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ABSTRACT

We propose a new approach to supercontinuum generation and carrier-envelope-offset detection based on saturated second-order nonlinear
interactions in dispersion-engineered nanowaveguides. The technique developed here broadens the interacting harmonics by forming stable
bifurcations of the pulse envelopes due to an interplay between phase-mismatch and pump depletion. We first present an intuitive heuristic
model for spectral broadening by second-harmonic generation of femtosecond pulses and show that this model agrees well with experiments.
Then, having established strong agreement between theory and experiment, we develop scaling laws that determine the energy required
to generate an octave of bandwidth as a function of input pulse duration, device length, and input pulse chirp. These scaling laws suggest
that future realization based on this approach could enable supercontinuum generation with orders of magnitude less energy than current

state-of-the-art devices.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0158926

I. INTRODUCTION

The generation of low-noise supercontinua from mode-locked
lasers is an increasingly important nonlinear process in modern
optical systems, with applications spanning nearly every field of
science.! Examples include spectroscopy,” ~ precision metrology,
environmental monitoring,” attoscience,”’ signal processing,® and
optical coherence tomography.” Almost all approaches to super-
continuum generation (SCG) rely on guided-wave devices with
either pure or effective third-order () nonlinearities, which
broaden the input bandwidth through self-phase modulation (SPM)
and four-wave mixing. Typical devices require input pulse ener-
gies on the order of hundreds or thousands of picojoules,'’ with
state-of-the-art devices using the P oc L™' scaling of the neces-
sary power associated with x® processes (where L is the length
of the nonlinear waveguide) to realize a coherent octave of band-
width with tens of picojoules.'"”'* When used for carrier-envelope-
offset (CEO) detection to produce a frequency comb, these devices
are followed by a discrete second-harmonic generation (SHG)
stage, which frequency doubles the long-wavelength portion of the
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spectrum to overlap with shorter wavelengths, thereby generating an
f-2f beatnote.

Recent work has focused on realizing SCG in waveguides
with second-order (y®) nonlinearities. In these systems, spectral
broadening can be accompanied by harmonic generation and fre-
quency mixing to simultaneously generate multiple overlapping
combs, which allows for f-2f beatnotes to be detected from the out-
put of a single chip.”” '’ Phase-mismatched y® processes, such as
second-harmonic generation (SHG), contribute to spectral broad-
ening in these devices by operating in a cascaded limit, where
a negligibly depleted pulse input at the fundamental generates a
phase-mismatched second-harmonic.'”** In the absence of pump
depletion, back-action by the generated second harmonic on the
fundamental can be modeled effectively as self-phase modulation,
with resulting behaviors similar to y*® systems.”* > In practice,
the strength of these effective nonlinearities is limited by disper-
sive effects, such as the rate of temporal walk-off between inter-
acting harmonics. By eliminating leading-order dispersive effects
(thereby realizing a quasi-static interaction), phase-mismatched
SHG in nanophotonic periodically poled lithium niobate (PPLN)
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waveguides has been used to demonstrate SCG at the few-picojoule pulses with a shorter duration. When contrasted with traditional

level.”” While this result had previously been interpreted as hav- approaches to SCG based on either pure or effective X(3) non-
ing realized large effective X(s) nonlinearities, we will show in linearities, this technique has many distinct features, including a
this paper that the broadening mechanisms in these dispersion-  different set of scaling laws and coherence properties. In princi-
engineered waveguides are qualitatively different from any previous ple, this approach may enable SCG with substantially lower energy

approach to SCG. This can be seen by noting that spectral broaden- ©)
ing in these devices occurs in the saturated limit, which invalidates

the assumption of an undepleted fundamental. The mechanisms

requirements than processes based on x*’ nonlinearities due to

both the relative strength of y® nonlinearities and the P oc L™

responsible for spectral broadening by saturated nonlinear interac- power scaling associated with X(z) processes. Furthermore, when
tions are poorly understood, and we address these questions in this used for CEO detection, the f-2f beatnotes generated in the region
article. of spectral overlap between each harmonic can remain in phase

