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ABSTRACT

In cross=silo federated learning (FL), companies or
organizations collectively train a shared model while
keeping the raw data local. The success of cross-ilo
FL relies on client cooperation, effective communica-
tion, and sufficient resource contributions for model
training. However, several unique challenges make
client collaboration in cross-silo FL difficult. First,
as the global model is a public good, clients may
choose to free ride on the process instead of active-
ly contributing to the training process. Second, mar-
ket competition among clients also discourages their
collaboration in training, as clients may not want
their business competitors to obtain a high-quality
model. Third, repeated interactions among clients
may further decentivize collaboration, as one can
free ride on others’ long-term active contributions.
This article focuses on designing effective econom-
ic mechanisms to address the above challenges.
Specifically, we propose an incentive mechanism
to address the public good issue, a revenue-sharing
mechanism to mitigate business competition, and
a cooperative strategy to enable clients’ long-term
collaboration. Our results provide insights into better
design of collaboration mechanism and communi-
cation in practical crosssilo applications. We further
discuss some future directions and open issues that
merit research efforts from the community.

INTRODUCTION

Federated learning (FL) is a distributed and priva-
cy-preserving machine learning approach, where
a group of clients (e.g., learning agents) collabo-
ratively train a shared model without exchanging
private raw data. Clients perform model training
using their private data and only need to exchange
model updates in the form of gradients or param-
eters. This exchange relies heavily on digital com-
munications, where the efficiency and reliability
of data transmission directly impact the speed and
accuracy of the learning process. The clients may
further apply techniques, such as differential pri-
vacy and homomorphic encryption to the shared
model updates to enhance privacy protection.
According to the participating clients and training
scale, one can categorize FL into two main types:
cross-device FL and cross-silo FL.

Cross-Device FL: The participating clients are
usually edge devices such as smartphones and
wearables. Each client is typically constrained by
limited computation and communication resourc-
es. This limitation not only restricts their ability to
participate in multiple FL rounds but also poses
challenges in efficient transmission of model
updates. Furthermore, a client typically possesses
a relatively limited quantity of local data. There-
fore, to achieve success in cross-device FL, sub-
stantial participation of edge devices is required,
which can range up to millions. The model owner
in cross-device FL is the coordinating central serv-
er (such as Google).

Cross-Silo FL: The clients are canonically
companies or organizations (e.g., data centers,
hospitals, and banks) who own the global model
themselves. Clients usually have sufficient com-
putation powers and reliable connections (e.g.,
high-speed wired networks) and are anticipated
to engage in the entire training process [1]. The
number of clients is small (e.g., ranging from two
to around a hundred), and each can have a rela-
tively large amount of local data.

Prior related studies focus on cross-device FL,
and interested readers can find an insightful survey
in [2]. This article focuses on the relatively under-ex-
plored cross-silo FL. There are numerous examples
of cross=silo FL in the industry [3]. In the financial
sector, SwissRe and WeBank engage in joint FL data
analysis to offer personalized reinsurance services.
In the healthcare domain, Owkin partners with
pharmaceutical institutions to develop graph neural
network models for drug discovery. In the transpor-
tation industry, organizations possessing traffic data
collectively train a model to forecast road traffic.
These collaborations require secure and efficient
exchange of model data over their networks to
ensure data privacy. This necessitates a communi-
cation framework that can support reliable trans-
mission of large and complex model updates, often
across different geographic locations.

To obtain a good model in cross-silo FL, clients
need to provide sufficient resources (e.g., com-
putation capabilities and local data) for model
training. This calls for effective mechanisms to
incentivize client contribution and collaboration.
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Enhanced collaboration also has a potential to
mitigate the communication bottleneck in cross-si-
lo FL by fostering synchronized learning and
efficient model exchanges, leading to faster con-
vergence and smaller communication overheads.

However, several unique challenges in cross-silo

settings make client collaboration difficult.

Public Good Provision: Since the global model
is owned and shared by all the clients, it is a pub-
lic good that one can free-ride on. That is, some
clients may contribute little to model training but
enjoy the high-quality global model trained by the
other clients. It is challenging to address the free
rider issue and incentivize clients” contributions to
cross-silo FL due to the public good feature. Note
that while free-riding can also occur in cross-device
FL, its impact is less significant than in cross-silo set-
tings, as edge devices do not own the global model
and usually only participate in a few FL rounds.

