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Abstract

There has been a resurgence of interest in optical computing since 
the early 2010s, both in academia and in industry, with much of the 
excitement centred around special-purpose optical computers for 
neural-network processing. Optical computing has been a topic of 
periodic study since the 1960s, including for neural networks in the 
1980s and early 1990s, and a wide variety of optical-computing schemes 
and architectures have been proposed. In this Perspective article, 
we provide a systematic explanation of why and how optics might be 
able to give speed or energy-efficiency benefits over electronics for 
computing, enumerating 11 features of optics that can be harnessed 
when designing an optical computer. One often-mentioned motivation 
for optical computing — that the speed of light is fast — is emphatically 
not a key differentiating physical property of optics for computing; 
understanding where an advantage could come from is more subtle. 
We discuss how gaining an advantage over state-of-the-art electronic 
processors will likely only be achievable by careful design that 
harnesses more than 1 of the 11 features, while avoiding a number of 
pitfalls that we describe.

Sections

Introduction

What do optical computers 
need to beat?

The 11 features

How might optical computers 
beat electronic computers?

Outlook

School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.  e-mail: pmcmahon@cornell.edu

http://www.nature.com/natrevphys
https://doi.org/10.1038/s42254-023-00645-5
http://crossmark.crossref.org/dialog/?doi=10.1038/s42254-023-00645-5&domain=pdf
http://orcid.org/0000-0002-1177-9887
mailto:pmcmahon@cornell.edu


Nature Reviews Physics | Volume 5 | December 2023 | 717–734 718

Perspective

analog optical computers, so applications of analog optical computers 
should be robust to this level of noise. Neural networks are a particularly 
good match because, at least during inference (as opposed to train-
ing), neural networks do not suffer a substantial decrease in accuracy 
even if they are restricted to integer arithmetic with fewer than 8 bits 
of precision1,19. A concern for any analog neural-network processor, 
including analog optical processors, is the potential for accumulation 
of errors in executing deep neural networks. This has recently been the-
oretically analysed, with a conclusion that deleterious effects of noise 
accumulation can be mitigated, even in the case of correlated noise20. 
Uncorrelated noise that merely leads to an effective low-bit precision 
has been shown in simulations of deep optical neural networks (having 
60 optically executed layers) to yield accuracies that are the same as 
or better than that of digital-electronic processors executing the same 
neural network with 8-bit integer arithmetic21, that is, the simulations 
predicted that the accumulation of error in an optical implementation 
of the neural network would not have a noticeable impact on accuracy 
compared with a standard digital-electronic implementation. For all 
applications of analog optical processors, neural networks, intui-
tion and simulations about resilience to noise ultimately need to be  
validated by optical experiments.

With this context, we can now give a fuller answer to why there 
is renewed excitement in optical computing. The first reason is  
the rise of neural networks: over the past decade, neural networks have 
become a dominant approach in machine learning and have become 
extremely compute-resource-intensive. This has led to strong interest 
in alternative hardware approaches specialized to neural networks, and 
the intrinsic resilience of neural networks to noise makes them well 
suited to analog optical implementations. Second, CMOS improve-
ments would not be enough to satisfy application demand: although  
there has been remarkable progress in CMOS hardware7, it is also 
simultaneously true that both for neural networks and for some other 
applications (such as combinatorial optimization), the anticipated 
future improvements in CMOS hardware22 are less than users would 
like and will limit application capabilities23. For instance, the number 
of parameters in neural networks — one measure of their size and 
computational demand — has been growing much faster than hard-
ware improvements24, primarily because of the finding that increased  
scale often leads to increased capability or accuracy25,26. Third, there 
have been large improvements in photonics hardware: driven largely by 
the consumer-electronics and the optical-communications industries, 
there have been enormous advances in the scale, speed and energy 
efficiency of photonic devices over the past 30 years since the last big  
surge of interest in optical neural networks. As examples, Samsung now 
offers a camera with 200 million pixels27, and 400-gigabit-per-second 
optical transceivers using on the order of 10 W of power are com-
mercially available. This period has also seen the development and 
commercialization of photonic integrated circuits28, giving a minia-
turized alternative to bulk optics; there have also been substantial 
developments in optical materials and devices29–35.

A complementary trend in the electronics community (both in 
CMOS and beyond-CMOS technologies), which has provided further 
support for the development of optical computers for neural networks, 
has been the development of special-purpose electronic chips for 
neural-network processing36. In many cases, these chips also perform 
analog rather than digital matrix–vector multiplications; this fact 
has led to the development of methods for training neural networks  
to work well on analog hardware, many of which are also applicable to  
analog optical neural networks. Both analog and digital-electronic 

Introduction
There has been a resurgence of interest in optical computing since 
the early 2010s, both in industry and in academia1–4. What is the fun-
damental physical basis on which we can expect an optical computer 
to outperform an electronic computer, at least for some tasks? In this 
Perspective article, we enumerate and discuss 11 features of optics and 
optical computing that can contribute to an advantage for an optical 
computer. Any optical computer that achieves an advantage in practice 
will likely need to harness more than one of these features. An explicit 
list of features can help to make clear what ingredients the architect 
of an optical computer has to work with. It also allows researchers to 
systematically identify the fundamental physical principles behind 
the operation of different proposed optical computers, aids them 
in analysing what advantage they can hope to achieve and how their 
designs might be improved by exploiting further features. The design 
of a successful optical computer must be carefully engineered to avoid 
bottlenecks or overhead that would outweigh the optical benefits.  
We discuss some of the pitfalls and approaches one can take to  
mitigate them.

The high bar set by electronic processors has contributed to peri-
ods when there has been pessimism about the prospects for optical 
computing (for example, see refs. 5,6 from 2010). Given the continued 
improvements in CMOS technology7, why is there now renewed excite-
ment about optical computing, including commercial efforts8,9? One 
of the major criticisms of optical computing has been that optical 
transistors are not competitive with their electronic counterparts. 
The current wave of interest in optical computing is primarily focused 
on optical-computer architectures that are not based on replicating 
digital logic with optical transistors. Instead of trying to construct 
general-purpose, digital computers, the community is largely target-
ing building special-purpose, analog computers. Both these shifts —  
to special-purpose and to analog processing — are important. Trying to 
build performant general-purpose processors with optics remains out 
of reach, essentially because general-purpose processors are expected 
to have no errors (accountants want sums in their spreadsheets to 
be exactly correct, for example), and it is only known how to achieve 
error-free machines with digital logic; to build digital logic requires 
an optical transistor satisfying the criteria given in ref. 6 or something 
similar. However, one can alternatively build optical processors that are 
specialized to particular applications for which completely error-free 
operation is not necessary.

There are several application areas being targeted by 
special-purpose optical computers presently, including neural 
networks1; scientific computing10; combinatorial optimization4 and 
cryptography9,11,12. All four application areas have as a key algorithmic 
primitive the process of matrix–vector multiplication, which is the 
target of much of the current research in optical computing. Fou-
rier transforms and convolutions have applicability across neural 
networks, scientific computing and cryptography, contributing to 
their prominence in current research. Optical correlators have been 
released as commercial products during several periods over the 
past few decades13, so this is not a new direction even commercially, 
but one that has been revitalized. There is also a substantial thrust in 
performing computations for neural networks that are not explicitly 
engineered to be matrix–vector multiplications or convolutions1,14–18. 
A commonality among all four application areas is that the subroutines 
performed optically are still useful even if they suffer from some error 
(noise). This factor is crucial because it is difficult to achieve an effec-
tive precision greater than 10 bits in any analog computer, including 
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neural-network chips often have dataflow architectures, especially 
systolic-array architectures. They also often implement the concept 
of compute-in-memory, meaning that the physical element storing 
an element of the weight matrix of a neural network, for example, is 
also the physical element in which the multiplication by that weight 
takes place37; often, the stored values can only be updated slowly, but 
this is acceptable for neural-network inference or other scenarios 
in which the weights will be re-used many times. Systolic-array and 
especially compute-in-memory architectures can have a close map-
ping to optical processors in which information encoded in optical 
signals flows through processing elements, be they arrays of spatial 
light modulator pixels38, meshes of Mach–Zehnder interferometers39, 
crossbars of phase-change-memory cells40 or networks of microring 
resonators41. This parallel between the architectures of analog elec-
tronic neural-network processors and analog optical neural-network 
processors has allowed optical-computer architects to borrow insights 
from the electronic-processor community. Architectural similarities 
also make it easier to predict how the performance of future electronic 
and photonic implementations are likely to compare. Not every opti-
cal computer for neural networks is based on similar architectures 
to electronic neural-network processors — and there are good rea-
sons to deviate17,42 — but in the cases in which the architectures and 
algorithms are comparable, performance analysis is simpler because 
one does not have to disentangle the effects of different algorithms 
and different architectures and can focus on the underlying physical 
differences: how many parallel elements are there, how fast can data 
be sent through them and so on. There are likewise architectural and 
algorithmic parallels between many special-purpose electronic pro-
cessors for combinatorial optimization and optical approaches for 
the same application area4.

In this Perspective article, we limit ourselves to discussing clas-
sical optical computing and do not review the benefits of optics for 
building quantum computers43. We will also not attempt to compare 
optical classical computers with optical quantum computers, other 
than to say that both are competing against classical digital-electronic 
computers but with rather different applications targeted for potential 
advantage44. We briefly discuss why electronic processors are hard to 
beat, before explaining what physics differences between electronics 
and optics can contribute to an advantage for optical computers. We 
then discuss strategies for optical processors to achieve advantage, 
before describing remaining challenges in the Outlook section.

What do optical computers need to beat?
Before we discuss how an optical computer could beat an electronic 
computer, let us first briefly describe what they are up against and why 
this makes electronic processors such stiff competition. There is both 
a hardware and an algorithm or software component to this. On the 
hardware side, electronic processors based on CMOS transistors have 
enormous parallelism, with up to ~1011 transistors per chip, operating 
at a clock rate of between ~1 GHz and ~10 GHz, and a switching energy 
of <10 aJ (that is, <10−17 J)7. These features allow modern processors 
to have enormous computing throughput — for example, the Nvidia 
H100 processor45 can perform 4 × 1015 8-bit scalar multiplications 
per second, which corresponds to performing approximately 4 × 106 
multiplications in parallel per clock cycle; the chip draws <1,000 W 
of power. On the software side, in parallel with >50 years of effort 
that has gone into improving transistor-based hardware, there has 
been >50 years of effort in designing algorithms, which in some cases 
has been responsible for almost as much benefit as improvements 

in hardware22. In many cases, the algorithms have been implicitly or 
explicitly designed to be optimized for the kinds of hardware that 
were or are available at the time42, raising the barrier to entry for new 
hardware paradigms.