In this work, we theoretically and experimentally investigate a ~ across hundreds of nanometers of bandwidth, as opposed to the
new approach to SCG and CEO detection based on saturated X(z) tens of nanometers typically encountered in cascaded devices,'’
interactions in dispersion-engineered quasi-phase-matched (QPM) which enables efficient CEO detection and eliminates the need for
waveguides. This process relies on an interplay between saturated tunable narrowband filters. The heuristic models studied here clar-
frequency conversion and phase-mismatch to quasi-periodically ify the behaviors of SCG devices operating in the saturated limit,
split the pulse envelopes associated with each harmonic into and the resulting scaling laws developed here provide a set of
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FIG. 1. (a) Schematic evolution of the two harmonics, |A, (t)|? (red) and |Ay, (t)|? (blue), as each undergoes broadening. (b) and (c) Theoretical evolution of |A,, (t)|?
and |Ay, (t)[? based on Egs. (2a) and (2b), respectively. The white dashed lines correspond to the conversion half-periods during propagation. (d) and (e) The phase of
the fundamental and second harmonic calculated using Egs. (4a) and (4b). Both harmonics form plateaus of constant phase, which suggests that spectral broadening is
predominantly due to femtosecond amplitude substructure formed by pump depletion. (f)-(i) Comparison of quasi-static theory with a split-step Fourier simulation including
full dispersion relations and self-steepening for realistic waveguide parameters. The structure of each harmonic is largely unchanged by the small but non-zero second- and
third-order dispersion. We note here that split-step Fourier simulations with no dispersion or self-steepening yield identical results to (b)—(e). The parameters used in (f)—(i)
are chosen to compare the heuristic model of (b)—(e) with realistic device behaviors.
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design rules for next-generation SCG devices based on saturated y®

interactions.

This paper proceeds in four sections. In Secs. II and III, we
develop a heuristic model for SCG by saturated SHG in the time and
frequency domains, respectively, and verify this model using split-
step Fourier methods. While this model can be easily extended to
three-wave mixing and optical parametric amplification, we restrict
our focus to SHG, which captures the essential physics. We then cal-
culate the f-2fbeatnotes in the region of spectral overlap between the
two harmonics and show that these beatnotes can remain in phase
across hundreds of nanometers of bandwidth. In Sec. [V, we com-
pare this model to measurements of both the bandwidth and f-2f
beatnotes generated by saturated SHG, which exhibit good agree-
ment with the theoretical approach established in Secs. IT and TIII.
While previous studies of supercontinuum generation in quasi-static
waveguides interpreted spectral broadening as soliton compression
due to an interplay between cascading and anomalous dispersion,”’
the measurements reported here occur in a normally dispersive
regime where soliton compression cannot contribute to spectral
broadening. Furthermore, the nonlinear length for SPM due to pure
¥ interactions can be shown to exceed the length of the waveguide
for all input pulse energies studied here. Since neither of these pro-
cesses can contribute to spectral broadening, this study represents
the first unambiguous experimental demonstration of the regime
proposed in Secs. II and III. In Sec. V, we derive the scaling laws
for the bandwidth generated by saturated ' interactions. This
approach to SCG exhibits favorable length-scaling laws when com-
pared to devices based on SPM and may potentially realize SCG with
hundreds of femtojoules in cm-scale devices. However, the energy
requirements to achieve an octave of bandwidth scale with the cube
of the input pulse duration, 7, and therefore, practical realizations
require pulse durations shorter than ~100 fs.

1. TIME-DOMAIN THEORY

We consider the evolution of phase-mismatched fundamen-
tal and second-harmonic pulses in a dispersion-engineered quasi-
phase-matched waveguide in the limit where the field is sufficiently
intense to deplete the fundamental and dispersion is negligible
over the bandwidth of the pulses. This quasi-static model is moti-
vated by several observations that suggest that the cascaded non-
linearity model usually employed for y* SCG is inapplicable here:
(i) previous experimental demonstrations have shown that the gen-
erated supercontinua maintain coherence for soliton numbers far in
excess of y@ devices,”” which suggests that the spectral broadening
mechanisms may be different than an effective y*); (ii) the observed
relative intensity of the second harmonic violates the assumption of
an undepleted fundamental associated with the cascade regime; and
(iii) as will be shown in Sec. IV, devices with saturated X(Z) nonlin-
earities exhibit nearly identical behavior with either anomalous or
normal dispersion, which suggests that soliton compression does not
contribute meaningfully to spectral broadening.

