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There has been aresurgence of interest in optical computing since

the early 2010s, both inacademia and in industry, with much of the
excitement centred around special-purpose optical computers for
neural-network processing. Optical computing has been a topic of
periodic study since the 1960s, including for neural networks in the
1980s and early 1990s, and a wide variety of optical-computing schemes
and architectures have been proposed. In this Perspective article,

we provide a systematic explanation of why and how optics might be
able to give speed or energy-efficiency benefits over electronics for
computing, enumerating 11 features of optics that can be harnessed
when designing an optical computer. One often-mentioned motivation
for optical computing — that the speed of light is fast — isemphatically
not a key differentiating physical property of optics for computing;
understanding where an advantage could come from is more subtle.
We discuss how gaining an advantage over state-of-the-art electronic
processors will likely only be achievable by careful design that
harnesses more than1of the 11 features, while avoiding a number of
pitfalls that we describe.
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Introduction

There has been a resurgence of interest in optical computing since
the early 2010s, both in industry and in academia'*. What is the fun-
damental physical basis on which we can expect an optical computer
to outperform an electronic computer, at least for some tasks? In this
Perspective article, we enumerate and discuss 11 features of optics and
optical computing that can contribute to an advantage for an optical
computer. Any optical computer that achieves anadvantage in practice
will likely need to harness more than one of these features. An explicit
list of features can help to make clear what ingredients the architect
of an optical computer has to work with. It also allows researchers to
systematically identify the fundamental physical principles behind
the operation of different proposed optical computers, aids them
in analysing what advantage they can hope to achieve and how their
designs might be improved by exploiting further features. The design
ofasuccessful optical computer must be carefully engineered to avoid
bottlenecks or overhead that would outweigh the optical benefits.
We discuss some of the pitfalls and approaches one can take to
mitigate them.

The high bar set by electronic processors has contributed to peri-
ods when there has been pessimism about the prospects for optical
computing (for example, seerefs. 5,6 from2010). Given the continued
improvements in CMOS technology’, why is there now renewed excite-
ment about optical computing, including commercial efforts®’? One
of the major criticisms of optical computing has been that optical
transistors are not competitive with their electronic counterparts.
The current wave of interest in optical computing is primarily focused
on optical-computer architectures that are not based on replicating
digital logic with optical transistors. Instead of trying to construct
general-purpose, digital computers, the community is largely target-
ing building special-purpose, analog computers. Both these shifts —
tospecial-purpose and to analog processing — areimportant. Trying to
build performant general-purpose processors with optics remains out
ofreach, essentially because general-purpose processors are expected
to have no errors (accountants want sums in their spreadsheets to
be exactly correct, for example), and it is only known how to achieve
error-free machines with digital logic; to build digital logic requires
anoptical transistor satisfying the criteriagiveninref. 6 or something
similar. However, one can alternatively build optical processors that are
specialized to particular applications for which completely error-free
operationis not necessary.

There are several application areas being targeted by
special-purpose optical computers presently, including neural
networks'; scientific computing'®; combinatorial optimization* and
cryptography®™? Allfour application areas have as a key algorithmic
primitive the process of matrix-vector multiplication, which is the
target of much of the current research in optical computing. Fou-
rier transforms and convolutions have applicability across neural
networks, scientific computing and cryptography, contributing to
their prominence in current research. Optical correlators have been
released as commercial products during several periods over the
past few decades®, so this is not a new direction even commercially,
but one that has been revitalized. There is also a substantial thrust in
performing computations for neural networks that are not explicitly
engineered to be matrix-vector multiplications or convolutions* %,
Acommonality amongallfour application areas is that the subroutines
performed optically are still useful even if they suffer fromsome error
(noise). This factor is crucial because it is difficult to achieve an effec-
tive precision greater than 10 bits in any analog computer, including

analog optical computers, so applications of analog optical computers
shouldberobusttothislevel of noise. Neural networks are a particularly
good match because, at least during inference (as opposed to train-
ing), neural networks do not suffer a substantial decreaseinaccuracy
evenif they are restricted to integer arithmetic with fewer than 8 bits
of precision"”. A concern for any analog neural-network processor,
including analog optical processors, is the potential for accumulation
oferrorsinexecuting deep neural networks. This has recently been the-
oretically analysed, witha conclusion that deleterious effects of noise
accumulation can be mitigated, even in the case of correlated noise.
Uncorrelated noise that merely leads to an effective low-bit precision
has been shownin simulations of deep optical neural networks (having
60 optically executed layers) to yield accuracies that are the same as
orbetter than that of digital-electronic processors executing the same
neural network with 8-bitinteger arithmetic”, that is, the simulations
predicted that the accumulation of errorin an opticalimplementation
ofthe neural network would not have anoticeableimpact onaccuracy
compared with a standard digital-electronic implementation. For all
applications of analog optical processors, neural networks, intui-
tion and simulations about resilience to noise ultimately need to be
validated by optical experiments.

With this context, we can now give a fuller answer to why there
is renewed excitement in optical computing. The first reason is
therise of neural networks: over the past decade, neural networks have
become a dominant approach in machine learning and have become
extremely compute-resource-intensive. This has led to stronginterest
inalternative hardware approaches specialized to neural networks, and
the intrinsic resilience of neural networks to noise makes them well
suited to analog optical implementations. Second, CMOS improve-
ments would not be enough to satisfy application demand: although
there has been remarkable progress in CMOS hardware’, it is also
simultaneously true that both for neural networks and for some other
applications (such as combinatorial optimization), the anticipated
future improvements in CMOS hardware” are less than users would
like and will limit application capabilities®. For instance, the number
of parameters in neural networks — one measure of their size and
computational demand — has been growing much faster than hard-
wareimprovements®, primarily because of the finding that increased
scale often leads to increased capability or accuracy®?. Third, there
havebeenlargeimprovementsin photonics hardware: driven largely by
the consumer-electronics and the optical-communications industries,
there have been enormous advances in the scale, speed and energy
efficiency of photonic devices over the past 30 years since the last big
surge of interest in optical neural networks. As examples, Samsung now
offers acamerawith 200 million pixels”’, and 400-gigabit-per-second
optical transceivers using on the order of 10 W of power are com-
mercially available. This period has also seen the development and
commercialization of photonic integrated circuits®, giving a minia-
turized alternative to bulk optics; there have also been substantial
developments in optical materials and devices® .

A complementary trend in the electronics community (both in
CMOS and beyond-CMOS technologies), which has provided further
support for the development of optical computers for neural networks,
has been the development of special-purpose electronic chips for
neural-network processing’. In many cases, these chips also perform
analog rather than digital matrix-vector multiplications; this fact
has led to the development of methods for training neural networks
towork well on analog hardware, many of which are also applicable to
analog optical neural networks. Both analog and digital-electronic
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neural-network chips often have dataflow architectures, especially
systolic-array architectures. They also often implement the concept
of compute-in-memory, meaning that the physical element storing
an element of the weight matrix of a neural network, for example, is
also the physical element in which the multiplication by that weight
takes place”; often, the stored values can only be updated slowly, but
this is acceptable for neural-network inference or other scenarios
in which the weights will be re-used many times. Systolic-array and
especially compute-in-memory architectures can have a close map-
ping to optical processors in which information encoded in optical
signals flows through processing elements, be they arrays of spatial
light modulator pixels®, meshes of Mach-Zehnder interferometers®,
crossbars of phase-change-memory cells*® or networks of microring
resonators”. This parallel between the architectures of analog elec-
tronic neural-network processors and analog optical neural-network
processors has allowed optical-computer architects toborrow insights
from the electronic-processor community. Architectural similarities
alsomakeit easier to predict how the performance of future electronic
and photonic implementations are likely to compare. Not every opti-
cal computer for neural networks is based on similar architectures
to electronic neural-network processors — and there are good rea-
sons to deviate'*? — but in the cases in which the architectures and
algorithms are comparable, performance analysis is simpler because
one does not have to disentangle the effects of different algorithms
and different architectures and can focus on the underlying physical
differences: how many parallel elements are there, how fast can data
be sent through them and so on. There are likewise architectural and
algorithmic parallels between many special-purpose electronic pro-
cessors for combinatorial optimization and optical approaches for
the same application area®.

In this Perspective article, we limit ourselves to discussing clas-
sical optical computing and do not review the benefits of optics for
building quantum computers*. We will also not attempt to compare
optical classical computers with optical quantum computers, other
thanto say that both are competing against classical digital-electronic
computersbut withrather different applications targeted for potential
advantage*'. We briefly discuss why electronic processors are hard to
beat, before explaining what physics differences between electronics
and optics can contribute to an advantage for optical computers. We
then discuss strategies for optical processors to achieve advantage,
before describing remaining challenges in the Outlook section.

What do optical computers need to beat?

Before we discuss how an optical computer could beat an electronic
computer, let usfirst briefly describe what they are up againstand why
this makes electronic processors such stiff competition. Thereisboth
ahardware and an algorithm or software component to this. On the
hardwareside, electronic processors based on CMOS transistors have
enormous parallelism, with up to -10" transistors per chip, operating
ataclockrate ofbetween~1 GHzand -10 GHz, and a switching energy
of <10 aJ (that is, <1077 ])". These features allow modern processors
to have enormous computing throughput — for example, the Nvidia
H100 processor* can perform 4 x 10 8-bit scalar multiplications
per second, which corresponds to performing approximately 4 x 10°
multiplications in parallel per clock cycle; the chip draws <1,000 W
of power. On the software side, in parallel with >50 years of effort
that has gone into improving transistor-based hardware, there has
been >50 years of effort in designing algorithms, which in some cases
has been responsible for almost as much benefit as improvements

in hardware®. In many cases, the algorithms have been implicitly or
explicitly designed to be optimized for the kinds of hardware that
were or are available at the time*?, raising the barrier to entry for new
hardware paradigms.