The 11 features
Paraphrasing journalist H.L. Mencken, there is an explanation for 
potential advantage of optical computing that is neat, plausible and 
wrong: the fact that light travels fast. We list below 11 features of either 
optics itself or of a way computing can be done with optics, which are 
ingredients for the construction of optical computers; these features 
allow for explanations of how optics can deliver an advantage that are 
subtler, but correct. We also address how the speed of light is related to 
optical computing, even though it is not the cause of optical advantage.

Bandwidth
Photonics has an ~100,000× larger bandwidth B than electronics. The 
bandwidth of photonics is ~500 THz, whereas for electronic circuits it 
is typically ~5 GHz (Fig. 1a). Small analog electronic circuits can have 
bandwidth >5 GHz (refs. 46,47) and small digital-electronic circuits 
can be clocked at rates >5 GHz, but both analog and digital electronics 
for computing systems tend to be limited to speeds ≪ 5 GHz by wire 
delays48,49 and, since the mid-2000s, also by power dissipation23. The 
large bandwidth of photonics leads to two potential benefits.

Massive frequency-multiplexing parallelism. For example, there can 
be >107 comb lines in a frequency comb50 and >109 frequency modes 
in a long fibre-ring cavity; data represented in each comb line (fre-
quency mode) can be acted on in parallel (Fig. 1b) — not just individu-
ally (that is, element-wise) but also with operations that, for example, 
add or multiply data in different frequency modes17. The parallelism 
of optical-frequency modes is commonly exploited in optical com-
munications, in which wavelength-division multiplexing enables com-
munication over a single-mode fibre at rates >1013 bits per second51. 
This technology can also be used for computing; for example, reservoir 
computing on coherent linear photonic processors has been achieved 
with a bandwidth of B ~ 5 THz (ref. 15).

Fast dynamics of optical systems. The dynamics of optical systems 
can be very fast, which can translate to very high operation speeds, 
which in turn can lead to higher computing throughput and lower 
latency: the limit in the delay for an operation, τdelay ≳ 1/B, can be 
~100,000× smaller for optics than electronics if the full bandwidth 
of optics is used. (We expand on what we mean by throughput and 
latency in computing in the section on how optical computers might 
beat electronic computers.)

However, this perspective on potential optical advantage from 
bandwidth has some subtlety. For one, the bandwidth limit on τdelay 
is only a limit and the delay can be substantially longer if the device 
has a propagation length such that the time taken for light to travel 
through the device is long compared with 1/B (that is, a speed-of-light 
limit begins to dominate). Note that when the delay from propagation 
dominates the total delay, it is still possible to benefit from the fast 
bandwidth-limited speed in throughput by pipelining52 — for instance, 
by sending multiple optical pulses into the system spaced apart by more 
than the temporal pulse width ~ 1/B but by less than the propagation 
delay. However, as electronic computers can — and generally do — also 
take advantage of pipelining, care again needs to be taken in making 
performance comparisons.
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Another subtlety is that the delay for an individual modern elec-
tronic transistor under typical load is ~1 ps53 so if one compared photon-
ics with electronics at the level of an individual switch, the bandwidth 
benefit of optics would be much smaller than ~100,000× (perhaps 
‘only’ ~1,000×). At the level of an entire chip, electronic processors 
are clocked ~10−100× more slowly than the circuit delays54 would 
suggest are possible, largely owing to limits on power dissipation23. 
By contrast, photonic processors can have low dissipation (discussed 
subsequently). Thus, at a system level, it is a combination of both 
intrinsic bandwidth and low dissipation that gives rise to a ~100,000× 
potential system-wide bandwidth advantage for optics.

Reference55 has demonstrated optical switching of ~46 fs pulses —  
highlighting the fast speeds possible with THz-bandwidth optical 
pulses and the quasi-instantaneous nature of nonlinear-optical 
operations.

Spatial parallelism
Photonic systems can exploit a large number (>106) of parallel spatial 
modes56. Consumer electronics using >108 spatial modes in an ~2.5-cm2 
area have been realized27, illustrating that massive parallelism can be 
achieved in practice. Sophisticated integrated-photonics devices 
controlling many modes have also been created in academia (Fig. 1c).

For photonic systems in which light is confined in a single 2D plane, 
such as in 2D photonic integrated circuits, the density of photonic 

components can be as high as ~106 cm−2 (ref. 57), and we can roughly 
think of each component as enabling one or more computing opera-
tions (such as a multiplication) to be performed in parallel. There are 
multiple reasons to write one or more operations and not just exactly 
one operation. For example, one is that a single component in space 
can act on many frequency modes in parallel, as mentioned earlier, or 
on multiple polarization modes. Another is that depending on one’s 
definition of an operation, and one’s definition of a single component, a 
component may naturally perform multiple operations in a single pass 
of light through it, such as a single 50:50 coupler arguably performing 
two multiplications and two additions.

Although this component density is in absolute terms a high num-
ber, we should compare it against the spatial parallelism available 
in CMOS electronics, in which the achieved density of transistors is 
~1010 cm−2 (ref. 45). As another point of comparison, to give an exam-
ple of a candidate future electronics technology, an analog matrix–
vector-multiplier core based on a crossbar array of phase-change 
memory, built by IBM58, featured 65,536 phase-change-memory cells 
within a chip area of ~0.6 mm2. This is a density of ~107 cells per cm2, 
and each cell can be interpreted as performing one scalar, analog 
multiplication per clock cycle.

In this setting of 2D photonic integrated circuits, optics is at a 
disadvantage compared with electronics in the pure density of fab-
ricable components, because the transistor density in electronics 
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Fig. 1 | The three features most likely to have a key role in any future optical 
processor that does deliver an overall advantage in latency, throughput or 
energy efficiency. a,b, Bandwidth. An optical signal with bandwidth >300 THz 
(part a) and an example of the use of frequency multiplexing in optical computing 
(part b): kernel weights for a convolution are input as intensity modulations 
of spectral lines in a frequency comb; the use of multiple comb lines allows 
multiple computations to be performed in parallel. c, Spatial parallelism. Part of 
a state-of-the-art silicon-photonic device with 16,384 pixels on a 10 × 11 mm2 chip, 
illustrating the degree of spatial parallelism possible in modern photonic devices. 
d, Nearly dissipationless dynamics. An example of computing with linear optics: 
light propagating through a lens undergoes a Fourier transform, and in a two-lens 

4 f  system with a scattering medium in between, a convolution is performed on 
the input light. In the absence of optical loss (as would arise from absorption in 
the lenses, for example), the computation of the convolution happens without 
any energy loss. However, if one considers how to use this building block in an 
end-to-end computing system, there is typically an energy cost associated with 
converting an electrical signal into an optical input, and there is also typically an 
energy cost associated with converting the optical output back into an electrical 
signal. Part a adapted with permission from ref. 146, Optica Publishing Group. 
Part b adapted with permission from ref. 97, Springer Nature Ltd. Part c adapted 
with permission from ref. 147under a Creative Commons licence CC BY 4.0. Part d 
adapted with permission from ref. 1, Springer Nature Ltd.
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is ~104× larger than the component density in on-chip photonics. 
This comparison is arguably the most relevant, as transistor-based 
electronic processors are, in most cases, the systems to beat. How-
ever, other comparisons can be made. Even 2D photonics can have 
a spatial-parallelism advantage over 2D microwave electronics: for 
example, photonic-crystal cavities (resonators) can have areas ~1 μm2 
(refs. 59,60), whereas electronic microwave resonators are typically 
orders of magnitude larger61.

However, if the third spatial dimension is used1,62, optics may  
gain a several-orders-of-magnitude advantage in spatial parallelism 
because electronics is in practice limited to very modest 3D integration. 
A typical modern electronic chip is thin — on the order of 1 mm — and 
comprises only tens of layers63, whereas optical processors that are 
centimetres or even metres thick, using propagation through bulk 
crystals62,64 or multimode optical fibre16, for example, have been con-
structed. However, in the specific case of NAND memory, electronic 
integrated circuits have been scaled to 128 layers65 — which suggests 
that for memory rather than computing, photonics has less room for 
advantage over electronics by extending in the third dimension.

Let us use an example to make a rough estimate of the kind of advan-
tage that is in principle possible for 3D optical computing. Consider a 
2D photonic device with dimensions L × L and a 3D photonic device 
with dimensions L × L × L. Assume we address each device with light of 
wavelength λ ≈ 500 nm and that the device length is L ≈ 5 cm. The num-
ber of resolvable spots in the former case is on the order of (L/λ)2 = 1010, 
whereas the number of resolvable voxels in the latter case is on the order 
of (L/λ)3 = 1015 — an advantage of (L/λ) = 105 times when going from 2D to 
3D. We can also compare these numbers with the counts of transistors 
in electronic processors: at the state-of-the-art fabrication density of 
~1010 transistors per cm2, a 5 cm × 5 cm-chip would have 2.5 × 1011 transis-
tors. This figure is an order of magnitude greater than the number of 
resolvable spots in the same-area photonic device, but several orders 
of magnitude smaller than the number of voxels in the same-length 3D 
device. Of course, an addressable voxel of material is not the same thing 
as a transistor; one ultimately needs to carefully analyse the computa-
tion and memory that is achieved using a particular device in a particular 
way, but these crude estimates hopefully convey two key messages: that 
by going from 2D to 3D devices, there can be an orders-of-magnitude 
increase in the achievable complexity of the device stemming from 
the fact that L/λ can be a large number and that although 2D photonic 
devices offer lower spatial parallelism than transistor-based electronic 
chips, moving to 3D devices may enable an orders-of-magnitude benefit 
in spatial parallelism for optics over electronics.