The coupled-wave equations for the complex field envelopes
Aw(z,t) and Az, (z, t) are given by

azAw = _iKAZwAZ) exp (—lAkZ) — tiAw: (la)
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0:Az = —ikA, exp (ibkz) — (iDro + AK'O;)Aze,  (1b)
where A, is normalized such that |Aa,|2 is the instantaneous
power of the fundamental wave. The temporal walk-off is given
by Ak’ = vy, — Vg, Where v, = k() is the inverse group veloc-
ity of the fundamental. The dispersion operators are given by
Do = PR [(—i)jk,g,j )/ j!]@tj , where k{” represents the jth deriva-
tive of propagation constant k at angular frequency . Both Ak” and
D are assumed to be negligible in the quasi-static limit treated here.
The appearance of Ak'9; in Eq. (1b) is due to our choice of phase
reference, which shifts the time coordinate to be co-moving with
the group velocity of the fundamental. Ak = kyo, — 2ko — 27/ AG is
the phase mismatch between the carrier frequencies of the inter-
acting harmonics in the presence of a QPM grating with a period

Ag,and k = \/ 2a)2d§ff/ (nin2wsoc3 Aeﬁ‘) = /7o is the nonlinear cou-

pling, where 7, is the conventional normalized SHG efficiency”’
2

and A is the conventional effective area associated with y
nonlinear interactions.”” In the quasi-static limit considered here
(Dw =0,D00 =0, AK' = 0), Egs. 1(a) and (1b) may be solved for the
instantaneous field intensity at each point in time using the Jacobi
elliptic functions associated with continuous-wave SHG in the limit
of a depleted pump.”””" Defining the instantaneous field conversion
efficiency as |v(z, t)| = |A20 (2, t) /Aw(0, )], the field envelopes of the
fundamental and second harmonic are

Au(z,1) =\/1 = (2,1)|Au(0,1)] exp (idw (2 1)), (2a)

Azro(z,t) = v(2,1)|Au(0, )| exp (i (2, 1)), (2b)

where v(z,t) = vb(t)sn(KAw(O, t)v,jl(t)z|v‘,§(t)), in which sn(u|m)
is defined as the Jacobi elliptic sine, which continuously deforms
from sin(u) to tanh(u) as m is increased from 0 to 1, and

vp(t) = —|Ak/(4kAu(0,1))] + \/1 +|Ak/(4kAo(0,1))]*. We note

here that vi(t) is the maximum pump depletion attainable for
a given Ak as a function of the local field amplitude input to
the waveguide, A,(0,t). For weak input fields, or large |¢| for
localized fields, v, (t) » |2kA,(0,1)/Ak| and Eq. (2b) recovers the
usual sin(Akz/2) solutions encountered for a weakly depleted
fundamental.

The Jacobi elliptic solutions found here bear many similarities
to the sinusoidal evolution that occurs during phase-mismatched
SHG in the weak-conversion limit, namely, periodic oscillations of
the fundamental and second harmonic power in z and a maxi-
mum pump depletion (v2) that increases with A, (0, t). However,
the Jacobi elliptic functions become increasingly anharmonic with
increasing field intensity (due to saturation) and the spatial period
at which power oscillates between the fundamental and second har-
monic, hereafter referred to as the conversion period, decreases for a
given Ak as the local field intensity becomes larger. This conversion
period is given by

20, (DK(VE(E))

Leonv(£) =
(®) kAw(0,1)

, 3)
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where K is the complete elliptic integral of the first kind and
K(vy(t)) varies slowly for most physically encountered values of
vp(t), e.g, K(vi = 0) = /2 and K(v}, = 0.81) ~ 1.457/2 for a maxi-
mum pump depletion of v? = 0.9. Therefore, the variation in Leony (t)
is dominated by v, (t)/(kAw(0,1)). Figures 1(a)-1(c) show the the-
oretical evolution of a 50-fs-wide (3 dB) sech® pulse in a 6-mm-long
waveguide given by Egs. (2a) and (2b). Here, we have assumed a
pulse energy of 4 pJ, 1, = 1000%/W cm?, and Ak = —37/L, where
L is the length of the waveguide. The white dotted lines corre-
spond to the mth half-period, Ly (t) = mLconv(t)/2, where even
m coincides with the local maxima and minima of the fundamen-
tal and second harmonic, respectively. Near the peak of the pulse,
the conversion period is the shortest and both harmonics undergo
~5 conversion periods as the field propagates through the wave-
guide. The oscillations of the power in the tails of the pulse asymp-
totically approach the conversion period associated with unde-
pleted SHG (equal to twice the conventional coherence length
in this limit), Leonv(00) = 27/|Ak|. Remarkably, the power at the
peak oscillates three times faster than in the tails of the pulse,
which generates a pulse shape with rapid femtosecond amplitude
oscillations as each time slice of the pulse cycles through a differ-
ent number of conversion periods [Figs. 1(a)-1(c), red and blue
curves].