The 11 features

Paraphrasing journalist H.L. Mencken, there is an explanation for
potential advantage of optical computing that is neat, plausible and
wrong: the fact thatlight travels fast. We list below 11 features of either
opticsitself or of away computing can be done with optics, which are
ingredients for the construction of optical computers; these features
allow for explanations of how optics can deliver anadvantage that are
subtler, but correct. We also address how the speed of lightis related to
optical computing, even thoughitis not the cause of optical advantage.

Bandwidth

Photonicshas an~100,000x larger bandwidth Bthanelectronics. The
bandwidth of photonicsis ~500 THz, whereas for electronic circuitsiit
is typically -5 GHz (Fig. 1a). Small analog electronic circuits can have
bandwidth >5 GHz (refs. 46,47) and small digital-electronic circuits
canbeclocked at rates >5 GHz, but both analog and digital electronics
for computing systems tend to be limited to speeds « 5 GHz by wire
delays*®*’ and, since the mid-2000s, also by power dissipation®. The
large bandwidth of photonics leads to two potential benefits.

Massive frequency-multiplexing parallelism. For example, there can
be >10” comb lines in a frequency comb®® and >10° frequency modes
in a long fibre-ring cavity; data represented in each comb line (fre-
quency mode) can be acted on in parallel (Fig. 1b) — not just individu-
ally (that is, element-wise) but also with operations that, for example,
add or multiply data in different frequency modes”. The parallelism
of optical-frequency modes is commonly exploited in optical com-
munications, in which wavelength-division multiplexing enables com-
munication over a single-mode fibre at rates >10" bits per second”".
This technology canalso be used for computing; for example, reservoir
computing on coherent linear photonic processors has been achieved
with abandwidth of B ~ 5 THz (ref. 15).

Fast dynamics of optical systems. The dynamics of optical systems
can be very fast, which can translate to very high operation speeds,
which in turn can lead to higher computing throughput and lower
latency: the limit in the delay for an operation, 74, 2 1/B, can be
~100,000x smaller for optics than electronics if the full bandwidth
of optics is used. (We expand on what we mean by throughput and
latency in computing in the section on how optical computers might
beat electronic computers.)

However, this perspective on potential optical advantage from
bandwidth has some subtlety. For one, the bandwidth limit on 74,,
is only a limit and the delay can be substantially longer if the device
has a propagation length such that the time taken for light to travel
throughthe deviceislong compared with1/B (that s, a speed-of-light
limitbegins to dominate). Note that when the delay from propagation
dominates the total delay, it is still possible to benefit from the fast
bandwidth-limited speed in throughput by pipelining®— for instance,
by sending multiple optical pulsesinto the system spaced apartby more
than the temporal pulse width - 1/B but by less than the propagation
delay. However, as electronic computers can —and generally do — also
take advantage of pipelining, care again needs to be taken in making
performance comparisons.
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Fig.1| The three features most likely to have a key role in any future optical
processor that does deliver an overall advantage in latency, throughput or
energy efficiency. a,b, Bandwidth. An optical signal with bandwidth >300 THz
(parta) and an example of the use of frequency multiplexing in optical computing
(partb): kernel weights for a convolution are input as intensity modulations

of spectral lines ina frequency comb; the use of multiple comb lines allows
multiple computations to be performed in parallel. ¢, Spatial parallelism. Part of
astate-of-the-art silicon-photonic device with 16,384 pixels on a10 x 11 mm?chip,
illustrating the degree of spatial parallelism possible in modern photonic devices.
d, Nearly dissipationless dynamics. An example of computing with linear optics:
light propagating through alens undergoes a Fourier transform, and ina two-lens

4 f system with a scattering mediumin between, aconvolution is performed on
theinputlight.In the absence of optical loss (as would arise from absorptionin
the lenses, for example), the computation of the convolution happens without
any energy loss. However, if one considers how to use this building block in an
end-to-end computing system, thereis typically an energy cost associated with
converting anelectrical signalinto an optical input, and there is also typically an
energy cost associated with converting the optical output back into an electrical
signal. Part a adapted with permission from ref. 146, Optica Publishing Group.
Part b adapted with permission from ref. 97, Springer Nature Ltd. Part cadapted
with permission fromref. 147under a Creative Commons licence CCBY 4.0. Partd
adapted with permission fromref. 1, Springer Nature Ltd.

Another subtlety is that the delay for an individual modern elec-
tronic transistor under typical load is -1 ps** soif one compared photon-
ics with electronics at the level of anindividual switch, the bandwidth
benefit of optics would be much smaller than ~-100,000x% (perhaps
‘only’ ~1,000x). At the level of an entire chip, electronic processors
are clocked ~10-100x more slowly than the circuit delays** would
suggest are possible, largely owing to limits on power dissipation®.
By contrast, photonic processors can have low dissipation (discussed
subsequently). Thus, at a system level, it is a combination of both
intrinsicbandwidth and low dissipation that gives rise toa~100,000x
potential system-wide bandwidth advantage for optics.

Reference® has demonstrated optical switching of -46 fs pulses —
highlighting the fast speeds possible with THz-bandwidth optical
pulses and the quasi-instantaneous nature of nonlinear-optical
operations.

Spatial parallelism
Photonic systems can exploit a large number (>10°) of parallel spatial
modes*®. Consumer electronics using >108 spatial modesin an ~2.5-cm?
area have been realized?, illustrating that massive parallelism can be
achieved in practice. Sophisticated integrated-photonics devices
controlling many modes have also been created in academia (Fig. 1c).
For photonicsystemsinwhichlight is confined inasingle 2D plane,
such as in 2D photonic integrated circuits, the density of photonic

components can be as high as ~10° cm™ (ref. 57), and we can roughly
think of each component as enabling one or more computing opera-
tions (such as a multiplication) to be performed in parallel. There are
multiple reasons to write one or more operations and not just exactly
one operation. For example, one is that a single component in space
canactonmany frequency modesin parallel, as mentioned earlier, or
on multiple polarization modes. Another is that depending on one’s
definition of an operation, and one’s definition of asingle component, a
component may naturally perform multiple operationsinasingle pass
of light throughit, suchasasingle 50:50 coupler arguably performing
two multiplications and two additions.

Although this component density isin absolute terms a high num-
ber, we should compare it against the spatial parallelism available
in CMOS electronics, in which the achieved density of transistors is
~10'°cm (ref. 45). As another point of comparison, to give an exam-
ple of a candidate future electronics technology, an analog matrix-
vector-multiplier core based on a crossbar array of phase-change
memory, built by IBM*, featured 65,536 phase-change-memory cells
within a chip area of ~0.6 mm?. This is a density of ~107 cells per cm?,
and each cell can be interpreted as performing one scalar, analog
multiplication per clock cycle.

In this setting of 2D photonic integrated circuits, opticsis ata
disadvantage compared with electronics in the pure density of fab-
ricable components, because the transistor density in electronics
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is ~10*x larger than the component density in on-chip photonics.
This comparison is arguably the most relevant, as transistor-based
electronic processors are, in most cases, the systems to beat. How-
ever, other comparisons can be made. Even 2D photonics can have
a spatial-parallelism advantage over 2D microwave electronics: for
example, photonic-crystal cavities (resonators) can have areas -1 um?
(refs. 59,60), whereas electronic microwave resonators are typically
orders of magnitude larger®".

However, if the third spatial dimension is used“®?, optics may
gain a several-orders-of-magnitude advantage in spatial parallelism
becauseelectronicsisin practice limited to very modest 3D integration.
Atypical modern electronic chip is thin — on the order of 1 mm — and
comprises only tens of layers®’, whereas optical processors that are
centimetres or even metres thick, using propagation through bulk
crystals®>** or multimode optical fibre'®, for example, have been con-
structed. However, in the specific case of NAND memory, electronic
integrated circuits have been scaled to 128 layers®® — which suggests
that for memory rather than computing, photonics has less room for
advantage over electronics by extending in the third dimension.

Let us use an example tomake arough estimate of the kind of advan-
tage thatis in principle possible for 3D optical computing. Consider a
2D photonic device with dimensions L x L and a 3D photonic device
with dimensions L x L x L. Assume we address each device with light of
wavelengthA =500 nmandthatthedevicelengthis. = 5cm. The num-
ber of resolvable spotsin the former caseis on the order of (L/1)>=10",
whereas the number of resolvable voxelsin the latter caseis on the order
of (L/1)* =10" —anadvantage of (L/1) =10° times when going from 2D to
3D. We can also compare these numbers with the counts of transistors
in electronic processors: at the state-of-the-art fabrication density of
~10" transistors per cm? a5 cm x 5 cm-chip would have 2.5 x 10" transis-
tors. This figure is an order of magnitude greater than the number of
resolvable spots in the same-area photonic device, but several orders
of magnitude smaller than the number of voxelsin the same-length 3D
device. Of course, anaddressable voxel of material is not the same thing
as atransistor; one ultimately needs to carefully analyse the computa-
tionand memory thatisachieved using a particular deviceinaparticular
way, but these crude estimates hopefully convey two key messages: that
by going from 2D to 3D devices, there can be an orders-of-magnitude
increase in the achievable complexity of the device stemming from
the fact that L/A can be a large number and that although 2D photonic
devices offer lower spatial parallelism than transistor-based electronic
chips, moving to 3D devices may enable an orders-of-magnitude benefit
inspatial parallelism for optics over electronics.

There is animportant additional perspective on spatial parallel-
ism: it is not only the density or number of components that can be
fabricated that is important but also how many of the components
one can in practice use in parallel. In other words, increased compo-
nent density does not necessarily translate to proportionately greater
computing performance. Modern CMOS electronic processors are
typically only able to switch asmall percentage (in one example, 3%°¢)
of their transistors in asingle clock cycle, largely owing to limitations
in cooling®. When taking into account how many components can
actually be operated in parallel with the constraints of power dissipa-
tion (discussed in the next section), 2D photonic integrated circuits
may be at less of a disadvantage in spatial parallelism compared with
electronicintegrated circuits than the fabricated component densities
alone would suggest.