There is an important additional perspective on spatial parallel-
ism: it is not only the density or number of components that can be 
fabricated that is important but also how many of the components 
one can in practice use in parallel. In other words, increased compo-
nent density does not necessarily translate to proportionately greater 
computing performance. Modern CMOS electronic processors are 
typically only able to switch a small percentage (in one example, 3%66) 
of their transistors in a single clock cycle, largely owing to limitations 
in cooling52. When taking into account how many components can 
actually be operated in parallel with the constraints of power dissipa-
tion (discussed in the next section), 2D photonic integrated circuits 
may be at less of a disadvantage in spatial parallelism compared with 
electronic integrated circuits than the fabricated component densities 
alone would suggest.

As an example of spatial parallelism in optical computing, 
free-space optical processors have been prototyped using commercial 

spatial light modulators, which have ~106–107 controllable pixels — 
making them useful tools in building highly parallel systems67. 
Computation of ~5 × 105 scalar multiplications in parallel per pass of 
light through an optical setup with ~5 × 105 pixels has been achieved38,68. 
For applications in which the programmability of spatial light modula-
tors is not required (such as in neural-network inference), fabricated 
metasurfaces offer a route to even larger parallelism: on the basis of 
the linear-with-area scaling of the space–bandwidth product of imag-
ing systems69, we expect it to be possible to create metasurface-based 
matrix multiplications or convolutions with >109 preprogrammed 
pixels (parameters) using ~10 × 10 cm2 (ref. 70).

Nearly dissipationless dynamics
Photons can propagate through free-space optical setups with nearly 
no energy loss and perform computation by their mere propagation. 
(They can even propagate with nearly no energy loss in some on-chip 
setups: for example, thin-film lithium niobate chips can have wave-
guide propagation losses of 0.06 dB cm−1 (ref. 71)). How much com-
putation is performed? We consider the cases of linear-optical and 
nonlinear-optical systems.

Linear optics. An example of computation by propagating light is that 
a single lens effectively performs a 2D Fourier transform on light that 
impinges on it72 — optical correlators13 and convolutional layers in opti-
cal neural networks1 (Fig. 1d) both take advantage of this phenomenon. 
More generally, propagation of light through a linear-optical system 
can be modelled by a matrix–vector multiplication, so matrix–vector 
multiplication can be performed by merely shining light encoding a 
vector (of dimension N) in its spatial pattern onto an optical system1.

As a rather extreme example, shining light through white paint 
can be used to perform the multiplication of a vector by a random 
matrix with dimension >106 × 106 (ref. 73). In that example, the matrix 
is fixed and random, but various linear-optical systems in which the 
matrix can be programmed have also been demonstrated1,57, although 
in these cases the matrix size has generally been limited by the num-
ber of programmable elements that can be engineered. An example 
programmable element is a pixel of a spatial light modulator, which 
can be used to represent a single programmable element of a matrix; 
spatial light modulators with ~107 pixels are commercially available. In 
principle, the dissipationless nature of optical propagation can lead to 
matrix–vector multiplications being performed that beat the Landauer 
limit74 for multiplications performed on digital-electronic processors 
— intuitively, because in a coherent setup, the optical interference that 
occurs is a reversible process75.

For the sake of concreteness, we have discussed examples of vec-
tors encoded in space, but this is not the only possibility: the propa-
gation of light in just a single spatial mode can also result in nearly 
dissipationless computation of inputs encoded in other ways, such as 
in frequency or time2.

Nonlinear optics. Nearly dissipationless dynamics that can be harnessed 
for computation can also be seen in light propagating through nonlinear- 
optical systems. For example, propagation of light through an optical 
medium with a non-zero second-order nonlinear-optical susceptibility, 
χ(2), can in general result in sum-frequency-generation and difference- 
frequency-generation processes, in which the optical amplitude of the 
output scales as the product of the amplitudes of light at two frequencies 
at the input, for instance, Eout(ω1 + ω2) ∝ Ein(ω1)Ein(ω2)76. We can interpret 
such a nonlinear-optical process as performing a scalar multiplication 
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of the two numbers Ein(ω1) and Ein(ω2)17. Nonlinear-optical dyna
mics enable the implementation of mathematical functions that are  
nonlinear — which is essential in deep neural networks77 and in comput-
ing more generally78. For example, in a χ(2) process, if the frequencies of 
the input light are equal (ω1 = ω2), then one may obtain output light at 
twice the frequency with amplitude E ω E ω(2 ) ∝ ( ( ))out 1 in 1

2, so the function 
realized is f(x) = x2, which is nonlinear.

Furthermore, just as the propagation of multiple spatial beams 
through a linear-optical system can be seen as performing a matrix–
vector product, propagation of multiple spatial beams through a 
nonlinear-optical system can realize a higher-dimensional gener-
alization of matrix–vector multiplication, namely, tensor contrac-
tion involving tensors of order n + 1, in which n is the order of the 
nonlinearity-optical susceptibility, χ(n). This is an impressive feature 
for computing16,17: with the lowest-order nonlinearity, n = 2, the com-
putation performed — by the mere propagation of the light through 
the system — is a tensor contraction that comprises ~N3 multiplication 
operations, in which N is again the number of spatial modes. Higher 
orders of optical nonlinearity can result in even larger amounts of 
computation being performed by a single pass of light through the 
system, as even higher-order tensors are involved.

Benefits. There are benefits to the fact that computations can be per-
formed nearly dissipationlessly in optics. The first is that one can 
potentially harness dissipationless dynamics to perform computation 
using less energy than would have been needed in a different platform 
that did have substantial dissipation (such as electronics).

A second benefit is higher performance. Dissipation does not 
only cause a computation to cost more energy, but can also limit the 
clock speed and parallelism of a processor, ultimately limiting its total 
computing throughput (operations per second) and latency. Modern 
CMOS electronic processors are limited — both in clock speed and in 
3D density of transistors — by the ability to extract dissipated heat from 
them23. By markedly reducing dissipation per computing operation, 
one potentially allows for a marked increase in both the clock speed and 
spatial parallelism (number of operations performed simultaneously 
per unit volume).

In the context of 3D chips, photonics has another potential benefit 
over electronics with regard to dissipation: although the loss of electri-
cal energy in a chip is generally by the generation of heat at the point 
where the energy is lost — in resistive heating of a wire, for example 
— the situation in photonics can be quite different because the loss of 
optical energy is often not due to absorption and accompanying gen-
eration of heat, but rather by scattering. This is true for waveguides in 
silicon-photonics integrated circuits, for example, and suggests that 
if one constructs a 3D silicon-photonic chip, the losses of waveguides 
within the chip will primarily not cause heating, but instead will result 
in photons being scattered within the chip until they emerge at the 
surfaces. In summary, nearly dissipationless dynamics in optics makes it 
possible to create 3D photonic chips that do not suffer from the extreme 
heat-extraction challenges of 3D electronic chips, and even the small 
photonic dissipation that does occur does not cause heating within the 
bulk of the chip if it is due to scattering, so we may not even need to worry 
about the residual photon loss causing heat-management difficulties 
provided that components that absorb photons are avoided.

There is, however, a snag to these benefits, namely, input/output 
costs: how does the input data for the computation get loaded and the 
result get read out? If the input comes from an electronic memory and 
the result needs to be stored in an electronic memory, then even though 

the computation itself can happen nearly ‘for free’, one needs to con-
vert electronic data to the optical domain for the data input, and then 
convert the optical answer back to the electronic domain. This memory 
access and transduction, which typically also involves digital-to-analog 
and analog-to-digital conversion, will cost substantial energy (and be 
limited in speed when compared with optical bandwidths of terahertz).

Fortunately, this energy cost only scales as the size of the input 
vector, N, whereas the amount of computation being performed may 
scale as N2 (linear propagation) or N3 (or even higher powers; nonlinear 
propagation), and so for sufficiently large N, the energy cost of the 
input and output will be small compared with the cost that the com-
putation would have required in an electronic processor. Similarly, 
the time required for input and output for N-dimensional vectors 
can, for sufficiently large N, be very small compared with the time the 
N2-complexity or N3-complexity computation would have taken on an 
electronic processor. The loading of coefficients, such as the matrix 
elements in the case of linear propagation, in general, also has a cost in 
both energy and time, but this can be amortized over many runs, such 
as in the case of batched inference with neural networks39.

Low-loss transmission
The energy cost to transmit information ‘long’ distances with light is 
much lower than that with electrical signals79, mostly because signal 
attenuation (energy loss) per unit length is much higher in electrical wires 
than in optical fibres or waveguides (Fig. 2a). There are several subtleties 
in evaluating the energy cost of optical and electrical communication, 
discussed in detail in refs. 48,79,80, which necessitate the use of the 
word ‘mostly’ here. For one, optical communications between electronic 
devices require transduction of signals from electrical to optical, and 
back to electrical, and the transduction devices have energy costs79. For 
another, electrical signal transmission along a wire requires energy that 
increases with length because the resistance of the wire increases with 
length — but this is not the end of the story: for thin wires, such as those 
used in CMOS electronic processors, the wire delay grows quadratically 
with length and to mitigate this, repeaters are used to regain a linear 
scaling of delay with length, and the repeaters also have an energy cost 
(associated with the switching of their driver transistors)48,80.

For on-chip photonic processors, commercial foundries such as 
AIM Photonics can produce silicon-nitride waveguides with losses 
~0.06 dB cm−1 for wavelengths ~1,600–1,640 nm and <0.25 dB cm−1 
across the telecommunications C band (~1,530–1,565 nm)81.

An important caveat for both free-space and on-chip optical pro-
cessors is that although propagation losses between components can 
be very low, typically there are losses from reflections or scattering as 
light propagates into or out of a component (such as Fresnel reflections 
owing to mismatch in refractive index). As a result, optical processors 
still need careful design to avoid excessive overall optical loss.

The low-loss transmission of optics is already being taken advan-
tage of in electronic computing: optical links in data centres82, and 
even directly between chips83, use light to communicate information 
over length scales from centimetres to many metres. It is anticipated 
that even some communications within a single chip might eventually 
use optics79,82.