Business Competition: Cross-silo clients may
be business competitors (e.g., banks who com-
pete for the same pool of customers), which may
increase the incentives of free riding. That is, cli-
ents may have concerns that contributing to FL
could benefit their business competitors. It is chal-
lenging to promote clients’ FL collaboration when
business competition is present.

Long-Term Collaboration: Cross-silo cli-
ents typically engage in multiple FL processes
to dynamically adjust the global model to the
time-varying datasets. While this brings an oppor-
tunity for long-term collaboration, it also leads to
a possibility where clients may free ride on oth-
ers’ long-term active contributions [4]. Further-
more, how cross-silo clients would behave during
repeated interactions has not been sufficiently
modeled and understood, making a sustainable
long-term collaboration challenging.

In this article, we propose to model and ana-
lyze the above key challenges in cross-silo FL
through a game-theoretical perspective. Our main
contributions are as follows:

+ We point out the public good feature of the
global model and present an incentive mecha-
nism to address the associated free rider issue.
We show that our mechanism incentivizes cli-
ents’ contributions to FL. model training.

+ We point out potential business competi-
tion among cross-silo clients and present a
revenue-sharing mechanism to promote col-
laboration. We show that our mechanism
alleviates business competition, promotes
client collaboration, and improves the global
model accuracy.

+ We point out the opportunity for long-term
collaboration and present a cooperative
strategy to this end. We show that our pro-
posed strategy induces clients to contribute
sufficient training resources in the long run.

+ We further identify future research direc-
tions for client collaboration in cross-silo FL.

While prior work in [1] provided an overview
cross-silo FL, their focus is on identifying the key
challenges in cross-silo FL and the differences to
cross-device FL. This article, however, focuses on
the challenges related to collaboration in cross-si-
lo FL and the corresponding potential solutions.

The remainder of this article is organized as
follows: We discuss the key challenges and pro-
pose mechanisms to address the public good

issue, mitigate business competition, and enable
long-term collaboration in the next sections. Fol-
lowing that, we discuss future research opportu-
nities and conclude. The codes are available at
https://codeocean.com/capsule/4662633/tree.

PuBLIC Goob PROVISION
(GLOBAL MoDEL AS A PusLIC Goop

In cross-silo FL, organizations contribute vari-
ous types of resources (e.g., processing capaci-
ty and local data) to cooperatively train a global
model (e.g., deep neural networks). After train-
ing, each organization can obtain a copy of the
trained global model and exploit it for its rev-
enue improvement. Unlike conventional types
of goods, the trained global model involved in
cross-silo FL can be viewed as a public good and
has two distinctive features below:

* Non-rivalrous: Any organization can “con-
sume” (i.e., have a copy of and exploit) the
neural network without affecting the con-
sumption of other organizations.

+ Non-excludable: No organization can forbid
other organizations who have participated
in the training process from obtaining and
exploiting the trained neural network.

Due to the non-rivalrous and non-excludable fea-

tures, free rider issues may occur. That is, an orga-

nization may contribute few resources but enjoy
the high-accuracy neural network resulting from
the significant contributions of other organizations.

AN INCENTIVE MECHANISM FOR PUBLIC GooD PROVISION

To address the free-rider issue due to the public
good feature, we proposed an incentive mech-
anism in [5]. The main idea is to specify clients’
training contributions based on their valuation
of the global model performance. Based on the
design, high-valuation clients are more willing to
contribute and pay to incentivize low-valuation
clients’ participation. The mechanism overcomes
the challenge due to the public goods features
and can achieve three desired economical prop-
erties at Nash equilibrium:

« Individual rationality: Each organization can
receive a non-negative payoff.

* Budget balance: No third-party investment is
needed for maintaining collaboration among
organizations.

« Social efficiency: The sum of all organizations’
payoffs is maximized.

Note that it has been proven that there does not
exist any public goods mechanism that can simul-
taneously achieve the above three properties and
incentive compatibility (i.e., organizations truthful-
ly report their valuations) [6]. Despite this, with
our proposed mechanism, it can be proven that
organizations truthfully report their marginal valu-
ations in an indirect fashion.