Using the same quasi-static heuristic, the Jacobi elliptic solu-
tions can be shown to predict phase envelopes for the fundamental
and second harmonic,

Bulert) ~pu(0,1) =~ Md

1-4(2,1t)
- lsin_l(iAkmzw(z’ t)2|) e (4a)
2 2k|Aw(z, t)] 4
$20(2,t) = 2¢0(0,1) = —m/2 + ATkZ, (4b)

respectively, and are plotted in Figs. 1(d) and 1(e) for ¢, (0,¢)
=0. We note here that the rate of phase accumulation has a
fixed sign determined by Ak, and therefore, in this context,
sin”!(sin(x)) = x is defined to be a monotonic function. The rate
of phase accumulation by the fundamental depends strongly on
the degree of pump depletion, with large phase shifts accumulated
at values of z and ¢ that correspond to local maxima of v(z, ).
This behavior results in a saturable effective SPM for the funda-
mental, with the total accumulated phase plateauing across large
time bins [Fig. 1(d)]. The phase envelope of the second harmonic
is independent of time when the input fundamental is unchirped,
¢,,(zt) = ¢,,(2,0), and, therefore, can be neglected in the con-
text of spectral broadening. The second-harmonic phase variation
shown in Fig. 1(d), £Ay,(z,t), contains contributions from both
$,, (2 t) and sign changes in v(z,t) and, therefore, exhibits phase
discontinuities of +7 every Leony(t). These two behaviors, namely,
the flat second-harmonic phase envelope and the plateaus of con-
stant phase across the fundamental, suggest that the predominant
broadening mechanism for saturated SHG is not effective SPM.
Instead, the spectral broadening of each harmonic is dominated
by the femtosecond-scale intensity variations imparted by pump
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depletion, as is verified by comparing the Fourier spectrum of
the pulse including the full time-dependent phase of the fun-
damental to that when the fundamental phase is artificially set
to zero.

We now verify this model against a split-step Fourier sim-
ulation assuming realistic parameters for dispersion-engineered
waveguides, namely, a temporal walk-off of Ak" = 5 fs/mm, group
velocity dispersion for the fundamental and second harmonic of
k= 9.5 fs*/mm and kj, = 70 fs’/mm, respectively, and third-
order dispersion given by k)’ = —1100 fs’/mm and ky, = 1200
fs’/mm. These parameters were chosen to correspond to the dis-
persion relations of the TEq waveguide modes of the waveguides
studied in Sec. IV. The time-domain instantaneous power associ-
ated with each envelope, |A,|* and |Az,|%, is shown in Figs. 1(f)
and 1(g), respectively. The phase associated with each envelope is
shown in Figs. 1(h) and 1(i). We note here that while the funda-
mental phase envelope is unwrapped to better visualize the phase
accumulated during propagation, a similar procedure cannot be
applied to the second harmonic due to the phase discontinuities
accumulated around Leony(t). To facilitate comparisons between
theory and simulation, we have left the second-harmonic phase
wrapped. While the simulated pulse envelopes exhibit some distor-
tions due to second- and third-order dispersion, the key aspects of
our Jacobi elliptic approach, such as the rapid amplitude variations
in the resulting pulses, are largely preserved. Given this strong agree-
ment, we now develop a heuristic for the spectral broadening of each
harmonic.

Ill. FREQUENCY-DOMAIN THEORY

Having calculated both the amplitude and phase of each enve-
lope, we can now Fourier-transform these envelopes to study the
evolution of the power spectral density. While we cannot obtain
closed-form expressions for the Fourier-domain fields from Egs. (2)
and (4), we may gain several insights from the time-domain model
that qualitatively capture the behavior of the generated spectrum.
First, as discussed previously, the phase of the two harmonics has
a negligible contribution to spectral broadening, with ¢, forming
plateaus of nearly constant phase and ¢, (z,t) =¢,,(z0) con-
tributing no time-dependent phase modulation. Second, we note
that for z > Leonv(0), the number of local maxima contained in
the instantaneous power of each envelope grows linearly with the
number of half-periods around ¢ = 0. Finally, we note that each
envelope loses two local maxima for every conversion period in the
tails of the pulse [Lcony(o0)]. Therefore, the number of local max-
ima for each harmonic is given by Ny (2) ~ ZZ[LC_OIHV(O) - L;olnv(oo)]
and N2y (2z) = No(2) + 1 for z > Leony(0). Both harmonics have one
local maximum for z < Leony(0). Since the instantaneous power
|Aw(z,t)[* + |A2u(2,t)[* is conserved, each field envelope effectively
splits into N pulses with a duration ~ 7/N, where 7 is the pulse
duration input to the waveguide (e.g., TrwaM = 1.767 for a sech
pulse). Based on these observations, we expect three behaviors in
the frequency domain: (i) a bandwidth Av that grows linearly for
z that satisfies Ny (z) > 2 [or z > Leonv(0)], (ii) @ constant band-
width for z that satisfies No(z) < 2, and (iii) the appearance of
fringes in the frequency domain that become more finely patterned
with increasing z due to the interference of N pulses formed in the
time-domain.
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FIG. 2. (a) Theoretical power spectral density associated with the field envelopes
shown in Fig. 1. (b) Photocurrent spectral density for the f2f beatnote as a
function of optical frequency. The beatnotes fall in- and out-of-phase during prop-
agation, with some positions producing beatnotes that remain in phase across
10s of THz of bandwidth. (c) The resulting detected photocurrent, fpeat(z),
oscillates for increasing propagation length due to the quasiperiodic re-phasing
shown in (b).