As an example of spatial parallelism in optical computing,
free-space optical processors have been prototyped using commerecial

spatial light modulators, which have ~10°-10” controllable pixels —
making them useful tools in building highly parallel systems®.
Computation of -5 x 10° scalar multiplications in parallel per pass of
light through an optical setup with -5 x 10° pixels has been achieved®**5,
For applications in which the programmability of spatial light modula-
tors is not required (such as in neural-network inference), fabricated
metasurfaces offer a route to even larger parallelism: on the basis of
thelinear-with-areascaling of the space-bandwidth product of imag-
ing systems®, we expectit to be possible to create metasurface-based
matrix multiplications or convolutions with >10° preprogrammed
pixels (parameters) using ~10 x 10 cm? (ref. 70).

Nearly dissipationless dynamics

Photons can propagate through free-space optical setups with nearly
no energy loss and perform computation by their mere propagation.
(They can even propagate with nearly no energy loss in some on-chip
setups: for example, thin-film lithium niobate chips can have wave-
guide propagation losses of 0.06 dB cm™ (ref. 71)). How much com-
putation is performed? We consider the cases of linear-optical and
nonlinear-optical systems.

Linear optics. An example of computation by propagating lightis that
asingle lens effectively performs a 2D Fourier transform on light that
impinges onit’”— optical correlators®™ and convolutional layers in opti-
cal neural networks' (Fig. 1d) both take advantage of this phenomenon.
More generally, propagation of light through a linear-optical system
can be modelled by amatrix-vector multiplication, so matrix-vector
multiplication can be performed by merely shining light encoding a
vector (of dimension N) inits spatial pattern onto an optical system'.

As arather extreme example, shining light through white paint
can be used to perform the multiplication of a vector by arandom
matrix with dimension >10° x 10° (ref. 73). In that example, the matrix
is fixed and random, but various linear-optical systems in which the
matrix can be programmed have also been demonstrated"”, although
in these cases the matrix size has generally been limited by the num-
ber of programmable elements that can be engineered. An example
programmable element is a pixel of a spatial light modulator, which
can be used to represent a single programmable element of a matrix;
spatial light modulators with ~10” pixels are commercially available. In
principle, the dissipationless nature of optical propagation canlead to
matrix-vector multiplications being performed that beat the Landauer
limit™ for multiplications performed on digital-electronic processors
—intuitively, becausein a coherent setup, the optical interference that
occursisareversible process”.

For the sake of concreteness, we have discussed examples of vec-
tors encoded in space, but this is not the only possibility: the propa-
gation of light in just a single spatial mode can also result in nearly
dissipationless computation of inputs encoded in other ways, such as
infrequency or time”.

Nonlinear optics. Nearly dissipationless dynamics that can be harnessed
for computationcanalsobeseeninlight propagating through nonlinear-
optical systems. For example, propagation of light through an optical
mediumwithanon-zero second-order nonlinear-optical susceptibility,
x@, canin general result in sum-frequency-generation and difference-
frequency-generation processes, in which the optical amplitude of the
outputscalesasthe product ofthe amplitudes of light at two frequencies
attheinput, forinstance, £, (@, + @) = E;,(w,) E;,(w,) . We can interpret
such a nonlinear-optical process as performing a scalar multiplication
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of the two numbers £,,(w,) and £,,(w,)". Nonlinear-optical dyna-
mics enable the implementation of mathematical functions that are
nonlinear —whichis essential in deep neural networks’” and in comput-
ing more generally’. For example, ina x® process, if the frequencies of
the input light are equal (w, = ®,), then one may obtain output light at
twice the frequency withamplitude £,,,,(2w,) = (E;(w))? sothefunction
realized is f(x) =x% whichis nonlinear.

Furthermore, just as the propagation of multiple spatial beams
through alinear-optical system can be seen as performing a matrix—
vector product, propagation of multiple spatial beams through a
nonlinear-optical system can realize a higher-dimensional gener-
alization of matrix-vector multiplication, namely, tensor contrac-
tion involving tensors of order n +1, in which n is the order of the
nonlinearity-optical susceptibility, Y. This is an impressive feature
for computing'®": with the lowest-order nonlinearity, n = 2, the com-
putation performed — by the mere propagation of the light through
thesystem — is a tensor contraction that comprises ~N> multiplication
operations, in which Nis again the number of spatial modes. Higher
orders of optical nonlinearity can result in even larger amounts of
computation being performed by a single pass of light through the
system, as even higher-order tensors are involved.

Benefits. There are benefits to the fact that computations can be per-
formed nearly dissipationlessly in optics. The first is that one can
potentially harness dissipationless dynamics to perform computation
using less energy thanwould have been needed in a different platform
that did have substantial dissipation (such as electronics).

A second benefit is higher performance. Dissipation does not
only cause a computation to cost more energy, but can also limit the
clock speed and parallelism of a processor, ultimately limitingits total
computing throughput (operations per second) and latency. Modern
CMOS electronic processors are limited — both in clock speed and in
3D density of transistors — by the ability to extract dissipated heat from
them?. By markedly reducing dissipation per computing operation,
one potentially allows foramarkedincrease inboth the clock speed and
spatial parallelism (number of operations performed simultaneously
per unit volume).

Inthe context of 3D chips, photonics has another potential benefit
over electronics with regard to dissipation: although the loss of electri-
cal energy in a chip is generally by the generation of heat at the point
where the energy is lost — in resistive heating of a wire, for example
— the situation in photonics can be quite different because the loss of
optical energy is often not due to absorption and accompanying gen-
eration of heat, but rather by scattering. This is true for waveguides in
silicon-photonics integrated circuits, for example, and suggests that
if one constructs a 3D silicon-photonic chip, the losses of waveguides
within the chip will primarily not cause heating, but instead will result
in photons being scattered within the chip until they emerge at the
surfaces. Insummary, nearly dissipationless dynamics in optics makesit
possibleto create 3D photonic chips that do not suffer from the extreme
heat-extraction challenges of 3D electronic chips, and even the small
photonicdissipationthat does occur does not cause heating within the
bulk of the chipifitis due to scattering, sowe may not even need toworry
about the residual photon loss causing heat-management difficulties
provided that components that absorb photons are avoided.

There is, however, a snag to these benefits, namely, input/output
costs: how does the input data for the computation getloaded and the
result getread out? If the input comes from an electronic memory and
theresultneedstobestoredinanelectronic memory, then eventhough

the computation itself can happen nearly ‘for free’, one needs to con-
vert electronic data to the optical domain for the data input, and then
convertthe optical answer back to the electronic domain. Thismemory
access and transduction, which typically alsoinvolves digital-to-analog
and analog-to-digital conversion, will cost substantial energy (and be
limited in speed when compared with optical bandwidths of terahertz).

Fortunately, this energy cost only scales as the size of the input
vector, N, whereas the amount of computation being performed may
scale as N? (linear propagation) or N°* (or even higher powers; nonlinear
propagation), and so for sufficiently large N, the energy cost of the
input and output will be small compared with the cost that the com-
putation would have required in an electronic processor. Similarly,
the time required for input and output for N-dimensional vectors
can, for sufficiently large N, be very small compared with the time the
N-complexity or N>-complexity computation would have taken on an
electronic processor. The loading of coefficients, such as the matrix
elementsinthe case of linear propagation, ingeneral, also hasacostin
both energy and time, but this can be amortized over many runs, such
asin the case of batched inference with neural networks®.

Low-loss transmission

The energy cost to transmit information ‘long’ distances with light is
much lower than that with electrical signals’’, mostly because signal
attenuation (energy loss) per unit length is much higher in electrical wires
thanin optical fibres or waveguides (Fig. 2a). There are several subtleties
in evaluating the energy cost of optical and electrical communication,
discussed in detail in refs. 48,79,80, which necessitate the use of the
word ‘mostly” here. For one, optical communications between electronic
devices require transduction of signals from electrical to optical, and
backtoelectrical,and the transduction devices have energy costs”. For
another, electrical signal transmission along awire requires energy that
increases with length because the resistance of the wire increases with
length —but thisis not the end of the story: for thin wires, such as those
used in CMOS electronic processors, the wire delay grows quadratically
with length and to mitigate this, repeaters are used to regain a linear
scaling of delay with length, and the repeaters also have an energy cost
(associated with the switching of their driver transistors)*5°,

For on-chip photonic processors, commercial foundries such as
AIM Photonics can produce silicon-nitride waveguides with losses
~0.06 dB cm™ for wavelengths -1,600-1,640 nm and <0.25dB cm™
across the telecommunications C band (-1,530-1,565 nm)*®.,

Animportant caveat for both free-space and on-chip optical pro-
cessorsisthatalthough propagationlosses between components can
bevery low, typically there are losses from reflections or scattering as
light propagatesinto or out of acomponent (such as Fresnel reflections
owingtomismatchinrefractiveindex). Asaresult, optical processors
still need careful design to avoid excessive overall optical loss.

The low-loss transmission of optics is already being taken advan-
tage of in electronic computing: optical links in data centres®?, and
even directly between chips®, use light to communicate information
over length scales from centimetres to many metres. It is anticipated
that even some communications within asingle chip might eventually
use optics’*%.

