diverse 
image classification tasks. a, Classification of hand-drawn figures from ten 
different classes in the QuickDraw dataset. b,c, The results of QuickDraw41 
classification with a linear (b) or nonlinear (c) ONN encoder as the frontend. The 
neural-network architecture with corresponding mathematical operations is 
placed above the confusion matrix it produces (blue slabs, linear optical neurons; 
purple slabs, nonlinear activations; grey bars, digital neurons). d, Comparison 
of the accuracy derived from classifiers equipped with different frontends. In all 
cases, the encoder’s output dimension (number of pixels) is 4. e, Classification of 
HeLa cells labelled for different organelles from a dataset acquired from  

flow-cytometry experiments42. f,g, The results of cell-organelle classification 
with a linear (f) or a nonlinear (g) ONN encoder as the frontend. h, Visualization 
of the compressed cell-organelle data with density uniform manifold 
approximation and projection (DensMAP)57. i, Recognition of three-dimensional 
objects: each of eight 3D-printed speed-limit signs are viewed from different 
perspectives by an ONN encoder, which classifies the speed-limit number on 
the sign. j,k, The results of classifying speed limits with a linear (j) or a nonlinear 
(k) ONN encoder as the frontend. l, Classification accuracy as a function of the 
viewing angle, θ. The shaded area denotes 1 s.d. from the mean for repeated 
classification tests.
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constraint of non-negative weights and the non-analytical form of our 
OONA, the experimental, multilayer nonlinear ONN encoder’s perfor-
mance (79% test accuracy) surpassed that of linear encoders, beating 

both the optical (69.5%) and optimized digital (74%) single-layer encod-
ers. Compared with an ideal digital multilayer encoder with real-valued 
weights and biases and a sigmoid nonlinear activation function, the 
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experimental nonlinear ONN encoder has a slightly lower test accuracy 
(79% versus 82%). For single-shot processing of incoherent light, ONNs 
are restricted to non-negative weights. Although this is not a severe 
limitation for the tasks considered here (see Supplementary Note 16), 
it may need to be addressed in future work.

To explore the potential of ONN image sensors for a more practi-
cally important application, we next tested our image sensors on the 
task of classifying fluorescent images of cell organelles acquired in a 
flow-cytometry device42. Image-based flow cytometry is an emerging 
technique in which cells travel through a fluidic channel and are sorted, 
ideally one-by-one, on the basis of their, for example, fluorescence 
and/or phase images42–44. To process statistically useful collections of 
cells, so as to detect, for instance, extremely rare cancerous cells, it is 
essential to minimize the latency of each sorting decision, maintaining 
a high throughput of, for example, 100,000 cells per second42–44. In our 
experiments we displayed binarized images from the dataset in ref. 42 
on the DMD and performed classification with each ONN encoder, as 
in the QuickDraw experiments (Fig. 2e). When each cell image was 
compressed to a four-dimensional feature vector, the multilayer, 
nonlinear ONN encoder exhibited a better classification accuracy 

for the five considered classes than that of the linear ONN encoder 
(93% versus 88.5% test accuracy, Fig. 2f,g; higher local density within 
clusters, Fig. 2h).

Although it is helpful in improving both the accuracy and flexibility 
of our ONN sensors, the small digital post-processing layer we employ 
in these networks is not a necessity and can be eliminated if applications 
require a particularly short latency. For the same flow-cytometry task 
considered above, we show that all-optical classification (that is, clas-
sification without an electronic digital backend) is also possible (see 
Supplementary Note 13). Even in this case, nonlinear optical classifiers 
outperform linear optical classifiers.

The two tasks considered so far are effectively experimental simu-
lations of image-sensing tasks; real image-sensing tasks involve directly 
processing photons arriving from real three-dimensional objects. To 
test this setting, we applied the image sensors to the task of classifying 
traffic signs in a real-model scene, the three-dimensionally printed 
intersection shown in Fig. 2i. Due to the limited field-of-view of the par-
ticular microlens array used in this experiment, the input images to the 
image sensors (insets of Fig. 2g) primarily contain only the speed limit 
sign being classified. The nonlinear, multilayer ONN encoder results 
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in better identification of the speed limit than the linear ONN encoder 
across a range of viewing angles from 0° to 80° (Fig. 2j–l).