The combined power spectral density associated with each
harmonic, |Aw(z, v)|2 + |A2w(z, v)|2, is plotted in Fig. 2(a) for the
parameters used in Fig. 1. The white dotted lines in Fig. 2(a)
correspond to a heuristic formula for the spectral width based on
the arguments made above,

Ave(2) = Av(0) (1 + (mNu(2)))"", (5)

where p =4 is a constant chosen to capture the transition from
constant to linearly growing bandwidth around z ~ Leony(0) and

APL Photon. 8, 116104 (2023); doi: 10.1063/5.0158926
© Author(s) 2023

m =~ 0.52 +0.12log(|kAw(0,0)/Ak|) is a numerically determined
slope that corresponds to the rate change of bandwidth with respect
to the number of generated pulses. The slope m is a slowly vary-
ing function of kA, (0,0)/Ak since the Jacobi elliptic functions
become increasingly anharmonic with a larger field intensity. This
behavior reduces the temporal extent of each pulse formed between
the zeroes of Eqs. (2a) and (2b), thereby altering the rate of
the generated bandwidth with respect to the number of pulses
formed. The characteristic input bandwidth Av(0) = 7.6/(7°1)
is chosen to correspond to the —60 dB level. As can be seen
from Fig. 2(a), Eq. (5) (white dashed lines) captures the spec-
tral broadening due to quasi-static Y interactions for most cases
of interest and is valid for 2|kA,(0,0)|>|Ak|. For 2|kA«(0,0)]
< |Ak|, the dynamics undergo a transition from saturated SHG
to a cascaded nonlinearity, and the generated bandwidth corre-
spondingly exhibits a sub-linear scaling with z. The power spec-
tral density shown in Fig. 2(a) exhibits interference fringes that
become more finely patterned with increasing z, as expected
from the qualitative picture discussed previously. The harmonics
merge at the —60 dB level for Av,(z) > w/(47), or z>4 mm in
Fig. 2(a), which enables f-2f interferometry in the region of spectral
overlap.

The beatnote current contained in each spectral bin is calcu-
lated using ipeat (2, v) o< 2Re(A,(2,v)A}, (2, v)). Figure 2(b) shows
the calculated fcro beatnote current, ipea (2, v), as a function of opti-
cal frequency for the overlapping spectra. The beatnotes fall in and
out of phase during propagation and, remarkably, for a suitable
choice of power or device length, the fcro beatnotes can remain
in phase across nearly a micrometer of bandwidth (from 150 to
300 THz). As shown in Fig. 2(c), this quasiperiodic re-phasing of the
beatnotes causes the total beatnote current obtained by integrating
over the full bandwidth, ey (2) = ;™ ipeat (2, v)dv, to exhibit oscil-
lations in z. In practice, the pulse energy used to drive the waveguide
can be chosen to align a local maximum of the beatnote current
with the length of the device. This process simplifies CEO detection
by allowing the output of the waveguide to be focused on a pho-
toreceiver with minimal filtering, while also improving the detected
beatnote current by integrating the photocurrent over many comb
lines.

IV. EXPERIMENTAL RESULTS

Having established the physical processes responsible for spec-
tral broadening during saturated SHG, we now compare this model
to supercontinua produced by the nanophotonic PPLN devices stud-
ied in %, including here new data obtained to more rigorously test
model predictions. The design and fabrication of these devices were
previously reported in Refs. 29, 32 and 33, and we summarize the
relevant aspects here. The waveguides under study have a film thick-
ness of 700 nm, a top width of ~1850 nm, and an etch depth of
~340 nm, which results in quasi-static operation around 2090 nm.
Fifteen copies of these waveguides are poled with periods ranging
from 5.01 to 5.15 pum; this step size of 10 nm corresponds to a shift
of the accumulated phase mismatch AkL by 4.67. The fine-tuning
of the phase-mismatch may be performed by changing the tempera-
ture of the waveguide, and phase-matched SHG is observed around a
period of 5.11 ym and a temperature of 50 C. For this experiment, we

8, 116104-5
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use an adjacent waveguide with a poling period of 5.10 ym and oper-
ate it at room temperature, which corresponds to a phase-mismatch
of AkL ~ =3m.