A majorreasonthatlightis notalready used for communications
within single electronic-processor chips, especially over very short
distances, is that the optoelectronic components to transduce signals
between the optical and electrical domains cost both space and energy,
and it is only worth paying these costs when the distance the signal
needs to travelislong enough’®. An optical computer, however, could
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Fig.2|Signal transmission in optical systems. a, Low-loss transmission

in optical systems. For both on-chip and off-chip transmission, the signal
attenuation (in dB per metre) is orders of magnitude lower (better) with optical
instead of electrical signals. For example, electrical signals at 10 GHz have -10*x
higher attenuation than equivalent on-chip or off-chip transmission with optical
signals. Inspired by ref. 148, Fig. 4.3. Data sources: on-chip electrical interconnect:
ref.149; off-chip electrical coaxial cable: ref. 150; on-chip optical interconnect:
ref.151; off-chip optical fibre: ref. 152, Fig. 22.2 and ref. 153. This figure is
intended to give a heuristic comparison; it does not comprehensively cover

all transmission technologies, butis based on just a few illustrative examples
that convey the relevant orders of magnitude. For more examples and details,
see: ref. 154 (electrical interconnects and cables); ref. 149 (on-chip electrical
interconnects with different dimensions); ref. 155 (electrical interconnects on
printed circuit boards) and ref. 156 (integrated-photonics waveguides with
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lithium niobate). b, Optical beams and ‘wires’ can cross. Itis in free space that
optical paths can cross: inintegrated photonics, waveguides can pass through
one another with minimalimpact on the signal propagation. The waveguide
crossing in thisimage had a crosstalk of less than -50 dB. ¢,d, Optical beams can
be steered programmably. Optical beams inside a micro-electro-mechanical
systems optical switch canbe rerouted on timescales on the order of milliseconds
using arrays of micro-electro-mechanical systems-actuated micromirrors

(part c). Optical-tweezer beams can be reconfigured to trap atoms in arbitrary
geometries in 3D (partd); the results shown here are from an experiment in which
aliquid-crystal-based spatial light modulator was used to programme the beams;
such modulators canalso be updated on a timescale on the order of milliseconds.
Partb adapted with permission from ref.157 under a Creative Commons licence
CCBY 4.0.Part cadapted with permission fromref. 158, IEEE. Part d adapted with
permission from ref. 159, Springer Nature Ltd.

in principle take advantage of optics for low-energy cost, nearly dis-
sipationless information transmission at all length scales, and without
paying space or energy costs for transduction — because the signals
would already be optical. Note however that an optical processor will
inevitably need to use some energy for transduction, for example, to
load the initial input data for the computation and/or to read out the
final answer, which will typically need to be in the electrical domain.
But the transductions — and their costs — that would have occurred
within a computation can be avoided.

Optical beams and ‘wires’ can cross; electrical wires cannot
In many cases, there is negligible optical nonlinearity — not only in
free-space settings but also in materials when the optical power is low

and the propagation lengthis short; informally: we do not have lightsa-
bersinordinary optical situations®. In these cases, optical beams can
pass through one another without suffering from crosstalk. Likewise,
optical on-chip wires (waveguides; Fig. 2b) can cross with very low
crosstalk — not just in principle but also in practice in the presence of
fabricationimperfections. By contrast, electrical wires need their own
region of isolated physical space and, in addition to not being able to
pass through one another, also often suffer from crosstalk evenifthey
are merely close to one another®,

This difference provides the possibility for photonic processors
to be more compact than electronic processors when interconnect is
animportant contributor to processor size, although the use of optical
beams for communicating information is not without its own crosstalk
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challenges owing to diffraction, scattering and unwanted reflections®®.
(One might also wonder about the size of optical beams compared with
electrical wires, as optical beams or waveguides are limited to sizes
on the order of a wavelength, whereas electrical wires can be made
only nanometres wide. However, interconnects in electronic proces-
sors have trace widths and spacings on the order of 1 um®¥, which is a
design choice in part motivated by the fact that the resistance of awire
decreases as its cross-sectional areaincreases*®.)

One can interpret the ability for optical beams to cross as a key
enabler of many free-space, spatially multiplexed opticalimplementa-
tions of convolution and matrix-vector multiplication'. For example,
in implementations® of matrix-vector multipliers that use arrays of
lenses for fan-out (Fig. 3b), the rays between the input vector and the
fanned-out copies cross. The crossing supports the implementation,
in principle, of large convolutions and dense matrix-vector multipli-
cations in small volumes. Optical switches (Fig. 2c) provide another
example in which crossing of beams enables amore compact design.

Optical beams can be steered programmably at high speed;
electrical wires are either fixed or reconfigurable only slowly
Free-space optical beams can readily be redirected (for example,
using an acousto-optic deflector, with a delay on the order of micro-
seconds) (Fig. 2d), enabling the creation of reconfigurable optical
interconnects®° (Fig. 2¢). By contrast, electrical wires on chips are
fixed at the time of fabrication, and wires joining nodes inanintercon-
nect between processors, boards or racks can only be moved slowly
(typically on the order of seconds). Electronic processors typically
mitigate the disadvantage of having a fixed network by using multihop
communications —relying on there being a path between a sender and
areceiverinvolving some intermediate nodes — and switching, which
achieves fast rerouting of signals within a fixed network topology.
These strategies come with the cost of increased latency and potential
bandwidth bottlenecks.

Fan-in (summation) and fan-out (copying) work differently
inoptics
Copying datatobe processed inparallel (fan-out) and summing the out-
puts fromanumber of parallel-processing units (fan-in) are important
primitivesin parallel processing. Both can beimplementedin opticsina
different way to electronics and have different tradeoffs***'. Optics has
apotential advantage from supporting large (>1,000) fan-in and fan-out
without the RCand LCdelays of fan-in and fan-out with electrical wires,
for which fan-in and fan-out are typically kept lower than 10 in digital
processors, necessitating multiple buffering stages (and hence further
delay) whenever larger fan-in/fan-out is needed”***. Note that as ref. 89
points out, when evaluating an optical scheme, one needs to take care
to evaluate the RCand LC delays of photodetectors that are involved.

In free space, fan-in of signals encoded in spatial modes can be
performed by directing beams to acommon pointin space (viathe use
of alens, for example; Fig. 3a), at which there could be, for example, a
photodetector (if the next processing step required conversion from
optical to electrical signals), a holographic element (to combine the
beamstravellingin different directionsinto abeam that travelsin one
direction, albeit at the cost of loss of optical power)® or an intensifier
(which can amplify the summed beams and re-emit a single optical
signal)®.

Fan-out of a signal in a single spatial mode to multiple spatial
modes canalso be performed conceptually easily in free space, where
it happens essentially without any special engineering effort (Fig. 3b):

imagine an optical display (such as alight-emitting diode displayona
cell phone) that emits in multiple directions — multiple people look-
ing at the display from different vantage points can all see the same
image, and we can interpret what happened is that multiple copies
of the data on the display were made and transmitted to different
receivers. Another example of optical fan-out in everyday lifeisin a
kaleidoscope. Arrays of lenslets (microlenses) canbe used to collimate
theimage copies®®*. Free-space fan-out canalso be implemented and
understood in the Fourier domain®.

Bothfan-inand fan-out for spatial modes can also readily beimple-
mented in integrated-photonics platforms®. However, in an on-chip
setting, light propagation is typically practically restricted to beina
single plane, whereas in free spaceitis natural for signals to propagate
in all three dimensions, enabling a much higher degree of fan-in and
fan-out. For this reason, it is easier to imagine gaining an advantage
over on-chip electronic processors (which are also quasi-planar) from
the use of optical fan-in or fan-out in free-space settings.

So far, we have discussed fan-in and fan-out in the context of
spatial modes. For optical computers using frequency or temporal
modes, fan-in and fan-out may be realized using other means. For
example, fan-out of datainputas electronic signals can be performed
in the frequency domain by modulating an optical-frequency comb”,
and weighted fan-in can be performed using wavelength-division
multiplexing, including in on-chip platforms?,

To reason about why or when optical fan-in or fan-out may have
an advantage over electrical fan-in or fan-out, it is useful to consider
the bandwidth and low-loss transmission possible in optics and that
optical beams can cross. However, the fan-in/fan-out possibilities of
optics are distinct from the potential benefits of bandwidth, low-loss
transmission and beam-crossingin optics, and it is fruitful to think of
fan-in and fan-out in optics as special features that can be used in an
optical-computingarchitecture, even though they may also use other
features of optics to operate well.

Indeed, teasing out the source of a potential advantage canbe quite
subtle. For example, fan-in arguably has an important role in enabling
vector-vectoror matrix-vector multiplicationenginesthat useextremely
small amounts of optical energy per multiplication®® — in which the
amountof optical energy needed to achieve a particular signal-to-noise
ratio for a vector-vector dot product is fixed regardless of the vector
size —but similar efficiency canbe achieved with optoelectronic fan-in,
in which summation is performed in the electrical domain™°%, Purely
analog electronic approaches to compute vector-vector dot prod-
ucts can also show favourable energy consumption compared with
digital-electronic approaches®, so for any given computing scheme
using optical fan-in, one can ask: which part of the potential benefit
comes from performing the summationinananalog rather thandigital
fashion, and which part comes fromusing opticsinstead of electronics?

One-way propagation
One can readily construct optical systems in which the propagation
is naturally one-way (if one, for example, forms an optical cavity in
part of the system, then the situation becomes more complicated).
By contrast, electrical signals can propagate backwards (Fig. 3c). In
electronic processors, backwards propagation (from inputs to other
inputs, or fromthe output to the inputs) can cause unwanted dynamics
aswell asunnecessary power consumption. This differenceleadstoan
advantage of optics over electronics for some analog architectures.
Although backwards propagation is a general feature of electri-
cal circuits — without isolating elements such as buffers or diodes
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Fig. 3| Additional ways that optical systems are different from electrical
systems. a,b, Optical fan-in can be performed in free space using alens (part a);
here, alens causes many beams to converge on a single-pixel detector. Optical
fan-out can be performed in free space using an array of lenses, in which each lens
‘captures’a copy of the incomingimage (partb). ¢, An electrical fan-in (weighted
sum of voltage inputs v;by conductance weights g;) exhibiting undesired
backward flow of current. The current contributions from the input v, to the
output (desired) and, if v, < v,,, from the input v, to the input v, (undesired) are
shownin pink. Only the current contributions from v, to the output and to v, are
illustrated here, butin general current will flow backwards from the common
node v, to v;if v;< v,,. By contrast, one-way, forward-only propagation of light
inafan-inisshownin parta. d,e, Optimization principles. The principle of least
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timein optics (partd). Light travels between starting point A and ending point B
by taking the path of least time. A computational interpretation is that the

light solves an optimization problem (of finding the path of least time), given
the constraints of where the path starts and ends. A network of oscillators
(parte) —whichinoptics could, for example, be optical parametric oscillators or
laser oscillators — willin principle oscillate in the collective mode/configuration
corresponding to the lowest loss if the gain is set to be equal to the minimum loss.
Part a adapted with permission from ref. 38 under a Creative Commons licence
CCBY 4.0. Partb courtesy of Mandar Sohoni and Tianyu Wang. Part cadapted
with permission fromref. 100, IEEE. Part d adapted with permission from
ref.105, Princeton Univ. Press. Part e adapted with permission from ref. 107,
Springer Nature Ltd.

in a circuit, any time there is a voltage difference between two con-
nected circuit nodes there willbe a current flow between them, eveniif
those two nodes are inputs — concerns about backwards propagation
have arisen mostly in the context of analog crossbar-array processors,
related to their fan-in stage'* and also the sneak-path issue'®’. Analog
optical matrix-vector-product engines' generally feature one-way
propagation, avoiding some of the issues that arise in analog electronic
matrix-vector-product engines (thatis, crossbar arrays), and there is
abroader notion of optics providing natural isolation'® that can be
usefulin computing.