A major reason that light is not already used for communications 
within single electronic-processor chips, especially over very short 
distances, is that the optoelectronic components to transduce signals 
between the optical and electrical domains cost both space and energy, 
and it is only worth paying these costs when the distance the signal 
needs to travel is long enough79. An optical computer, however, could 
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in principle take advantage of optics for low-energy cost, nearly dis-
sipationless information transmission at all length scales, and without 
paying space or energy costs for transduction — because the signals 
would already be optical. Note however that an optical processor will 
inevitably need to use some energy for transduction, for example, to 
load the initial input data for the computation and/or to read out the 
final answer, which will typically need to be in the electrical domain. 
But the transductions — and their costs — that would have occurred 
within a computation can be avoided.

Optical beams and ‘wires’ can cross; electrical wires cannot
In many cases, there is negligible optical nonlinearity — not only in 
free-space settings but also in materials when the optical power is low 

and the propagation length is short; informally: we do not have lightsa-
bers in ordinary optical situations84. In these cases, optical beams can 
pass through one another without suffering from crosstalk. Likewise, 
optical on-chip wires (waveguides; Fig. 2b) can cross with very low 
crosstalk — not just in principle but also in practice in the presence of 
fabrication imperfections. By contrast, electrical wires need their own 
region of isolated physical space and, in addition to not being able to 
pass through one another, also often suffer from crosstalk even if they 
are merely close to one another85.

This difference provides the possibility for photonic processors 
to be more compact than electronic processors when interconnect is 
an important contributor to processor size, although the use of optical 
beams for communicating information is not without its own crosstalk 

Micromirror
matrix

Micromirror

a

b

c

d

At
te

nu
at

io
n 

(d
B 

m
–1

)

104

102

Frequency (Hz)

OpticalElectrical

1

10–2

10–4

106

(1 MHz)
109

(1 GHz)
1012

(1 THz)
1015

2 µm

~2,500 dB m–1

@ 10 GHz

~1.72 dB m–1

@ 10 GHz

Lx = 103 µm

L y
 =

 10
3 

µm

Lz = 99 µm

Micromirror
matrix

Optical
beam

Optical
fibre

Collimator

Lens

~0.05 dB m–1

@ 1,580 nm

~0.00016 dB m–1

@ 1,550 nm

On-chip electrical
interconnect

O�-chip electrical
coaxial cable

On-chip
optical
interconnect

O�-chip
optical fibre

Fig. 2 | Signal transmission in optical systems. a, Low-loss transmission 
in optical systems. For both on-chip and off-chip transmission, the signal 
attenuation (in dB per metre) is orders of magnitude lower (better) with optical 
instead of electrical signals. For example, electrical signals at 10 GHz have ~104× 
higher attenuation than equivalent on-chip or off-chip transmission with optical 
signals. Inspired by ref. 148, Fig. 4.3. Data sources: on-chip electrical interconnect: 
ref. 149; off-chip electrical coaxial cable: ref. 150; on-chip optical interconnect: 
ref. 151; off-chip optical fibre: ref. 152, Fig. 22.2 and ref. 153. This figure is 
intended to give a heuristic comparison; it does not comprehensively cover 
all transmission technologies, but is based on just a few illustrative examples 
that convey the relevant orders of magnitude. For more examples and details, 
see: ref. 154 (electrical interconnects and cables); ref. 149 (on-chip electrical 
interconnects with different dimensions); ref. 155 (electrical interconnects on 
printed circuit boards) and ref. 156 (integrated-photonics waveguides with 

lithium niobate). b, Optical beams and ‘wires’ can cross. It is in free space that 
optical paths can cross: in integrated photonics, waveguides can pass through 
one another with minimal impact on the signal propagation. The waveguide 
crossing in this image had a crosstalk of less than −50 dB. c,d, Optical beams can 
be steered programmably. Optical beams inside a micro-electro-mechanical 
systems optical switch can be rerouted on timescales on the order of milliseconds 
using arrays of micro-electro-mechanical systems-actuated micromirrors 
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geometries in 3D (part d); the results shown here are from an experiment in which 
a liquid-crystal-based spatial light modulator was used to programme the beams; 
such modulators can also be updated on a timescale on the order of milliseconds. 
Part b adapted with permission from ref. 157 under a Creative Commons licence 
CC BY 4.0. Part c adapted with permission from ref. 158, IEEE. Part d adapted with 
permission from ref. 159, Springer Nature Ltd.
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challenges owing to diffraction, scattering and unwanted reflections86. 
(One might also wonder about the size of optical beams compared with 
electrical wires, as optical beams or waveguides are limited to sizes 
on the order of a wavelength, whereas electrical wires can be made 
only nanometres wide. However, interconnects in electronic proces-
sors have trace widths and spacings on the order of 1 μm87, which is a 
design choice in part motivated by the fact that the resistance of a wire 
decreases as its cross-sectional area increases48.)

One can interpret the ability for optical beams to cross as a key 
enabler of many free-space, spatially multiplexed optical implementa-
tions of convolution and matrix–vector multiplication1. For example, 
in implementations88 of matrix–vector multipliers that use arrays of 
lenses for fan-out (Fig. 3b), the rays between the input vector and the 
fanned-out copies cross. The crossing supports the implementation, 
in principle, of large convolutions and dense matrix–vector multipli-
cations in small volumes. Optical switches (Fig. 2c) provide another 
example in which crossing of beams enables a more compact design.

Optical beams can be steered programmably at high speed; 
electrical wires are either fixed or reconfigurable only slowly
Free-space optical beams can readily be redirected (for example, 
using an acousto-optic deflector, with a delay on the order of micro-
seconds) (Fig. 2d), enabling the creation of reconfigurable optical 
interconnects89,90 (Fig. 2c). By contrast, electrical wires on chips are 
fixed at the time of fabrication, and wires joining nodes in an intercon-
nect between processors, boards or racks can only be moved slowly 
(typically on the order of seconds). Electronic processors typically 
mitigate the disadvantage of having a fixed network by using multihop 
communications — relying on there being a path between a sender and 
a receiver involving some intermediate nodes — and switching, which 
achieves fast rerouting of signals within a fixed network topology. 
These strategies come with the cost of increased latency and potential 
bandwidth bottlenecks.

Fan-in (summation) and fan-out (copying) work differently  
in optics
Copying data to be processed in parallel (fan-out) and summing the out-
puts from a number of parallel-processing units (fan-in) are important 
primitives in parallel processing. Both can be implemented in optics in a 
different way to electronics and have different tradeoffs89,91. Optics has 
a potential advantage from supporting large (>1,000) fan-in and fan-out 
without the RC and LC delays of fan-in and fan-out with electrical wires, 
for which fan-in and fan-out are typically kept lower than 10 in digital 
processors, necessitating multiple buffering stages (and hence further 
delay) whenever larger fan-in/fan-out is needed92,93. Note that as ref. 89 
points out, when evaluating an optical scheme, one needs to take care 
to evaluate the RC and LC delays of photodetectors that are involved.

In free space, fan-in of signals encoded in spatial modes can be 
performed by directing beams to a common point in space (via the use 
of a lens, for example; Fig. 3a), at which there could be, for example, a 
photodetector (if the next processing step required conversion from 
optical to electrical signals), a holographic element (to combine the 
beams travelling in different directions into a beam that travels in one 
direction, albeit at the cost of loss of optical power)89 or an intensifier 
(which can amplify the summed beams and re-emit a single optical 
signal)88.

Fan-out of a signal in a single spatial mode to multiple spatial 
modes can also be performed conceptually easily in free space, where 
it happens essentially without any special engineering effort (Fig. 3b): 

imagine an optical display (such as a light-emitting diode display on a 
cell phone) that emits in multiple directions — multiple people look-
ing at the display from different vantage points can all see the same 
image, and we can interpret what happened is that multiple copies 
of the data on the display were made and transmitted to different 
receivers. Another example of optical fan-out in everyday life is in a 
kaleidoscope. Arrays of lenslets (microlenses) can be used to collimate 
the image copies88,94. Free-space fan-out can also be implemented and 
understood in the Fourier domain95.

Both fan-in and fan-out for spatial modes can also readily be imple-
mented in integrated-photonics platforms96. However, in an on-chip 
setting, light propagation is typically practically restricted to be in a 
single plane, whereas in free space it is natural for signals to propagate 
in all three dimensions, enabling a much higher degree of fan-in and 
fan-out. For this reason, it is easier to imagine gaining an advantage 
over on-chip electronic processors (which are also quasi-planar) from 
the use of optical fan-in or fan-out in free-space settings.

So far, we have discussed fan-in and fan-out in the context of 
spatial modes. For optical computers using frequency or temporal 
modes, fan-in and fan-out may be realized using other means. For 
example, fan-out of data input as electronic signals can be performed 
in the frequency domain by modulating an optical-frequency comb97, 
and weighted fan-in can be performed using wavelength-division 
multiplexing, including in on-chip platforms2.

To reason about why or when optical fan-in or fan-out may have 
an advantage over electrical fan-in or fan-out, it is useful to consider 
the bandwidth and low-loss transmission possible in optics and that 
optical beams can cross. However, the fan-in/fan-out possibilities of 
optics are distinct from the potential benefits of bandwidth, low-loss 
transmission and beam-crossing in optics, and it is fruitful to think of 
fan-in and fan-out in optics as special features that can be used in an 
optical-computing architecture, even though they may also use other 
features of optics to operate well.

Indeed, teasing out the source of a potential advantage can be quite 
subtle. For example, fan-in arguably has an important role in enabling 
vector–vector or matrix–vector multiplication engines that use extremely 
small amounts of optical energy per multiplication38 — in which the 
amount of optical energy needed to achieve a particular signal-to-noise  
ratio for a vector–vector dot product is fixed regardless of the vector 
size — but similar efficiency can be achieved with optoelectronic fan-in, 
in which summation is performed in the electrical domain75,98. Purely 
analog electronic approaches to compute vector–vector dot prod-
ucts can also show favourable energy consumption compared with 
digital-electronic approaches99, so for any given computing scheme 
using optical fan-in, one can ask: which part of the potential benefit 
comes from performing the summation in an analog rather than digital 
fashion, and which part comes from using optics instead of electronics?