The experimental setup is shown in Fig. 3(a). As in previous
studies,”” the waveguides are driven using 50-fs-long pulses pro-
duced with a repetition rate of 100 MHz from a synchronously
pumped degenerate optical parametric oscillator. We note,
however, that in contrast to previous studies, the pump pulses are
centered around 2090 nm, instead of 2060 nm. This choice of wave-
length renders the group velocity dispersion of 6 fs>/mm, instead
of —15 fs*/mm, which eliminates any spectral broadening due to

g N
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2090-nm E—
OPO 50-fs pulses VOA OBJ PPLN OBJ Fiber  OSA
b) Power Spectral Density (dBm)
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FIG. 3. (a) Experimental setup. OPO: optical parametric oscillator; VOA: variable
optical attenuator; OBJ: metallic Cassegrain objective; and OSA: optical spectrum
analyzer. (b) The experimentally measured and (c) theoretically calculated power
spectral density as a function of input pulse energy. The black arrows centered
around 2090 nm in (b) and (c) denote the pump wavelength.

ARTICLE pubs.aip.org/aip/app

soliton self-compression. These pulses are coupled into the PPLN
waveguides using a reflective inverse-Cassegrain objective (Thorlabs
LMM-40X-P01) to ensure that the in-coupled pulses and collected
harmonics are free of chromatic aberrations. We record the output
spectrum from the waveguide using two spectrometers: the near-
infrared (600-1600 nm) is captured using a Yokogawa AQ6370C,
and the mid-infrared (1600-2400 nm) is captured using a Yoko-
gawa AQ6375. The results are shown in Fig. 3(b). The fundamental
and second harmonic are observed to broaden for input pulse
energies in excess of 100 fJ, with the two harmonic merging at the
—40 dB level for pulse energies as low as 4-p]J. This observed broad-
ening with increasing pulse energy is consistent with the quasi-static
theory shown in Fig. 3(c). Furthermore, we observe a number of
qualitative similarities between the spectra observed in theory and
experiment. In particular, for pulse energies between 5 and 5 pJ,
the power spectrum of the fundamental exhibits a local minimum
around the carrier frequency of the fundamental, 2090 nm. For
pulse energies greater than 5 pJ, this local minimum splits into two
minima centered symmetrically around the carrier frequency, with
a local maximum at 2090 nm. Similar patterns occur in the tails
of the spectra; the spectrum of the fundamental forms successive
local minima and maxima in the band between 1600 and 1800 nm
with increasing pulse energy, and the second harmonic exhibits
oscillatory tails between 1200 and 1400 nm. The experimentally
observed second harmonic is, however, much brighter than the
envelope predicted by the heuristics developed here. The origin of
this effect is under investigation.

For energies >5 pJ, f-2f beatnotes may be detected in the region
of spectral overlap by filtering the light output from the wave-
guide and focusing it onto a photodiode [Fig. 4(a)]. Figure 4(b)
shows the beatnote contrast predicted by the quasi-static theory,
2Re(A,(L,A)A5, (L)) /(JAu(L M) +|A2o(L,A)[?), as a function
of wavelength and pulse energy. The contrast is highest in the
spectral region from 1200 to 1800 nm. Therefore, we detect f-2f
beatnotes by filtering the light output from the waveguide using
a Thorlabs FELH1250 long-pass filter and focus this light on a
Menlo Systems APD310 avalanche photodiode. We record the RF
beatnotes using a Rigol DSA815 RF spectrum analyzer with the
resolution bandwidth set to 10 kHz. The RF beatnote power in
dBm is shown in Fig. 4(c) as a function of input pulse energy. We
observe oscillations of the beatnote power with increasing pulse
energy, which qualitatively agrees with the periodic re-phasing of the
beatnotes predicted by theory [Fig. 4(c), dashed line]. The beatnote
current achieves a local maximum corresponding to an RF power of
—65 dBm around an input pulse energy of 9.75 pJ Figure 4(d) com-
pares the relative intensity of the measured fcro beatnote with the
fr beatnote corresponding to the repetition rate of the pulses for
a pulse energy of 9.75 pJ. The detected fcpo beatnote power is
only 25 dB below the fr beatnote, even when the detected optical
bandwidth spans ~550 nm.