A versatile optical frontend for assorted vision tasks
By training new digital post-processers only, the same optical encoders 
trained for classification in the previous section can be reused for a 
variety of other image-sensing tasks. If suitably trained (see Methods), 
encoders can produce robust representations of high-dimensional 
images in the low-dimensional latent space, which preserve far more 
information than the bare minimum required for classification. For 
example, although the QuickDraw-classification encoder (Fig. 2a–c) 
was trained only to facilitate classification, the feature space evidently 
preserves more complex attributes of the original images beyond 
just the figure’s class. When a digital decoder is trained to recon-
struct QuickDraw images from the classification encoder’s features  
(Fig. 3b,c), it produces reconstructions that—although often lacking 
specific details, such as the position of the clock’s hands—capture 
coarse intra-class details such as the orientation or shape of chairs and 
hurricanes. Although nonlinear encoders generally enable improved 
image reconstruction performance45, this is not necessarily the case 
for all datasets or models. In the case of the QuickDraw dataset con-
sidered here, we find only a marginal benefit from nonlinear encoding 
(Supplementary Fig. 25).

As another example of the versatility of optical image encod-
ing, using the same multilayer ONN encoder previously trained for 
traffic-sign classification (Fig. 2i–l), we trained a new digital backend 
to predict the angle at which a traffic sign was viewed (Fig. 3f,g). The 
resulting predictions are very accurate, although the performance is 
reduced if the network is required to predict the viewing angle for all of 
the speed-limit classes, rather than just one at a time (Supplementary 
Fig. 27).

Finally, in many image-sensing applications, initial device training 
will not be able to account for edge cases that may be encountered in 

deployment. To test the capacity for detecting anomalies not previ-
ously observed (and on which the optical encoder was not trained), 
we introduced anomalous images of doublet cell clusters to the ONN 
image sensor (Fig. 3d). To detect these anomalies, we applied spec-
tral clustering to the normalized four-dimensional feature vectors 
produced by the ONN encoder previously trained for cell-organelle 
classification (see Methods). By identifying the six most prominent 
clusters as the five trained classes, plus one last class corresponding to 
anomalous images, we were able to adapt the digital decoder to reliably 
identify anomalous images in the test set (Fig. 3e). These results show 
that the nonlinear ONN encoder does not overfit to the initial training 
dataset, but instead preserves important data structure beyond the 
initially chosen classes, while still compressing the original images to 
a low-dimensional space.

Deeper ONN image sensors for more complex tasks
The results presented in Figs. 2 and 3 illustrate that a two-layer non-
linear ONN pre-processor enables consistently better image-sensing 
performance across a wide range of tasks than conventional imaging 
with direct downsampling or linear ONN pre-processing. Nonetheless, 
an ONN encoder with two fully connected layers is merely a first step. A 
key motivation for using an OONA is that it will facilitate even deeper 
ONN encoders. To explore what may soon be possible with deeper, 
nonlinear ONN encoders, we performed realistic simulations of four 
different optical pre-processors (see Fig. 4), performing an extended 
(ten-class) version of the organelle classification task considered in 
Figs. 2 and 3 (Supplementary Fig. 28). This dataset—which is more chal-
lenging than the five-class cell-organelle classification demonstrated 
in earlier experiments—allowed us to study the performance of more 
complicated ONN encoders. Our simulations (see Methods for details) 
consider physical noise, and involve strictly non-negative weights, 
which is a critical constraint for ONNs operating on incoherent light, 
such as fluorescence.

Figure 4 shows how the classification accuracy of the different 
ONN pre-processors varies as the compression ratio is changed. The 
compression ratio is changed by modifying the number of output neu-
rons in the final optical layer, which determines the number of pixels 
or photodetectors required on the photosensor. As a reference for 
achievable performance, we also performed the task with a fully digital 
classifier based on a ResNet model (an 18-layer pretrained ResNet plus 
four additional adapting layers)46. All networks, including the all-digital 
reference, have the same single-layer digital decoder architecture.

The key result in Fig. 4 is that deeper ONNs with multiple non-
linear layers lead to progressively better classification performance 
across a wide range of compression ratios. The benefit of pre-processor 
depth becomes especially evident at very high compression ratios: 
for a compression ratio of 104 (bottleneck dimension 1), the five-layer 
pre-processor (CNN3) achieves nearly double the accuracy of shal-
lower networks.