Figure 1 illustrates our proposed mechanism,
which operates in an auction-like fashion and exe-
cutes in four steps below.

Step 1: Each organization first submits a mes-
sage profile (y,, n,) to the central server. Here,
vn is the number of training rounds that organi-
zation n expects to have. A positive (or negative)
value of 1, indicates the unit monetary transfer
per training round that organization n expects to
receive from (or pay for) other organizations.

In cross-silo FL, organizations
contribute various types of
resources (e.g. processing
capacity and local data) to
cooperatively train a global

model (e.g, deep neural
networks). After training,
each organization can obtain

a copy of the trained global
model and exploit it for its
revenue improvement.
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In essence, companies or
organizations could poten-
tially act as both collabora-
tors in model training and
competitors in the business
arena. For one thing, compa-
nies collaboratively train FL
models, with each gaining

benefits from the improved
mode! performance. For

another, these companies
may also engage in business
competition by offering
model-related services to
customers, rendering the col-
laboration more difficult.
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FIGURE 1. An illustration of our proposed incentive mechanism with three
organizations, The mechanism achieves social efficiency while satisfy-
ing budget balance and individual rationality.

Step 2: Upon receiving the message profiles,
the central server processes the submitted pro-
files. Specifically, it determines the number of
training rounds by averaging these values. Then
the server further calculates the monetary transfer
to each organization.

Step 3: The central server replies to the orga-
nizations on the number of training rounds that
organizations need to perform as well as the mon-
etary transfer.

Step 4: Each organization computes its pro-
cessing capacity used for training.

Importantly, in Step 2, the monetary transfer
that each organization needs to receive or pay
is chosen to be the difference between the unit
monetary transfers submitted by the next and sec-
ond next organizations (see highlighted part in
Fig. 1 for an example). This makes the organiza-
tions at equilibrium pay according to their margin-
al benefits, which leads to social efficiency.

REsuLTS

We further devise a distributed algorithm in [5]
that enables the organizations to gradually reach
the system equilibrium without knowing the pri-
vate information of others. This algorithm takes
several iterations. In each iteration, each organiza-
tion greedily optimizes its own payoff with respect
to the number of training rounds, given the oth-
ers’ message profiles submitted in the previous
iteration. It updates its submitted monetary trans-
fer to motivate its “neighboring” organizations
(in terms of organization indices) to reduce the
differences in their submitted monetary transfer in
the next iteration.

Figure 2 shows the performance of our dis-
tributed algorithm with MNIST dataset, which
converges to the equilibrium of our proposed
incentive mechanism. We consider 10 organiza-
tions, where 80 percent of their data samples are
non-lID (independently and identically distribut-
ed). Each curve corresponds to an organization,
and a darker color indicates a higher unit utility
of the organization for having a high-accuracy
global model. In Fig. 2, our algorithm converges
to the equilibrium (which is socially optimal) after
around 150 iterations. Moreover, a positive (or

negative) value indicates that the associated orga-
nization will receive payment (or pay). With the
proposed mechanism, despite the public goods
feature, an organization with a higher valuation
(toward the global model) needs to pay more
for motivating other organizations to collaborate,
whereas an organization with a lower valuation
will be paid a higher amount for its participation.

DISCUSSION

We provided a general approach for addressing
the public good issue among organizations in
cross-silo FL. The proposed incentive mechanism
is not only applicable for incentivizing the orga-
nizations’ contributions of their computational
resources but also can be extended to deal with
other resources (e.g.,, communication resources,
datasets). However, there are still many important
challenges to be addressed. For example, since
organizations are business entities, it is crucial to
investigate their potential coalition behaviors. It is
also beneficial to extend the mechanism for asyn-
chronous FL scenario in order to characterize the
straggler issue and dynamic participation behav-
iors of organizations. Moreover, it is important to
develop efficient and transparent communication
protocols in crosssilo FL, as it can help track con-
tributions and usage, potentially mitigating the
free-rider problem by providing a clear record of
each organization’s participation and impact on
the model training process.