V. SCALABILITY OF THIS APPROACH

In experimental realizations of SCG, reductions of the required
pump pulse energy are typically realized either by using shorter
pulses or by fabricating longer devices. In this section, we derive
these scaling laws for the power required to produce a coher-
ent octave by saturated y? nonlinearities and compare them
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FIG. 4. (a) Experimental setup. LPF: long-pass filter; APD: avalanche photodiode;
and RF radio frequency spectrum analyzer. (b) Theoretical beatnote contrast as
a function of wavelength and pulse energy. We detect the range from 1250 to
1800 nm (black dashed lines) using a long-pass filter and an InGaAs avalanche
photodiode. (c) Measured beatnote power as a function of pulse energy. The
orange circles correspond to experiment, and the black dashed line corresponds
to theory. (d) Measured f-2f beatnotes, for a pulse energy of ~10 pJ.

with conventional SCG devices. The three scaling laws consid-
ered here are summarized in Table I. We first consider length
rescalings given by z — s;z. The solutions to Egs. (1a) and (1b)
are scale invariant with a simultaneous rescaling of the device
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TABLE . Scaling laws for spectral broadening by saturated X(z) interactions in quasi-
static waveguides. Quadratic reductions of the required input energy can be achieved
by scaling to longer interaction lengths. Conversely, using a longer pulse duration at
the input results in a cubic increase in the required pulse energy.

Scaling law L Ak 19 1 Uj Notes

Lengthrescaling s; s;° 1 1 s;>  Fully scale invariant

Pulse duration 1 1 s S s; Af invariant
rescaling
Chirp 1 1 1 s s Af invariant

length, dispersion orders, and field intensity given by z — sz,
Ak — Ak/Sl, Ak, ind Ak,/Sl, Dw ind Dw/Sl, DZw ind Dzw/sl, and Pin(t)
=1Aw(0,1)? + |A2 (0, )]* = Pin(t)/s:. Therefore, in the quasi-static
limit, an increase in the device length by a factor s; correspond-
ingly results in a quadratic reduction of the pulse energy nec-
essary to achieve the same degree of spectral broadening at the
output, U, — Uin/s], provided that the dispersion of the wave-
guide remains sufficiently negligible over the length of the device.
In contrast, the nonlinear Schrédinger equation used to describe
SCG in waveguides with y® nonlinearities is scale invariant when
z sz, D D/s, and Pin(t) = Pin(t)/s, which exhibits a linear
reduction of the energy required to produce a supercontinuum
as the length of the waveguide is increased. While state-of-the-art
devices based on y'® nonlinearities have been able to achieve SCG
with tens of picojoules using long waveguides,'"'” the quadratic
scaling of the energy requirements associated with a y® process
would enable octave-spanning SCG with hundreds of femtojoules
of pulse energy by rescaling the waveguide designs shown here to
centimeters.

We now consider the role of pulse duration by using Eq. (5).
In the limit of large nonlinear coupling [xkA,(0,0) > Ak], or large
z, Eq. (5) can be approximated as Av(z) = Av(0)xA,(0,0)z/m. This
expression suggests an approximate scaling law for the generated
bandwidth as a function of the input pulse duration 7. Increasing
7 by a factor s, reduces both the input bandwidth and intensity,
Av(0) - Av(0)/s; and A,(0,0) = A(0,0)//s2, which increases
the power required to achieve a desired Av as Ui, — Uinsg. An
example of this bandwidth-invariant rescaling is shown in Fig. 5(a).
Here, a 4-nJ, 500-fs (s, = 10) pulse achieves a similar amount of
bandwidth as the original spectral evolution shown in Fig. 2(a).
This cubic scaling restricts us to pulse durations on the order of
<100 fs simply because the energy requirements of longer pulses
are impractical. Even a 200-fs-long pulse would require hundreds
of picojoules of pulse energy to achieve the output bandwidths
demonstrated here, comparable to the pulse energies that have
already been used successfully to generate octave-spanning y® SCG
in LN nanowaveguides.'””* While these limitations impose rather
strict requirements on the input pulse duration, this rapid scaling
suggests that these devices may work well when combined with
soliton compression.””*®