One-way propagation
One can readily construct optical systems in which the propagation 
is naturally one-way (if one, for example, forms an optical cavity in 
part of the system, then the situation becomes more complicated). 
By contrast, electrical signals can propagate backwards (Fig. 3c). In 
electronic processors, backwards propagation (from inputs to other 
inputs, or from the output to the inputs) can cause unwanted dynamics 
as well as unnecessary power consumption. This difference leads to an 
advantage of optics over electronics for some analog architectures.

Although backwards propagation is a general feature of electri-
cal circuits — without isolating elements such as buffers or diodes 
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in a circuit, any time there is a voltage difference between two con-
nected circuit nodes there will be a current flow between them, even if 
those two nodes are inputs — concerns about backwards propagation 
have arisen mostly in the context of analog crossbar-array processors, 
related to their fan-in stage100 and also the sneak-path issue101. Analog 
optical matrix–vector-product engines1 generally feature one-way 
propagation, avoiding some of the issues that arise in analog electronic 
matrix–vector-product engines (that is, crossbar arrays), and there is 
a broader notion of optics providing natural isolation102 that can be 
useful in computing.

A caveat is that although perfectly one-way propagation is pos-
sible if light does not pass through any interfaces, any useful opti-
cal processor involves at least some interfaces (light going from air 
into a glass lens, for example), and as a consequence have some una-
voidable reflections. The reflections can be made small by appropri-
ate choices of geometry and materials but will never be completely 
eliminated. In many cases, there may be an engineering tradeoff 
between, for example, the compactness of the optical processor and 

the magnitude of the reflections (in other words, the one-way-ness)  
in the system.

Different realizations of adiabatic, least-action and 
least-power-dissipation principles
There are general physics principles — such as adiabaticity, the prin-
ciple of least action and the principle of least energy dissipation — 
that can lead to a physical system heuristically solving optimization 
problems103; variations of these principles can be leveraged to con-
struct optimization machines (such as Ising machines4). Given how  
central optimization is in machine learning, and especially in neural 
networks, computers designed to perform optimization are often also 
well suited to perform machine learning — so an advantage on optimi-
zation can quite plausibly be translated into an advantage in machine 
learning too. Similarly, one can recast the problem of solving partial 
differential equations as a variational optimization problem104, provid-
ing another potential application of physics optimization principles 
to a broader class of computations.
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time in optics (part d). Light travels between starting point A and ending point B 
by taking the path of least time. A computational interpretation is that the  
light solves an optimization problem (of finding the path of least time), given  
the constraints of where the path starts and ends. A network of oscillators  
(part e) — which in optics could, for example, be optical parametric oscillators or 
laser oscillators — will in principle oscillate in the collective mode/configuration 
corresponding to the lowest loss if the gain is set to be equal to the minimum loss. 
Part a adapted with permission from ref. 38 under a Creative Commons licence  
CC BY 4.0. Part b courtesy of Mandar Sohoni and Tianyu Wang. Part c adapted 
with permission from ref. 100, IEEE. Part d adapted with permission from 
ref. 105, Princeton Univ. Press. Part e adapted with permission from ref. 107, 
Springer Nature Ltd.
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For example, Fermat’s principle of least time for optics states that 
light follows the path that minimizes its time to travel between two 
points (Fig. 3d). Feynman gave an explanation of this principle with a 
path-integral formulation in which the light can take all possible paths 
but only the paths that constructively interfere contribute substan-
tially, and paths with substantially different propagation times than 
Fermat’s solution destructively interfere105. This perspective is pos-
sibly helpful for thinking about how to design optimization machines 
that use Fermat’s principle. By contrast, Fermat’s principle does not 
have a direct analog in electrical circuits — so a computer performing 
optimization using Fermat’s principle is more natural to try to create 
with optics.

Onsager’s principle of least energy dissipation can apply in both 
optics and in electronics, but the behaviour and resulting computing 
performance may be different because of differences in the underlying 
physics. For example, lasers and parametric oscillators in optics have 
a threshold when gain is equal to loss, and the fact that they first oscil-
late in the mode with lowest loss can be used to design optical Ising 
machines106,107 (Fig. 3e). Electrical circuits, including oscillators, also 
have dynamics that heuristically minimize the energy dissipated103, but 
they are not identical to lasers or optical parametric oscillators and in 
general have different behaviours.

It is an open question whether, or in which situations, optics sys-
tems using Onsager’s principle have an advantage over electronics 
realizations, but the possibility is one that a designer of an optical 
computer may wish to explore. The question has multiple facets: if the 
equations governing the optics and electronics dynamics were identi-
cal, one might still achieve an advantage of optics over electronics for 
some of the other reasons described in this article, such as bandwidth. 
However, one can also ask whether the differences between the under-
lying equations lead to different behaviours beyond a faster timescale 
resulting from higher bandwidth, or a larger system size resulting from 
larger spatial parallelism — in other words, differences beyond the other 
optics versus electronics distinctions drawn so far.

The quantum nature of light is accessible at room temperature
It is possible to store and process information encoded with single  
optical-frequency photons, and it is possible to detect individual opti-
cal photons with low noise, all at room temperature. This is in contrast 
to the situation at microwave frequencies, in which thermal noise at 
room temperature rapidly swamps any information stored in sin-
gle photons, and low-noise single-photon detection is not available 
(Fig. 4a). The quantum nature of microwave photons is accessible at 
temperatures ~10 mK, but such cold temperatures are generally only 
achievable using a dilution refrigerator, which is bulky and expensive 
(in money and energy).

For classical information processing, the fact that small num-
bers of photons can be manipulated and measured naturally leads 
to a potentially lower energy cost than if more photons were needed 
for reliable operation38,75. It is also possible to produce and measure 
squeezed states of light at room temperature108; the reduced noise  
in squeezed states could prove useful in classical information process-
ing, for example, for achieving higher numerical precision with a fixed 
energy budget (average number of photons).

The lack of a strong single-photon nonlinearity in optics, which is 
an advantage for communicating information without crosstalk but can 
be a disadvantage for processing information with small numbers of 
photons, can be circumvented using single-photon detection (Fig. 4b). 
The nonlinearity of the detection process itself is a feature one can 
use1,75, but it is also possible to use photodetection to probabilisti-
cally induce nonlinear operations across multiple optical modes109. 
Reference109 develops and motivates probabilistic nonlinear operations 
for use in quantum computing, but these operations could potentially 
also be used for classical computing .

In this Perspective article, we do not consider quantum informa-
tion processing110; here, when we talk of operating in the quantum 
regime, we mean in the sense that light comprises photons and we 
are operating at such low powers that the quantum noise and dis-
crete nature of the light are relevant to modelling the operation of the 
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input at a time. This schematic is from an undergraduate-laboratory experiment 
using just a few commercial optical components, highlighting the relative 
ease of observing wave phenonmena at the single-photon level with optics. 
(The counts at photodetector A oscillate as a function of the position of mirror 
M2, which controls a phase difference between the upper and lower arms of 
the interferometer.) Part b adapted with permission from ref. 160, IEEE. Part c 
adapted with permission from ref. 112, AIP.
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computer. The topic of using quantum phenomena such as entangle-
ment to build quantum computers is exciting but beyond the scope 
of this paper; ref. 111 provides a helpful description delineating the 
first and second quantum revolutions, and it is only the former that 
we consider here.

Wave physics
It is easy to observe the wave nature of individual photons — observ-
ing interference of single photons in a Mach–Zehnder interferometer 
is an undergraduate-laboratory experiment112 (Fig. 4c), and photon 
coherence is well preserved in on-chip photonic processors113 — but 
it is difficult to observe the wave nature of individual electrons. Even 
in advanced on-chip electron-transport experiments, the electron 
coherence length is less than ~250 μm, with values between 1 μm and 
20 μm114 more typical, and only at cryogenic temperatures.

The wave nature of electrons being difficult to observe and exploit 
is due to cryogenic temperatures being required — on-chip electron 
coherence lengths are also much more dependent on the properties 
of the material host than on-chip photon coherence lengths. For this 
reason, we are treating the accessibility of wave physics for photons 
as a separate advantage to the accessibility of their quantum nature, 
even though the wave–particle duality for both photons and electrons 
is part of quantum physics.

A counterpoint is that even though the wave nature of individ-
ual electrons is impractical to observe, wave phenomena of micro-
wave signals in electronics can readily be observed and exploited for 
computation115. However, these are not wave phenomena of single elec-
trons, but rather of signals that comprise many microwave photons. 
A key engineering consequence of this distinction is that electronic 
microwave signals have long wavelengths (for example, gigahertz 
signals have centimetre-scale wavelengths), which markedly limits 
the possible spatial parallelism relative to the parallelism possible with 
optical-frequency photonic signals — leading to a potential advantage 
of optics over electronics (and in particular, microwaves). Note that a 
completely different kind of microwave signal can also be created and 
used for computation: an acoustic wave at microwave frequencies116. 
These waves can have short wavelengths despite their low frequencies, 
but at the cost of propagating at vastly slower speeds than photonic 
signals — the speed of sound rather than the speed of light — which is 
a disadvantage for computing with them.

But not that the speed of light is fast
The speed of light is often brought up as a contributing factor for how 
optical computing will obtain a large speed advantage over electronic 
computers, but this is misleading because both optical and electrical 
signals can travel at roughly the same speed: in vacuum, light (and micro-
waves) travels at speed c; in silicon-photonic waveguides, light travels 
at speed ~0.4c117; in wires on printed circuit boards, signals can travel at  
speed ~0.43c118; and in CMOS electronic circuits, signals can travel  
at speed ~0.2c79 or ≈0.5c in CMOS wires with careful design80.

There is a mere 5× difference between the speed of light in vacuum 
and the speed of signal propagation in wires in CMOS electronic proces-
sors, so the speed of light is not a key distinction of optics. The notion 
of ‘computing at the speed of light’1 is more useful to think of as a goal 
for an optical computer, rather than a cause of advantage. The speed 
of light provides a physical limit on how fast a computer can operate119 
and one framing of the goal of the optical-computer engineer is to 
design a computer that leverages the benefits of optics (as discussed 
earlier) to reach this limit for a particular computing task, in as small a 

volume as possible, so that the total time for a computation is as small  
as possible.