Discussion
We demonstrated a nonlinear ONN system that can—in a single shot, and 
without relying on a separate digital electronic processor to implement 
the nonlinearity—perform a variety of nonlinear image processing tasks 
on natural images, that is, on patterns of incoherent photons scattered 
from a real object. By performing image compression in the optical 
domain, ONN image sensors can fundamentally bypass the optoelec-
tronic bandwidth limit of high-resolution cameras, allowing for faster, 
more sensitive and more efficient machine-vision systems. Our results 
show that the nonlinear processing capacity of ONNs enables image 
sensors to outperform image sensors based either on direct downsam-
pling of conventional images or purely linear optical pre-processing. We 
also see that the performance advantages of nonlinear ONN encoders 
scale favourably with additional layers of ONN pre-processing. Such 
nonlinear optical encoders extend the paradigm of end-to-end image 
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Fig. 4 | Simulations of performance scaling with deeper nonlinear optical 
neural network encoders for ten-class cell-organelle classification. 
Classification accuracy as a function of image compression ratio (or bottleneck 
feature vector dimension) for all of the models. Linear, single-layer (linear) 
ONN encoder; multilayer perceptron (MLP), a nonlinear encoder with two 
fully connected layers; CNN1, a three-layer nonlinear ONN encoder with a 
convolutional layer followed by two fully connected layers; CNN3, a five-layer 
nonlinear ONN encoder with three convolutional and two fully connected layers. 
The ResNet-based model is a state-of-the-art digital model shown here as an 
estimate of the upper bound on performance at each compression ratio. Deeper 
models generally produce higher accuracy, especially at higher compression 
ratios.

http://www.nature.com/naturephotonics


Nature Photonics | Volume 17 | May 2023 | 408–415 414

Article https://doi.org/10.1038/s41566-023-01170-8

system optimization5,8,10–17. Given the numerous promising optical47–50 
and optoelectronic nonlinearities proposed for ONNs, we are optimistic 
about future prospects for compact, scalable multilayer ONN image 
sensors (see Supplementary Note 15).

An important benefit of ONN sensors is their potential for dra-
matically reduced latency in high-speed control scenarios such as 
manufacturing robotics, human–machine interfaces, active flow and 
plasma stabilization, and defence applications. For ONN-based image 
sensors, capturing and parallel processing of the largest number of 
spatial modes motivates the use of free-space systems, an approach 
employed by this work. Nonetheless, implementing more than a few 
layers in this format will eventually encounter trade-offs with respect 
to system size (see Supplementary Note 15 and Supplementary Table 9).  
The output of free-space layers are still in the optical domain, however, 
so a promising solution is to route the compressed optical feature 
vector directly from a free-space layer to integrated-photonics neural 
networks for further optical processing, rather than to digital electron-
ics6,28,36,51,52. The resulting all-optical intelligent sensors could entirely 
bypass electronic bottlenecks on speed, sensitivity and resolution, 
and could one day operate with multigigahertz bandwidth, gigapixel 
effective spatial resolution and subnanosecond-scale latency.

Finally, beyond allowing information encoded in many spatial 
modes to be transmitted into just a few pixels, ONN image sensors are 
also exciting because they may be sensitive to other optical information 
that is traditionally lost in photodetection, such as hyperspectral53 and 
vectorial (for example, ray direction) information, both of which can 
drastically change what information can be extracted from a scene.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41566-023-01170-8.
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Methods
Multilayer optical-neural-network image pre-processor
The ONN pre-processor (Supplementary Fig. 1a) comprises an optical 
matrix–vector multiplier unit, an OONA unit, a second optical matrix–
vector multiplier, and a camera. Light is detected in the compressed, 
low-dimensional latent space on the camera, and is subsequently digi-
tally post-processed (see Supplementary Note 1 for more details).

The optical matrix–vector multiplier treats an image with N pixels 
as an N-dimensional vector and multiplies it with a user-specified 
matrix. To implement the matrix–vector product between an N by N′ 
matrix, W and an N-dimensional input vector, we take the following 
steps, which are also illustrated graphically in Supplementary Fig. 3a. 
First, the input image (vector) is fanned-out to create N′ identical copies. 
This is realized by using a microlens array (MLA) to form N′ identical 
images on regions of an SLM. Second, each optically fanned-out copy 
of the image covers N pixels on the SLM, and the intensity of each image 
was modulated in an element-wise fashion according to a different 
column of matrix W. Finally, after the intensity modulation by the SLM, 
which implements the weight multiplication, the intensity-modulated 
image copies are optically fanned-in by forming a demagnified image 
of the N′ copies onto an image intensifier or a camera. Provided that 
the size of the focused image of each attenuated copy is smaller than 
the resolution of the image intensifier (or the size of the camera super-
pixel), the photoelectrons generated by each optical copy are pooled 
to achieve the summation step of the matrix–vector multiplication for 
each row, producing the N′-dimensional output vector.