Given this strong power scaling with input pulse duration, a
natural concern for experimental realizations is the degradation of
generated bandwidth due to chirped input pulses. This case is read-
ily analyzed using Eqs. (2a)-(4b) provided that the input field and
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FIG. 5. Bandwidth-invariant rescalings of the dynamics shown in Fig. 2. Spec-
tral evolution for (a) a transform-limited pulse with s, = 10 (Ui, =4 nJ and 1.767
=500 fs) and (b) a chirped pulse with s, =2 (1.767 = 100 fs, 1.767 = 50 fs,
and Uj, = 32 pJ). The white dashed lines correspond to Eg. (6). (c) Beatnote
current as a function of input pulse chirp, ¢/, with the input power rescaled by
(7/7)®. The values of ¢’ are chosen to realize 7o < 7 < 279. The black solid
lines correspond t0 Iheat(Z) (in arb. units) for coarsely sampled ¢/, showing similar
integrated beatnote currents for all values of ¢’

phase envelopes, A, (0,t) and ¢, (0,), are calculated using A, (0, )
= [%2 dvAe(0,v) exp (=i¢" (2mv")?[2) exp (—2mivt),where V' is
the frequency offset from w and ¢” is the group delay disper-
sion of the input pulse. The closed form solutions for A, (0,t)
are well known for Gaussian pulses. In the case of a sech
pulse, the time-domain envelope can be approximated using an

ansatz A, (0,t) = \/U/(27)sech(t/) exp (-ibt*), where the pulse
duration 7=10(1+ (2¢"/(n12))*)"/? and the chirp parameter
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20 =¢"((¢")? + (n75/2)*)”" are calculated using Lagrangian
methods.”” The transform-limited pulse duration attained when
¢" = 0is 0.

Since the phase envelopes ¢, (z,t) and ¢, (z,t) do not con-
tribute meaningfully to spectral broadening for z > Lcony(0), we
expect the bandwidth for large z to be well described by our quasi-
static model for a pulse with duration 7. Conversely, for small z, the
bandwidth will be given by the transform-limit of a pulse with dura-
tion 7. Based on these observations, we may generalize Eq. (5) to
account for chirp,

Avi(z) = Av(0)(1 + (mNu(2)70/7)") ", ©6)

where N, (z) is calculated using the peak instantaneous power of
the chirped pulse and Av(0) is calculated using the transform-limit
pulse duration 7o. This heuristic is shown to agree well with the
power spectra calculated using Eqs. (2a)-(4b) in Fig. 5(b). Equa-
tion (6) suggests that the scaling laws for chirp are identical to
those of pulse duration rescalings (7 — s370, Uin — sg Uin), provided
that the chirped pulse duration 7, rather than the transform-limited
duration 7y, is used to calculate the increase in energy requirements.
Tpear (2) is shown as a function of ¢’ in Fig. 5(c). The solid black lines
are coarse samples of I, (2), offset to intercept the y-axis at the cor-
responding value of ¢". All traces are seen to exhibit hard zeroes
and comparable heights in the overlap region (z > 4 mm), which
suggests that the integrated current is robust with respect to chirp
when the input pulse energy is simultaneously rescaled by s3. These
behaviors suggest that only the pulse duration 7, rather than the
chirp parameter b, must be well controlled to achieve broadband f-2f
beatnotes with realistic pulse energies. Notably, b is typically mea-
sured using sophisticated techniques, such as frequency-resolved
optical gating, and grows linearly for small values of input dispersion
(b= ¢"[(n13) when 2|¢|” < n73). In contrast, 7 is easily measured
using standard autocorrelation techniques and is a weak function
of ¢" when 2|¢”| < n77. Since only 7 needs to be well controlled, we
expect any deleterious effects due to pulse chirp to be easily managed
in further experimental realizations of y® SCG.

VI. CONCLUSION

We have established a theoretical model of supercontinuum
generation based on saturated quasi-static y® interactions and have
demonstrated the first experimental verification of this model by
studying spectral broadening in PPLN nanowaveguides. In contrast
to the effective self-phase modulation that occurs with cascaded y*?
interactions, here spectral broadening occurs due to a femtosec-
ond amplitude substructure that forms across the pulse envelope
of the fundamental and second harmonic. This process generates
coherent octaves of bandwidth with picojoules of pulse energy and
produces f-2f beatnotes that can remain in phase across hundreds
of nanometers of bandwidth. These broadband beatnotes simplify
f-2f detection and improve the signal-to-noise ratio of the detected
fcro beatnote since the detected photocurrent can be integrated over
many comb lines. Finally, we use our model to derive a set of scaling
laws that provide simple design rules for devices based on saturated
X(Z) interactions. These scaling laws suggest that X(z) supercontinua
may access substantially lower energy scales than state-of-the-art X(s)

8, 116104-8

Zyi€112T ¥20T Ut ||



devices by using both longer nonlinear sections and shorter input
pulses.
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