BUSINESS COMPETITION
BUSINESS COMPETTION IN CROSS-SiLo FL

Besides the public good issue, the possible busi-
ness competition makes the collaboration in
cross=silo FL even more challenging. In essence,
companies or organizations could potentially
act as both collaborators in model training and
competitors in the business arena. For one thing,
companies collaboratively train FL models, with
each gaining benefits from the improved model
performance. For another, these companies may
also engage in business competition by offering
model-related services to customers, rendering
the collaboration more difficult. To be concrete,
companies may be unwilling to use enough
data during the training process. The reluctance
comes from the concern that contributing many
data could lead to the improvement of the global
model shared by other clients (who are business
rivals), and hence can undermine the contributing
client's own market competitiveness.

REVENUE SHARING TO MITIGATE BUSINESS COMPETITION

To mitigate business competition, we proposed a
revenue-sharing mechanism in [7] that promotes
client collaboration. We start with a duopoly case
where there are two clients, for example, WeBank
and SwissRe. Figure 3 illustrates how clients inter-
act in terms of FL training collaboration, duopoly
business competition, and revenue sharing. The
interaction consists of five steps elaborated below.

Step 1: Two clients decide whether to partici-
pate in FL, and if so, how much local data to use
for model training.

Step 2: If clients do not participate in FL, each
uses its data to train a local model. If clients par-
ticipate in FL, each client further fine-tunes the
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converged global model (e.g., retrain all or part
of the model parameters) and obtains a final local
model. Fine-tuning is a widely used and effective
solution to improve local model performance
when clients have non-lID data.

Step 3: Each client utilizes its own final model
to provide model-related service (e.g., disease
screening by hospitals). Then, each client decides
the unit price it needs to charge if customers
decide to purchase the service.

Step 4: Given the clients’ provided services
and prices, individual customers in the market
decide whether to purchase the service. If so,
each customer further decides from which one of
the two clients to purchase service.

Step 5: Clients share revenues generated from
selling services to the customers.

The revenue sharing in Step 5 is the key to miti-
gating business competition and promoting col-
laboration, as it can better align clients’ conflicting
objectives arising from business competition. A
key challenge in Step 5 is to design a mechanism
that appropriately reallocates the revenues to the
competing clients. To this end, we propose a reve-
nue-sharing mechanism using Shapley-value-based
contribution evaluation. It consists of two phases.

Phase 1: The clients (or a trusted third party)
estimate each client’s average marginal contribu-
tion to the global model accuracy by running a
sandbox simulation.

Phase 2: Assign each client an index based on
its estimated contribution to the global model,
specified by the Shapley value method. Then,
each client obtains a share (proportional to the
index) of the total revenue.

REsuLTS

To demonstrate the effectiveness of our proposed
revenue-sharing mechanism, we also study the
benchmark case where there is no revenue shar-
ing (i.e., a similar process in Fig. 3 yet with Step 5
removed). We use the global model accuracy to
quantify the effectiveness of our proposed mech-
anism. The global model accuracy helps indicate
how much data clients contribute to FL training.

In our experiments, we use the CIFAR-10 data-
set and the two clients have non-ID data. The
customers are modeled as a continuum and their
valuation toward the clients’ services are uniform-
ly distributed. Figure 4 compares our proposed
revenue-sharing mechanism with the benchmark
case, where the x-axis represents clients” unit cost
per data sample used for FL, and is assumed to be
the same among the two clients. We first observe
that the global model accuracy decreases in the
unit cost. Clients with a larger cost will contribute
less data to FL, leading to a worse global model.
Second, we observe that compared to the case
without revenue sharing, our proposed mecha-
nism significantly improves the global model
accuracy. Without revenue sharing, the clients
participate in fierce market competition by lower-
ing their prices to attract more customers, leading
to a smaller client profit. This in turns constitutes
a smaller incentive to contribute data for FL and
hence results in a worse global model. With prop-
er revenue sharing, however, clients align their
objectives, avoid fierce price competition, and
collaborate to train FL models. This leads to a bet-
ter global model.
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DISCUSSION

The study of business competition in the con-
text of cross-silo FL is still in its initial phases,
with many critical challenges unaddressed. For
instance, the study of more intricate customer
behaviors, for example, multi-homing in which a
customer purchases services from multiple clients,