A caveat is that although perfectly one-way propagation is pos-
sible if light does not pass through any interfaces, any useful opti-
cal processor involves at least some interfaces (light going from air
into a glass lens, for example), and as a consequence have some una-
voidable reflections. The reflections can be made small by appropri-
ate choices of geometry and materials but will never be completely
eliminated. In many cases, there may be an engineering tradeoff
between, for example, the compactness of the optical processor and

the magnitude of the reflections (in other words, the one-way-ness)
inthe system.

Different realizations of adiabatic, least-action and
least-power-dissipation principles

There are general physics principles — such as adiabaticity, the prin-
ciple of least action and the principle of least energy dissipation —
that can lead to a physical system heuristically solving optimization
problems'®; variations of these principles can be leveraged to con-
struct optimization machines (such as Ising machines*). Given how
central optimization is in machine learning, and especially in neural
networks, computers designed to perform optimization are often also
wellsuited to perform machine learning — so an advantage on optimi-
zation can quite plausibly be translated into an advantage in machine
learning too. Similarly, one can recast the problem of solving partial
differential equations as a variational optimization problem'**, provid-
ing another potential application of physics optimization principles
to abroader class of computations.

Nature Reviews Physics | Volume 5 | December 2023 | 717-734

725


http://www.nature.com/natrevphys
https://creativecommons.org/licenses/by/4.0/

Perspective

Forexample, Fermat’s principle of least time for optics states that
light follows the path that minimizes its time to travel between two
points (Fig. 3d). Feynman gave an explanation of this principle with a
path-integral formulation in which the light can take all possible paths
but only the paths that constructively interfere contribute substan-
tially, and paths with substantially different propagation times than
Fermat’s solution destructively interfere'®, This perspective is pos-
sibly helpful for thinking about how to design optimization machines
that use Fermat’s principle. By contrast, Fermat’s principle does not
have a direct analogin electrical circuits — so acomputer performing
optimization using Fermat’s principle is more natural to try to create
with optics.

Onsager’s principle of least energy dissipation can apply in both
optics andinelectronics, but the behaviour and resulting computing
performance may be different because of differencesinthe underlying
physics. For example, lasers and parametric oscillators in optics have
athreshold when gainisequaltoloss, and the fact that they first oscil-
late in the mode with lowest loss can be used to design optical Ising
machines'*'”” (Fig. 3e). Electrical circuits, including oscillators, also
have dynamics that heuristically minimize the energy dissipated'®’, but
they are notidentical tolasers or optical parametric oscillators and in
general have different behaviours.

Itis an open question whether, or in which situations, optics sys-
tems using Onsager’s principle have an advantage over electronics
realizations, but the possibility is one that a designer of an optical
computer may wish to explore. The question has multiple facets: if the
equations governing the optics and electronics dynamics were identi-
cal, one mightstill achieve an advantage of optics over electronics for
some ofthe other reasons described in this article, such as bandwidth.
However, one can also ask whether the differences between the under-
lying equationslead to different behaviours beyond a faster timescale
resulting from higher bandwidth, or alarger systemsize resulting from
larger spatial parallelism —in other words, differences beyond the other
optics versus electronics distinctions drawn so far.
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Fig. 4| The quantum nature of light. a, The energy of optical photons is

much higher than that of the thermal energy scale k; T at room temperature

(Tr0om = 300 K), whereas microwave photons have much lower energy than kT, 4om-
Consequently, thermal noise ‘drowns out’ quantum effects of microwave signals
atroom temperature, but quantum effects in optical signals can be observed.

b, Anarray of 250,000 single-photon detectors, which is sensitive to light at visible
wavelengths and operates at room temperature. ¢, Wave physics. Interference
canbe observed inaMach-Zehnder interferometer with only a single photon

The quantum nature of light is accessible at room temperature
It is possible to store and process information encoded with single
optical-frequency photons, anditis possible to detect individual opti-
cal photons with low noise, all at room temperature. Thisisin contrast
to the situation at microwave frequencies, in which thermal noise at
room temperature rapidly swamps any information stored in sin-
gle photons, and low-noise single-photon detection is not available
(Fig. 4a). The quantum nature of microwave photons is accessible at
temperatures ~10 mK, but such cold temperatures are generally only
achievable using a dilution refrigerator, which is bulky and expensive
(inmoney and energy).

For classical information processing, the fact that small num-
bers of photons can be manipulated and measured naturally leads
to a potentially lower energy cost than if more photons were needed
for reliable operation®®”. It is also possible to produce and measure
squeezed states of light at room temperature'’®; the reduced noise
insqueezed states could prove usefulin classical information process-
ing, for example, for achieving higher numerical precision with a fixed
energy budget (average number of photons).

Thelack of astrongsingle-photon nonlinearity in optics, whichis
anadvantage for communicating informationwithout crosstalk but can
be a disadvantage for processing information with small numbers of
photons, canbe circumvented using single-photon detection (Fig. 4b).
The nonlinearity of the detection process itself is a feature one can
use"”, but it is also possible to use photodetection to probabilisti-
cally induce nonlinear operations across multiple optical modes'*’.
Reference'”’ develops and motivates probabilistic nonlinear operations
for usein quantum computing, but these operations could potentially
also be used for classical computing .

Inthis Perspective article, we do not consider quantum informa-
tion processing™’; here, when we talk of operating in the quantum
regime, we mean in the sense that light comprises photons and we
are operating at such low powers that the quantum noise and dis-
crete nature of the light are relevant to modelling the operation of the
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input ata time. This schematic is from an undergraduate-laboratory experiment
using just a few commercial optical components, highlighting the relative

ease of observing wave phenonmena at the single-photon level with optics.

(The counts at photodetector A oscillate as a function of the position of mirror
M2, which controls a phase difference between the upper and lower arms of
theinterferometer.) Part b adapted with permission fromref. 160, IEEE. Part ¢
adapted with permission fromref. 112, AIP.
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computer. The topic of using quantum phenomena such as entangle-
ment to build quantum computers is exciting but beyond the scope
of this paper; ref. 111 provides a helpful description delineating the
first and second quantum revolutions, and it is only the former that
we consider here.

Wave physics

Itis easy to observe the wave nature of individual photons — observ-
inginterference of single photonsinaMach-Zehnder interferometer
is an undergraduate-laboratory experiment™* (Fig. 4c), and photon
coherence is well preserved in on-chip photonic processors'™ — but
itis difficult to observe the wave nature of individual electrons. Even
in advanced on-chip electron-transport experiments, the electron
coherence length is less than ~250 um, with values between 1 pm and
20 pm'™* more typical, and only at cryogenic temperatures.

Thewave nature of electrons being difficult to observe and exploit
is due to cryogenic temperatures being required — on-chip electron
coherence lengths are also much more dependent on the properties
of the material host than on-chip photon coherence lengths. For this
reason, we are treating the accessibility of wave physics for photons
as a separate advantage to the accessibility of their quantum nature,
eventhough the wave-particle duality for both photons and electrons
is part of quantum physics.

A counterpoint is that even though the wave nature of individ-
ual electrons is impractical to observe, wave phenomena of micro-
wave signals in electronics can readily be observed and exploited for
computation'. However, these are not wave phenomena of single elec-
trons, but rather of signals that comprise many microwave photons.
A key engineering consequence of this distinction is that electronic
microwave signals have long wavelengths (for example, gigahertz
signals have centimetre-scale wavelengths), which markedly limits
the possible spatial parallelism relative to the parallelism possible with
optical-frequency photonic signals — leading to a potential advantage
of optics over electronics (and in particular, microwaves). Note that a
completely different kind of microwave signal can also be created and
used for computation: an acoustic wave at microwave frequencies™®.
These waves can have short wavelengths despite their low frequencies,
but at the cost of propagating at vastly slower speeds than photonic
signals — the speed of sound rather than the speed of light — which is
adisadvantage for computing with them.

But not that the speed of light is fast
The speed of light is often brought up as a contributing factor for how
optical computing will obtain alarge speed advantage over electronic
computers, but this is misleading because both optical and electrical
signals cantravel atroughly the samespeed:invacuum, light (and micro-
waves) travels at speed c; in silicon-photonic waveguides, light travels
atspeed-0.4c";inwires on printed circuit boards, signals can travel at
speed ~0.43¢"%; and in CMOS electronic circuits, signals can travel
atspeed -0.2¢”’ or =0.5c in CMOS wires with careful design®°.
Thereisamere 5x difference between the speed of light in vacuum
andthe speed of signal propagationin wiresin CMOS electronic proces-
sors, so the speed of light is not a key distinction of optics. The notion
of ‘computing at the speed of light is more useful to think of as a goal
for an optical computer, rather than a cause of advantage. The speed
of light provides a physical limit on how fasta computer can operate™’
and one framing of the goal of the optical-computer engineer is to
design a computer that leverages the benefits of optics (as discussed
earlier) toreach this limit for a particular computing task, inassmalla

volume as possible, so that the total time foracomputationis as small
as possible.