For the optical matrix–vector multiplier that implements the first 
fully connected layer, the square MLA array has a pitch of 1.1 ± 0.001 mm 
and a focal length of 128.8 mm (APO-Q-P1100-F105, OKO Optics). This 
first MLA contains 26 × 26 = 676 lenslets altogether, but we used only 
6 × 6 = 36 of them to create 36 optical copies of the input image, limited 
by several practical constraints detailed in Supplementary Note 2. For 
the second fully connected layer, the MLA has a rectangular pitch of 
4 mm × 3 mm and a focal length of 38.10 mm (no. 63–230, Edmund 
Optics). The weights of each layer are stored as pixel values on a liquid 
crystal display (LCD, Sony LCX029, with LCX017 controllers by Bild- und 
Lichtsysteme GmbH). The LCDs were operated as transmissive intensity 
modulation SLMs by placing two polarizers—oriented at +45° and –45° 
relative to the pixel grid of the LCD—before and after the LCD panel. The 
transmission was calibrated as a function of the LCD pixel value. The 
calibration procedure for the LCD-based matrix–vector multipliers is 
described in Supplementary Note 2. Under white-light illumination, 
the extinction ratio of the LCD pixels was measured to be at least 400, 
and the LCD can provide 256 discrete modulation levels.

The optical fan-in for the first layer was implemented by demagni-
fying optical fan-out copies after they were modulated by an LCD. The 
demagnification factor of ×30 was implemented by a 4f imaging sys-
tem composed of a singlet lens (LA1484-A-ML, Thorlabs; f = 300 mm) 
and an objective lens (MY20X-804, 20x, Mitutoyo; f = 10 mm). The 
optical fan-in of the second layer was performed using a zoom lens 
(Zoom 7000, Navitar) and imaged onto a camera (Prime 95B Scien-
tific CMOS Camera, Teledyne Photometrics). The pixels values were 
summed digitally after read-out, but could equivalently be summed 
in an analogue fashion by binning camera pixels or by using larger 
pixels/photodetectors.

Among the two optical fully connected layers, the optical trans-
mission of the first layer is critical to the sensitivity of the ONN image 
sensor because it directly operates on the limited amount of light 
from the physical environment. The optical transmission of our first 
matrix–vector multiplier was measured to be 2.9%. Through detailed 
analysis (Supplementary Note 5), we estimated that the pure optical 
transmission (that is, without adding any additional attenuation by 
setting all of the pixels on the LCD to the maximum transmission) can 
be improved to close to 50% with customized optical elements. The 
50% hard limit is due to the inevitable loss of half of the power when 

incoherent light goes through a polarizer. Even higher (at least 90%) 
transmission should be possible for devices that can assume coher-
ent illumination, or that perform incoherent spatial light modulation 
without polarizers.

The OONA after the first matrix–vector multiplication was realized 
with a commercial image intensifier tube (MCP125/Q/S20/P46/GL, 
Photek). The image intensifier provides large input-output gains 
(around 800 in our work), a crucial feature for multilayer networks and 
low-light operation. A more subtle feature of the image intensifier’s 
OONA is that it resets the number of spatial optical modes: even though 
the number of modes incident to the photocathodes is equal to the 
number of weights in the weight matrix NN′, the number of distinct 
output beams is only equal to the output vector size N′.

The device, and its local nonlinearity, operates as follows. In the 
image intensifier, light is collected on a photocathode, which produces 
photoelectrons in proportion to the local input light intensity. These 
photoelectrons are then locally amplified with a microchannel plate 
(MCP). The amplified photoelectrons in each channel then excite pho-
tons on a phosphor screen, producing the light input to the next layer. 
The saturation of this input-output response results in the nonlinearity 
used in our ONN encoders. The image intensifier used in our experi-
ments is from Photek, and includes a S20 photocathode, one-stage MCP 
and P46 phosphor. We find that the nonlinearity of intensifier varies 
slightly from channel to channel, so we calibrated the input-output 
response for all 36 illuminated regions separately (Supplementary 
Fig. 8), fitting them each to a curve of the form y = a(1 − e−bx) + c(1 − e−dx), 
where a, b, c, d are fit parameters for each region. The intensifier’s 
response time was measured to be approximately 20 μs (Supplemen-
tary Fig. 7).