The study of business
competition in the context
of cross-silo FL s still in its

initial phases, with many
critical challenges unad-
dressed. For instance, the
study of more intricate cus-
tomer behaviors, for example,

multi-homing in which a

customer purchases services
from multiple clients, is

important and interesting.
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FIGURE 5. An illustration of our cooperative strategy to enable long-term collaboration amang clients. Our strategy
converts free-riders to contributors and leads to more data contribution at equilibrium.

is important and interesting. It is also a promis-
ing avenue to consider that clients provide com-
plementary (instead of substitutable) services In
addition, one may extend the mechanism to an
oligopoly scenario with more than two competing
clients. Note that this can bring communication
challenges, which demand improved solutions
for data synchronization and conflict resolution in
model training among multiple clients.

LONG-TERM COLLABORATION
LoNg-TERM COLLABORATION IN CROSS-SILO FL

In cross-silo FL, the training process may require
clients” active long-term participation. For exam-
ple, the MELLODDY project serves as a longterm
endeavor characterized by collaborations among
ten organizations. [8]. One motivating factor
stems from the temporal variability of clients’ local
data. For instance, hospitals continually receive
new patients and update treatment data. This
dynamic nature of data not only requires clients
to engage in multiple FL processes but also pres-
ents significant communication challenges. Ensur-
ing the continuous, secure, and efficient exchange
of up-to-date model updates and data insights is
crucial for adapting the global model to reflect
the evolving datasets. Consequently, clients must
maintain robust and reliable communication chan-
nels that can handle the frequent and potentially
large-scale data transmissions inherent in these
long-term FL collaborations.

However, as mentioned earlier, clients may
free-ride on the global model. This is detrimental,
as free riding would lead to a bad global model,
decentivizing clients to form long-term FL training
collaboration.

A REPEATED GAME-THEORETICAL COOPERATIVE STRATEGY

To promote cross=ilo clients” long-term collabo-
ration, we need to understand how clients would
behave when they are involved in repeated interac-
tions. To this end, we model the clients’ long-term
interactions as a repeated game consisting of an
infinite number of stage games, where each stage
game corresponds to one cross=silo FL process (see
also Fig. 5). In the following, we analyze the stage
game, and then propose a cooperative strategy to
enable clients’ collaboration in the repeated game.

In the stage game, each client strategically
decides the quantity of local data for FL training

to optimize its individual payoff. By analyzing the
equilibrium of this game, we show that clients can
be categorized into up to three groups: free riders
who contribute no data, a partial contributor (if
existent) who contributes a portion of its local
data, and full contributors who contribute all local
data for model training.

In the repeated game, we analyze the equi-
librium and find that there can exist equilibrium
where clients contribute little to the long-term FL
collaboration. While our approach above may be
a solution to each stage game, it does not take
into account the dynamic interactions among
organizations in the long term. To address this
issue, we present a cooperative strategy in [9] to
minimize the number of free riders. The key idea
is to enforce punishment whenever clients devi-
ate from the cooperative strategy. For example, if
some client does not follow the agreed coopera-
tive strategy, the other clients would play punish-
ment strategies so that the deviating client would
be punished and worse off. We show that at the
subgame perfect Nash equilibrium (SPNE) of the
repeated game, some free riders in the stage
game will be converted to either full contributors
or partial contributors (see Fig. 5 for an example),
demonstrating the effectiveness of our proposed
cooperative strategy.

REsuLTS

We propose a distributed algorithm that converg-
es to the SPNE of the repeated game. The server
first computes the minimum number of free rid-
ers under the subgame perfect Nash equilibrium
(SPNE). Then, it determines the maximum number
of local data that converted contributors can use
via solving an optimization problem.

In our experiments, we consider 100 clients
whose data are uniformly randomly sampled from
MNIST. We consider two benchmarks: a free
rider detection method called DAGMM [10], and
a contract-based mechanism [11]. Figure 6 plots
at SPNE, how the total number of contributed
training data changes with the available number
of data D of each client. Figure 6 shows that our
method induces a larger amount of total training
data compared with the other two benchmarks.
The key reason is that our cooperative strategy
helps convert free riders into contributors in the
long run. We can further show that our meth-
od induces a much smaller number of free-rid-
ers than the benchmarks when each client has
enough local data.