This framing implicitly makes the goal about the latency of the
computer (how long does it take for the answer to be output from
the time the input is provided?) — which can be important, especially
inreal-time-computingscenarios —but often weareinsteadinterestedin
improvingits throughput or energy efficiency. Optimizing for through-
put may involve trying to maximize the number of computing opera-
tions performed in parallel, and optimizing for energy efficiency may
involve minimizing the dissipationin the system, neither of which have
much to do with ensuring that the latency of the computer saturates
thebound et by the speed of light. ‘Computing at the speed of light’is
not only agoal rather than a cause but it is just one of several possible
goals for an optical computer.

Someoftheitemslisted earlier are interrelated, and some of them
even have acommon physicalrootbut are listed separately because the
root leads to multiple features of light or has multiple consequences
for computing. For example, the large bandwidth of optics relies on
the large carrier frequency w of optical signals. The wavelength of
light Ais directly connected with its frequency w: A is proportional
to 1/w, so the large values of w for light make it possible to achieve
large spatial parallelism and to observe and exploit wave physics in
small volumes. The fact that optical photons have a large energy Aiw
relative to thermal energy k; T at room temperature 7= 300 K (k; is
the Boltzmann’s constant) is directly responsible for the quantum
nature of light being accessible at room temperature. Low-dissipation
dynamics and transmission of information with optics are also con-
nected with the short wavelength A for optical photons, which allows
tight waveguided confinement with nearly lossless dielectrics rather
thanwithmetals. So all six of these features are connected by the fact
that w is large, as multiple aspects of optical physics are influenced
by the value taken by w.

Notall of these features are equally important for obtaining advan-
tage in optical computing but they are also not presented in order of
importance, partially because determining such an order would require
knowing what ingredients future optical computers will ultimately
most heavily rely on. Nevertheless, in the next section, we discuss how
these features may be used and opine on which ones are most likely to
be critical.

How might optical computers beat electronic
computers?

In this section, we describe some strategies for the design of optical
computers that may enable them to have an advantage over electronic
computers.

There are three main metrics of computing performance for which
we mightaimto achieve an advantage: latency, throughput and energy
efficiency. Which of the three (or which combination) should be tar-
geted in designing an optical computer depends on the goals of the
user, but there are arguments for how optics could enable advantage
inall three of these metrics.

Note that there are several other metrics of computers that are
important, such as size, robustness, cost, security (susceptibility to
hacking) and accuracy. We do not have any reason to believe that an
optical computer could deliver superior accuracy, for example, than
all possible electronic computers, so accuracy is not ametric we expect
an optical advantage for, but instead we typically aim to achieve an
advantage inlatency, throughput and/or energy efficiency for a speci-
fied accuracy. Similarly, the other metrics provide other constraints
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that an optical computer must satisfy to be competitive for some
particular use case.

We now briefly describe these metrics using a particular com-
puting example: machine-learning inference, more specifically, face
recognitioninanimage. Latency (also called delay) refers to the time it
takes for the computer to make a prediction of the name of the person
in animage from the moment the computer is given the input image.
Throughput refers to how many inferences can be performed per
second; for face recognitioninimages, athroughput metricisimages
processed per second. Note thatingeneral (1/Latency) # Throughput;
by pipelining®?, throughput can be much higher than the inverse of
latency. As anintuitive example of this, consider a factory producing
carsusingan assembly line (pipeline): fromstart to finish, it might take
the factory 1day to manufacture a car (latency), but the total number
of cars manufactured per day could be hundreds (throughput). Energy
efficiency refers tohow much energy is used by the computer to com-
plete a single inference computation with a specified accuracy; for
face recognition in images, an energy-efficiency metric is joules per
image processed.

There may be tradeoffs when optimizing for these three metrics,
so it isimportant to decide before starting the design of a computer
whatone’sgoals are. For example, although minimizing latency is some-
times the main goal (for instance, in high-frequency trading'*°), often
improving the throughputofa processor orits energy efficiency is the
moreimportant goal —and in many cases the goal willinvolve all three
metrics, such as maximizing throughput and energy efficiency, subject
to the constraint that the latency meets a particular target (for exam-
ple, in neural-network inference'”, where inmany applications — such
aslanguage translation — we may require the latency to be <1 s).

Despitethe factthat there are typically tradeoffs in the optimiza-
tion of computer performance metrics (between latency and through-
put, for example), the following strategies should help in designing a
computer that optimizes any combination of latency, throughputand
energy efficiency.

Avoid or mitigate input and output bottlenecks and overheads
Optical computers generally do not operate entirely with optics: typi-
callysome inputs to the computer originate inelectronics, and/or the
output fromthe computer is ultimately electronic. For example, ifan
optical processoris used for determining whether there is a pedestrian
walkingin front of aself-driving car, the output needs to be electronic
sothatit canbeinputto the control systemsin the car, which can use
the information to actuate the brakes. If the processor uses a neural
network, the trained parameters for the neural network may well be
stored in electronic memory and need to be input to the processor
in some way. Unfortunately, the interfaces between optics and elec-
tronics can cause major bottlenecks in speed and be a major source
of energy usage by a processor. For an optical processor to offer an
advantage over electronic processors — in any of latency, through-
put or energy efficiency — the processor architecture needs to be
designed to minimize the negative impact of transduction between
optical and electrical signals and the conversion between analog and
digital signals.

To illustrate some of the challenges that can arise from optics—
electronics interfaces, imagine an optical processor that intrinsically
hasaprocessing bandwidth of 100 THz. If data can only be input to the
processor at arate of 10 GHz, limited by, for example, the bandwidth
of electro-optic modulators and digital-to-analog converters, then
without careful design, the intrinsic bandwidth benefit of the optical

system — which could have led to improved latency and/or improved
throughput — may go to waste. Similarly, although an optical processor
canbedesigned to perform computation onoptical signals nearly dis-
sipationlessly, thereis anenergy cost to optical-electrical transduction
and analog-digital conversion for getting electronic datainto and out
of'the optical processor, and these costs may be so large that they not
only dominate the total energy cost of the optical processor but also
make the energy cost so high that the processor s less energy-efficient
than anall-electronic processor.

A crucial mitigation strategy is that inputted data should be
re-used as much as possible — once both the time and energy penal-
ties for sending electronic data into an optical processor have been
paid, one would like to extract as much benefit as possible from those
data. This applies both to data converted into optical signals and to
data that may remain as electrical signals but that nevertheless has
time and energy costs to be input to the processor. Re-use of optical
signals can be enabled by various forms of optical memory'??, as well
as by copying via fan-out. As a consequence, an optical-computer
designeris usually motivated to make the fan-out factor be aslarge as
possible. Inan optical matrix-vector multiplier, fanning out 10> or more
copiesoftheinputvectorisdesirable andlikely necessary toachievea
substantial advantage over electronics.

As an example of the re-use of electrical control signals, opti-
cal processors performing neural-network inference (as opposed to
training) canload the neural-network weights into phase shifters that
consume either little or no static power** and then use those weights
many times by performing many inference computations with them
(for example, by batching individualinferences”). This allows both the
time and energy costs of loading the weights tobe amortized. Another
example of data re-use in photonic neural-network processors is in
convolutional neural networks: the same convolutional kernel can
be applied to many different subsets of the input data, so the kernel
weights can — at least conceptually — be loaded once and used many
times"*?,

Ageneral design principleis that —all else held equal —itis better
to perform more computations per bit of input data. This principle
is essentially the concept of maximizing arithmetic intensity in con-
ventional computer architecture™. Data re-use is one way to achieve
this, but an important complementary conceptual approach is to
choose computational tasks such that the optical processor for that
task performs computations whose complexity scales rapidly with
the input data size. For example, a computation on input data of size
N that requires only O(N) operations is less attractive than one that
needs O(N?) operations; a computation requiring O(N°) operations is
even better. The cost in time and energy of inputting data of size Nis
generally O(N), soif the computation performed by the optical system
has complexity O(N?) (and we assume that, through a combination of
the1lfeatures discussed earlier, the cost of this computationin optics
is far lower than it is in electronics), then there exists some threshold
size such that for any Nlarger than the threshold, the costs of loading
the data can be compensated for by the benefits of doing the O(N?)
computations optically —leading the optical computer to outperform
electroniccomputers even whenthe data-transfer costs are considered.

Akey practical factis that for current speed and energy numbers
for CMOS electronics, it seems likely that optical processors will need
to support very large values of N (say, N>10*) to reach the crossover
point where they start delivering a throughput or energy-efficiency
advantage for computations on the basis of matrix-vector multiplica-
tion (which is an O(N?) computation, for square matrices)?. This fact
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motivates both scaling optical matrix-vector-multiplication proces-
sorstolarge sizes and designing optical processors with computations
that have complexity greater than O(N?). From this perspective, combi-
natorial optimizationsuch as Ising solving®is an attractive problem for
optical computing because the computing effortis generally expected
toscale exponentially, that is, as O(2"), with respect to the number N of
variables being optimized, and also with the amount of data required
to specify the optimization problem — for example, an N-spin Ising
problemis specified by O(V*) numbers.

When an optical processor loads data from electronic memory,
there is not only a cost for the memory access — which an electronic
processor would also have had to pay —but also thereis a cost for trans-
ducing the datafroman electrical to an optical signal, and potentially
also a digital-to-analog conversion involved, which also has a cost.
Because the cost of loading datais generally larger for optical proces-
sors than for electronic processors, there is a strong motivation to
choose algorithms for optical processors that have higher intrinsic
datare-use or higher algorithmic complexity. This kind of hardware-
software co-design canlead to considerable improvements compared
with fixing the algorithm on the basis of what works well on current
electronic processors and trying to forcibly design an optical processor
toworkin the same way.