For most experiments in this work, the ONN device and architec-
ture are similar: the input is a 1,600 (40 × 40 pixels) image, and the first 
fully connected layer consists of a 1,600 × 36 weight matrix, whereas 
the second fully connected layer—after the optical-to-optical nonlinear-
ity—usually comprised a 36 × 4 weight matrix, except for the traffic-sign 
classification task, which used a 36 × 2 weight matrix. The convention 
for matrix size used throughout this paper is: the first dimension is the 
length of input vector or the number of neurons in the input layer, and 
the second dimension is the output vector dimension or the number 
of neurons in the output layer. The effective input image size equals 
the number of LCD pixels each optically fanned-out copy of the input 
image covers on the first LCD, which is used as a transmissive SLM for 
element-wise multiplication.

To monitor the light at intermediate locations in the ONN 
pre-processor, and to enable us to perform experiments with direct 
imaging and single-layer ONN pre-processing, we included a beam-
splitter (BP245B1, Thorlabs) after the first LCD, and another (BS013, 
Thorlabs) immediately after the image intensifier. Each beamsplitter 
directs part of the light to a monitoring camera, which enabled us to 
observe several intermediate steps of computation. The full experi-
mental set-up is depicted in Supplementary Fig. 2.

QuickDraw image classification
We chose the QuickDraw dataset4,41 to benchmark the performance of 
the encoders as it: (1) is much harder than the MNIST dataset; and (2) can 
be binarized and displayed on a DMD without substantial loss of image 
information. Ten classes (clock, chair, computer, eyeglasses, tent, 
snowflake, pants, hurricane, flower, crown) were chosen arbitrarily (by 
hand, but with no deliberate rationale other than to ensure the classes 
were not too similar) from the available 250+ classes. Inappropriate 
images, or images that were obviously not of the intended class, were 
removed by hand. The first 300 images remaining for each class were 
used for the training set (total size 3,000) with a random train–valida-
tion split of 250:50, whereas the next 50 were used for testing (total size 
500). This dataset is included with all other data for this manuscript at 
https://doi.org/10.5281/zenodo.6888985.
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For experiments, the QuickDraw images were resized to 100 × 100 
pixels, binarized and then displayed on a DMD (V650L Vialux GmbH). 
The DMD was illuminated by a white-light source (MNWHL4—4900 
K, Thorlabs).

To train the ONN’s weights, we needed to first measure the input 
images that were seen by the ONN device. This was necessary as the 
optically fanned-out images that formed on the LCD differed slightly 
from the digital image loaded onto the DMD, due to the imaging resolu-
tion limit and aberrations of the MLA. To measure these, we displayed 
each QuickDraw image on the DMD—leaving all of the LCD pixels at 
their highest transmission—and then inserted a pellicle beamsplitter 
(BP245B1, Thorlabs) after the LCD to reflect part of light to a monitor-
ing camera (see Supplementary Fig. 2 for details). An image of the 
LCD panel was formed on the camera so that each fanned-out copy 
of the input image could be captured by the monitoring camera as 
the effective ground truth of the input images. These ground-truth 
images were used for training the weights of the ONN pre-processor 
on a computer (Supplementary Note 6) and for checking the accu-
racy of optical matrix–vector multipliers (Supplementary Figs. 5 and 
6). Each ground-truth image of the fanned-out copies was resized to 
40 × 40 = 1,600 pixels, corresponding to the 40 × 40 LCD pixels used 
as the weights for each image.

For the QuickDraw image classification task shown in Fig. 2a, the 
multilayer ONN encoder consisted of a matrix–vector multiplica-
tion, with a weight matrix size of 1,600 × 36, the 36 optical-to-optical 
nonlinear activations, and a final matrix–vector multiplication with a 
weight matrix size of 36 × 4 (Supplementary Fig. 11). The digital decoder 
consisted of a single matrix–vector multiplication with a weight matrix 
size of 4 × 10. The linear ONN pre-processor involved just a single opti-
cal matrix–vector multiplication with a weight matrix size of 1,600 × 4, 
followed by a 4 × 10 digital decoder. For direct imaging, the 40 × 40 
ground-truth images were resized to 2 × 2 images by averaging the 
pixel values, and sent to a digital decoder comprising a 4 × 10 weight 
matrix. The linear digital neural network shown in Fig. 2d consists 
of a linear layer with a 1,600 × 4 weight matrix, followed by another 
linear layer with a 4 × 10 weight matrix. There is no nonlinear activa-
tion function between the two linear layers, and both have real-valued 
weights and bias terms. The nonlinear digital neural network shown in 
Fig. 2d has a linear layer with a 1,600 × 36 weight matrix, followed by 
element-wise nonlinear activations (sigmoid), followed by another 
linear layer with a 36 × 4 weight matrix, and finally a linear layer with 
a 4 × 10 weight matrix. There is no nonlinear activation between the 
36 × 4 linear layer and 4 × 10 linear layer. All layers have real-valued 
weights and bias terms.