This framing implicitly makes the goal about the latency of the 
computer (how long does it take for the answer to be output from 
the time the input is provided?) — which can be important, especially  
in real-time-computing scenarios — but often we are instead interested in  
improving its throughput or energy efficiency. Optimizing for through-
put may involve trying to maximize the number of computing opera-
tions performed in parallel, and optimizing for energy efficiency may 
involve minimizing the dissipation in the system, neither of which have 
much to do with ensuring that the latency of the computer saturates 
the bound set by the speed of light. ‘Computing at the speed of light’ is 
not only a goal rather than a cause but it is just one of several possible 
goals for an optical computer.

Some of the items listed earlier are interrelated, and some of them 
even have a common physical root but are listed separately because the 
root leads to multiple features of light or has multiple consequences 
for computing. For example, the large bandwidth of optics relies on 
the large carrier frequency ω of optical signals. The wavelength of 
light λ is directly connected with its frequency ω: λ is proportional 
to 1/ω, so the large values of ω for light make it possible to achieve 
large spatial parallelism and to observe and exploit wave physics in 
small volumes. The fact that optical photons have a large energy ℏω 
relative to thermal energy kBT at room temperature T ≈ 300 K (kB is 
the Boltzmann’s constant) is directly responsible for the quantum 
nature of light being accessible at room temperature. Low-dissipation 
dynamics and transmission of information with optics are also con-
nected with the short wavelength λ for optical photons, which allows 
tight waveguided confinement with nearly lossless dielectrics rather 
than with metals. So all six of these features are connected by the fact 
that ω is large, as multiple aspects of optical physics are influenced 
by the value taken by ω.

Not all of these features are equally important for obtaining advan-
tage in optical computing but they are also not presented in order of 
importance, partially because determining such an order would require 
knowing what ingredients future optical computers will ultimately 
most heavily rely on. Nevertheless, in the next section, we discuss how 
these features may be used and opine on which ones are most likely to 
be critical.

How might optical computers beat electronic 
computers?
In this section, we describe some strategies for the design of optical 
computers that may enable them to have an advantage over electronic 
computers.

There are three main metrics of computing performance for which 
we might aim to achieve an advantage: latency, throughput and energy 
efficiency. Which of the three (or which combination) should be tar-
geted in designing an optical computer depends on the goals of the 
user, but there are arguments for how optics could enable advantage 
in all three of these metrics.

Note that there are several other metrics of computers that are 
important, such as size, robustness, cost, security (susceptibility to 
hacking) and accuracy. We do not have any reason to believe that an 
optical computer could deliver superior accuracy, for example, than 
all possible electronic computers, so accuracy is not a metric we expect 
an optical advantage for, but instead we typically aim to achieve an 
advantage in latency, throughput and/or energy efficiency for a speci-
fied accuracy. Similarly, the other metrics provide other constraints 
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that an optical computer must satisfy to be competitive for some 
particular use case.

We now briefly describe these metrics using a particular com-
puting example: machine-learning inference, more specifically, face 
recognition in an image. Latency (also called delay) refers to the time it 
takes for the computer to make a prediction of the name of the person 
in an image from the moment the computer is given the input image. 
Throughput refers to how many inferences can be performed per 
second; for face recognition in images, a throughput metric is images 
processed per second. Note that in general (1/Latency) ≠ Throughput; 
by pipelining52, throughput can be much higher than the inverse of 
latency. As an intuitive example of this, consider a factory producing 
cars using an assembly line (pipeline): from start to finish, it might take 
the factory 1 day to manufacture a car (latency), but the total number 
of cars manufactured per day could be hundreds (throughput). Energy 
efficiency refers to how much energy is used by the computer to com-
plete a single inference computation with a specified accuracy; for 
face recognition in images, an energy-efficiency metric is joules per 
image processed.

There may be tradeoffs when optimizing for these three metrics, 
so it is important to decide before starting the design of a computer 
what one’s goals are. For example, although minimizing latency is some-
times the main goal (for instance, in high-frequency trading120), often 
improving the throughput of a processor or its energy efficiency is the 
more important goal — and in many cases the goal will involve all three 
metrics, such as maximizing throughput and energy efficiency, subject 
to the constraint that the latency meets a particular target (for exam-
ple, in neural-network inference121, where in many applications — such  
as language translation — we may require the latency to be <1 s).

Despite the fact that there are typically tradeoffs in the optimiza-
tion of computer performance metrics (between latency and through-
put, for example), the following strategies should help in designing a 
computer that optimizes any combination of latency, throughput and 
energy efficiency.

Avoid or mitigate input and output bottlenecks and overheads
Optical computers generally do not operate entirely with optics: typi-
cally some inputs to the computer originate in electronics, and/or the 
output from the computer is ultimately electronic. For example, if an 
optical processor is used for determining whether there is a pedestrian 
walking in front of a self-driving car, the output needs to be electronic 
so that it can be input to the control systems in the car, which can use 
the information to actuate the brakes. If the processor uses a neural 
network, the trained parameters for the neural network may well be 
stored in electronic memory and need to be input to the processor 
in some way. Unfortunately, the interfaces between optics and elec-
tronics can cause major bottlenecks in speed and be a major source 
of energy usage by a processor. For an optical processor to offer an 
advantage over electronic processors — in any of latency, through-
put or energy efficiency — the processor architecture needs to be 
designed to minimize the negative impact of transduction between 
optical and electrical signals and the conversion between analog and 
digital signals.

To illustrate some of the challenges that can arise from optics–
electronics interfaces, imagine an optical processor that intrinsically 
has a processing bandwidth of 100 THz. If data can only be input to the 
processor at a rate of 10 GHz, limited by, for example, the bandwidth 
of electro-optic modulators and digital-to-analog converters, then 
without careful design, the intrinsic bandwidth benefit of the optical 

system — which could have led to improved latency and/or improved 
throughput — may go to waste. Similarly, although an optical processor 
can be designed to perform computation on optical signals nearly dis-
sipationlessly, there is an energy cost to optical–electrical transduction 
and analog–digital conversion for getting electronic data into and out 
of the optical processor, and these costs may be so large that they not 
only dominate the total energy cost of the optical processor but also 
make the energy cost so high that the processor is less energy-efficient 
than an all-electronic processor.

A crucial mitigation strategy is that inputted data should be 
re-used as much as possible — once both the time and energy penal-
ties for sending electronic data into an optical processor have been 
paid, one would like to extract as much benefit as possible from those 
data. This applies both to data converted into optical signals and to 
data that may remain as electrical signals but that nevertheless has 
time and energy costs to be input to the processor. Re-use of optical 
signals can be enabled by various forms of optical memory122, as well 
as by copying via fan-out. As a consequence, an optical-computer 
designer is usually motivated to make the fan-out factor be as large as 
possible. In an optical matrix–vector multiplier, fanning out 103 or more 
copies of the input vector is desirable and likely necessary to achieve a 
substantial advantage over electronics.

As an example of the re-use of electrical control signals, opti-
cal processors performing neural-network inference (as opposed to 
training) can load the neural-network weights into phase shifters that 
consume either little or no static power1,39 and then use those weights 
many times by performing many inference computations with them 
(for example, by batching individual inferences75). This allows both the 
time and energy costs of loading the weights to be amortized. Another 
example of data re-use in photonic neural-network processors is in 
convolutional neural networks: the same convolutional kernel can 
be applied to many different subsets of the input data, so the kernel 
weights can — at least conceptually — be loaded once and used many 
times1,40,97.

A general design principle is that — all else held equal — it is better 
to perform more computations per bit of input data. This principle 
is essentially the concept of maximizing arithmetic intensity in con-
ventional computer architecture52. Data re-use is one way to achieve 
this, but an important complementary conceptual approach is to 
choose computational tasks such that the optical processor for that 
task performs computations whose complexity scales rapidly with 
the input data size. For example, a computation on input data of size 
N that requires only O(N) operations is less attractive than one that 
needs O(N2) operations; a computation requiring O(N3) operations is 
even better. The cost in time and energy of inputting data of size N is 
generally O(N), so if the computation performed by the optical system 
has complexity O(N2) (and we assume that, through a combination of 
the 11 features discussed earlier, the cost of this computation in optics 
is far lower than it is in electronics), then there exists some threshold 
size such that for any N larger than the threshold, the costs of loading 
the data can be compensated for by the benefits of doing the O(N2) 
computations optically — leading the optical computer to outperform 
electronic computers even when the data-transfer costs are considered.

A key practical fact is that for current speed and energy numbers 
for CMOS electronics, it seems likely that optical processors will need 
to support very large values of N (say, N > 104) to reach the crossover 
point where they start delivering a throughput or energy-efficiency 
advantage for computations on the basis of matrix–vector multiplica-
tion (which is an O(N2) computation, for square matrices)21. This fact 
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motivates both scaling optical matrix–vector-multiplication proces-
sors to large sizes and designing optical processors with computations 
that have complexity greater than O(N2). From this perspective, combi-
natorial optimization such as Ising solving4 is an attractive problem for 
optical computing because the computing effort is generally expected 
to scale exponentially, that is, as O(2N), with respect to the number N of 
variables being optimized, and also with the amount of data required 
to specify the optimization problem — for example, an N-spin Ising 
problem is specified by O(N2) numbers.

When an optical processor loads data from electronic memory, 
there is not only a cost for the memory access — which an electronic 
processor would also have had to pay — but also there is a cost for trans-
ducing the data from an electrical to an optical signal, and potentially 
also a digital-to-analog conversion involved, which also has a cost. 
Because the cost of loading data is generally larger for optical proces-
sors than for electronic processors, there is a strong motivation to 
choose algorithms for optical processors that have higher intrinsic 
data re-use or higher algorithmic complexity. This kind of hardware–
software co-design can lead to considerable improvements compared 
with fixing the algorithm on the basis of what works well on current 
electronic processors and trying to forcibly design an optical processor  
to work in the same way.