DISCUSSION

The discussion of client’s long-term cooperation
in cross-silo federated learning is at its infant
phase, with many intriguing future challenges to
be solved. One important direction is to derive
the cooperative strategy under the imperfect
information case, in which the strategies of clients
(regarding data contributions) are unknown to
others. It is also interesting to study the incom-
plete information case, in which the client infor-
mation (e.g., valuation toward the global model
accuracy) is private to each client and unknown
to other clients.

FUTURE DIRECTIONS AND OPEN ISSUES

There are many interesting unaddressed challeng-
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es regarding the collaboration in cross=ilo FL, and
we discuss some of them below.

MECHANISM DESIGN WITH DATA QUALITY

There have been some recent research efforts on
mechanism design in cross-silo FL. Most of these
studies either focused on the ideal IID data sce-
nario or the more realistic non-lID scenario. How-
ever, the important issue of data quality is under
explored. Here, data quality corresponds to the
conditions of data based on factors such as the
correctness of labels.

To make the collaboration mechanisms usable
in practical cross-silo settings, it is important to
incorporate the important feature of data quali-
ty. Recent studies (e.g., [12]) have theoretically
and empirically quantified how data quality affects
cross-silo FL. The authors in [13] presented an
algorithm to estimate data quality during FL train-
ing. These approaches can be integrated into our
mechanisms to better incentivize contribution in
crosssilo FL. We believe that more research efforts
should be given to practical scenarios incorporat-
ing both data quality and data non-lIDness and
how they jointly affect the mechanism design.

MARKET ENTRY

Market entry is an important aspect of business
strategy formulation, particularly in the context of
emerging technologies (e.g, crosssilo FL). However,
the research of market entry in cross-silo FL remains
under-explored, offering promising future directions
for academic and commercial endeavors alike.

In practice, market entry in cross-silo FL involves
understanding various factors that can influence the
success of an organization. These factors include,
but are not limited to, data availability, market size,
growth potential, and competitive landscape (e.g.,
[14]). By examining these factors, organizations
participating in cross-silo FL can make informed
decisions about whether to enter the competitive
market, and how best to position themselves for
success. We believe that more research efforts
should be devoted along this line.

COALITION

In practical cross-silo FL, companies may choose
to form coalitions due to two reasons. Consider
a scenario where multiple banks compete to offer
finance-related services to prospective customers.
First, when faced with limited data resources, the
banks can establish a coalition and jointly train a
model. This can yield an enhanced model, and
improve the quality of their services (e.g., [15]).
Second, the banks may be strategic in forming
a coalition that maximizes their market competi-
tiveness. For example, smaller banks could form
a business coalition, which can potentially out-
perform larger counterparts and amplify their
market influence. To our best knowledge, there is
no prior work along the latter and more research
efforts are needed.

NASH BARGAINING

In many crosssilo settings, there may not be a neu-
tral third party (e.g, government) who designs and
enforces the collaboration mechanism. Instead,
companies or organizations in many cases need
to negotiate binding agreements/contracts them-
selves on how to contribute and collaborate. To

1le6

—— Optimal SPNE /ff’”
1.0y _—— pAGMM Detection

—— Contract Design
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Number of local data samples

FIGURE 6. Total contributed data paints at equilibrium,

our best knowledge, there is no prior work along
this important line, which however, could provide
insights into and improve practical client collabora-
tion. The authors believe that Nash Bargaining can
be a promising solution to this problem.

CONCLUSION

The success of cross=silo FL requires clients to col-
laborate and contribute sufficient training resourc-
es for model training. This is challenging, as clients
tend to free ride on the global model, which can
be escalated when business competition is pres-
ent. We first propose an incentive mechanism
to encourage clients’ contribution and mitigate
free riding. Next, we devise a revenue-sharing
mechanism to alleviate business competition. We
further propose a cooperative strategy to enable
clients’ long-term collaboration. Our results pro-
vide insights into the design and implementation
of collaboration mechanisms in practical crosssilo
applications. Finally, we discuss open issues that
deserve future studly.
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