Optical-neural-network training
Training of the ONN layers was achieved primarily by creating an accu-
rate model (digital twin) of the optical layers, and training the model’s 
parameters in silico, including the digital post-processing layer(s). The 
digital model treated each optical fully connected layer as matrix–vec-
tor multiplication, and included the 36 individually calibrated nonlin-
ear curves for the image intensifier activation functions. As our optical 
matrix–vector multiplier was engineered to perform matrix–vector 
multiplication, our digital models are composed of mathematical 
operations like those in regular digital neural networks, but do not 
require simulation of any physical process such as optical diffraction. 
To improve the robustness of the model and allow it to be accurately 
implemented experimentally despite the imperfection of this calibra-
tion, we made use of three key techniques: an accurate calibrated digital 
model as described above, data augmentation for modelling physical 
noise and errors, and a layer-by-layer fine-tuning with experimentally 
collected data.

We performed data augmentation on training data with random 
image misalignments and convolutions, which were intended to 
mimic realistic optical aberrations and misalignments. This included 

translations (±5% of the image size in each direction) and mismatched 
zoom factor (±4% image scale). To manage the computational cost 
of this augmentation, we found that it was sufficient to only apply 
these augmentations to the input layer. During each forward pass, we 
also added random noise to the input of each layer of the ONN that 
is equivalent to about 2% of the input values (more details in Supple-
mentary Note 6).

We first trained models entirely digitally. We used a stochastic 
gradient optimizer (AdamW54) for training. The training parameters 
such as learning rate vary from task to task and are included in train-
ing code deposited in GitHub or Zenodo. Generally, each model was 
trained for multiple times with each training parameter randomly 
generated within a range. The parameters were fine-tuned from trial 
to trial by using the package Optuna55, until the best training result 
was achieved (for example, the highest validation accuracy without 
obvious overfitting).

After this digital training step, we fine-tuned the trained models 
using a layer-by-layer training scheme that incorporated data col-
lected from the experimental device. We first uploaded the weights for 
the first optical layer obtained by training the digital model, and col-
lected the nonlinear activations for each training image after the image 
intensifier using the monitoring imaging systems (see Supplementary  
Note 3). Using the images after the image intensifier as the input, we 
then retrained the second optical layer. We then uploaded the obtained 
weights for the second optical layer, and for each image in the training 
set collected the output from this second layer experimentally, which 
was used to finally retrain the last digital linear layer. Only after this 
layer-by-layer fine-tuning did we perform experimental testing with 
the test dataset.

To ensure that all of the weights of the optical layers in the trained 
ONNs are non-negative, we clamped each element of the weight matrix, 
setting negative weights to zero after each parameter update during 
our training of the ONNs. One can think of this as applying a rectified 
linear unit to the weight matrix. This clamping slows down training and 
is prone to instabilities if large learning rates are used, due to vanishing 
gradients (once clamped, the gradient for that element is 0). We worked 
around this by training with smaller and decaying learning rates, but 
more epochs. We also applied techniques such as hyperparameter 
searches to improve training results (Supplementary Note 6), which 
was effective for all of the models used in the experiments we ran.

Flow-cytometry image classification
We performed an experimental benchmark of image-based 
cell-organelle classification using a procedure mostly similar to the 
QuickDraw benchmarks, including the experimental collection of input 
ground-truth images, and the training procedures. Images from ref. 42 
(S-BSST644, available from https://www.ebi.ac.uk/biostudies/) were 
filtered into five classes based on the organelles (nucleolus, cytoplasm, 
centrosomes, cell mask, mitochondria) and the first 200 valid images 
per class were selected by hand for training (1,000 images in total), with 
a random train–validation split of 160:40, and the next 40 valid images 
per class were used for testing. Our selection criterion was to discard 
invalid images that involve multiple or no cells. Incidentally, images 
with multiple cells were added back later for the anomaly detection 
benchmark shown in Fig. 3. As with the QuickDraw images, these images 
were binarized and displayed on the DMD with a 100 × 100 resolution 
(in terms of DMD pixels), illuminated by the white-light source.