Although minimizing and compensating for the costs of loading 
input data are crucial, it is also important to avoid having the output of 
data be too costly in time or energy. It is similarly beneficial to minimize 
how much data needs to be output, by doing as much of the compu-
tation and data reduction within the optical processor as possible. 
This design principle motivates choosing algorithms that require a 
large amount of computation relative to the size of the output. As an 
example, this is typically true in machine-learning inference — where 
for the overall computation the answer may be just a few tens of bits, 
outputting the predicted class of the input data.

Do not try to directly take on digital-electronic processors at 
their own game
Arguably, the biggest challenge in building optical processors that 
surpass electronic processors in throughput or energy efficiency is 
overcoming the limiting performance of electronics-to-optics and 
optics-to-electronics conversion technology. If one starts with data in 
electronics — as is most typically the case — and wants the computed 
answers to end up in electronics — as is also most often the case — then 
one has little choice but to apply the strategies above and hope to be 
able to amortize the input/output costs. However, given how large 
state-of-the-art CMOS electronic processors are and that they have a 
home-ground advantage in working on data that are already in elec-
tronics, it seems likely that modern optical processors would not first 
gain an advantage as drop-in replacement accelerators in conventional 
electronic-processing workflows. Instead, one can target applications 
in which the inputs and/or outputs are naturally optical — and in this 
way eliminate the conversion costs.

Machine-learning application in which the input is conventionally 
an image from a camera is an example1,88,123: one can replace the cam-
era and subsequent electronic neural network with an optical neural 
network that directly processes the scene in front of it, in applications 
such as self-driving cars124, microscopy88 or spectroscopy. It is not nec-
essary to replace all the electronic image-processing computation with 
optics if the output is ultimately going to be electronic anyway — one 
can adopt the strategy of using optics to pre-process the optical image 
data70,125, intelligently encoding it so that the output conversion from 

optics to electronics has much lower bandwidth than naively digitiz-
ing the images to begin with, which could lead to benefits in latency, 
throughput and energy efficiency88.

Although image processing enables the elimination of the input 
conversion stage because the input can be directly optical, applications 
in which both the input and the output are optical may be even more 
promising for immediate attack. Optical communications have inputs 
and outputs that are both optical, but current approaches involve a 
number of stages at which optical signals are converted to electrical 
signals for electronic processing and then converted back to the opti-
cal domain. This makes optical communications signal processing a 
natural target for all-optical signal processing, which could reduce 
latency, increase throughput and improve energy efficiency20,126–128.

Many neural-network models have become large enough that 
they can no longer practically be run on a single electronic processor, 
which has motivated the design of optical interconnects specifically for 
neural-network processing129. This trend provides another motivation 
for neural-network processing as an application for optical processors: 
if the electronic-processor competition needs to pay the relatively 
high energy costs of conversion between optics and electronics too, 
then these conversion costs are at least not an exclusive disadvantage 
of using optical processors. One can think of a single processor in an 
optically interconnected data centre for performing neural-network 
processing as a system whose inputs and outputs are both optical — so 
from this perspective, it is a promising candidate to try replace with an 
optical processor.

Combine multiple optical features to try gain an advantage
This point might sound trite, but it is important — any optical processor 
that has an advantage over the best equivalent electronic processors 
will most likely need to take advantage of not just one of the features 
of optics but also will need to carefully combine several of them. For 
example, just taking advantage of the large bandwidth of optics in a 
single spatial mode — even if we ignore for now input/output bottle-
necks — is probably not sufficient to enable a throughput benefit as 
electronic processors compensate for lower bandwidth with enormous 
spatial parallelism (having on the order of 1011 transistors in modern 
chips). Similarly, relying only on spatial parallelism will likely also be 
insufficient: although the spatial parallelism of optics is considerable, 
especially in 3D systems, the spatial parallelism of transistors is typically 
even more impressive. (Optical multiplication of vectors by random 
matrices is an exception in which the spatial parallelism is so large 
that even very low bandwidth does not prevent the system from hav-
ing higher throughput than electronic processors73. Even in this case 
though, more than one property of optics is being used: not only spatial 
parallelism but also nearly dissipationless dynamics).

However, if one can combine the bandwidth and spatial-parallelism 
features of optics in a single system, then there is potential to surpass 
electronics. For example, imagine being able to process data in 107 
spatial modes in parallel at a clock rate of 10 THz, or processing data 
in parallel in 107 spatial modes, each with 107 frequency modes — in 
other words, 1014 parallel spatio-frequency modes. The numbers 107 
and 107 are chosen somewhat arbitrarily but as believably practical, as, 
for example, we already have technology — spatial light modulators — for  
manipulating 107 spatial modes. We could have even higher numbers of 
spatial and frequency modes though — this is an example, not a bound. 
Although it is far from a solved problem how to fully take advantage 
of the combination of bandwidth and spatial parallelism afforded by 
optics, when combined with the fact that operations can be performed 
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nearly dissipationlessly in optics, there is great potential for optics to 
outperform electronics.

Accurately predicting the future of technology is difficult, but it 
seems reasonable to hypothesize that of the 11 features explored in 
this Perspective article, bandwidth, spatial parallelism and nearly dis-
sipationless dynamics are most likely to have a key role in any future 
optical processor that does deliver an overall advantage in latency, 
throughput or energy efficiency. However, many of the other features 
may very well end up playing important roles too, so should not be 
ignored — but they will probably need to be combined with one of the 
‘big three’ for a processor using them to achieve an overall advantage 
over electronics.

Many of the demonstrations of optical processors to date have 
shown a proof of principle of the use of some features of optics for 
computing in a way that could lead to an advantage, but with a system 
that does not suitably leverage some of the other available features, 
ultimately leading to a prototype that is inferior to current electronic 
processors. An example of this from my own group is ref. 38, which 
reports using spatial parallelism to realize >500,000 scalar multiplica-
tions per pass of light through a free-space optical processor, but the 
prototype is extremely limited in bandwidth owing to the speed limits 
of the input and output stages, leading to performance that is ulti-
mately many orders of magnitude worse than an electronic processor. 
In that project, we were not expecting to beat an electronic processor 
but rather were aiming to demonstrate how few photons are needed 
for matrix–vector multiplication in optical neural networks; neverthe-
less, to advance this proof-of-principle system to be competitive with 
electronics would require markedly increasing the system bandwidth. 
Besides spatial parallelism, the optical processor presented in ref. 38 
also used some other features of optics, such as nearly dissipation-
less dynamics — without which the ultra-low optical energy usage 
demonstrated would not have been possible — and optical fan-in.

Outlook
My opinion is that the most likely route to building an optical processor 
that delivers a large advantage over electronic processors in through-
put or energy efficiency (or both) in the near term is by constructing 
a free-space optical matrix–vector multiplier that takes advantage of 
large spatial parallelism and nearly dissipationless dynamics1. With a 
vector dimension of N ≈ 104 and a matrix size of N × N, it seems promis-
ing that one can achieve an advantage provided that the system can be 
operated at a rate of one matrix–vector multiplication per nanosecond 
and the surrounding electronics for input and output operate with 
state-of-the-art energy efficiency21,38.

Such a system will require careful optical and electronic engineer-
ing to realize — it is a major engineering undertaking whose difficulty 
should not be underplayed — but is all based on existing technology 
components that can in principle be appropriately scaled. I find this 
candidate architecture the most promising in the near term largely 
because it has been well studied and many of the necessary building 
blocks are fairly advanced. An optical matrix–vector multiplier whose 
inputs are optical, such as when it is used as a preprocessor for visual 
scenes88, would have a lower bar to deliver an advantage over electronic 
solutions, so I expect that if an optical matrix–vector multiplier does 
outperform an electronic processor it will probably first be for an 
application involving optical inputs. However, I certainly do not want 
to give the impression that I think a free-space spatially multiplexed 
architecture is the only one worth pursuing. There are many other 
architectures1,2 — including those based on photonic integrated circuits 

rather than free-space systems and those involving frequency multi-
plexing rather than, or in addition to, spatial multiplexing — that are 
appealing and very much worth pursuing.

When evaluating an optical-computing scheme, it can be help-
ful to determine what the cost of simulating the scheme with a 
digital-electronic processor would be. For example, wave physics 
can be simulated by digital-electronic processors, so when seek-
ing an advantage for optics from wave phenomena, one needs to 
consider the cost of equivalent digital-electronic approaches, and 
depending on the wave phenomena being exploited, the digital 
approaches may be competitive or outright superior. As another 
example, least-power-dissipation principles can be used to realize Ising 
optimizers from networks of coupled optical oscillators4, but simu-
lating the equations of motion of the network on a digital-electronic 
computer can yield the same behaviour as a physical, optical 
implementation, so the intrinsic least-power-dissipation phenomenon 
does not automatically give rise to a computing benefit. Instead, one 
also needs to leverage other benefits of optics, such as parallelism and  
low dissipation.

We conclude by summarizing some of the major outstanding 
challenges that, if addressed, would move us substantially closer to 
realizing practically useful optical computers:
•	 Optical-processor architecture design. There is a major chal-

lenge to design optical-processor architectures that most effec-
tively use the features of optics to gain an advantage. It is not 
obvious that the existing optical-processor architectures (using 
free space or integrated photonics) — some of which are decades 
old13 — are optimal, and there is an opportunity to invent refined 
or completely new designs to meet this challenge.

•	 Applications. We need to find good applications to target with 
optical processors. As one of the major roadblocks to achiev-
ing advantage with optical computing are issues associated with 
input/output, we want to find valuable applications in which we 
can avoid or mitigate input/output bottlenecks and costs. For 
example, it has proven very difficult to build an optical matrix–
vector multiplier at a scale (N) at which the input/output costs can 
be sufficiently amortized, even though an optical matrix–vector 
multiplier can perform O(N2) operations with input/output costs 
of just O(N). Given that even matrix–vector multiplication, with its 
O(N2) complexity, does not have a high enough ratio of computa-
tion to input data, it would be helpful to find useful subroutines, 
algorithms or applications that have higher complexity than O(N2) 
for input and output data sizes ~ N. An additional direction is to 
find applications that could benefit from other aspects of opti-
cal computing besides potential performance advantages. For 
example, direct optical processing of visual scenes could give a 
privacy advantage: an electronic processor of images captured by 
a camera that stores the images in memory could be hacked, but an 
optical processor that directly processes what it ‘sees’ and never 
converts the full incoming images to electronic format could be 
far harder to maliciously copy images from.