Although minimizing and compensating for the costs of loading
input dataare crucial, itisalsoimportant to avoid having the output of
databetoo costly intime or energy. Itis similarly beneficial to minimize
how much data needs to be output, by doing as much of the compu-
tation and data reduction within the optical processor as possible.
This design principle motivates choosing algorithms that require a
large amount of computation relative to the size of the output. As an
example, this is typically true in machine-learning inference — where
for the overall computation the answer may be just a few tens of bits,
outputting the predicted class of the input data.

Do not try to directly take on digital-electronic processors at
their own game

Arguably, the biggest challenge in building optical processors that
surpass electronic processors in throughput or energy efficiency is
overcoming the limiting performance of electronics-to-optics and
optics-to-electronics conversion technology. If one starts with datain
electronics — as is most typically the case — and wants the computed
answerstoendupinelectronics —asis also most often the case — then
one has little choice but to apply the strategies above and hope to be
able to amortize the input/output costs. However, given how large
state-of-the-art CMOS electronic processors are and that they have a
home-ground advantage in working on data that are already in elec-
tronics, it seems likely that modern optical processors would not first
gainanadvantage as drop-inreplacement acceleratorsin conventional
electronic-processing workflows. Instead, one can target applications
in which the inputs and/or outputs are naturally optical — and in this
way eliminate the conversion costs.

Machine-learning applicationin which the inputis conventionally
animage from a camera is an example**'?*: one can replace the cam-
era and subsequent electronic neural network with an optical neural
network that directly processes the scene infront of it, in applications
such as self-driving cars'*, microscopy® or spectroscopy. Itis not nec-
essarytoreplaceall the electronicimage-processing computation with
opticsif the output is ultimately going to be electronic anyway — one
canadopt thestrategy of using optics to pre-process the optical image
data’'%, intelligently encoding it so that the output conversion from

optics to electronics has much lower bandwidth than naively digitiz-
ing the images to begin with, which could lead to benefits in latency,
throughput and energy efficiency®.

Although image processing enables the elimination of the input
conversionstage because the input canbe directly optical, applications
in which both the input and the output are optical may be even more
promising forimmediate attack. Optical communications have inputs
and outputs that are both optical, but current approaches involve a
number of stages at which optical signals are converted to electrical
signals for electronic processing and then converted back to the opti-
cal domain. This makes optical communications signal processing a
natural target for all-optical signal processing, which could reduce
latency, increase throughput and improve energy efficiency?®2¢7'%,

Many neural-network models have become large enough that
they cannolonger practically be run on asingle electronic processor,
which has motivated the design of optical interconnects specifically for
neural-network processing'”. This trend provides another motivation
for neural-network processing as an application for optical processors:
if the electronic-processor competition needs to pay the relatively
high energy costs of conversion between optics and electronics too,
thenthese conversion costs are at least not an exclusive disadvantage
of using optical processors. One can think of a single processor in an
optically interconnected data centre for performing neural-network
processing as asystemwhose inputs and outputs are both optical —so
fromthis perspective, it is a promising candidate to try replace with an
optical processor.

Combine multiple optical features to try gain an advantage
This point might sound trite, but it isimportant —any optical processor
that has an advantage over the best equivalent electronic processors
will most likely need to take advantage of not just one of the features
of optics but also will need to carefully combine several of them. For
example, just taking advantage of the large bandwidth of opticsina
single spatial mode — even if we ignore for now input/output bottle-
necks — is probably not sufficient to enable a throughput benefit as
electronic processors compensate for lower bandwidth with enormous
spatial parallelism (having on the order of 10" transistors in modern
chips). Similarly, relying only on spatial parallelism will likely also be
insufficient: although the spatial parallelism of optics is considerable,
especiallyin3D systems, the spatial parallelism of transistorsis typically
even more impressive. (Optical multiplication of vectors by random
matrices is an exception in which the spatial parallelism is so large
that even very low bandwidth does not prevent the system from hav-
ing higher throughput than electronic processors”. Even in this case
though, more than one property of opticsis being used: not only spatial
parallelism but also nearly dissipationless dynamics).

However, if one can combine the bandwidth and spatial-parallelism
features of opticsinasingle system, then there is potential to surpass
electronics. For example, imagine being able to process data in 10’
spatial modes in parallel at a clock rate of 10 THz, or processing data
in parallel in 107 spatial modes, each with 107 frequency modes — in
other words, 10™ parallel spatio-frequency modes. The numbers 10’
and 107 are chosensomewhatarbitrarily but as believably practical, as,
forexample, we already have technology — spatial light modulators — for
manipulating 10’ spatial modes. We could have even higher numbers of
spatial and frequency modes though — this is an example, not abound.
Although it is far from a solved problem how to fully take advantage
of the combination of bandwidth and spatial parallelism afforded by
optics, when combined with the fact that operations canbe performed
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nearly dissipationlessly in optics, there is great potential for optics to
outperform electronics.

Accurately predicting the future of technology is difficult, but it
seems reasonable to hypothesize that of the 11 features explored in
this Perspective article, bandwidth, spatial parallelism and nearly dis-
sipationless dynamics are most likely to have a key role in any future
optical processor that does deliver an overall advantage in latency,
throughput or energy efficiency. However, many of the other features
may very well end up playing important roles too, so should not be
ignored — but they will probably need to be combined with one of the
‘big three’ for a processor using them to achieve an overall advantage
over electronics.

Many of the demonstrations of optical processors to date have
shown a proof of principle of the use of some features of optics for
computinginaway that couldlead to anadvantage, but with asystem
that does not suitably leverage some of the other available features,
ultimately leading to a prototype that is inferior to current electronic
processors. An example of this from my own group is ref. 38, which
reports using spatial parallelismto realize >500,000 scalar multiplica-
tions per pass of light through a free-space optical processor, but the
prototypeis extremely limited in bandwidth owing to the speed limits
of the input and output stages, leading to performance that is ulti-
mately many orders of magnitude worse than an electronic processor.
Inthat project, we were not expecting to beat an electronic processor
but rather were aiming to demonstrate how few photons are needed
for matrix-vector multiplicationin optical neural networks; neverthe-
less, to advance this proof-of-principle system to be competitive with
electronics would require markedly increasing the system bandwidth.
Besides spatial parallelism, the optical processor presented in ref. 38
also used some other features of optics, such as nearly dissipation-
less dynamics — without which the ultra-low optical energy usage
demonstrated would not have been possible — and optical fan-in.

Outlook

My opinionis that the most likely route to building an optical processor
that delivers alarge advantage over electronic processorsin through-
put or energy efficiency (or both) in the near termis by constructing
afree-space optical matrix-vector multiplier that takes advantage of
large spatial parallelism and nearly dissipationless dynamics’. With a
vector dimension of N=10*and amatrix size of N x N, it seems promis-
ing that one canachieve anadvantage provided that the system can be
operated atarate of one matrix-vector multiplication per nanosecond
and the surrounding electronics for input and output operate with
state-of-the-art energy efficiency”-**.

Such asystemwill require careful optical and electronic engineer-
ing torealize — it is amajor engineering undertaking whose difficulty
should not be underplayed — but is all based on existing technology
components that can in principle be appropriately scaled. I find this
candidate architecture the most promising in the near term largely
because it has been well studied and many of the necessary building
blocks are fairly advanced. An optical matrix-vector multiplier whose
inputs are optical, such as when it is used as a preprocessor for visual
scenes®, would have alower bar to deliver an advantage over electronic
solutions, so I expect that if an optical matrix-vector multiplier does
outperform an electronic processor it will probably first be for an
applicationinvolving optical inputs. However, I certainly do not want
to give the impression that I think a free-space spatially multiplexed
architecture is the only one worth pursuing. There are many other
architectures'” — including those based on photonicintegrated circuits

rather than free-space systems and those involving frequency multi-
plexing rather than, or in addition to, spatial multiplexing — that are
appealing and very much worth pursuing.

When evaluating an optical-computing scheme, it can be help-
ful to determine what the cost of simulating the scheme with a
digital-electronic processor would be. For example, wave physics
can be simulated by digital-electronic processors, so when seek-
ing an advantage for optics from wave phenomena, one needs to
consider the cost of equivalent digital-electronic approaches, and
depending on the wave phenomena being exploited, the digital
approaches may be competitive or outright superior. As another
example, least-power-dissipation principles can be used torealize Ising
optimizers from networks of coupled optical oscillators*, but simu-
lating the equations of motion of the network on a digital-electronic
computer can yield the same behaviour as a physical, optical
implementation, so the intrinsic least-power-dissipation phenomenon
does not automatically give rise to a computing benefit. Instead, one
alsoneedsto leverage other benefits of optics, such as parallelismand
low dissipation.

We conclude by summarizing some of the major outstanding
challenges that, if addressed, would move us substantially closer to
realizing practically useful optical computers:

« Optical-processor architecture design. There is a major chal-
lenge to design optical-processor architectures that most effec-
tively use the features of optics to gain an advantage. It is not
obvious that the existing optical-processor architectures (using
free space orintegrated photonics) —some of which are decades
old"” — are optimal, and there is an opportunity to invent refined
or completely new designs to meet this challenge.

- Applications. We need to find good applications to target with
optical processors. As one of the major roadblocks to achiev-
ing advantage with optical computing are issues associated with
input/output, we want to find valuable applications in which we
can avoid or mitigate input/output bottlenecks and costs. For
example, it has proven very difficult to build an optical matrix-
vector multiplier atascale (V) at whichtheinput/output costs can
be sufficiently amortized, even though an optical matrix-vector
multiplier can perform O(N?) operations with input/output costs
ofjust O(N). Given that even matrix-vector multiplication, withits
O(N?) complexity, does not have a high enough ratio of computa-
tion to input data, it would be helpful to find useful subroutines,
algorithms or applications that have higher complexity than O(V?)
for input and output data sizes - N. An additional direction is to
find applications that could benefit from other aspects of opti-
cal computing besides potential performance advantages. For
example, direct optical processing of visual scenes could give a
privacy advantage: an electronic processor of images captured by
acamerathatstores theimagesin memory could be hacked, butan
optical processor that directly processes what it ‘sees’ and never
converts the full incoming images to electronic format could be
far harder to maliciously copy images from.