Real-scene image classification
For classification of objects in a real scene, we 3D-printed a small scene 
consisting of a road intersection centred around a traffic-sign holder, in 
which different speed-limit signs could be placed. We used a zoom lens 
(Zoom 7000, Navitar) to image the speed-limit sign onto the input of 
the ONN image processor (Supplementary Fig. 1). The demagnification 
of this lens was chosen so that the image of the sign relayed in front of 
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the ONN encoder approximately spanned about 1 mm × 1 mm, which 
was the same physical size of the images displayed on the DMD. The 
scene was illuminated by two green LED lights (M530L4-C1, Thorlabs) 
from different angles for more uniform illumination.

To train the ONN weights for the real scene tasks, we collected 
ground-truth input images using a procedure similar to the classifica-
tion tasks performed with the DMD input. These images were collected 
for each angle (0 to 88° in 1° increments), for each of eight classes (15, 
20, 25, 30, 40, 55, 70 and 80 speed limits). Every fourth angle collected 
was used in the validation set, so the total dataset included 536 images 
for training and 176 images for validation.

All other aspects of the training and network design are similar to 
the previous tasks, with only two exceptions: (1) the digital backend 
consisted of two layers instead of one layer; (2) the compressed dimen-
sion was 2, rather than 4. As with other tasks, this compression ratio 
was selected as the highest compression ratio for which the nonlinear, 
multilayer ONN was still able to perform the task with a reasonable 
accuracy.

Additional image-sensing tasks based on different digital 
backends
Image reconstruction with autoencoders. We reconstructed Quick-
Draw images (as shown in Fig. 3b,c) with a digital decoder in the follow-
ing way. Starting with the four-dimensional feature vectors produced 
by the ONN encoder previously trained for classification (Fig. 2), we 
trained a new digital decoder neural network that would produce an 
image whose structural similarity index was minimized relative to the 
ground-truth training dataset images. The decoder neural network was 
chosen to be a multilayer perceptron, with batch normalization layers 
before each sigmoid activation function. The number and widths of 
the hidden layers were found by random neural architecture search, 
which produced a best-performing network with three hidden layers, 
where the final output dimension corresponds to the reconstructed 
28 × 28 image. We found that larger (that is, more powerful) decoders 
were unable to produce better reconstructions, suggesting that the 
four-dimensional bottleneck is the limit on reconstruction accuracy 
here. The reconstructed images shown in Fig. 3c are randomly chosen 
test images in the hurricane and chair classes. All reconstructed images 
in the test set are shown in Supplementary Figs. 15–24. See Supplemen-
tary Note 10 for more details.

Anomaly detection with unsupervised learning. We performed 
the anomaly detection shown in Fig. 3d,e as follows. First, we cre-
ated a dataset consisting of 418 anomaly images by including images 
containing at least two cells from all of the five original classes. These 
were previously excluded from training dataset for the cell-organelle 
classifier shown in Fig. 2e–h. Next, we displayed all images in this new, 
anomaly dataset on the DMD and, with the ONN encoder’s weights kept 
identical to those originally obtained for cell-organelle classification, 
collected the four-dimensional feature vector for each image. Principal 
component analysis on these feature vectors (Supplementary Fig. 26)  
shows that the anomalous images are distinct from the previously 
trained classes, occupying a part of the latent space that was previously 
not accessed by any of the trained classes. As a result, we were able to 
successfully perform spectral clustering on these feature vectors. This 
procedure involves computing the nearest-neighbour distances of the 
vectors to compute an affinity matrix, whose eigenvectors correspond 
to localized clusters. The largest five clusters (largest eigenvalues) of 
this matrix were found to correspond to each of the previously trained 
classes, while the sixth cluster was found to correspond to anomalous 
images. After assigning the most probable class label to each cluster 
for the maximum overall likelihood (Supplementary Fig. 26), we com-
puted the confusion matrix of classifying the original 5 classes plus the 
new anomaly class by comparing to the ground-truth labels (Fig. 3e). 
The true positive rate was calculated as the percentage of anomalous 

images classified as anomalous images, and the false positive rate was 
calculated as the percentage of normal images in the total number of 
images classified as anomalies.