•	 Nonlinearity. Nonlinearity is crucial in many computations, and 
a low-energy, fast, small-footprint, reliably manufacturable non-
linearity would be a useful building block. The nonlinearity need 
not necessarily be all-optical—optoelectronic nonlinearity can 
also be useful130, although generally one can hope to benefit from 
higher bandwidths and possibly lower energy consumption in 
all-optical nonlinearities55. A fast, few-photon nonlinearity capable 
of attojoule switching has been demonstrated131; one important 
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direction is in scalably manufacturing the nonlinearities that have 
already been established.

•	 Cascadability. In many computations — for example, in deep 
neural networks — the input data is fed not through one function 
but a sequence of functions. An optical implementation of the 
computation then often involves passing an optical signal either 
through the same optical setup multiple times or through multiple 
different optical setups (or both). Doing so requires being able 
to cascade optical processes in time or space. We mention three 
challenges that can arise in cascading optical processing stages: 
the first of which is nearly universal in optical processors and the 
latter two of which are specific to optical-computing schemes 
using particular implementations of optical nonlinearity. These 
challenges are: attenuation of the optical signal owing to optical 
loss, effective attentuation of the optical signal owing to weakness 
in optical nonlinearity and nonlinear-optical processes generating 
output light that is at wavelengths incompatible with being input 
to the next optical stage (for example, directly cascading many 
second-harmonic-generation processes is infeasible, because 
the frequency of the optical signal is doubled at each stage, so 
after just a few stages one reaches wavelengths that are beyond 
the optical spectrum and are impractical to use). The attenuation 
owing to weak nonlinearity is an attenuation that is fundamental 
and unrelated to optical loss, that is, it would occur even if the opti-
cal system were lossless. The attenuation arises because the part 
of a signal coming out of a nonlinear stage that was not affected  
by the nonlinearity is discarded — either explicitly, or implicitly by 
not taking meaningful part in later stages of the computation —  
but because optical nonlinearity is generally weak76, less than 
100% of the light input to a nonlinear stage will generally be acted 
on nonlinearly. Designing suitably cascadable systems can be  
approached in multiple ways: for example, at the level of proces-
sor architecture, one may opt to insert gain into the system to 
compensate for the signal attenuation. Doing so leads to further 
architectural and system-design decisions about the type of gain 
(purely optical or optoelectronic, in which case the gain is essen-
tially provided electronically by transistors, a common architec-
tural choice in optical-neural-network prototypes2 that often also 
serves the dual purpose of providing nonlinearity), and its required 
speed, preservation of information encoded in the optical spec-
trum and so on, as well as new engineering challenges in realizing 
suitable gain components. One may also approach cascadability 
challenges at the component or physical-implementation level, 
seeking to realize lower-loss optical systems, or materials with 
higher nonlinear coefficients.

•	 3D design and manufacturing. Spatial parallelism can be mas-
sively enhanced by using a third dimension, and if the dissipation 
is kept low, this provides a path to advantage over electronics. 
Separately, enabling long-range coupling between modes by using 
a third dimension (and advantages relating to how transmission 
works in optics) can also bring benefits132,133. The key question here is 
how to engineer and fabricate programmable, large-scale, possibly  
dense, 3D processors62,132,134,135.

•	 Energy costs for electronic and optoelectronic components. 
The energy cost of optical processors is typically dominated by 
the energy costs of the electronic parts of the computer (for exam-
ple, in an analysis of optical neural networks running large trans-
former models, the optical energy used accounts for  <1% of the 
total energy cost21; see also refs. 75,136). Many optical-computing 

schemes could benefit from — and to deliver advantage, may even 
require — the availability of large arrays of high-speed, low-power 
and low-cost detectors, analog-to-digital converters, modulators 
and digital-to-analog converters. Increasing the energy efficiency 
of these components is an important challenge.

•	 Scale. Most optical-computing schemes rely on parallelism — be it 
from frequency or time multiplexing, or spatial multiplexing or a 
combination — for part of how they will achieve an advantage over 
electronics. However, throughput and energy-efficiency advan-
tages typically only materialize when the system size (that is, the 
number of parallel operations) is very large21. (The situation for 
latency, as opposed to throughput or energy-efficiency advan-
tages, is more subtle in that it is more application-dependent: if 
an application requires a certain amount of highly parallelizable 
computation (such as matrix–vector multiplication) to be per-
formed in as little time as possible, so long as an optical processor 
is large enough to perform all that computation in parallel, it is big 
enough and won’t necessarily benefit from larger scale (from the 
perspective of latency). A latency advantage could then arise from 
how the system is designed to minimize the time it takes to get the 
data into and out of the constituent parallel-processing units. But 
conversely, an optical processor could also deliver a latency advan-
tage that is directly attributable to its scale: if it has parallelism far 
beyond that of an electronic processor it may achieve a throughput 
advantage that then will typically give a latency advantage as a side 
benefit for large tasks in which an electronic processor would need 
to perform the computation in multiple stages in series on account 
of the task being larger than the parallel-processing capacity of the 
electronic processor.) For example, we would like optical matrix–
vector multipliers to be large enough to amortize the energy costs 
of loading the input vector and reading out the output vector. We 
would also like them to be large enough to be able to compete in 
throughput with electronic processors, which can perform >106 
8-bit-precision scalar multiplications per nanosecond45 — so if 
vectors are input at a rate of 1 GHz, we would like the optical pro-
cessor to also be able to perform >106 scalar multiplications in 
parallel. However, in optical matrix–vector multipliers made from 
arrays of Mach–Zehnder interferometers1, even a state-of-the-art 
commercial prototype with a 64 × 64 array137 does >100× fewer 
parallel operations than seems necessary to compete in through-
put with state-of-the-art electronics solutions. A major challenge 
is how to scale arrays of size 64 × 64 to something much larger, 
like 1,000 × 1,000, which would put them roughly on par with 
the degree of parallelism in a single state-of-the-art electronic 
chip45, or 104 × 104, which would then be in the regime in which a 
substantial throughput advantage could be achieved provided 
the system was clocked at a comparable rate to electronics (that 
is, at ~1 GHz). How can Mach–Zehnder-interferometer arrays be 
scaled from sizes ~ 64 × 64 to sizes ~ 104 × 104? This question is a 
major challenge for the community working on this approach. 
The challenge of scaling to achieve a far greater degree of paral-
lelism than current prototypes is certainly not unique to optical 
matrix–vector multipliers or Mach–Zehnder-interferometer arrays 
— most optical-computing schemes face a major scaling challenge 
for them to be able to deliver a practical advantage. In some cases, 
we do not even have a solid practical roadmap for how to scale yet: 
for example, what is a feasible way to scale a scheme that combines 
spatial and frequency multiplexing (such as that in ref. 40, using 16 
spatial and 4 frequency degrees of freedom) to a point where it can 
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achieve advantage? There is the potential for very large numbers 
of both spatial and frequency modes to be harnessed to perform 
parallel computations (for example, > 1014 spatio-frequency modes 
being operated on in parallel), but how can we reach this scale for a 
concrete scheme that performs useful computation?

•	 Robustness, reliability and fabrication variation. 
Although many optical components, such as those appear-
ing in consumer-electronics devices such as cellphones and in 
optical-fibre-communications systems, are generally very reliable, 
there are many optical technologies that are being considered for 
use in optical computers that present challenges in robustness (for 
example, how well they can perform in the presence of environ-
mental perturbations such as temperature changes or mechanical 
vibrations), reliability (for example, how likely they are to keep 
functioning correctly under normal operation conditions) and fab-
rication variation (for example, how much fabricated devices will 
differ in specifications from their designed values). For example, 
many optical phase-change-memory technologies have stringent 
limits on how many times they can be switched, and it is desirable 
for these limits to be raised138,139. As another example, in integrated 
photonics, Mach–Zehnder interferometers typically suffer from 
the constituent splitters having small deviations from the ideal 
splitting ratio owing to variations in fabrication; one research 
direction is to improve the fabrication processes, and another is 
to construct designs that can compensate for these fabrication 
errors140. Generally, for each photonic technology platform that 
might be used in an optical computer, there are open problems in 
how to stabilize it — passively or actively.

•	 Storage. To avoid the costs of converting between electronics 
and optics, and to avoid the cost of electronic memory accesses 
(which is a dominant cost even in electronic computing23), we 
would often like to be able to store data for use in optical process-
ing. For example, in matrix–vector multipliers, we typically want 
to be able to store matrices with as low energy cost as possible 
for maintaining the storage, but in a way that the matrix can be 
updated on demand many times, at reasonably high accuracy 
(say, 8 bits), and also with relatively low energy cost57,138. In some 
applications or architectures, it is advantageous to be able to 
store optical signals (corresponding to intermediate calculation 
results, for example) so that conversion from optics to electronics 
and then back to optics can be avoided. There is active study and 
much room for improvement in both these use cases of storage.

•	 Pushing towards quantum limits. One path towards minimizing 
optical energy consumption is to operate optical computers in a 
regime in which the quantum nature of light cannot be ignored 
— for example, by using ultra-low optical powers in which sig-
nals comprise small numbers of photons and are measured by 
single-photon detectors. Note that optical computers will inevita-
bly involve some electronics, if only for control or readout, and it 
is often the electronics energy costs that dominate136, so it is only 
in some cases that there is strong benefit to minimizing the optical 
power used. Nevertheless, for these situations, there is much work 
to be done in both designing architectures and realizing practical 
devices that benefit from operating in the quantum regime141–145.

Constructing an optical computer that beats an electronic com-
puter in any metric is challenging, given how advanced electronic pro-
cessors are. However, the physics of optical computing gives promise 
that if optical computers are carefully engineered, for certain classes 

of tasks — especially those involving data that are already in an optical 
format or that have a very high ratio of computation to data — they 
may deliver orders-of-magnitude benefits in latency, throughput or 
energy efficiency.

Published online: 9 October 2023
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