» Nonlinearity. Nonlinearity is crucial in many computations, and
alow-energy, fast, small-footprint, reliably manufacturable non-
linearity would be a useful building block. The nonlinearity need
not necessarily be all-optical—optoelectronic nonlinearity can
also be useful™?, although generally one can hope to benefit from
higher bandwidths and possibly lower energy consumption in
all-optical nonlinearities™. A fast, few-photon nonlinearity capable
of attojoule switching has been demonstrated™'; one important
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directionisinscalably manufacturing the nonlinearities that have
already been established.

Cascadability. In many computations — for example, in deep
neural networks — the input datais fed not through one function
but a sequence of functions. An optical implementation of the
computation then often involves passing an optical signal either
through the same optical setup multiple times or through multiple
different optical setups (or both). Doing so requires being able
to cascade optical processes in time or space. We mention three
challenges that can arise in cascading optical processing stages:
the first of whichis nearly universal in optical processors and the
latter two of which are specific to optical-computing schemes
using particular implementations of optical nonlinearity. These
challenges are: attenuation of the optical signal owing to optical
loss, effective attentuation of the optical signal owing to weakness
inoptical nonlinearity and nonlinear-optical processes generating
outputlight thatis at wavelengths incompatible with beinginput
to the next optical stage (for example, directly cascading many
second-harmonic-generation processes is infeasible, because
the frequency of the optical signal is doubled at each stage, so
after just a few stages one reaches wavelengths that are beyond
the optical spectrum and are impractical to use). The attenuation
owing to weak nonlinearity is an attenuation that is fundamental
andunrelated to opticalloss, thatis, it would occur evenif the opti-
cal system were lossless. The attenuation arises because the part
of a signal coming out of a nonlinear stage that was not affected
by the nonlinearity is discarded — either explicitly, orimplicitly by
not taking meaningful part in later stages of the computation —
but because optical nonlinearity is generally weak’, less than
100% of the light input to anonlinear stage will generally be acted
on nonlinearly. Designing suitably cascadable systems can be
approached in multiple ways: for example, at the level of proces-
sor architecture, one may opt to insert gain into the system to
compensate for the signal attenuation. Doing so leads to further
architectural and system-design decisions about the type of gain
(purely optical or optoelectronic, in which case the gainis essen-
tially provided electronically by transistors, acommon architec-
tural choice in optical-neural-network prototypes’ that often also
serves the dual purpose of providing nonlinearity), anditsrequired
speed, preservation of information encoded in the optical spec-
trumand soon, as well as new engineering challengesinrealizing
suitable gain components. One may also approach cascadability
challenges at the component or physical-implementation level,
seeking to realize lower-loss optical systems, or materials with
higher nonlinear coefficients.

3D design and manufacturing. Spatial parallelism can be mas-
sively enhanced by using a third dimension, and if the dissipation
is kept low, this provides a path to advantage over electronics.
Separately, enabling long-range coupling between modes by using
athird dimension (and advantages relating to how transmission
worksinoptics) canalsobring benefits”>'*. Thekey question hereis
howtoengineer and fabricate programmable, large-scale, possibly
dense, 3D processors®>3#134135,

Energy costs for electronic and optoelectronic components.
The energy cost of optical processors is typically dominated by
the energy costs of the electronic parts of the computer (for exam-
ple, inananalysis of optical neural networks running large trans-
former models, the optical energy used accounts for <1% of the
total energy cost”; see alsorefs. 75,136). Many optical-computing

schemes could benefit from —and to deliver advantage, may even
require —the availability of large arrays of high-speed, low-power
and low-cost detectors, analog-to-digital converters, modulators
and digital-to-analog converters. Increasing the energy efficiency
of these components is animportant challenge.

Scale. Most optical-computing schemes rely on parallelism — be it
from frequency or time multiplexing, or spatial multiplexing ora
combination —for part of how they will achieve an advantage over
electronics. However, throughput and energy-efficiency advan-
tages typically only materialize when the system size (that is, the
number of parallel operations) is very large?. (The situation for
latency, as opposed to throughput or energy-efficiency advan-
tages, is more subtle in that it is more application-dependent: if
an application requires a certain amount of highly parallelizable
computation (such as matrix-vector multiplication) to be per-
formedinaslittle time as possible, solong as an optical processor
islarge enoughto performallthat computationin parallel, it is big
enough and won’t necessarily benefit from larger scale (from the
perspective oflatency). Alatency advantage could thenarise from
how the systemis designed to minimize the time it takes to get the
dataintoand out of the constituent parallel-processing units. But
conversely, an optical processor could also deliver alatency advan-
tage thatis directly attributable toits scale:if it has parallelism far
beyond that of anelectronic processor it may achieve a throughput
advantage that then will typically give alatency advantage as aside
benefit for large tasks in which anelectronic processor would need
to performthe computationin multiple stagesin series on account
ofthetask being larger than the parallel-processing capacity of the
electronic processor.) For example, we would like optical matrix-
vector multipliers to be large enough to amortize the energy costs
ofloadingthe input vector and reading out the output vector. We
would also like them to be large enough to be able to compete in
throughput with electronic processors, which can perform >10°
8-bit-precision scalar multiplications per nanosecond*® — so if
vectors are input at a rate of 1 GHz, we would like the optical pro-
cessor to also be able to perform >10° scalar multiplications in
parallel. However, in optical matrix-vector multipliers made from
arrays of Mach-Zehnder interferometers’, even a state-of-the-art
commercial prototype with a 64 x 64 array"” does >100x fewer
parallel operations than seems necessary to compete in through-
put with state-of-the-art electronics solutions. A major challenge
is how to scale arrays of size 64 x 64 to something much larger,
like 1,000 x 1,000, which would put them roughly on par with
the degree of parallelism in a single state-of-the-art electronic
chip*, or 10* x 10*, which would then be in the regime in which a
substantial throughput advantage could be achieved provided
the system was clocked at a comparable rate to electronics (that
is, at -1 GHz). How can Mach-Zehnder-interferometer arrays be
scaled from sizes ~ 64 x 64 to sizes - 10* x 10*? This question is a
major challenge for the community working on this approach.
The challenge of scaling to achieve a far greater degree of paral-
lelism than current prototypes is certainly not unique to optical
matrix-vector multipliers or Mach-Zehnder-interferometer arrays
—most optical-computing schemes face amajor scaling challenge
forthemtobeableto deliver a practicaladvantage. Insome cases,
we donotevenhaveasolid practical roadmap for howtoscale yet:
for example, whatis afeasible way to scale ascheme that combines
spatial and frequency multiplexing (suchas thatinref.40, using 16
spatial and 4 frequency degrees of freedom) to a point whereit can
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achieve advantage? There is the potential for very large numbers
of both spatial and frequency modes to be harnessed to perform
parallel computations (for example, > 10" spatio-frequency modes
being operated onin parallel), buthow canwereach thisscalefora
concrete scheme that performs useful computation?

- Robustness, reliability and fabrication variation.
Although many optical components, such as those appear-
ing in consumer-electronics devices such as cellphones and in
optical-fibre-communications systems, are generally very reliable,
there are many optical technologies that are being considered for
useinoptical computersthat present challenges inrobustness (for
example, how well they can perform in the presence of environ-
mental perturbations such astemperature changes or mechanical
vibrations), reliability (for example, how likely they are to keep
functioning correctly under normal operation conditions) and fab-
rication variation (for example, how much fabricated devices will
differ in specifications from their designed values). For example,
many optical phase-change-memory technologies have stringent
limits on how many times they can be switched, and it is desirable
for these limits to be raised”*'*. As another example, inintegrated
photonics, Mach-Zehnder interferometers typically suffer from
the constituent splitters having small deviations from the ideal
splitting ratio owing to variations in fabrication; one research
directionis to improve the fabrication processes, and another is
to construct designs that can compensate for these fabrication
errors'*’, Generally, for each photonic technology platform that
mightbe usedin anoptical computer, there are open problemsin
how to stabilize it — passively or actively.

« Storage. To avoid the costs of converting between electronics
and optics, and to avoid the cost of electronic memory accesses
(which is a dominant cost even in electronic computing®), we
would oftenlike to be able to store data for use in optical process-
ing. For example, in matrix-vector multipliers, we typically want
to be able to store matrices with as low energy cost as possible
for maintaining the storage, but in a way that the matrix can be
updated on demand many times, at reasonably high accuracy
(say, 8 bits), and also with relatively low energy cost™", In some
applications or architectures, it is advantageous to be able to
store optical signals (corresponding to intermediate calculation
results, for example) so that conversion from opticsto electronics
and then back to optics can be avoided. Thereis active study and
muchroom forimprovementin both these use cases of storage.

 Pushingtowards quantum limits. One path towards minimizing
optical energy consumption is to operate optical computersina
regime in which the quantum nature of light cannot be ignored
— for example, by using ultra-low optical powers in which sig-
nals comprise small numbers of photons and are measured by
single-photon detectors. Note that optical computers will inevita-
bly involve some electronics, if only for control or readout, and it
is often the electronics energy costs that dominate®, soitis only
insome cases that there is strong benefit to minimizing the optical
power used. Nevertheless, for these situations, there is much work
tobe doneinboth designing architectures and realizing practical
devices that benefit from operating in the quantum regime* ™%,

Constructing an optical computer that beats an electronic com-
puterinany metricis challenging, given how advanced electronic pro-
cessors are. However, the physics of optical computing gives promise
thatif optical computers are carefully engineered, for certain classes

oftasks — especially those involving data that are already in an optical
format or that have a very high ratio of computation to data — they
may deliver orders-of-magnitude benefits in latency, throughput or
energy efficiency.
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