Nonlinear parameter fitting. We performed the estimation of 
speed-sign viewing angle as follows. Using the two-dimensional fea-
ture vectors produced by the ONN encoder trained for speed-limit 
classification in Fig. 3, we trained a new digital decoder neural network 
to predict sign viewing angle. The dataset split between training and 
validation here was that every even angle was used in the train set and 
every odd angle was used in the validation set, except we only con-
sidered one class (that is, one speed limit) at a time (in other words, 
the sign angle estimation decoder only works for a given speed-limit 
sign, rather than for an arbitrary sign). A multilayer perceptron with 
dimensions 2 → 50 → 100 → 1 was found to perform well when trained 
with an L1 loss function, that is, ∣θpredicted − θtrue∣. The angle prediction 
can be performed for all, rather than just one, speed-limit class at a 
time, albeit with reduced performance. The results are shown in Sup-
plementary Fig. 27.

Simulation of deeper optical neural networks for ten-class 
cell-organelle classification
To explore the possible performance and applications of future, 
scaled-up nonlinear ONN encoders, we performed realistic physical 
simulations of optical neural networks based on our experiments, 
for a more challenging task: ten-class cell-organelle classification for 
image-based cytometry.

The dataset used for this task was adapted from ref. 42 (S-BSST644; 
available from https://www.ebi.ac.uk/biostudies/) in the following 
way. First, we selected ten of the twelve provided classes (the other 
two, Golgi and Control, had too few images and no fluorescent chan-
nel respectively). Unlike our dataset preparation for the five-class 
version of this task performed experimentally, here we retained all of 
the images, including those with multiple or no cells.

The five networks considered are as follows. The first ONN 
pre-processor is a wide (100 × 100 = 10,000-dimensional input vector), 
linear single-layer ONN (Linear). The second is a two-layer multilayer 
perceptron with 10,000-dimensional input, and a 200-dimensional 
hidden layer. Besides both the input and hidden dimension being 
much larger, this network is similar to the two-layer fully connected 
ONN we realized experimentally. The third and fourth models extend 
this network deeper, adding one, for CNN1, or three, for CNN3, opti-
cal convolutional layers. Multichannel optical convolutional layers 
of this kind have been realized before with 4f systems (for example, 
refs. 4,14), which are in many regards simpler and more amenable to 
compact implementation than fully connected optical layers. These 
CNNs also include a shifted ReLU activation (that is, trained batch 
normalization layers followed by ReLU), which could be realized with 
a slight modification of the image intensifier electronics, or by the 
threshold-linear behaviour of optically controlled VCSEL56 or LED 
arrays. We have primarily assumed pooling operations are AvgPool, 
which are straightforwardly implemented with optical summation. The 
MaxPool operation used once in CNN3 is more challenging but could 
plausibly be realized effectively by using a broad-area semiconductor 
laser or placing a master limit on the energy available to a VCSEL or LED 
array, such that the first unit to rise above threshold would suppress 
activity in others. These ONN designs are ultimately speculative; In 
general, we anticipate that practically realizing more powerful ONN 
encoders will require jointly designing compact, low-cost ONN hard-
ware components and developing optics-friendly DNN architectures, 
rather than simply directly adapting existing digital DNN architectures.

The decoders used for all networks are identical linear layers with 
dimensions N → 10, where N is the bottleneck dimension. Note that the 
compression ratio is taken to be 100 × 100 = 10,000, the original image 
resolution, divided by N.
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All-optical networks were simulated with emulated physical noise 
on the forward pass (as described in detail in Supplementary Note 14), 
and weights were constrained to be non-negative (because we assumed 
incoherent light). We note that it is possible that intermediate layers 
could be realized with coherent light (and therefore with real-valued 
weights) even if the input light is strictly incoherent, that is, by using 
arrays of VCSELs56. We find that, while non-negative weights can gen-
erally be trained for various tasks, the performance of these networks 
is generally inferior to what is possible with real (that is, both positive 
and negative) weights. Consequently, our results here are roughly a 
lower bound with respect to the performance of coherent-light-based 
ONN encoders.

As a reference for achievable classification accuracy on this 
cell-organelle classification task (that is, a practical upper bound, in 
part due to the presence of anomalous multi- or no-cell images), we 
trained a purely digital classifier based on a ResNet-18 (ref. 46) which 
was pretrained on ImageNet. This network includes four additional 
layers to adapt input images to the ResNet core, and to produce the 
final classification output. All weights of this network were fine-tuned 
by training with the training set.

Data availability
The demonstration data for data gathering, as well as training data for 
the all-optical/digital neural networks, are available at https://github.
com/mcmahon-lab/Image-sensing-with-multilayer-nonlinear-optical- 
neural-networks.

Code availability
All of the data generated, and code used, in this work are available at 
https://doi.org/10.5281/zenodo.6888985.
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